WO2021186517A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2021186517A1
WO2021186517A1 PCT/JP2020/011561 JP2020011561W WO2021186517A1 WO 2021186517 A1 WO2021186517 A1 WO 2021186517A1 JP 2020011561 W JP2020011561 W JP 2020011561W WO 2021186517 A1 WO2021186517 A1 WO 2021186517A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
mode change
control
mode
control mode
Prior art date
Application number
PCT/JP2020/011561
Other languages
English (en)
French (fr)
Inventor
慎也 笠井
井村 進也
慎二郎 山本
勝道 伊東
晃司 塩飽
孝昭 千葉
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2020/011561 priority Critical patent/WO2021186517A1/ja
Publication of WO2021186517A1 publication Critical patent/WO2021186517A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present invention relates to a work machine.
  • Patent Document 1 discloses a work machine including a control device that starts control for executing automatic driving of a vehicle body on condition that it is determined that a predetermined operation has been performed.
  • the control device described in Patent Document 1 stops the automatic operation and shifts from the automatic operation to the manual operation.
  • Patent Document 1 Since the technique described in Patent Document 1 can smoothly switch between automatic operation and manual operation, it is necessary for a worker who works around the work machine to grasp the switching between automatic operation and manual operation. There is a problem that it is difficult.
  • An object of the present invention is to make a worker who works around the work machine easily grasp the change of the operation mode of the work machine.
  • the work machine includes a machine body, a work device attached to the machine body, and a control device for controlling the work machine.
  • the control device detects the control mode change command
  • the control device determines whether or not the mode change condition including the condition that the work machine is in the stationary state is satisfied, and the mode change condition is satisfied. In this case, the control mode of the work machine is changed.
  • the block diagram of the hydraulic excavator The figure which shows the hydraulic system of a hydraulic excavator together with a control device. It is a detailed view of the solenoid valve unit in FIG. 2, and shows the solenoid proportional valve used for the control of a hydraulic cylinder. It is a detailed view of the solenoid valve unit in FIG. 2, and shows the solenoid proportional valve used for the control of a hydraulic motor.
  • the flowchart which shows an example of the control mode change detection process executed by the control device which concerns on 1st Embodiment.
  • FIG. 5 is a flowchart showing an example of an operation state determination process executed by the control device according to the second modification of the first embodiment.
  • the functional block diagram of the control system which concerns on 2nd Embodiment. The flowchart which shows an example of the control mode change determination process executed by the control device which concerns on 2nd Embodiment.
  • FIG. 5 is a flowchart showing an example of a stationary state determination process executed by the control device according to the modified example 2-1.
  • the traveling hydraulic motor 3a and 3b may be collectively referred to as the traveling hydraulic motor 3.
  • FIG. 1 is a configuration diagram of the hydraulic excavator 1
  • FIG. 2 is a diagram showing the hydraulic system 140 of the hydraulic excavator 1 together with the control device 170.
  • 3 and 4 are detailed views of the solenoid valve unit 160 in FIG. 2, FIG. 3 shows electromagnetic proportional valves 54 to 56 used for controlling hydraulic cylinders (5 to 7), and FIG. 4 shows hydraulic motors (5 to 7).
  • the solenoid proportional valves 57 to 59 used for controlling 4, 3a and 3b) are shown below.
  • the hydraulic excavator 1 includes an airframe (body) 1B and a work device 1A attached to the airframe 1B.
  • the machine body 1B includes a lower traveling body 11 that travels by the left and right traveling hydraulic motors 3 (3a, 3b), and an upper rotating body 12 that is mounted on the lower traveling body 11 and swivels by the swivel hydraulic motor 4.
  • the upper swing body 12 is a driven member that is rotationally driven with respect to the lower traveling body 11 by the swing hydraulic motor 4.
  • the lower traveling body 11 is a driven member driven by traveling hydraulic motors 3a and 3b.
  • the crawler belt 19 on the right side of the lower traveling body 11 is a driven member driven by the traveling hydraulic motor 3a on the right side
  • the crawler belt 19 on the left side of the lower traveling body 11 is the traveling hydraulic motor 3b on the left side. It is a driven member driven by.
  • the working device 1A includes a plurality of driven members (boom 8, arm 9 and bucket 10) connected in series, and an actuator (boom cylinder 5, boom cylinder 5) for driving the driven members (boom 8, arm 9 and bucket 10). It is an articulated work device including an arm cylinder 6 and a bucket cylinder 7).
  • the boom 8 is rotatably connected to its base end by a boom pin 91 (see FIG. 5) at the front of the upper swing body 12.
  • the base end of the arm 9 is rotatably connected to the tip of the boom 8 by an arm pin 92 (see FIG. 5).
  • the bucket 10 is rotatably connected by a bucket pin 93 (see FIG. 5) at the tip of the arm 9.
  • the boom pin 91, the arm pin 92, and the bucket pin 93 are arranged in parallel with each other, and the driven members (boom 8, arm 9, and bucket 10) can rotate relative to each other in the same plane.
  • the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • One end of the bucket cylinder 7 is connected to the arm 9, and the other end is connected to the bucket 10 via the bucket link 13.
  • a boom angle sensor 30 for measuring the rotation angle (hereinafter referred to as a boom angle) ⁇ (see FIG. 5) of the boom 8 with respect to the upper swing body 12 is attached to the boom pin 91.
  • An arm angle sensor 31 for measuring the rotation angle (hereinafter referred to as an arm angle) ⁇ (see FIG. 5) of the arm 9 with respect to the boom 8 is attached to the arm pin 92.
  • a bucket angle sensor 32 for measuring a rotation angle (hereinafter referred to as a bucket angle) ⁇ (see FIG. 5) of the bucket 10 with respect to the arm 9 is attached to the bucket link 13.
  • the angle sensors 30, 31, and 32 can be replaced with angle sensors (ground angle sensors) with respect to a reference plane (for example, a horizontal plane), respectively.
  • a turning angle sensor 34 for measuring a turning angle ⁇ (see FIG. 5), which is a relative angle between the upper turning body 12 and the lower traveling body 11 in a plane orthogonal to the turning center axis, is attached to the machine body 1B.
  • the operation device 45a (FIG. 2) for operating the boom cylinder 5 (boom 8) by sharing 22a (FIG. 1) and the operation right lever 22a (FIG. 1) are shared to operate the bucket cylinder 7 (bucket 10).
  • the operating device 45a and the operating device 45b are collectively referred to as the operating device 45
  • the operating device 46a and the operating device 46b are collectively referred to as the operating device 46
  • the operating device 47a and the operating device 47b are collectively referred to as the operating device 47.
  • the engine 18 which is the prime mover is mounted on the upper swing body 12.
  • the engine 18 drives the main pumps 2a and 2b and the pilot pump 48 (see FIG. 2).
  • the main pumps 2a and 2b are variable displacement hydraulic pumps in which the discharge capacity (pushing volume) per rotation is variably controlled by the regulators 2aa and 2ba.
  • the pilot pump 48 is a fixed-capacity hydraulic pump.
  • the main pumps 2a and 2b and the pilot pump 48 suck in and discharge the hydraulic oil, which is the hydraulic fluid stored in the tank 38.
  • the discharge flow rate of the main pumps 2a and 2b is controlled based on the control signal by inputting a predetermined control signal from the control device 170 to the regulators 2aa and 2ba. ..
  • the pump line 49a which is the discharge pipe of the pilot pump 48, is connected to the solenoid proportional valves 54 to 59 (see FIGS. 3 and 4) in the solenoid valve unit 160.
  • a lock valve 39 is provided between the pilot pump 48 and the solenoid valve unit 160 in the pump line 49a.
  • the lock valve 39 is an electromagnetic switching valve, and is switched by a gate lock lever device 14 (see FIG. 1) arranged in the cab 17.
  • the gate lock lever device 14 has a lock position (raised position) that allows the driver's cab 17 to enter and exit and prohibits the operation of the actuators (3 to 7), and the actuator (3 to 7) that prohibits the driver's cab 17 from entering and exiting. It has a lever that is selectively operated at an unlocked position (lowering position) that permits the operation of the lever, and a position detector that detects the position of the lever.
  • the operating devices 45, 46, 47 are electric operating devices, and generate electric signals according to the operating amount (operating angle) and operating direction of the operating levers 22 and 23 by the operator.
  • the electric signals output from the operating devices 45, 46, 47 are input to the control device 170.
  • the control device 170 generates a control signal for driving the solenoid proportional valves 54 to 59 (see FIGS. 3 and 4) based on the operating directions and operating amounts of the operating devices 45, 46, 47, and generates a control signal to drive the solenoid valve unit. Output to 160. As shown in FIGS.
  • the electromagnetic proportional valves 54 to 59 generate a pilot pressure acting on the hydraulic drive units 150a to 155b of the flow rate control valves 15a to 15f corresponding to the input control signal.
  • the electromagnetic proportional valves 54 to 59 output the generated pilot pressure to the hydraulic drive units 150a to 155b of the flow rate control valves 15a to 15f corresponding to the input control signals via the pilot lines 144a to 149b.
  • the pilot pressure acts on the hydraulic drive units 150a to 155b
  • the flow control valves 15a to 15f are driven according to the pilot pressure. That is, the pilot pressure output from the electromagnetic proportional valves 54 to 59 is used as a control signal for driving the flow rate control valves 15a to 15f.
  • the hydraulic oil (pressure oil) discharged from the main pump 2a is supplied to the bucket cylinder 7 through the flow rate control valve 15c, is supplied to the boom cylinder 5 through the flow rate control valve 15a, and is supplied to the boom cylinder 5 through the flow rate control valve 15f. It is supplied to the traveling hydraulic motor 3b through.
  • the hydraulic oil (pressure oil) discharged from the main pump 2b is supplied to the arm cylinder 6 through the flow rate control valve 15b, is supplied to the swing hydraulic motor 4 through the flow rate control valve 15d, and is supplied to the traveling hydraulic motor 3a through the flow rate control valve 15e. Be supplied.
  • the boom cylinder 5, arm cylinder 6 and bucket cylinder 7 are pressure sensors that detect the pressure in the hydraulic cylinder (cylinder pressure) and output the detection result (electric signal) to the control device 170 via a signal line (not shown). 16a to 16f are provided.
  • the pressure sensor 16a detects the pressure in the oil chamber on the bottom side of the boom cylinder 5, and the pressure sensor 16b detects the pressure in the oil chamber on the rod side of the boom cylinder 5.
  • the pressure sensor 16c detects the pressure in the oil chamber on the bottom side of the arm cylinder 6, and the pressure sensor 16d detects the pressure in the oil chamber on the rod side of the arm cylinder 6.
  • the pressure sensor 16e detects the pressure in the oil chamber on the bottom side of the bucket cylinder 7, and the pressure sensor 16f detects the pressure in the oil chamber on the rod side of the bucket cylinder 7.
  • the engine 18 includes an engine rotation speed detection device 42, which is a rotation sensor for detecting the engine rotation speed [rpm].
  • FIG. 5 is a diagram showing a coordinate system in the hydraulic excavator 1 of FIG.
  • the excavator reference coordinate system of FIG. 5 is a coordinate system set for the hydraulic excavator 1.
  • the turning center axis of the upper turning body 12 is set as the Z axis.
  • the Z-axis (swivel center axis) and the boom pin 91 are orthogonal to each other, and the swivel center axis and the boom pin 91
  • the axis passing through the central axis of is set as the X axis.
  • an axis orthogonal to each of the X-axis and the Z-axis is set as the Y-axis, and the intersection of the X-axis, the Y-axis, and the Z-axis is set as the origin O.
  • the tilt angle of the boom 8 with respect to the X axis is the boom angle ⁇
  • the tilt angle of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the tilt angle of the bucket 10 with respect to the arm 9 is the bucket angle ⁇
  • Let the moving angle be the turning angle ⁇ .
  • the tilt angle of the airframe 1B (upper swing body 12) with respect to the horizontal plane (reference plane) is defined as the vehicle body tilt angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the vehicle body tilt angle ⁇ is detected by the vehicle body tilt angle sensor 33.
  • the boom angle ⁇ becomes the minimum when the boom 8 is raised to the maximum (maximum) (when the boom cylinder length is the longest), and when the boom 8 is lowered to the minimum (minimum) (when the boom cylinder length is the shortest). It becomes the maximum.
  • the arm angle ⁇ becomes the minimum when the arm cylinder length is the shortest, and becomes the maximum when the arm cylinder length is the longest.
  • the bucket angle ⁇ is the minimum when the bucket cylinder length is the shortest, and is maximum when the bucket cylinder length is the longest.
  • the length from the origin O to the center position of the boom pin 91 is L0
  • the length from the center position of the boom pin 91 to the center position of the arm pin 92 is L1
  • the length from the center position of the arm pin 92 to the center position of the bucket pin 93 is Assuming that the length from the center position of L2 and the bucket pin 93 to the tip of the bucket 10 (for example, the tip of the bucket 10) Pb is L3
  • the position of the tip Pb of the bucket 10 in the excavator reference coordinates is Px in the X direction.
  • the position, Py as the Y-direction position, and Pz as the Z-direction position can be expressed by the following equation (1).
  • the hydraulic excavator 1 is provided with a plurality of antennas (hereinafter referred to as GNSS antennas) 25 (see FIG. 6) for GNSS (Global Navigation Satellite System) on the upper swivel body 12.
  • the control device 170 calculates the position and orientation of the hydraulic excavator 1 in the global coordinate system based on the information from the GNSS antenna 25. Further, the control device 170 is based on the position and orientation of the hydraulic excavator 1 in the global coordinate system, the position of the tip Pb of the bucket 10 in the excavator reference coordinate system, and the vehicle body inclination angle ⁇ , and the tip of the bucket 10 in the global coordinate system. The position of the part Pb is calculated.
  • FIG. 6 is a hardware configuration diagram of the control system 107 of the hydraulic excavator 1.
  • the control system 107 includes a hydraulic excavator 1 and a control device 170 mounted on the hydraulic excavator 1 to control the hydraulic excavator 1.
  • the hydraulic excavator 1 includes an attitude detection device 50, a load detection device 51, operation devices 45, 46, 47, an engine rotation speed detection device 42, a mode change switch 41, and an input device 43.
  • a GNSS antenna 25, a solenoid valve unit 160, a display device 53, and a light emitting device 52 that gives a predetermined notification by light emission are provided.
  • the hydraulic excavator 1 has an autopilot mode in which the control device 170 automatically operates the hydraulic excavator 1 and an operator manually operates the hydraulic excavator 1 using the operating devices 45, 46, 47. There is a manual control mode to do.
  • the mode change switch 41 is a device for inputting a control mode change command (control mode change command) to the control device 170, and is operated by an operator.
  • the mode change switch 41 according to the present embodiment is a momentary operation type toggle switch provided on the operation lever 22.
  • the mode change switch 41 outputs an on signal as a control mode change command while the operation unit is pressed by a finger or the like, and when the finger or the like is released from the operation unit, an on signal (control mode change command) is output. Stop the output.
  • the display device 53 is, for example, a liquid crystal display device, and displays a predetermined display image (for example, information on a control mode currently set) on a display screen based on a display control signal from the control device 170.
  • the input device 43 is a device that outputs an operation signal corresponding to the input operation of the operator to the control device 170.
  • a keyboard, a mouse, various buttons, a touch panel, and the like can be adopted.
  • the display device 53 has a touch panel in which a liquid crystal display and a position input device are combined, and the display device 53 also functions as the input device 43.
  • the light emitting device 52 has a plurality of light emitting elements (for example, LED elements).
  • the light emitting device 52 is provided on the upper swing body 12.
  • the light emitting device 52 emits light of a predetermined color toward the periphery of the hydraulic excavator 1 based on the control signal from the control device 170.
  • the attitude detection device 50 includes a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, a vehicle body tilt angle sensor 33, and a turning angle sensor 34. These angle sensors 30 to 34 function as posture sensors for detecting the posture of the hydraulic excavator 1 (the posture of the work device 1A, the posture of the machine body 1B).
  • the load detection device 51 has pressure sensors 16a to 16f. These pressure sensors 16a to 16f function as load sensors for detecting the load of the actuators (boom cylinder 5, arm cylinder 6, and bucket cylinder 7).
  • the solenoid valve unit 160 includes solenoid proportional valves 54a to 56b (see FIG. 3) and electromagnetic proportional valves 57a to 59b whose primary port side is connected to the pilot pump 48 via the pump line 49a. (See FIG. 4).
  • the electromagnetic proportional valves 54a to 56b shown in FIG. 3 are pressure reducing valves that reduce the pilot pressure from the pilot pump 48 and output it to the pilot lines 144a to 146b.
  • the electromagnetic proportional valves 57a to 59b shown in FIG. 4 are pressure reducing valves that reduce the pilot pressure from the pilot pump 48 and output it to the pilot lines 147a to 149b.
  • the pilot pressure output to the pilot lines 144a to 149b acts on the hydraulic drive units 150a to 155b of the flow control valves 15a to 15f.
  • the electromagnetic proportional valves 54a to 59b have the minimum opening when not energized, and the opening increases as the current, which is a control signal from the control device 170, is increased. In this way, the opening degree of each of the electromagnetic proportional valves 54a to 59b corresponds to the control signal from the control device 170.
  • the flow control valves 15a to 15f are driven by outputting the control signal from the control device 170 and controlling the electromagnetic proportional valves 54a to 59b of the solenoid valve unit 160, and each actuator ( 3 to 7) can be operated. Therefore, even when the operating levers 22 and 23 are not operated, the control device 170 outputs a control signal to the solenoid valve unit 160, and the solenoid valve unit 160 generates a pilot pressure to generate each actuator (3). It is also possible to forcibly operate ⁇ 7).
  • the control device 170 includes a CPU (Central Processing Unit) 72 as an operating circuit, a ROM (Read Only Memory) 73 and a RAM (Random Access Memory) 74 as a storage device, an input interface 71, and an output interface. It consists of a microcomputer equipped with 75 and other peripheral circuits.
  • the control device 170 may be composed of one computer or a plurality of computers.
  • the input interface 71 is a signal representing an angle from the angle sensors 30 to 34 of the attitude detection device 50, a signal representing a pressure (load) from the pressure sensors 16a to 16f of the load detection device 51, and an operation from the operation devices 45 to 47.
  • the command), the input signal from the input device 43, and the signal received by the GNSS antenna 25 are converted so that the CPU 72 can calculate.
  • ROM 73 is a non-volatile memory such as EEPROM.
  • the ROM 73 stores a program that allows the CPU 72 to execute various operations as shown in the flowchart described later. That is, the ROM 73 is a storage medium capable of reading a program that realizes the functions of the present embodiment.
  • the RAM 74 is a volatile memory, and is a work memory that directly inputs and outputs data to and from the CPU 72.
  • the RAM 74 temporarily stores necessary data while the CPU 72 calculates and executes the program.
  • the CPU 72 is a processing device that expands the program stored in the ROM 73 into the RAM 74 and executes calculations, and performs predetermined arithmetic processing on the signals taken in from the input interface 71 and the ROM 73 and the RAM 74 according to the program.
  • the output interface 75 generates an output signal according to the calculation result of the CPU 72, and outputs the signal to the solenoid proportional valves 54 to 59, the display device 53, the light emitting device 52, and the like of the solenoid valve unit 160.
  • the control device 170 includes semiconductor memories called ROM 73 and RAM 74 as storage devices, but any storage device can be substituted.
  • the control device 170 may include a magnetic storage device such as a hard disk drive as a storage device.
  • FIG. 7 is a functional block diagram of the control system 107.
  • the control device 170 executes the control mode change detection unit 171, the control mode change determination unit 172, the control mode change execution unit 173, the control mode storage unit 174, and the electromagnetic proportional valve control unit. It functions as 175, a display control unit 176, an autopilot control unit 177, and an external notification control unit 178.
  • the maneuvering mode change detection unit 171, the maneuvering mode change determination unit 172, the maneuvering mode change execution unit 173, and the maneuvering mode storage unit 174 constitute a maneuvering mode setting unit 179 that sets the maneuvering mode based on signals from various devices.
  • the maneuvering mode change detection unit 171 detects a maneuvering mode change command (on signal).
  • the maneuvering mode change detection unit 171 does not detect the maneuvering mode change command (ON signal).
  • the maneuvering mode change detection unit 171 When the maneuvering mode change detection unit 171 detects the maneuvering mode change command, it outputs a judgment execution command for instructing execution of the judgment processing as to whether or not the mode change condition is satisfied to the maneuvering mode change judgment unit 172. On the other hand, the maneuvering mode change detection unit 171 does not output the determination execution command when the maneuvering mode change command is not detected.
  • control mode change detection process executed by the control device (control mode change detection unit 171) 170 will be described with reference to FIG.
  • the processing of the flowchart shown in FIG. 8 is started when the ignition switch (not shown) is turned on (that is, keyed on), and is repeatedly executed at a predetermined cycle.
  • step S113 the maneuvering mode change detection unit 171 determines whether or not the maneuvering mode change command output from the mode change switch 41 is detected. If it is determined in step S113 that the control mode change command has been detected, the process proceeds to step S116. If it is determined in step S113 that the control mode change command has not been detected, the process shown in the flowchart of FIG. 8 ends.
  • step S116 the maneuvering mode change detection unit 171 outputs a determination execution command for causing the maneuvering mode change determination unit 172 to execute the maneuvering mode change determination process, and ends the process shown in the flowchart of FIG.
  • the hydraulic excavator 1 is stationary based on the angles (boom angle ⁇ , arm angle ⁇ , bucket angle ⁇ , turning angle ⁇ , and vehicle body tilt angle ⁇ ) that represent the posture of the hydraulic excavator 1 detected by the attitude detection device 50. It is determined whether or not the mode change condition including the condition of the state is satisfied.
  • the steering mode change determination unit 172 determines the angular velocity ⁇ , which is the time change rate of the angles (boom angle ⁇ , arm angle ⁇ , bucket angle ⁇ , turning angle ⁇ , and vehicle body tilt angle ⁇ ) detected by the attitude detection device 50. Calculate.
  • the angular velocity ⁇ includes the angular velocity of the boom 8 (rotational velocity), the angular velocity of the arm 9 (rotational velocity), the angular velocity of the bucket 10 (rotational velocity), the angular velocity of the upper swing body 12 (turning velocity), and the aircraft 1B.
  • the maneuvering mode change determination unit 172 determines whether or not the hydraulic excavator 1 is in a stationary state based on the magnitude of the angular velocity ⁇ of each driven member, that is, the absolute value
  • the maneuvering mode change determination unit 172 determines whether or not the absolute value
  • the predetermined value ⁇ 0 is a threshold value used for determining whether or not the driven member is in the stopped state, and is stored in the ROM 73 in advance.
  • the predetermined value ⁇ 0 is set to, for example, 0 (zero) or a positive value close to 0 (zero).
  • the control mode change determination unit 172 has all the magnitudes
  • the maneuvering mode change determination unit 172 has any of a plurality of angular velocities ⁇ (angular velocity of boom 8, angular velocity of arm 9, angular velocity of bucket 10, angular velocity of upper swing body 12, and angular velocity of aircraft 1B)
  • control mode change determination unit 172 determines that the mode change condition is satisfied when the hydraulic excavator 1 is in a stationary state, and outputs a mode change permission command to the control mode change execution unit 173. ..
  • the control mode change determination unit 172 determines that the mode change condition is not satisfied when the hydraulic excavator 1 is not in the stationary state. In this case, the control mode change determination unit 172 does not output the mode change permission command.
  • control mode change determination process executed by the control device (control mode change determination unit 172) 170 will be described with reference to FIG.
  • the processing of the flowchart shown in FIG. 9 is started by outputting a determination execution command from the control mode change detection unit 171 (step S116 in FIG. 8), and is repeatedly executed at a predetermined cycle.
  • step S120 the maneuvering mode change determination unit 172 acquires the angle information (data) detected by the attitude detection device 50, and proceeds to step S126.
  • step S126 the maneuvering mode change determination unit 172 executes the stationary state determination process.
  • An example of the rest state determination process executed by the control device (control mode change determination unit 172) 170 will be described with reference to FIG.
  • the maneuvering mode change determination unit 172 calculates the angular velocity ⁇ and proceeds to step S133.
  • the angular velocity ⁇ determines the difference between the angle (current value) acquired in step S120 (see FIG. 9) of this cycle and the angle (past value) acquired in step S120 (see FIG. 9) before the predetermined cycle. It is calculated by dividing by the time ta from the step S120 before the cycle to the step S120 of the current cycle. The time ta is measured by the timer function of the control device 170.
  • the control mode change determination unit 172 calculates the angular velocity of the boom 8, the angular velocity of the arm 9, the angular velocity of the bucket 10, the angular velocity of the upper swing body 12, and the angular velocity of the machine body 1B.
  • step S133 it is determined whether or not the magnitude
  • step S133 the magnitude
  • step S136 the control mode change determination unit 172 sets the stationary state flag to ON assuming that the hydraulic excavator 1 is in the stationary state, ends the stationary state determination process shown in FIG. 10, and proceeds to step S142 shown in FIG. move on.
  • step S139 the control mode change determination unit 172 sets the stationary state flag to off assuming that the hydraulic excavator 1 is not in the stationary state, ends the stationary state determination process shown in FIG. 10, and proceeds to step S142 shown in FIG. ..
  • step S142 the maneuvering mode change determination unit 172 determines whether or not the stationary state flag is set to ON. In step S142, if it is determined that the quiescent state flag is set to on, the process proceeds to step S146, and if it is determined that the quiescent state flag is not set to on (set to off), FIG. 9 shows. The process shown in the flowchart ends.
  • step S146 the maneuvering mode change determination unit 172 outputs a maneuvering mode change permission command to the maneuvering mode change execution unit 173, assuming that the mode change condition is satisfied, and ends the process shown in the flowchart of FIG.
  • the control mode change execution unit 173 shown in FIG. 7 issues a notification permission command for permitting the execution of the notification by the light emitting device 52 as the notification device. Output to the external notification control unit 178. Further, the maneuvering mode change execution unit 173 measures the time after outputting the notification permission command, and sets a maneuvering mode different from the current maneuvering mode after the elapse of a predetermined predetermined time t0. The setting command is output to the control mode storage unit 174.
  • the predetermined time t0 corresponds to a time during which the operator or the like around the hydraulic excavator 1 can be made to recognize that the maneuvering mode is changed by the notification by the light emitting device 52, and is determined in advance by an experiment or the like.
  • the predetermined time t0 is stored in the ROM 73.
  • control mode change execution process executed by the control device control mode change execution unit 173 170 will be described with reference to FIG.
  • the processing of the flowchart shown in FIG. 11 is executed when the control mode change determination unit 172 outputs a control mode change permission command (step S146 in FIG. 9).
  • step S150 the control mode change execution unit 173 outputs a notification permission command to the external notification control unit 178 and proceeds to step S153.
  • the control mode change execution unit 173 outputs a notification permission command to the external notification control unit 178 and starts measuring the time tb.
  • step S153 the maneuvering mode change execution unit 173 determines whether or not the time tb at which the measurement is started after the notification permission command is output is the predetermined time t0 or more.
  • the time tb is measured by the timer function of the control device 170.
  • the process of step S153 is repeated until it is determined that the measurement time tb is equal to or longer than the predetermined time t0. If it is determined in step S153 that the measurement time tb is equal to or longer than the predetermined time t0, the process proceeds to step S156.
  • step S156 the maneuvering mode change execution unit 173 outputs a maneuvering mode setting command to the maneuvering mode storage unit 174, and ends the process shown in the flowchart of FIG.
  • the external notification control unit 178 shown in FIG. 7 executes notification processing using the light emitting device 52 when a notification permission command is input.
  • This notification process is a process for notifying the workers around the hydraulic excavator 1 that the control mode is changed by the light emitting device (notification device) 52 before the control mode is changed. ..
  • the notification process by the external notification control unit 178 will be described in detail.
  • the external notification control unit 178 acquires information on the currently set steering mode from the ROM 73.
  • the external notification control unit 178 determines that the control mode is switched from the manual control mode to the autopilot mode when the notification permission command is input when the control mode currently set is the manual control mode.
  • the external notification control unit 178 determines that the maneuvering mode is switched from the autopilot mode to the manual maneuvering mode when the notification permission command is input.
  • the external notification control unit 178 acquires the notification pattern information corresponding to the determination result, and based on the acquired notification pattern information, the light emitting device 52 Control lighting.
  • the ROM 73 stores yellow blinking notification pattern information that causes the yellow light emitting element of the light emitting device 52 to repeatedly emit light at predetermined time intervals as notification pattern information when the control mode is switched from the manual control mode to the autopilot mode. There is.
  • the external notification control unit 178 acquires the notification pattern information corresponding to the determination result, and based on the acquired notification pattern information, the light emitting device 52 Control lighting.
  • the ROM 73 stores green blinking notification pattern information that causes the green light emitting element of the light emitting device 52 to repeatedly emit light at predetermined time intervals as notification pattern information when the control mode is switched from the autopilot mode to the manual control mode. There is.
  • the external notification control unit 178 continues the notification by the light emitting device 52 for a predetermined time. In addition, instead of continuing the notification by the light emitting device 52 for a predetermined time, the external notification control unit 178 changes (updates) the setting information of the operation mode to the new operation mode by the operation mode storage unit 174 described later. ) May be continued. By executing such a notification process, it is possible to make the workers around the hydraulic excavator 1 recognize that the maneuvering mode is changed before the maneuvering mode is changed.
  • the maneuvering mode storage unit 174 shown in FIG. 7 changes the maneuvering mode setting information stored in the ROM 73 to a new maneuvering mode.
  • An example of the control mode storage process executed by the control device (control mode storage unit 174) 170 will be described with reference to FIG.
  • the processing of the flowchart shown in FIG. 12 is executed by outputting a steering mode setting command by the steering mode change execution unit 173 (step S156 in FIG. 11).
  • step S163 the maneuvering mode storage unit 174 refers to the setting information of the maneuvering mode currently set in the ROM 73, and whether or not the maneuvering mode currently set is the manual maneuvering mode. To judge. If it is determined in step S163 that the currently set maneuvering mode is the manual maneuvering mode, the process proceeds to step S166. If it is determined in step S163 that the currently set maneuvering mode is not the manual maneuvering mode (that is, the autopilot mode), the process proceeds to step S169.
  • step S166 the autopilot mode storage unit 174 stores the autopilot mode as a new maneuvering mode in the ROM 73, and ends the process shown in the flowchart of FIG. As a result, the setting information of the control mode of the ROM 73 is rewritten from the manual control mode to the autopilot mode. That is, the autopilot mode is set to the autopilot mode.
  • step S169 the maneuvering mode storage unit 174 stores the manual maneuvering mode as a new maneuvering mode in the ROM 73, and ends the process shown in the flowchart of FIG. As a result, the setting information of the control mode of the ROM 73 is rewritten from the autopilot mode to the manual control mode. That is, the maneuvering mode is set to the manual maneuvering mode.
  • the solenoid proportional valve control unit 175 shown in FIG. 7 outputs a control command to the solenoid valve units 54 to 59 of the solenoid valve unit 160 according to the steering mode set by the steering mode setting unit 179.
  • the electromagnetic proportional valve control unit 175 controls the electromagnetic proportional valves 54 to 59 according to the operation amount and the operation direction of the operation levers 22 and 23 of the operation devices 45, 46 and 47. Outputs a command (control current).
  • the electromagnetic proportional valve control unit 175 outputs a control command (control current) to the electromagnetic proportional valves 54 to 59 according to the command value from the autopilot control unit 177.
  • the autopilot control unit 177 calculates the position of the tip Pb of the bucket 10 based on the detection result of the attitude detection device 50 and the information from the GNSS antenna 25.
  • the autopilot control unit 177 sets the target speeds of the boom 8, arm 9, and bucket 10 (driven member) so that the position of the tip Pb of the bucket 10 moves along the target trajectory stored in the ROM 73 in advance. Calculate.
  • the electromagnetic proportional valve control unit 175 outputs a control command (control current) to the electromagnetic proportional valve 54 to 56 so that each driven member operates at the target speed calculated by the autopilot control unit 177.
  • the autopilot can be applied to operations for various operations such as leveling work and excavation work.
  • the display control unit 176 displays information on the currently set steering mode on the display screen of the display device 53.
  • the mode change switch 41 When the operator wants to switch the maneuvering mode from the manual maneuvering mode to the autopilot mode, for example, the mode change switch 41 is turned on while the operating levers 22 and 23 of the operating devices 45, 46 and 47 are held in the neutral position. ..
  • a control mode change command (on signal) is input to the control device 170.
  • the control device 170 executes a series of mode setting processes (see FIGS. 8 to 12) for switching the control mode from the manual control mode to the autopilot mode.
  • the control device 170 determines whether or not the hydraulic excavator 1 is in a stationary state, and if it is in a stationary state, determines that the mode change condition is satisfied, and performs notification processing by the light emitting device 52.
  • the light emitting device 52 repeatedly blinks the yellow light emitting element.
  • the control mode of the hydraulic excavator 1 is switched from the manual control mode to the autopilot mode, and the hydraulic excavator 1 operates by the autopilot.
  • the mode change switch 41 When the operator wants to switch the maneuvering mode from the autopilot mode to the manual maneuvering mode, for example, after operating the gate lock lever device 14 to the locked position, the mode change switch 41 is turned on. When the mode change switch 41 is turned on, a control mode change command (on signal) is input to the control device 170. When the control mode change command is input, the control device 170 executes a series of mode setting processes (see FIGS. 8 to 12) for switching the control mode from the autopilot mode to the manual control mode.
  • the control device 170 determines whether or not the hydraulic excavator 1 is in a stationary state, and if it is in a stationary state, determines that the mode change condition is satisfied, and performs notification processing by the light emitting device 52.
  • the light emitting device 52 repeatedly blinks the green light emitting element.
  • the control mode of the hydraulic excavator 1 is switched from the autopilot mode to the manual control mode.
  • the operator operates the gate lock lever device 14 to the unlocked position, and then operates the operation levers 22 and 23 of the operation devices 45, 46 and 47 to operate the operation levers 22 and 23 and the operation direction.
  • the hydraulic excavator 1 can be operated according to the above.
  • the hydraulic excavator (working machine) 1 includes a machine body 1B, a working device 1A attached to the machine body 1B, and a control device 170 for controlling the hydraulic excavator (working machine) 1.
  • the control device 170 detects the control mode change command, the control device 170 determines whether or not the mode change condition including the condition that the hydraulic excavator (working machine) 1 is in the stationary state is satisfied, and the mode change condition is satisfied. If this is the case, the control mode of the hydraulic excavator (working machine) 1 is changed. Therefore, the control mode is changed only when the hydraulic excavator 1 is in a stationary state. Therefore, a worker who works around the hydraulic excavator (working machine) 1 can be given a time grace to confirm the change in the operation mode of the hydraulic excavator (working machine) 1.
  • control device 170 indicates that the control mode is changed by the light emitting device (notifying device) 52 before the control mode of the hydraulic excavator (working machine) 1 is changed.
  • Machine Notify the surroundings of 1 to notify.
  • the operator who works around the hydraulic excavator (working machine) 1 can easily grasp the change in the control mode.
  • the operator around the hydraulic excavator 1 can easily predict the operation of the hydraulic excavator 1, so that the work can be performed efficiently according to the prediction.
  • the maneuvering mode change detection unit 171 detects a maneuvering mode change command
  • an example of outputting a judgment execution command for causing the maneuvering mode change judgment unit 172 to execute the maneuvering mode change determination process will be described.
  • the present invention is not limited to this.
  • the determination execution command may not be output when the hydraulic excavator 1 is not in the stationary state.
  • the control mode change detection unit 171A determines whether or not the hydraulic excavator 1 is in a stationary state based on the angle information detected by the attitude detection device 50. Has the function of When the control mode change detection unit 171A detects the control mode change command output from the mode change switch 41 when the hydraulic excavator 1 is in a stationary state, the control mode change detection unit 171A performs the control mode change determination process in the control mode change determination unit 172. Outputs a judgment execution command to be executed by. On the other hand, when the hydraulic excavator 1 is not in a stationary state, the control mode change detection unit 171 does not output a determination execution command even if it detects a control mode change command output from the mode change switch 41.
  • FIG. 14 is a diagram similar to that of FIG. 8, and the same processing as that of FIG. 8 is designated by the same reference numerals.
  • the processes of steps S101A and S105A are added before the process of step S113 in the flowchart of FIG. 8, and the process of step S115A is added between the processes of step S113 and the process of step S116.
  • FIG. 14 a part different from the processing of FIG. 8 will be mainly described.
  • step S101A the maneuvering mode change detection unit 171A executes an information acquisition process for acquiring the angle information detected by the attitude detection device 50, as in step S120 (see FIG. 9), and proceeds to step S105A.
  • step S105A the steering mode change detection unit 171A executes a stationary state determination process for determining whether or not the hydraulic excavator 1 is in a stationary state based on the angle information acquired in step S101A. Since the rest state determination process (step S105A) is the same process as step S126 (see FIG. 9), the description thereof will be omitted.
  • step S115A the maneuvering mode change detection unit 171A determines whether or not the rest state flag is set to ON by the process of step S105A.
  • step S115A if it is determined that the quiescent state flag is set to on, the process proceeds to step S116, and if it is determined that the quiescent state flag is not set to on (set to off), FIG. 14 shows. The process shown in the flowchart ends.
  • step S116 the maneuvering mode change detection unit 171A outputs a determination execution command for causing the maneuvering mode change determination unit 172 to execute the maneuvering mode change determination process, and ends the process shown in the flowchart of FIG.
  • the judgment execution command is not output unless the hydraulic excavator 1 is in the stationary state at the detection stage of the control mode change command. Therefore, for example, after the mode change switch 41 is erroneously operated during the lever operation of the operating devices 45, 46, 47, the operating levers 22 and 23 of the operating devices 45, 46, 47 are returned to the neutral position, and the flood control By determining that the excavator 1 is in the stationary state, it is possible to prevent the control mode from being switched from the manual control mode to the autopilot mode against the intention of the operator.
  • the steering mode change detection unit 171A executes a determination when the hydraulic excavator 1 is in a stationary state and a steering mode change command output from the mode change switch 41 is detected. An example of outputting a command has been described.
  • the control mode change detection unit 171B according to the present modification the operation devices 45, 46, 47 are not operated, and the control mode change command output from the mode change switch 41 is issued. When it is detected, a judgment execution command is output.
  • the control system 107B according to the second modification of the first embodiment will be described with reference to FIGS. 15 and 16.
  • the maneuvering mode change detection unit 171B performs the maneuvering mode change determination process 172 when the maneuvering mode change command output from the mode change switch 41 is detected and the hydraulic excavator 1 is not in the operating state. Outputs a judgment execution command to be executed by.
  • the control mode change detection unit 171 does not output the determination execution command when the control mode change command output from the mode change switch 41 is detected and the hydraulic excavator 1 is in the operating state.
  • FIG. 16 is a diagram similar to that of FIG. 8, and the same processing as that of FIG. 8 is designated by the same reference numerals.
  • the processes of steps S101B and S105B are added before the process of step S113 in the flowchart of FIG. 8, and the process of step S115B is added between the processes of step S113 and the process of step S116.
  • a part different from the processing of FIG. 8 will be mainly described.
  • step S101B the steering mode change detection unit 171B acquires the information (data) of the lever operation amount L detected by the operation devices 45, 46, 47, and proceeds to step S105B.
  • step S105B the maneuvering mode change detection unit 171B executes the operation state determination process.
  • An example of the operation state determination process executed by the control device (control mode change detection unit 171B) 170B will be described with reference to FIG.
  • the steering mode change detection unit 171B has a predetermined absolute value
  • step S153 all the operation amounts L (the operation amount of the boom cylinder 5, the operation amount of the arm cylinder 6, the operation amount of the bucket cylinder 7, the operation amount of the swivel hydraulic motor 4, and the traveling hydraulic motor 3a acquired in step S105B). , 3b)
  • is equal to or less than the predetermined value L0
  • the process proceeds to step S156. If it is determined in step S153 that at least one of the manipulated variables L acquired in step S101B has an absolute value
  • the predetermined value L0 is a threshold value for determining whether or not the operating levers 22 and 23 are in the dead zone including the neutral position, and is stored in the ROM 73 in advance.
  • step S156 the control mode change detection unit 171B sets the non-operation state flag to ON assuming that all the operation devices 45, 46, and 47 are in the non-operation state, and ends the operation state determination process shown in FIG. The process proceeds to step S113 shown in FIG.
  • step S159 the control mode change detection unit 171B sets the non-operation state flag to off as if any of the operation devices 45, 46, and 47 is in the operation state, and determines the operation state shown in FIG. The process is completed, and the process proceeds to step S113 shown in FIG.
  • step S115B the steering mode change detection unit 171 determines whether or not the non-operation state flag is set to ON.
  • step S115B if it is determined that the non-operation state flag is set to on, the process proceeds to step S116, and it is determined that the non-operation state flag is not set to on (set to off). The process shown in the flowchart of 16 is terminated.
  • step S116 the maneuvering mode change detection unit 171B outputs a determination execution command for causing the maneuvering mode change determination unit 172 to execute the maneuvering mode change determination process, and ends the process shown in the flowchart of FIG.
  • the determination execution command is not output unless all of the operating devices 45, 46, and 47 are in the non-operating state at the detection stage of the control mode change command. Therefore, for example, after the mode change switch 41 is erroneously operated during the lever operation of the operating devices 45, 46, 47, the operating levers 22 and 23 of the operating devices 45, 46, 47 are returned to the neutral position, and the flood control By determining that the excavator 1 is in the stationary state, it is possible to prevent the control mode from being switched from the manual control mode to the autopilot mode against the intention of the operator. As described above, in this modification, it is determined whether or not the mode change condition is satisfied based on the operation of the operation devices 45, 46, 47, so that the control mode can be changed according to the operator's intention. can do.
  • the control mode change determination unit 172 may execute the determination of the operation state described in the second modification of the first embodiment. In this case, the control mode change determination unit 172 issues a control mode change permission command to the control mode change execution unit 173 on the assumption that the mode change condition is satisfied when the hydraulic excavator 1 is in the stationary state and is not in the non-operation state. Output. Further, the control mode change determination unit 172 does not output the control mode change permission command on the assumption that the mode change condition is not satisfied when the hydraulic excavator 1 is not in a stationary state or is in an operating state.
  • FIG. 18 is a diagram similar to FIG. 7, and is a functional block diagram of the control system 207 according to the second embodiment.
  • control device 170 has described an example in which it is determined that the mode change condition is satisfied when the hydraulic excavator 1 is in a stationary state.
  • control device 270 determines whether or not the mode change condition is satisfied in consideration of the load of the actuator.
  • the control mode change determination unit 272 has angles (boom angle ⁇ , arm angle ⁇ , bucket angle ⁇ , turning angle ⁇ , and angles representing the posture of the hydraulic excavator 1 detected by the posture detection device 50, and It is determined whether or not the mode change condition is satisfied based on the vehicle body inclination angle ⁇ ) and the cylinder pressure representing the load of the actuator detected by the load detection device 51.
  • the steering mode change determination unit 272 calculates the pressure change rate Pc, which is the time change rate of the pressure detected by the load detection device 51.
  • the pressure change rate Pc includes the pressure change rate of the boom cylinder 5 (pressure change rate of the bottom side oil chamber and the pressure change rate of the rod side oil chamber) and the pressure change rate of the arm cylinder 6 (pressure change rate of the bottom side oil chamber). And the pressure change rate of the rod side oil chamber) and the pressure change rate of the bucket cylinder 7 (the pressure change rate of the bottom side oil chamber and the pressure change rate of the rod side oil chamber).
  • the maneuvering mode change determination unit 272 determines whether or not the magnitude of the pressure change rate Pc, that is, the absolute value
  • the predetermined value Pc0 is a threshold value used for determining whether or not the load states of the hydraulic cylinders 5, 6 and 7 are stable, and is stored in the ROM 73 in advance.
  • the predetermined value Pc0 is set to, for example, 0 (zero) or a positive value close to 0 (zero).
  • the control mode change determination unit 272 determines all the magnitudes
  • the steering mode change determination unit 272 has any one of the magnitudes
  • the control mode change determination unit 272 determines that the mode change condition is satisfied when the hydraulic excavator 1 is in a stationary state and the load state of the work device 1A is stable.
  • the mode change permission command is output to the control mode change execution unit 173.
  • the control mode change determination unit 272 determines that the mode change condition is not satisfied when the hydraulic excavator 1 is not in a stationary state or when the load state of the work device 1A is not stable. In this case, the control mode change determination unit 272 does not output the mode change permission command.
  • FIG. 19 is a diagram similar to that of FIG. 9, and the same processing as that of FIG. 9 is designated by the same reference numerals.
  • the process of step S220 is performed instead of the process of step S120 of the flowchart of FIG.
  • the process of step S228 is added between the process of step S126 and the process of step S142 of the flowchart of FIG. 9, and step S244 is added between the process of step S142 and the process of step S146 of the flowchart of FIG. Processing has been added.
  • FIG. 19 a part different from the processing of FIG. 9 will be mainly described.
  • step S220 the maneuvering mode change determination unit 272 acquires the angle information (data) detected by the attitude detection device 50 and the pressure (load) information (data) detected by the load detection device 51, and steps. Proceed to S126.
  • step S126 the maneuvering mode change determination unit 272 calculates the angular velocity ⁇ from the angle information acquired in step S220, and determines the stationary state based on the calculated angular velocity ⁇ , as in the first embodiment. (See FIG. 10) is executed, and the process proceeds to step S228.
  • step S228, the maneuvering mode change determination unit 272 executes the load state determination process.
  • An example of the load state determination process executed by the control device (control mode change determination unit 272) 270 will be described with reference to FIG.
  • the steering mode change determination unit 272 calculates the pressure change rate Pc and proceeds to step S233.
  • the pressure change rate Pc is the difference between the pressure (current value) acquired in step S220 (see FIG. 19) of this cycle and the pressure (past value) acquired in step S220 (see FIG. 19) before the predetermined cycle. , Calculated by dividing by the time ta from step S220 before a predetermined cycle to step S220 of this cycle. The time ta is measured by the timer function of the control device 270.
  • step S230 the control mode change determination unit 272 determines the pressure change rate of the rod side oil chamber of the boom cylinder 5, the pressure change rate of the bottom side oil chamber, the pressure change rate of the rod side oil chamber of the arm cylinder 6, and the bottom side oil.
  • the pressure change rate of the chamber, the pressure change rate of the rod side oil chamber of the bucket cylinder 7, and the pressure change rate of the bottom side oil chamber are calculated.
  • step S233 it is determined whether or not the magnitude
  • step S233 all the pressure change rates Pc calculated in step S230 (the pressure change rate of the rod side oil chamber of the boom cylinder 5, the pressure change rate of the bottom side oil chamber, and the pressure change rate of the rod side oil chamber of the arm cylinder 6). And the magnitude
  • step S236 the maneuvering mode change determination unit 272 sets the load stabilization flag to ON assuming that the load state with respect to the work device 1A is stable, ends the load state determination process shown in FIG. 20, and is shown in FIG. Proceed to step S142.
  • step S239 the maneuvering mode change determination unit 272 sets the load stabilization flag to off assuming that the load state with respect to the work device 1A is not stable, ends the load state determination process shown in FIG. 20, and is shown in FIG. Proceed to step S142.
  • step S142 the maneuvering mode change determination unit 272 determines whether or not the stationary state flag is set to ON. In step S142, if it is determined that the quiescent state flag is set to on, the process proceeds to step S244, and if it is determined that the quiescent state flag is not set to on (set to off), FIG. The process shown in the flowchart ends.
  • step S244 the maneuvering mode change determination unit 272 determines whether or not the load stabilization flag is set to ON. In step S244, if it is determined that the load stabilization flag is set to on, the process proceeds to step S146, and if it is determined that the load stabilization flag is not set to on (set to off), FIG. 19 shows. The process shown in the flowchart ends.
  • step S146 the maneuvering mode change determination unit 272 outputs a maneuvering mode change permission command to the maneuvering mode change execution unit 173, assuming that the mode change condition is satisfied, and ends the process shown in the flowchart of FIG.
  • control device 270 not only whether or not the hydraulic excavator 1 is in a stationary state, but also whether or not the mode change condition is satisfied based on the load of the actuators (hydraulic cylinders 5, 6 and 7). Judge whether or not.
  • the control device 270 is permitted to change the control mode on the assumption that the mode change condition is satisfied when the hydraulic excavator 1 is in a stationary state and the load of the work device 1A is stable.
  • the second embodiment in addition to the same effects as those of the first embodiment, for example, in the compaction work, even if the working posture is temporarily unchanged, the load state is changed. It is prevented that the maneuvering mode is changed in an unstable state (a situation where there is disturbance). Therefore, it is possible to avoid the problem that the work cannot be performed properly because the autopilot is performed when the load state is not stable.
  • the control mode change determination unit 272 determines that the mode change condition is satisfied when the hydraulic excavator 1 is in a stationary state and the work device 1A is in a no-load state. Further, the control mode change determination unit 272 determines that the mode change condition is not satisfied when the hydraulic excavator 1 is not in the stationary state or when the work device 1A is not in the no-load state.
  • the control mode change determination unit 272 determines that the work device 1A is in the load state when the pressure of any of the hydraulic cylinders 5, 6 and 7 detected by the load detection device 51 becomes equal to or higher than a predetermined pressure threshold value. When all the pressures of the hydraulic cylinders 5, 6 and 7 are less than a predetermined pressure threshold value, the working device 1A is determined to be in a no-load state.
  • the autopilot is started when there is no load, proper work may not be possible depending on the work.
  • it is prevented that the maneuvering mode is changed when the load is not unloaded. Therefore, it is possible to avoid the problem that the work cannot be performed properly by performing the autopilot when the load is not in a no-load state (a situation where there is a disturbance).
  • FIG. 21 is a diagram similar to FIG. 7, and is a functional block diagram of the control system 307 according to the third embodiment.
  • control mode change execution unit 373 when the control mode change execution unit 373 receives the control mode change permission command from the control mode change determination unit 172, the control mode change execution unit 373 externally issues a notification permission command for permitting the execution of the notification by the light emitting device 52. Output to the notification control unit 178. Further, the control mode change execution unit 373 outputs a confirmation operation screen display command for displaying the confirmation operation screen 353 on the display screen of the display device 53 to the display control unit 376.
  • FIG. 22 is a diagram showing an example of a confirmation operation screen 353 displayed on the display screen of the touch panel which is the display device 53 and the input device 43.
  • the confirmation operation screen 353 permits the message image 353a for notifying the operator that the mode change condition is satisfied and the maneuvering mode is changed, and the execution of the maneuvering mode change. It has a confirmation operation area 353b for the purpose and a cancel operation area 353c for prohibiting the execution of the change of the control mode.
  • the message image 353a is an image of a message such as "Switch the maneuvering mode to the autopilot mode. If you like, touch the confirmation button.”
  • a confirmation operation command is output from the input device (touch panel) 43 to the control mode change execution unit 373.
  • a cancel operation command is output from the input device (touch panel) 43 to the control mode change execution unit 373.
  • the maneuvering mode change execution unit 373 outputs a maneuvering mode setting command for setting a maneuvering mode different from the current maneuvering mode to the maneuvering mode storage unit 174.
  • FIG. 23 is a diagram similar to that of FIG. 11, and the same processing as that of FIG. 11 is designated by the same reference numerals.
  • the process of steps S352 and S353 is executed.
  • step S150 the control mode change execution unit 373 outputs a notification permission command to the external notification control unit 178 and proceeds to step S352.
  • step S352 the control mode change execution unit 373 outputs the confirmation operation screen display command to the display control unit 376 and proceeds to step S353.
  • step S353 the control mode change execution unit 373 determines whether or not the confirmation operation command has been input from the input device 43. The process of step S353 is repeated until a confirmation operation command is input from the input device 43. If it is determined in step S353 that the confirmation operation command has been input from the input device 43, the process proceeds to step S156.
  • step S156 the maneuvering mode change execution unit 373 outputs the maneuvering mode setting command to the maneuvering mode storage unit 174, and ends the process shown in the flowchart of FIG.
  • the control mode change execution unit 373 monitors whether or not a cancel operation command has been input from the input device 43.
  • the maneuvering mode change execution unit 373 performs a predetermined initialization process assuming that the maneuvering mode change has been canceled, and again performs the maneuvering mode change detection process (FIG. 8). See).
  • the control device 370 when it is determined that the mode change condition is satisfied, the control device 370 according to the third embodiment has an image (for example, a confirmation operation screen) including information indicating that the mode change condition is satisfied. 353) is displayed on the display screen of the display device 53. Further, after that, when a predetermined input (for example, input of a confirmation operation command) is received, the control mode of the hydraulic excavator (working machine) 1 is changed.
  • a predetermined input for example, input of a confirmation operation command
  • the control mode is set at the timing of the operator's confirmation operation. Changes will be made. Therefore, the operator can adjust the timing at which the change of the control mode is executed according to the surrounding environment such as the number of workers around the hydraulic excavator 1 and the work contents.
  • the workers around the hydraulic excavator 1 do not want to change the steering mode.
  • the change in maneuvering mode can be canceled if requested.
  • the maneuvering mode change execution unit 373 further executes the stationary state determination process when the confirmation operation command is input from the input device 43, and executes the maneuvering mode change when the hydraulic excavator 1 is in the stationary state. You may try to do it. In this case, since each of the maneuvering mode change determination unit 172 and the maneuvering mode change execution unit 373 performs two-step verification for determining the stationary state of the hydraulic excavator 1, the certainty of the maneuvering mode change in the stationary state is further enhanced. Can be done.
  • FIG. 24 is a diagram similar to FIG. 7, and is a functional block diagram of the control system 407 according to the fourth embodiment.
  • the boarding control mode operated by the operation of the operation devices 45, 46, 47 provided in the driver's cab 17 of the hydraulic excavator 1 and the control mode from the outside of the hydraulic excavator 1
  • the boarding and maneuvering mode corresponds to the manual maneuvering mode described in the first embodiment.
  • the control device 470 operates the mode change switch 41 when the boarding and maneuvering mode is set, and switches the maneuvering mode to the external command maneuvering mode when the mode change condition is satisfied. Further, the control device 470 switches the maneuvering mode to the boarding maneuvering mode when the mode change switch 41 is operated when the external command maneuvering mode is set and the mode change condition is satisfied.
  • the control system 407 includes a remote control device 440 for operating the hydraulic excavator 1 from a remote location and the surroundings of the hydraulic excavator 1. It is provided with a photographing device 461 for photographing and the like, and a communication device 462 for exchanging information with the remote control device 440 by wireless communication.
  • the photographing device 461 includes an in-vehicle camera for photographing the bucket 10 and the surroundings of the bucket 10, and a peripheral monitoring camera for photographing the surroundings of the hydraulic excavator 1.
  • the in-vehicle camera is attached to the upper part of the driver's cab 17.
  • a plurality of ambient surveillance cameras are attached to the upper swing body 12.
  • the communication device 462 is a device having a communication antenna and for communicating with the remote control device 440 via the radio base station 463, the communication line 469, etc., and is attached to the upper part of the driver's cab 17.
  • the communication line 469 is a mobile phone communication network (mobile communication network) developed by a mobile phone operator or the like, the Internet, or the like.
  • the control system 407 according to the present embodiment is configured to enable bidirectional communication between the hydraulic excavator 1 and the remote control device 440 via the communication line 469 of the wide area network.
  • the control device 470 has a function as an image transmission control unit 481 in addition to the functions described in the first embodiment.
  • the image transmission control unit 481 transmits the image captured by the photographing device 461 to the remote control device 440 via the communication device 462.
  • the remote control device 440 displays an operation lever, a communication device that transmits an operation command according to the operation amount and operation direction of the operation lever to the hydraulic excavator 1 via the communication line 469, and an image received via the communication device. It has a display device for displaying on a screen.
  • the electromagnetic proportional valve control unit 475 invalidates the operation command from the remote control device 440 and enables the operation command from the operation devices 45, 46, 47. .. That is, in the state where the boarding control mode is set, the solenoid proportional valve control unit 475 outputs a control signal to the solenoid valve unit 160 based on the operation commands from the operating devices 45, 46, 47.
  • the electromagnetic proportional valve control unit 475 invalidates the operation command from the operation devices 45, 46, 47 and validates the operation command from the remote control device 440. do. That is, in the state where the external command control mode is set, the solenoid proportional valve control unit 475 outputs a control signal to the solenoid valve unit 160 based on the operation command from the remote control device 440.
  • the control mode is changed by the light emitting device 52 before the control mode is changed from the boarding control mode to the external command control mode. It is notified to the surroundings. As a result, the operator who works around the hydraulic excavator (working machine) 1 can know in advance that the maneuvering mode will be changed from the boarding maneuvering mode to the external command maneuvering mode. Further, in the control system 407 according to the fourth embodiment, the control mode is changed by the light emitting device 52 before the control mode is changed from the external command control mode to the boarding control mode around the hydraulic excavator 1. Will be notified. As a result, the operator who works around the hydraulic excavator (working machine) 1 can know in advance that the maneuvering mode will be changed from the external command maneuvering mode to the boarding maneuvering mode.
  • the maneuvering mode includes the autopilot mode described in the first embodiment, the external command maneuvering mode described in the fourth embodiment, and the boarding maneuvering mode described in the first and fourth embodiments.
  • Three maneuvering modes may be included.
  • the light emitting device 52 gives a predetermined notification according to the content of the change in the control mode.
  • the mode change switch 41 is provided with operation positions for setting three control modes, and is configured to output a command for changing to the corresponding control mode from each operation position.
  • the remote control device 440 is provided with a mode change switch for switching the control mode between the autopilot mode and the external command control mode.
  • a mode change switch of the remote control device 440 By operating the mode change switch of the remote control device 440, a control mode change command for switching from the autopilot mode to the external command control mode, or a control mode change command for switching from the external command control mode to the autopilot mode Is transmitted to the control device of the hydraulic excavator 1 by wireless communication.
  • the maneuvering mode can be switched from the autopilot mode to the external command maneuvering mode. Therefore, for example, when a failure occurs during automatic operation that prevents proper automatic operation due to a hardware or software failure, the hydraulic excavator 1 can be operated remotely without approaching the hydraulic excavator 1. Therefore, the restoration work can be performed efficiently. Further, since the operator does not need to approach the hydraulic excavator 1 in order to operate the hydraulic excavator 1 at the time of restoration work, the automatic operation by the hydraulic excavator 1 can be performed at a work site where the operator cannot enter. can.
  • FIG. 25 is a functional block diagram of the control system 507 according to the modified example 2-1.
  • the control mode change determination unit 572 determines whether or not the mode change condition is satisfied based on the signal from the gate lock lever device 14.
  • the maneuvering mode change determination unit 572 executes the maneuvering mode change determination process (see FIG. 9) as in the first embodiment.
  • step S120 of FIG. 9 the maneuvering mode change determination unit 572 acquires information indicating the operation position of the gate lock lever device 14, and proceeds to step S126 to execute the rest state determination process.
  • FIG. 26 is a flowchart showing an example of the rest state determination process executed by the control device (control mode change determination unit 572) 570 according to the modification 2-1.
  • the control mode change determination unit 572 determines whether or not the gate lock lever device 14 is operated to the lock position. If it is determined in step S533 that the gate lock lever device 14 is operated to the locked position, the process proceeds to step S136. In step S533, when the control mode change determination unit 572 determines that the gate lock lever device 14 is not operated to the lock position (that is, is operated to the unlock position), the control mode change determination unit 572 proceeds to step S139.
  • step S136 the control mode change determination unit 572 sets the stationary state flag to ON assuming that the hydraulic excavator 1 is in the stationary state, ends the stationary state determination process shown in FIG. 26, and proceeds to step S142 shown in FIG. move on.
  • step S139 the control mode change determination unit 572 sets the stationary state flag to off assuming that the hydraulic excavator 1 is not in the stationary state, ends the stationary state determination process shown in FIG. 26, and proceeds to step S142 shown in FIG. ..
  • FIG. 27 is a functional block diagram of the control system 607 according to the modified example 2-2.
  • the steering mode change determination unit 672 determines whether or not the mode change condition is satisfied based on the signal from the engine speed detection device 42.
  • the maneuvering mode change determination unit 672 executes the maneuvering mode change determination process (see FIG. 9) as in the first embodiment.
  • step S120 of FIG. 9 the maneuvering mode change determination unit 672 acquires the information of the engine rotation speed detected by the engine rotation speed detection device 42, proceeds to step S126, and executes the stationary state determination process.
  • FIG. 28 is a flowchart showing an example of the rest state determination process executed by the control device (control mode change determination unit 672) 670 according to the modified example 2-2.
  • the steering mode change determination unit 672 determines whether or not the engine 18 is in the stopped state based on the engine speed acquired in step S120. In step S633, when the engine speed is less than a predetermined predetermined speed, the steering mode change determination unit 672 determines that the engine 18 is in the stopped state, and proceeds to step S136. In step S633, when the engine speed is equal to or higher than a predetermined speed, the control mode change determination unit 672 determines that the engine 18 is not in the stopped state, and proceeds to step S139.
  • step S136 the control mode change determination unit 672 sets the stationary state flag to ON assuming that the hydraulic excavator 1 is in the stationary state, ends the stationary state determination process shown in FIG. 28, and proceeds to step S142 shown in FIG. move on.
  • step S139 the control mode change determination unit 672 sets the stationary state flag to off assuming that the hydraulic excavator 1 is not in the stationary state, ends the stationary state determination process shown in FIG. 28, and proceeds to step S142 shown in FIG. ..
  • information on the operating state of the engine 18 is acquired from an in-vehicle network such as CAN, and based on the acquired information. It may be determined whether or not the engine 18 is in the stopped state.
  • the operator needs to operate the ignition switch (engine key switch) to the on position after turning it off in order to switch the control mode.
  • the engine 18 since the engine 18 is stopped when the control mode is switched, it is easy to secure a time for notifying the workers around the hydraulic excavator 1 that the control mode is changed. be able to.
  • ⁇ Modification example 3> an example in which an angle sensor for detecting the angle of the boom 8, arm 9, and bucket 10 is used as a sensor for acquiring information on the postures of the boom 8, arm 9, and bucket 10 has been described. Is not limited to this.
  • a sensor for acquiring information on the postures of the boom 8, arm 9, and bucket 10 a stroke sensor that detects the stroke amount of the boom cylinder 5, arm cylinder 6, and bucket cylinder 7 may be used.
  • the control device 170 can determine whether or not the work device 1A is in the stationary state based on the time change rate of the stroke amount detected by the stroke sensor.
  • ⁇ Modification example 4> In the above embodiment, an example in which the light emitting device 52 is provided as a notification device for performing notification around the hydraulic excavator 1 has been described, but the present invention is not limited thereto.
  • a display panel for displaying a message for notifying the surroundings that the control mode can be switched may be provided as a notification device.
  • a sound output device for outputting a message for notifying the surroundings that the control mode can be switched by voice or outputting a predetermined warning sound may be provided as the notification device.
  • Mode change switch 41 is a momentary operation type toggle switch has been described, but the present invention is not limited thereto.
  • the mode change switch 41 may be an alternate operation type switch.
  • ⁇ Modification 6> The functions of the control device described in the above-described embodiment may be partially or completely realized by hardware (for example, the logic for executing each function is designed by an integrated circuit).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械は、機体と、機体に取り付けられる作業装置と、作業機械を制御する制御装置と、を備える。制御装置は、操縦モードの変更指令が検出されると、作業機械が静止状態である条件を含むモード変更条件が成立しているか否かを判定し、モード変更条件が成立している場合に、作業機械の操縦モードの変更を行う。

Description

作業機械
 本発明は、作業機械に関する。
 特許文献1には、所定の操作が行われたと判定されたことを条件として車体の自動運転を実行するための制御を開始する制御装置を備えた作業機械が開示されている。特許文献1に記載の制御装置は、自動運転に移行した後に操作装置が操作されると、自動運転を停止させて自動運転から手動運転へ移行させる。
特開2016-89559号公報
 特許文献1に記載の技術では、自動運転と手動運転の切り替えを円滑に行うことができるがゆえに、作業機械の周囲で作業を行う作業者にとっては、自動運転と手動運転の切り替わりを把握することが難しいという問題がある。
 本発明は、作業機械の周囲で作業を行う作業者に対し、作業機械の操縦モードの変更を容易に把握させることを目的とする。
 本発明の一態様による作業機械は、機体と、前記機体に取り付けられる作業装置と、作業機械を制御する制御装置と、を備える。前記制御装置は、操縦モードの変更指令が検出されると、前記作業機械が静止状態である条件を含むモード変更条件が成立しているか否かを判定し、前記モード変更条件が成立している場合に、前記作業機械の操縦モードの変更を行う。
 本発明によれば、作業機械の周囲で作業を行う作業者に対し、作業機械の操縦モードの変更を容易に把握させることができる。
油圧ショベルの構成図。 油圧ショベルの油圧システムを制御装置と共に示す図。 図2中の電磁弁ユニットの詳細図であり、油圧シリンダの制御に用いられる電磁比例弁について示す。 図2中の電磁弁ユニットの詳細図であり、油圧モータの制御に用いられる電磁比例弁について示す。 油圧ショベルにおける座標系を示す図。 油圧ショベルの制御システムのハードウェア構成図。 第1実施形態に係る制御システムの機能ブロック図。 第1実施形態に係る制御装置により実行される操縦モード変更検出処理の一例について示すフローチャート。 第1実施形態に係る制御装置により実行される操縦モード変更判定処理の一例について示すフローチャート。 第1実施形態に係る制御装置により実行される静止状態判定処理の一例について示すフローチャート。 第1実施形態に係る制御装置により実行される操縦モード変更実行処理の一例について示すフローチャート。 第1実施形態に係る制御装置により実行される操縦モード記憶処理の一例について示すフローチャート。 第1実施形態の変形例1に係る制御システムの機能ブロック図。 第1実施形態の変形例1に係る制御装置により実行される操縦モード変更検出処理の一例について示すフローチャート。 第1実施形態の変形例2に係る制御システムの機能ブロック図。 第1実施形態の変形例2に係る制御装置により実行される操縦モード変更検出処理の一例について示すフローチャート。 第1実施形態の変形例2に係る制御装置により実行される操作状態判定処理の一例について示すフローチャート。 第2実施形態に係る制御システムの機能ブロック図。 第2実施形態に係る制御装置により実行される操縦モード変更判定処理の一例について示すフローチャート。 第2実施形態に係る制御装置により実行される負荷状態判定処理の一例について示すフローチャート。 第3実施形態に係る制御システムの機能ブロック図。 タッチパネルの表示画面に表示される確認操作画面の一例について示す図。 第3実施形態に係る制御装置により実行される操縦モード変更実行処理の一例について示すフローチャート。 第4実施形態に係る制御システムの機能ブロック図。 変形例2-1に係る制御システムの機能ブロック図。 変形例2-1に係る制御装置により実行される静止状態判定処理の一例について示すフローチャート。 変形例2-2に係る制御システムの機能ブロック図。 変形例2-2に係る制御装置により実行される静止状態判定処理の一例について示すフローチャート。
 図面を参照して、本発明の実施形態について説明する。なお、以下では、作業装置1Aの先端の作業具(アタッチメント)としてバケット10を備えるクローラ式の油圧ショベルを作業機械の一例として説明するが、本発明は、クローラ式の油圧ショベル以外の作業機械への適用も可能である。
 本稿の以下の説明では、同一の構成要素が複数存在する場合、符号(数字)の末尾にアルファベットを付すことがあるが、当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば、2つの走行油圧モータ3a,3bを総称して、走行油圧モータ3と記すことがある。
 <第1実施形態> 
 図1は油圧ショベル1の構成図であり、図2は油圧ショベル1の油圧システム140を制御装置170と共に示す図である。図3及び図4は図2中の電磁弁ユニット160の詳細図であり、図3は油圧シリンダ(5~7)の制御に用いられる電磁比例弁54~56について示し、図4は油圧モータ(4,3a,3b)の制御に用いられる電磁比例弁57~59について示す。
 図1に示すように、油圧ショベル1は、機体(車体)1Bと、機体1Bに取り付けられる作業装置1Aと、を備える。機体1Bは、左右の走行油圧モータ3(3a,3b)により走行する下部走行体11と、下部走行体11上に取り付けられ、旋回油圧モータ4により旋回する上部旋回体12と、を備える。上部旋回体12は、旋回油圧モータ4によって、下部走行体11に対して回転駆動される被駆動部材である。また、下部走行体11は、走行油圧モータ3a,3bによって走行駆動される被駆動部材である。より具体的には、下部走行体11の右側のクローラベルト19が右側の走行油圧モータ3aによって駆動される被駆動部材であり、下部走行体11の左側のクローラベルト19が左側の走行油圧モータ3bによって駆動される被駆動部材である。
 作業装置1Aは、直列的に連結される複数の被駆動部材(ブーム8、アーム9及びバケット10)と、被駆動部材(ブーム8、アーム9及びバケット10)を駆動するアクチュエータ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)と、を備えた多関節型の作業装置である。ブーム8は、その基端部が上部旋回体12の前部においてブームピン91(図5参照)によって回動可能に連結される。アーム9は、その基端部がブーム8の先端部においてアームピン92(図5参照)によって回動可能に連結される。バケット10は、アーム9の先端部においてバケットピン93(図5参照)によって回動可能に連結される。ブームピン91、アームピン92及びバケットピン93は、互いに平行に配置され、被駆動部材(ブーム8、アーム9及びバケット10)はそれぞれ同一面内で相対回転可能とされている。
 ブーム8はブームシリンダ5によって駆動され、アーム9はアームシリンダ6によって駆動され、バケット10はバケットシリンダ7によって駆動される。なお、バケットシリンダ7は、一端がアーム9に連結され、他端がバケットリンク13を介して、バケット10に連結される。
 ブームピン91には上部旋回体12に対するブーム8の回動角度(以下、ブーム角度と記す)α(図5参照)を測定するためのブーム角度センサ30が取り付けられる。アームピン92には、ブーム8に対するアーム9の回動角度(以下、アーム角度と記す)β(図5参照)を測定するためのアーム角度センサ31が取り付けられる。バケットリンク13には、アーム9に対するバケット10の回動角度(以下、バケット角度と記す)γ(図5参照)を測定するためのバケット角度センサ32が取り付けられる。上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(機体1B)の傾斜角度φ(図5参照)を測定するための車体傾斜角度センサ33が取り付けられる。なお、角度センサ30,31,32はそれぞれ基準面(例えば水平面)に対する角度センサ(対地角センサ)に代替可能である。
 機体1Bには、旋回中心軸に直交する平面内における上部旋回体12と下部走行体11の相対角度である旋回角θ(図5参照)を測定するための旋回角度センサ34が取り付けられる。
 上部旋回体12に設けられた運転室17内には、走行右レバー23a(図1)を有し油圧ショベル1の右側の走行油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と、走行左レバー23b(図1)を有し油圧ショベル1の左側の走行油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と、操作右レバー22a(図1)を共有しブームシリンダ5(ブーム8)を操作するための操作装置45a(図2)と、操作右レバー22a(図1)を共有しバケットシリンダ7(バケット10)を操作するための操作装置46a(図2)と、操作左レバー22b(図1)を共有しアームシリンダ6(アーム9)を操作するための操作装置45b(図2)と、操作左レバー22b(図1)を共有し旋回油圧モータ4(上部旋回体12)を操作するための操作装置46b(図2)と、が設けられる。以下では、走行右レバー23a及び走行左レバー23bを総称して操作レバー23と記し、操作右レバー22a及び操作左レバー22bを総称して操作レバー22と記す。また、操作装置45a及び操作装置45bを総称して操作装置45と記し、操作装置46a及び操作装置46bを総称して操作装置46と記し、操作装置47a及び操作装置47bを総称して操作装置47と記す。
 上部旋回体12には、原動機であるエンジン18が搭載される。エンジン18は、メインポンプ2a,2b及びパイロットポンプ48(図2参照)を駆動する。図2に示すように、メインポンプ2a,2bは、レギュレータ2aa,2baによって1回転あたりの吐出容量(押しのけ容積)が可変制御される可変容量型の油圧ポンプである。パイロットポンプ48は、固定容量型の油圧ポンプである。メインポンプ2a,2b及びパイロットポンプ48は、タンク38に貯留されている作動流体である作動油を吸い込み、吐出する。レギュレータ2aa,2baの詳細構成は省略するが、制御装置170から所定の制御信号がレギュレータ2aa,2baに入力されることにより、メインポンプ2a,2bの吐出流量が当該制御信号に基づいて制御される。
 パイロットポンプ48の吐出配管であるポンプライン49aは、電磁弁ユニット160内の各電磁比例弁54~59(図3、図4参照)に接続されている。ポンプライン49aにおけるパイロットポンプ48と電磁弁ユニット160との間には、ロック弁39が設けられている。ロック弁39は、電磁切換弁であり、運転室17に配置されたゲートロックレバー装置14(図1参照)によって切り換えられる。
 ゲートロックレバー装置14は、運転室17の出入りを許可するとともにアクチュエータ(3~7)の動作を禁止するロック位置(上げ位置)と、運転室17の出入りを禁止するとともにアクチュエータ(3~7)の動作を許可するロック解除位置(下げ位置)とに選択的に操作されるレバーと、そのレバーのポジションを検出する位置検出器と、を有する。
 ゲートロックレバー装置14のレバーがロック解除位置に操作されると、図示しないリレーが閉状態(オン状態)とされ、バッテリ(不図示)からロック弁39に電力が供給される。ロック弁39に電力が供給されると、ロック弁39の電磁駆動部(ソレノイド)が励磁されてロック弁39が連通位置に切り換えられる。このため、ゲートロックレバー装置14のレバーがロック解除位置にある状態では、操作レバー22,23の操作量に応じた指令パイロット圧が電磁比例弁54~59によって生成され、操作された操作レバー22,23の操作方向に対応するアクチュエータ(3~7)が動作する。
 ゲートロックレバー装置14のレバーがロック位置に操作されると、図示しないリレーが開状態(オフ状態)とされ、バッテリからロック弁39への電力の供給が遮断される。ロック弁39への電力の供給が遮断されると、ロック弁39の電磁駆動部(ソレノイド)が消磁されてロック弁39が遮断位置に切り換えられる。これにより、電磁比例弁54~59へのパイロット元圧が遮断され、操作レバー22,23による操作が無効化される。
 このように、ゲートロックレバー装置14のポジションがロック位置にあればロック弁39が閉じてポンプライン49aが遮断され、ロック解除位置にあればロック弁39が開いてポンプライン49aが開通する。つまり、ポンプライン49aが遮断された状態では操作レバー22,23による操作が無効化され、走行、旋回、掘削等の動作が禁止される。
 操作装置45,46,47は、電気式の操作装置であり、オペレータによる操作レバー22,23の操作量(操作角)と操作方向に応じた電気信号を発生させる。操作装置45,46,47から出力された電気信号は制御装置170に入力される。制御装置170は、操作装置45,46,47の操作方向及び操作量に基づいて、電磁比例弁54~59(図3及び図4参照)を駆動させるための制御信号を生成し、電磁弁ユニット160に出力する。図3及び図4に示すように、電磁比例弁54~59は、入力された制御信号に対応する流量制御弁15a~15fの油圧駆動部150a~155bに作用させるパイロット圧を生成する。電磁比例弁54~59は、生成したパイロット圧を、パイロットライン144a~149bを介して、入力された制御信号に対応する流量制御弁15a~15fの油圧駆動部150a~155bに出力する。流量制御弁15a~15fは、油圧駆動部150a~155bにパイロット圧が作用すると、パイロット圧に応じて駆動する。つまり、電磁比例弁54~59から出力されるパイロット圧は、流量制御弁15a~15fを駆動する制御信号として利用される。
 図2に示すように、メインポンプ2aから吐出される作動油(圧油)は、流量制御弁15cを通じてバケットシリンダ7に供給され、流量制御弁15aを通じてブームシリンダ5に供給され、流量制御弁15fを通じて走行油圧モータ3bに供給される。メインポンプ2bから吐出される作動油(圧油)は、流量制御弁15bを通じてアームシリンダ6に供給され、流量制御弁15dを通じて旋回油圧モータ4に供給され、流量制御弁15eを通じて走行油圧モータ3aに供給される。
 作動油が油圧シリンダ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)に供給されると、油圧シリンダ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)が伸縮する。これにより、被駆動部材(ブーム8、アーム9及びバケット10)が回動し、作業装置1Aの姿勢及びバケット10の先端部Pbの位置が変化する。作動油が旋回油圧モータ4に供給されると、旋回油圧モータ4が回転する。これにより、下部走行体11に対して上部旋回体12が旋回する。作動油が走行油圧モータ3に供給されると、走行油圧モータ3が回転する。これにより、下部走行体11が走行する。
 ブームシリンダ5、アームシリンダ6及びバケットシリンダ7には、油圧シリンダ内の圧力(シリンダ圧)を検出し、その検出結果(電気信号)を図示しない信号線を介して制御装置170へ出力する圧力センサ16a~16fが設けられる。圧力センサ16aはブームシリンダ5のボトム側油室の圧力を検出し、圧力センサ16bはブームシリンダ5のロッド側油室の圧力を検出する。圧力センサ16cはアームシリンダ6のボトム側油室の圧力を検出し、圧力センサ16dはアームシリンダ6のロッド側油室の圧力を検出する。圧力センサ16eはバケットシリンダ7のボトム側油室の圧力を検出し、圧力センサ16fはバケットシリンダ7のロッド側油室の圧力を検出する。
 エンジン18は、エンジン回転数[rpm]を検出するための回転センサであるエンジン回転数検出装置42を備えている。
 油圧ショベル1の姿勢は、図5のショベル基準座標系に基づいて定義できる。図5は、図1の油圧ショベル1における座標系を示す図である。図5のショベル基準座標系は、油圧ショベル1に対して設定される座標系である。ショベル基準座標系では、上部旋回体12の旋回中心軸がZ軸として設定される。ショベル基準座標系では、上部旋回体12の前後方向が走行体11の前後方向と一致している姿勢において、Z軸(旋回中心軸)及びブームピン91に直交し、かつ、旋回中心軸及びブームピン91の中心軸を通る軸がX軸として設定される。ショベル基準座標系では、X軸とZ軸のそれぞれに直交する軸がY軸として設定され、X軸、Y軸及びZ軸の交点が原点Oとして設定される。X軸に対するブーム8の傾斜角度をブーム角α、ブーム8に対するアーム9の傾斜角度をアーム角β、アーム9に対するバケット10の傾斜角度をバケット角γ、下部走行体11に対する上部旋回体12の回動角度を旋回角θとする。水平面(基準面)に対する機体1B(上部旋回体12)の傾斜角度を車体傾斜角φとする。
 ブーム角αはブーム角度センサ30により、アーム角βはアーム角度センサ31により、バケット角γはバケット角度センサ32により、車体傾斜角φは車体傾斜角度センサ33により検出される。ブーム角αは、ブーム8を最大(最高)まで上げたとき(ブームシリンダ長が最長のとき)に最小となり、ブーム8を最小(最低)まで下げたとき(ブームシリンダ長が最短のとき)に最大となる。アーム角βは、アームシリンダ長が最短のときに最小となり、アームシリンダ長が最長のときに最大となる。バケット角γは、バケットシリンダ長が最短のときに最小となり、バケットシリンダ長が最長のときに最大となる。
 原点Oからブームピン91の中心位置までの長さをL0、ブームピン91の中心位置からアームピン92の中心位置までの長さをL1、アームピン92の中心位置からバケットピン93の中心位置までの長さをL2、バケットピン93の中心位置からバケット10の先端部(例えば、バケット10の爪先)Pbまでの長さをL3とすると、ショベル基準座標におけるバケット10の先端部Pbの位置は、PxをX方向位置、PyをY方向位置、PzをZ方向位置として、以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)のRsは次式(2)で表される。 
Figure JPOXMLDOC01-appb-M000002
 式(1)のPuは次式(3)で表される。 
Figure JPOXMLDOC01-appb-M000003
 油圧ショベル1は、上部旋回体12にGNSS(Global Navigation Satellite System:全地球衛星測位システム)用の複数のアンテナ(以下、GNSSアンテナと記す)25(図6参照)を備えている。制御装置170は、GNSSアンテナ25からの情報に基づき、グローバル座標系における油圧ショベル1の位置及び方位を算出する。さらに、制御装置170は、グローバル座標系における油圧ショベル1の位置及び方位、ショベル基準座標系におけるバケット10の先端部Pbの位置、並びに、車体傾斜角φに基づき、グローバル座標系におけるバケット10の先端部Pbの位置を算出する。
 図6は、油圧ショベル1の制御システム107のハードウェア構成図である。制御システム107は、油圧ショベル1と、油圧ショベル1に搭載され油圧ショベル1を制御する制御装置170と、を備える。図6に示すように、油圧ショベル1は、姿勢検出装置50と、負荷検出装置51と、操作装置45,46,47と、エンジン回転数検出装置42と、モード変更スイッチ41と、入力装置43と、GNSSアンテナ25と、電磁弁ユニット160と、表示装置53と、発光により所定の報知を行う発光装置52と、を備える。
 本実施形態に係る油圧ショベル1は、操縦モードとして、制御装置170が油圧ショベル1を自動で運転する自動操縦モードと、オペレータが操作装置45,46,47を用いて油圧ショベル1を手動で運転する手動操縦モードと、がある。モード変更スイッチ41は、操縦モードの変更指令(操縦モード変更指令)を制御装置170に入力するための装置であり、オペレータによって操作される。本実施形態に係るモード変更スイッチ41は、操作レバー22に設けられるモーメンタリ動作型のトグルスイッチである。モード変更スイッチ41は、操作部が手指等で押されている間は、操縦モード変更指令としてのオン信号を出力し、操作部から手指等が離されると、オン信号(操縦モード変更指令)の出力を停止する。
 表示装置53は、例えば、液晶ディスプレイ装置であり、制御装置170からの表示制御信号に基づいて、表示画面に所定の表示画像(例えば、現在設定されている操縦モードに関する情報)を表示させる。入力装置43は、オペレータの入力操作に応じた操作信号を制御装置170に出力する装置である。入力装置43としては、キーボード、マウス、各種ボタン、タッチパネル等を採用することができる。本実施形態では、表示装置53が、液晶ディスプレイと位置入力装置とが組み合わされたタッチパネルを有しており、表示装置53が入力装置43としても機能する。
 発光装置52は、複数の発光素子(例えばLED素子)を有している。発光装置52は、上部旋回体12に設けられる。発光装置52は、制御装置170からの制御信号に基づいて、油圧ショベル1の周囲に向けて所定の色の発光を行う。
 姿勢検出装置50は、ブーム角度センサ30、アーム角度センサ31、バケット角度センサ32、車体傾斜角度センサ33、及び、旋回角度センサ34を有する。これらの角度センサ30~34は、油圧ショベル1の姿勢(作業装置1Aの姿勢、機体1Bの姿勢)を検出する姿勢センサとして機能する。
 負荷検出装置51は、圧力センサ16a~16fを有する。これらの圧力センサ16a~16fは、アクチュエータ(ブームシリンダ5、アームシリンダ6、及び、バケットシリンダ7)の負荷を検出する負荷センサとして機能する。
 電磁弁ユニット160は、図3及び図4に示すように、一次ポート側がポンプライン49aを介してパイロットポンプ48に接続される電磁比例弁54a~56b(図3参照)及び電磁比例弁57a~59b(図4参照)を備える。図3に示す電磁比例弁54a~56bは、パイロットポンプ48からのパイロット圧を減圧してパイロットライン144a~146bに出力する減圧弁である。図4に示す電磁比例弁57a~59bは、パイロットポンプ48からのパイロット圧を減圧してパイロットライン147a~149bに出力する減圧弁である。パイロットライン144a~149bに出力されたパイロット圧は、流量制御弁15a~15fの油圧駆動部150a~155bに作用する。
 電磁比例弁54a~59bは、非通電時には開度が最小で、制御装置170からの制御信号である電流を増大させるほど開度が大きくなる。このように各電磁比例弁54a~59bの開度は制御装置170からの制御信号に応じたものとなる。
 このように、本実施形態では、制御装置170から制御信号を出力して、電磁弁ユニット160の電磁比例弁54a~59bを制御することにより、流量制御弁15a~15fを駆動し、各アクチュエータ(3~7)を動作させることができる。したがって、操作レバー22,23が操作されていない場合であっても、制御装置170が制御信号を電磁弁ユニット160に出力し、電磁弁ユニット160によってパイロット圧を発生させることにより、各アクチュエータ(3~7)を強制的に動作させることも可能である。
 図6に示すように、制御装置170は、動作回路であるCPU(Central Processing Unit)72、記憶装置であるROM(Read Only Memory)73及びRAM(Random Access Memory)74、入力インタフェース71及び出力インタフェース75、並びに、その他の周辺回路を備えたマイクロコンピュータで構成される。制御装置170は、1つのコンピュータで構成してもよいし、複数のコンピュータで構成してもよい。
 入力インタフェース71は、姿勢検出装置50の角度センサ30~34からの角度を表す信号、負荷検出装置51の圧力センサ16a~16fからの圧力(負荷)を表す信号、操作装置45~47からの操作量を表す信号、ゲートロックレバー装置14の操作位置を表す信号、エンジン回転数検出装置42からのエンジン回転数を表す信号、モード変更スイッチ41からの操縦モードを設定するための信号(操縦モード変更指令)、入力装置43からの入力信号、及び、GNSSアンテナ25で受信した信号を、CPU72が演算可能なように変換する。
 ROM73はEEPROM等の不揮発性メモリである。ROM73には、後述するフローチャートに示すような各種演算をCPU72によって実行可能なプログラムが格納されている。すなわち、ROM73は、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体である。
 RAM74は揮発性メモリであり、CPU72との間で直接的にデータの入出力を行うワークメモリである。RAM74は、CPU72がプログラムを演算実行している間、必要なデータを一時的に記憶する。
 CPU72は、ROM73に記憶されたプログラムをRAM74に展開して演算実行する処理装置であって、プログラムに従って入力インタフェース71及びROM73,RAM74から取り入れた信号に対して所定の演算処理を行う。
 出力インタフェース75は、CPU72での演算結果に応じた出力用の信号を生成し、その信号を電磁弁ユニット160の電磁比例弁54~59、表示装置53、発光装置52等に出力する。
 なお、制御装置170は、記憶装置としてROM73及びRAM74という半導体メモリを備えているが、記憶装置であれば代替することが可能である。例えば、制御装置170は、ハードディスクドライブ等の磁気記憶装置を記憶装置として備えてもよい。
 図7は、制御システム107の機能ブロック図である。制御装置170は、ROM73に記憶されているプログラムを実行することにより、操縦モード変更検出部171、操縦モード変更判定部172、操縦モード変更実行部173、操縦モード記憶部174、電磁比例弁制御部175、表示制御部176、自動操縦制御部177、及び、外部報知制御部178として機能する。操縦モード変更検出部171、操縦モード変更判定部172、操縦モード変更実行部173及び操縦モード記憶部174は、各種装置からの信号に基づいて操縦モードを設定する操縦モード設定部179を構成する。
 モード変更スイッチ41がオン操作されている場合、操縦モード変更検出部171によって操縦モード変更指令(オン信号)が検出される。モード変更スイッチ41がオフ操作されている場合、操縦モード変更検出部171では、操縦モード変更指令(オン信号)は検出されない。
 操縦モード変更検出部171は、操縦モード変更指令を検出すると、モード変更条件が成立しているか否かの判定処理の実行を指令する判定実行指令を操縦モード変更判定部172へ出力する。一方、操縦モード変更検出部171は、操縦モード変更指令が検出されていない場合には、判定実行指令の出力は行わない。
 図8を参照して、制御装置(操縦モード変更検出部171)170により実行される操縦モード変更検出処理の一例について説明する。図8に示すフローチャートの処理は、イグニッションスイッチ(不図示)がオン(すなわちキーオン)されることにより開始され、所定の周期で繰り返し実行される。
 図8に示すように、ステップS113において、操縦モード変更検出部171は、モード変更スイッチ41から出力される操縦モード変更指令が検出されたか否かを判定する。ステップS113において、操縦モード変更指令が検出されたと判定されるとステップS116へ進む。ステップS113において、操縦モード変更指令が検出されていないと判定されると図8のフローチャートに示す処理を終了する。
 ステップS116において、操縦モード変更検出部171は、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力し、図8のフローチャートに示す処理を終了する。
 図7に示す操縦モード変更判定部172は、操縦モード変更検出部171においてモード変更スイッチ41から出力される操縦モード変更指令が検出され、操縦モード変更検出部171から判定実行指令が入力されると、姿勢検出装置50で検出される油圧ショベル1の姿勢を表す角度(ブーム角α、アーム角β、バケット角γ、旋回角θ、及び、車体傾斜角φ)に基づいて、油圧ショベル1が静止状態である条件を含むモード変更条件が成立しているか否かを判定する。
 操縦モード変更判定部172は、姿勢検出装置50で検出された角度(ブーム角α、アーム角β、バケット角γ、旋回角θ、及び、車体傾斜角φ)の時間変化率である角速度ωを演算する。角速度ωには、ブーム8の角速度(回動速度)、アーム9の角速度(回動速度)、バケット10の角速度(回動速度)、上部旋回体12の角速度(旋回速度)、及び、機体1Bの角速度(下部走行体11の傾斜角速度)がある。
 操縦モード変更判定部172は、各被駆動部材の角速度ωの大きさ、すなわち角速度ωの絶対値|ω|に基づいて、油圧ショベル1が静止状態であるか否かを判定する。操縦モード変更判定部172は、角速度ωの絶対値|ω|が所定値ω0以下であるか否かを判定する。所定値ω0は、被駆動部材が停止状態であるか否かを判定するために用いられる閾値であり、予めROM73に記憶されている。所定値ω0は、例えば、0(ゼロ)あるいは、0(ゼロ)に近い正の値が設定される。
 操縦モード変更判定部172は、複数の角速度ω(ブーム8の角速度、アーム9の角速度、バケット10の角速度、上部旋回体12の角速度、及び、機体1Bの角速度)の大きさ|ω|が全て所定値ω0以下である場合、油圧ショベル1は静止状態であると判定する。操縦モード変更判定部172は、複数の角速度ω(ブーム8の角速度、アーム9の角速度、バケット10の角速度、上部旋回体12の角速度、及び、機体1Bの角速度)の大きさ|ω|のいずれかが所定値ω0よりも大きい場合、油圧ショベル1は静止状態でないと判定する。
 本実施形態では、操縦モード変更判定部172は、油圧ショベル1が静止状態である場合にはモード変更条件が成立していると判定し、モード変更許可指令を操縦モード変更実行部173へ出力する。一方、操縦モード変更判定部172は、油圧ショベル1が静止状態でない場合にはモード変更条件が成立していないと判定する。この場合、操縦モード変更判定部172は、モード変更許可指令の出力は行わない。
 図9を参照して、制御装置(操縦モード変更判定部172)170により実行される操縦モード変更判定処理の一例について説明する。図9に示すフローチャートの処理は、操縦モード変更検出部171から判定実行指令が出力される(図8のステップS116)ことにより開始され、所定の周期で繰り返し実行される。
 図9に示すように、ステップS120において、操縦モード変更判定部172は、姿勢検出装置50で検出される角度の情報(データ)を取得し、ステップS126へ進む。
 ステップS126において、操縦モード変更判定部172は、静止状態判定処理を実行する。図10を参照して、制御装置(操縦モード変更判定部172)170により実行される静止状態判定処理の一例について説明する。図10に示すように、静止状態判定処理(図9のS126)では、ステップS130において、操縦モード変更判定部172は、角速度ωを演算し、ステップS133へ進む。角速度ωは、今回のサイクルのステップS120(図9参照)で取得した角度(現在値)と、所定サイクル前のステップS120(図9参照)で取得した角度(過去値)との差を、所定サイクル前のステップS120から今回のサイクルのステップS120までの時間taで除することで算出される。時間taは、制御装置170のタイマ機能により計測される。
 例えば、ブーム8の角速度ωαは、ブーム8の角度の現在値αprとブーム8の角度の過去値αpaとの差を、過去値αpaを取得した時刻から現在値αprを取得した時刻までの時間taで除することで算出される(ωα=(αpr-αpa)/ta)。ステップS130において、操縦モード変更判定部172は、ブーム8の角速度、アーム9の角速度、バケット10の角速度、上部旋回体12の角速度、及び、機体1Bの角速度を演算する。
 ステップS133において、ステップS130で演算した角速度ωの大きさ|ω|が所定値ω0以下であるか否かを判定する。ステップS133において、ステップS130で演算した全ての角速度ω(ブーム8の角速度、アーム9の角速度、バケット10の角速度、上部旋回体12の角速度、及び、機体1Bの角速度)の大きさ|ω|が、それぞれ所定値ω0以下であると判定されると、ステップS136へ進む。ステップS133において、ステップS130で演算した角速度ωのうち、その大きさ|ω|が所定値ω0よりも大きいものが少なくとも1つあると判定されると、ステップS139へ進む。
 ステップS136において、操縦モード変更判定部172は、油圧ショベル1は静止状態であるものとして静止状態フラグをオンに設定し、図10に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。ステップS139において、操縦モード変更判定部172は、油圧ショベル1は静止状態でないものとして静止状態フラグをオフに設定し、図10に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。
 図9に示すように、ステップS142において、操縦モード変更判定部172は、静止状態フラグがオンに設定されているか否かを判定する。ステップS142において、静止状態フラグがオンに設定されていると判定されるとステップS146へ進み、静止状態フラグがオンに設定されていない(オフに設定されている)と判定されると図9のフローチャートに示す処理を終了する。
 ステップS146において、操縦モード変更判定部172は、モード変更条件が成立したものとして、操縦モード変更許可指令を操縦モード変更実行部173へ出力し、図9のフローチャートに示す処理を終了する。
 図7に示す操縦モード変更実行部173は、操縦モード変更判定部172から操縦モード変更許可指令が入力されると、報知装置としての発光装置52による報知の実行を許可するための報知許可指令を外部報知制御部178へ出力する。さらに、操縦モード変更実行部173は、報知許可指令を出力してからの時間を計測し、予め定めた所定時間t0の経過後に、現在の操縦モードとは異なる操縦モードを設定するための操縦モード設定指令を操縦モード記憶部174に出力する。所定時間t0は、発光装置52による報知によって、油圧ショベル1の周囲の作業者等に対して操縦モードが変わることを認識させることのできる時間に相当し、予め実験等により定められる。所定時間t0は、ROM73に記憶されている。
 図11を参照して、制御装置(操縦モード変更実行部173)170により実行される操縦モード変更実行処理の一例について説明する。図11に示すフローチャートの処理は、操縦モード変更判定部172によって、操縦モード変更許可指令が出力される(図9のステップS146)ことにより実行される。
 図11に示すように、ステップS150において、操縦モード変更実行部173は、報知許可指令を外部報知制御部178へ出力してステップS153へ進む。なお、図示しないが、操縦モード変更実行部173は、報知許可指令を外部報知制御部178へ出力するとともに時間tbの計測を開始する。
 ステップS153において、操縦モード変更実行部173は、報知許可指令を出力してから計測を開始した時間tbが、所定時間t0以上であるか否かを判定する。時間tbは、制御装置170のタイマ機能により計測される。ステップS153の処理は、計測時間tbが所定時間t0以上であると判定されるまで繰り返し行われる。ステップS153において、計測時間tbが所定時間t0以上であると判定されると、ステップS156へ進む。
 ステップS156において、操縦モード変更実行部173は、操縦モード設定指令を操縦モード記憶部174へ出力し、図11のフローチャートに示す処理を終了する。
 図7に示す外部報知制御部178は、報知許可指令が入力されると発光装置52を用いた報知処理を実行する。この報知処理は、操縦モードの変更の前に、発光装置(報知装置)52によって操縦モードの変更が行われることを油圧ショベル1の周囲の作業者等に知らせるための報知を行わせる処理である。外部報知制御部178による報知処理について、詳しく説明する。外部報知制御部178は、現在設定されている操縦モードの情報をROM73から取得する。外部報知制御部178は、現在設定されている操縦モードが手動操縦モードである場合において、報知許可指令が入力されると、操縦モードが手動操縦モードから自動操縦モードへ切り替えられると判定する。外部報知制御部178は、現在設定されている操縦モードが自動操縦モードである場合において、報知許可指令が入力されると、操縦モードが自動操縦モードから手動操縦モードに切り替えられると判定する。
 操縦モードが手動操縦モードから自動操縦モードに切り替えられると判定されると、外部報知制御部178は、判定結果に対応する報知パターン情報を取得し、取得した報知パターン情報に基づいて発光装置52の点灯を制御する。ROM73には、操縦モードが手動操縦モードから自動操縦モードに切り替えられる場合の報知パターン情報として、発光装置52の黄色の発光素子を所定の時間間隔で繰り返し発光させる黄色点滅報知パターン情報が記憶されている。
 操縦モードが自動操縦モードから手動操縦モードに切り替えられると判定されると、外部報知制御部178は、判定結果に対応する報知パターン情報を取得し、取得した報知パターン情報に基づいて発光装置52の点灯を制御する。ROM73には、操縦モードが自動操縦モードから手動操縦モードに切り替えられる場合の報知パターン情報として、発光装置52の緑色の発光素子を所定の時間間隔で繰り返し発光させる緑色点滅報知パターン情報が記憶されている。
 外部報知制御部178は、予め定めた所定時間だけ発光装置52による報知を継続させる。なお、外部報知制御部178は、予め定めた所定時間だけ発光装置52による報知を継続することに代えて、後述する操縦モード記憶部174によって、操縦モードの設定情報が新しい操縦モードに変更(更新)されるまで継続させてもよい。このような報知処理が実行されることにより、油圧ショベル1の周囲の作業者等に操縦モードが変更されることを、操縦モードの変更の前に認識させることができる。
 図7に示す操縦モード記憶部174は、操縦モード変更実行部173から操縦モード設定指令が入力されると、ROM73に記憶されている操縦モードの設定情報を、新しい操縦モードに変更する。図12を参照して、制御装置(操縦モード記憶部174)170により実行される操縦モード記憶処理の一例について説明する。図12に示すフローチャートの処理は、操縦モード変更実行部173によって、操縦モード設定指令が出力される(図11のステップS156)ことにより実行される。
 図12に示すように、ステップS163において、操縦モード記憶部174は、ROM73における現在設定されている操縦モードの設定情報を参照し、現在設定されている操縦モードが手動操縦モードであるか否かを判定する。ステップS163において、現在設定されている操縦モードが手動操縦モードであると判定されるとステップS166へ進む。ステップS163において、現在設定されている操縦モードが手動操縦モードでない(すなわち自動操縦モードである)と判定されるとステップS169へ進む。
 ステップS166において、操縦モード記憶部174は、自動操縦モードを新しい操縦モードとしてROM73に記憶し、図12のフローチャートに示す処理を終了する。これにより、ROM73の操縦モードの設定情報が、手動操縦モードから自動操縦モードに書き換えられる。つまり、操縦モードが自動操縦モードに設定される。
 ステップS169において、操縦モード記憶部174は、手動操縦モードを新しい操縦モードとしてROM73に記憶し、図12のフローチャートに示す処理を終了する。これにより、ROM73の操縦モードの設定情報が、自動操縦モードから手動操縦モードに書き換えられる。つまり、操縦モードが手動操縦モードに設定される。
 図7に示す電磁比例弁制御部175は、操縦モード設定部179で設定された操縦モードに応じて電磁弁ユニット160の電磁比例弁54~59に制御指令を出力する。操縦モードとして手動モードが設定されている場合、電磁比例弁制御部175は、操作装置45,46,47の操作レバー22,23の操作量と操作方向に応じて電磁比例弁54~59に制御指令(制御電流)を出力する。操縦モードとして自動モードが設定されている場合、電磁比例弁制御部175は、自動操縦制御部177からの指令値に応じて電磁比例弁54~59に制御指令(制御電流)を出力する。
 自動操縦制御部177は、自動操縦モードが設定されると、姿勢検出装置50での検出結果及びGNSSアンテナ25からの情報に基づいて、バケット10の先端部Pbの位置を演算する。自動操縦制御部177は、予めROM73に記憶されている目標軌道に沿ってバケット10の先端部Pbの位置が移動するように、ブーム8、アーム9及びバケット10(被駆動部材)の目標速度を演算する。電磁比例弁制御部175は、自動操縦制御部177で演算された目標速度で各被駆動部材が動作するように、電磁比例弁54~56に制御指令(制御電流)を出力する。なお、自動操縦は、整地作業、掘削作業等、種々の作業のための動作に適用できる。
 表示制御部176は、現在設定されている操縦モードに関する情報を表示装置53の表示画面に表示させる。
 本実施形態の主な動作について説明する。オペレータが、操縦モードを手動操縦モードから自動操縦モードに切り替えたい場合、例えば、各操作装置45,46,47の操作レバー22,23を中立位置に保持した状態でモード変更スイッチ41をオン操作する。モード変更スイッチ41がオン操作されることにより、操縦モード変更指令(オン信号)が制御装置170に入力される。操縦モード変更指令が入力されると、制御装置170は、操縦モードを手動操縦モードから自動操縦モードに切り替えるための一連のモード設定処理(図8~図12参照)を実行する。
 制御装置170は、油圧ショベル1が静止状態であるか否かを判定し、静止状態である場合、モード変更条件が成立したと判定し、発光装置52によって報知処理を行う。発光装置52は、黄色の発光素子を繰り返し点滅させる。これにより、油圧ショベル1の周囲の作業者等は、油圧ショベル1の操縦モードが手動操縦モードから自動操縦モードに切り替えられることを認識することができる。
 報知処理が行われてからしばらくすると、油圧ショベル1の操縦モードが手動操縦モードから自動操縦モードに切り替えられ、自動操縦により油圧ショベル1が動作する。
 オペレータが、操縦モードを自動操縦モードから手動操縦モードに切り替えたい場合、例えば、ゲートロックレバー装置14をロック位置に操作した後、モード変更スイッチ41をオン操作する。モード変更スイッチ41がオン操作されることにより、操縦モード変更指令(オン信号)が制御装置170に入力される。操縦モード変更指令が入力されると、制御装置170は、操縦モードを自動操縦モードから手動操縦モードに切り替えるための一連のモード設定処理(図8~図12参照)を実行する。
 制御装置170は、油圧ショベル1が静止状態であるか否かを判定し、静止状態である場合、モード変更条件が成立したと判定し、発光装置52によって報知処理を行う。発光装置52は、緑色の発光素子を繰り返し点滅させる。これにより、油圧ショベル1の周囲の作業者等は、油圧ショベル1の操縦モードが自動操縦モードから手動操縦モードに切り替えられることを認識することができる。
 報知処理が行われてからしばらくすると、油圧ショベル1の操縦モードが自動操縦モードから手動操縦モードに切り替えられる。これにより、オペレータは、ゲートロックレバー装置14をロック解除位置に操作した後、操作装置45,46,47の操作レバー22,23を操作することにより、操作レバー22,23の操作量及び操作方向に応じて、油圧ショベル1を動作させることができる。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)油圧ショベル(作業機械)1は、機体1Bと、機体1Bに取り付けられる作業装置1Aと、油圧ショベル(作業機械)1を制御する制御装置170と、を備える。制御装置170は、操縦モードの変更指令が検出されると、油圧ショベル(作業機械)1が静止状態である条件を含むモード変更条件が成立しているか否かを判定し、モード変更条件が成立している場合に、油圧ショベル(作業機械)1の操縦モードの変更を行う。したがって、操縦モードの変更は、油圧ショベル1が静止状態である場合に限って行われる。このため、油圧ショベル(作業機械)1の周囲で作業を行う作業者に対し、油圧ショベル(作業機械)1の操縦モードの変更を確認するための時間的な猶予を与えることができる。
 (2)本実施形態では、制御装置170は、油圧ショベル(作業機械)1の操縦モードの変更の前に、発光装置(報知装置)52によって操縦モードの変更が行われることを油圧ショベル(作業機械)1の周囲に知らせるための報知を行わせる。これにより、油圧ショベル(作業機械)1の周囲で作業を行う作業者に対し、操縦モードの変更を容易に把握させることができる。その結果、油圧ショベル1の周囲の作業者は、油圧ショベル1の動作を容易に予測することができるので、その予測に応じて効率のよい作業を行うことができる。
 <第1実施形態の変形例1>
 上記第1実施形態では、操縦モード変更検出部171は、操縦モード変更指令を検出した場合、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力する例について説明したが、本発明はこれに限定されない。例えば、油圧ショベル1が静止状態でないときには判定実行指令を出力しないようにしてもよい。
 図13及び図14を参照して、第1実施形態の変形例1に係る制御システム107Aについて説明する。図13に示すように、操縦モード変更検出部171Aは、操縦モード変更判定部172と同様、姿勢検出装置50で検出された角度情報に基づいて油圧ショベル1が静止状態であるか否かを判定する機能を有する。操縦モード変更検出部171Aは、油圧ショベル1が静止状態である場合において、モード変更スイッチ41から出力される操縦モード変更指令が検出されたときに、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力する。一方、操縦モード変更検出部171は、油圧ショベル1が静止状態でない場合には、モード変更スイッチ41から出力される操縦モード変更指令を検出したとしても、判定実行指令を出力しない。
 図14を参照して、第1実施形態の変形例1に係る制御装置(操縦モード変更検出部171A)170Aにより実行される操縦モード変更検出処理の一例について説明する。図14は、図8と同様の図であり、図8の処理と同じ処理には同じ符号を付している。図14では、図8のフローチャートのステップS113の処理の前に、ステップS101A,S105Aの処理が追加され、ステップS113の処理とステップS116の処理の間にステップS115Aの処理が追加されている。以下、図14を参照し、図8の処理とは異なる部分を主に説明する。
 ステップS101Aにおいて、操縦モード変更検出部171Aは、ステップS120(図9参照)と同様、姿勢検出装置50で検出された角度情報を取得する情報取得処理を実行し、ステップS105Aに進む。ステップS105Aにおいて、操縦モード変更検出部171Aは、ステップS101Aで取得した角度情報に基づいて油圧ショベル1が静止状態であるか否かを判定する静止状態判定処理を実行する。静止状態判定処理(ステップS105A)は、ステップS126(図9参照)と同様の処理であるため、説明は省略する。
 ステップS113において、操縦モード変更指令が検出されたと判定されるとステップS115Aへ進む。ステップS115Aにおいて、操縦モード変更検出部171Aは、ステップS105Aの処理によって静止状態フラグがオンに設定されているか否かを判定する。ステップS115Aにおいて、静止状態フラグがオンに設定されていると判定されるとステップS116へ進み、静止状態フラグがオンに設定されていない(オフに設定されている)と判定されると図14のフローチャートに示す処理を終了する。
 ステップS116において、操縦モード変更検出部171Aは、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力し、図14のフローチャートに示す処理を終了する。
 このように本変形例では、操縦モード変更指令の検出段階において、油圧ショベル1が静止状態でなければ、判定実行指令を出力しない。このため、例えば、操作装置45,46,47のレバー操作中にモード変更スイッチ41が誤って操作された後、操作装置45,46,47の操作レバー22,23が中立位置に戻され、油圧ショベル1が静止状態であると判定されることにより、オペレータの意図に反して操縦モードが手動操縦モードから自動操縦モードに切り替えられることが防止される。
 <第1実施形態の変形例2>
 第1実施形態の変形例1では、操縦モード変更検出部171Aは、油圧ショベル1が静止状態であり、かつ、モード変更スイッチ41から出力される操縦モード変更指令が検出された場合に、判定実行指令を出力する例について説明した。これに対して、本変形例に係る操縦モード変更検出部171Bは、操作装置45,46,47の操作がなされていない状態であり、かつ、モード変更スイッチ41から出力される操縦モード変更指令が検出された場合に、判定実行指令を出力する。
 図15及び図16を参照して、第1実施形態の変形例2に係る制御システム107Bについて説明する。図15に示すように、操縦モード変更検出部171Bは、操作装置45,46,47で検出された操作情報に基づいて、被駆動部材を動作させるための操作がなされている操作状態であるか否かを判定する機能を有する。操縦モード変更検出部171Bは、モード変更スイッチ41から出力される操縦モード変更指令が検出された場合であって、油圧ショベル1が操作状態でないときには、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力する。一方、操縦モード変更検出部171は、モード変更スイッチ41から出力される操縦モード変更指令が検出された場合であって、油圧ショベル1が操作状態であるときには、判定実行指令を出力しない。
 図16を参照して、第1実施形態の変形例2に係る制御装置(操縦モード変更検出部171B)170Bにより実行される操縦モード変更検出処理の一例について説明する。図16は、図8と同様の図であり、図8の処理と同じ処理には同じ符号を付している。図16では、図8のフローチャートのステップS113の処理の前に、ステップS101B,S105Bの処理が追加され、ステップS113の処理とステップS116の処理の間にステップS115Bの処理が追加されている。以下、図16を参照し、図8の処理とは異なる部分を主に説明する。
 ステップS101Bにおいて、操縦モード変更検出部171Bは、操作装置45,46,47で検出されるレバー操作量Lの情報(データ)を取得し、ステップS105Bへ進む。
 ステップS105Bにおいて、操縦モード変更検出部171Bは、操作状態判定処理を実行する。図17を参照して、制御装置(操縦モード変更検出部171B)170Bにより実行される操作状態判定処理の一例について説明する。図17に示すように、操作状態判定処理(図16のS105B)では、ステップS153において、操縦モード変更検出部171Bは、ステップS101Bで取得した各アクチュエータに対する操作量Lの絶対値|L|が所定値L0以下であるか否かを判定する。ステップS153において、ステップS105Bで取得した全ての操作量L(ブームシリンダ5の操作量、アームシリンダ6の操作量、バケットシリンダ7の操作量、旋回油圧モータ4の操作量、及び、走行油圧モータ3a,3bの操作量)の絶対値|L|が、それぞれ所定値L0以下であると判定されると、ステップS156へ進む。ステップS153において、ステップS101Bで取得した操作量Lのうち、その絶対値|L|が所定値L0よりも大きいものが少なくとも1つあると判定されると、ステップS159へ進む。所定値L0は、操作レバー22,23が中立位置を含む不感帯にあるか否かを判定するための閾値であり、予めROM73に記憶されている。
 ステップS156において、操縦モード変更検出部171Bは、操作装置45,46,47は全て非操作状態であるものとして非操作状態フラグをオンに設定し、図17に示す操作状態判定処理を終了し、図16に示すステップS113へ進む。ステップS159において、操縦モード変更検出部171Bは、操作装置45,46,47のいずれかが操作されている操作状態であるものとして非操作状態フラグをオフに設定し、図17に示す操作状態判定処理を終了し、図16に示すステップS113へ進む。
 図16に示すように、ステップS113において、操縦モード変更指令が検出されたと判定されるとステップS115Bへ進む。ステップS115Bにおいて、操縦モード変更検出部171は、非操作状態フラグがオンに設定されているか否かを判定する。ステップS115Bにおいて、非操作状態フラグがオンに設定されていると判定されるとステップS116へ進み、非操作状態フラグがオンに設定されていない(オフに設定されている)と判定されると図16のフローチャートに示す処理を終了する。
 ステップS116において、操縦モード変更検出部171Bは、操縦モード変更判定処理を操縦モード変更判定部172に実行させるための判定実行指令を出力し、図16のフローチャートに示す処理を終了する。
 このように本変形例では、操縦モード変更指令の検出段階において、操作装置45,46,47の全てが操作されていない非操作状態でなければ、判定実行指令を出力しない。このため、例えば、操作装置45,46,47のレバー操作中にモード変更スイッチ41が誤って操作された後、操作装置45,46,47の操作レバー22,23が中立位置に戻され、油圧ショベル1が静止状態であると判定されることにより、オペレータの意図に反して操縦モードが手動操縦モードから自動操縦モードに切り替えられることが防止される。このように、本変形例では、操作装置45,46,47の操作に基づいて、モード変更条件が成立しているか否かが判定されるため、オペレータの意図に沿った操縦モードの変更を実現することができる。
 <第1実施形態の変形例3>
 上記第1実施形態の変形例2で説明した操作状態の判定を操縦モード変更判定部172が実行するようにしてもよい。この場合、操縦モード変更判定部172は、油圧ショベル1が静止状態であり、かつ、非操作状態である場合にモード変更条件が成立したものとして操縦モード変更許可指令を操縦モード変更実行部173へ出力する。また、操縦モード変更判定部172は、油圧ショベル1が静止状態でない場合、あるいは、操作状態である場合にはモード変更条件は成立していないものとして操縦モード変更許可指令を出力しない。
 <第2実施形態>
 図18~図20を参照して、第2実施形態に係る油圧ショベル1の制御システム207について説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図18は、図7と同様の図であり、第2実施形態に係る制御システム207の機能ブロック図である。
 上記第1実施形態では、制御装置170は、油圧ショベル1が静止状態である場合にはモード変更条件が成立したと判定する例について説明した。これに対して、第2実施形態では、制御装置270は、アクチュエータの負荷も加味して、モード変更条件が成立しているか否かを判定する。
 図18に示すように、操縦モード変更判定部272は、姿勢検出装置50で検出される油圧ショベル1の姿勢を表す角度(ブーム角α、アーム角β、バケット角γ、旋回角θ、及び、車体傾斜角φ)と、負荷検出装置51で検出されるアクチュエータの負荷を表すシリンダ圧と、に基づいて、モード変更条件が成立しているか否かを判定する。
 操縦モード変更判定部272は、負荷検出装置51で検出された圧力の時間変化率である圧力変化率Pcを演算する。圧力変化率Pcには、ブームシリンダ5の圧力変化率(ボトム側油室の圧力変化率およびロッド側油室の圧力変化率)、アームシリンダ6の圧力変化率(ボトム側油室の圧力変化率およびロッド側油室の圧力変化率)、バケットシリンダ7の圧力変化率(ボトム側油室の圧力変化率およびロッド側油室の圧力変化率)がある。
 操縦モード変更判定部272は、圧力変化率Pcの大きさ、すなわち圧力変化率Pcの絶対値|Pc|が所定値Pc0以下であるか否かを判定する。所定値Pc0は、油圧シリンダ5,6,7の負荷状態が安定しているか否かを判定するために用いられる閾値であり、予めROM73に記憶されている。所定値Pc0は、例えば、0(ゼロ)あるいは、0(ゼロ)に近い正の値が設定される。
 操縦モード変更判定部272は、複数の圧力変化率Pc(ブームシリンダ5の圧力変化率、アームシリンダ6の圧力変化率、及び、バケットシリンダ7の圧力変化率)の大きさ|Pc|が全て所定値Pc0以下である場合、すなわち全ての油圧シリンダ5,6,7の負荷状態が安定している場合、作業装置1Aの負荷状態は安定していると判定する。操縦モード変更判定部272は、複数の圧力変化率Pc(ブームシリンダ5の圧力変化率、アームシリンダ6の圧力変化率、及び、バケットシリンダ7の圧力変化率)の大きさ|Pc|のいずれかが所定値Pc0よりも大きい場合、すなわち油圧シリンダ5,6,7のうち一つでも負荷状態が安定していない場合、作業装置1Aの負荷状態は安定していないと判定する。
 本実施形態では、操縦モード変更判定部272は、油圧ショベル1が静止状態であり、かつ、作業装置1Aの負荷状態が安定している場合にはモード変更条件が成立していると判定し、モード変更許可指令を操縦モード変更実行部173へ出力する。一方、操縦モード変更判定部272は、油圧ショベル1が静止状態でない場合、あるいは、作業装置1Aの負荷状態が安定していない場合にはモード変更条件が成立していないと判定する。この場合、操縦モード変更判定部272は、モード変更許可指令の出力は行わない。
 図19を参照して、第2実施形態に係る制御装置(操縦モード変更判定部272)270により実行される操縦モード変更判定処理の一例について説明する。図19は、図9と同様の図であり、図9の処理と同じ処理には同じ符号を付している。図19では、図9のフローチャートのステップS120の処理に代えて、ステップS220の処理が行われる。また、図19では、図9のフローチャートのステップS126の処理とステップS142の処理の間にステップS228の処理が追加され、図9のフローチャートのステップS142の処理とステップS146の処理の間にステップS244の処理が追加されている。以下、図19を参照し、図9の処理とは異なる部分を主に説明する。
 ステップS220において、操縦モード変更判定部272は、姿勢検出装置50で検出される角度の情報(データ)と、負荷検出装置51で検出される圧力(負荷)の情報(データ)を取得し、ステップS126へ進む。
 ステップS126において、操縦モード変更判定部272は、第1実施形態と同様、ステップS220で取得した角度情報から角速度ωを演算し、演算した角速度ωに基づいて静止状態の判定を行う静止状態判定処理(図10参照)を実行し、ステップS228へ進む。
 ステップS228において、操縦モード変更判定部272は、負荷状態判定処理を実行する。図20を参照して、制御装置(操縦モード変更判定部272)270により実行される負荷状態判定処理の一例について説明する。図20に示すように、負荷状態判定処理(図19のS228)では、ステップS230において、操縦モード変更判定部272は、圧力変化率Pcを演算し、ステップS233へ進む。圧力変化率Pcは、今回のサイクルのステップS220(図19参照)で取得した圧力(現在値)と、所定サイクル前のステップS220(図19参照)で取得した圧力(過去値)との差を、所定サイクル前のステップS220から今回のサイクルのステップS220までの時間taで除することで算出される。時間taは、制御装置270のタイマ機能により計測される。
 例えば、ブームシリンダ5のロッド側油室の圧力変化率Pcαは、ブームシリンダ5のロッド側油室の圧力の現在値Pαrprとブームシリンダ5のロッド側油室の圧力の過去値Pαrpaとの差を、過去値Pαrpaを取得した時刻から現在値Pαrprを取得した時刻までの時間taで除することで算出される(Pcα=(Pαrpr-Pαrpa)/ta)。ステップS230において、操縦モード変更判定部272は、ブームシリンダ5のロッド側油室の圧力変化率及びボトム側油室の圧力変化率、アームシリンダ6のロッド側油室の圧力変化率及びボトム側油室の圧力変化率、並びに、バケットシリンダ7のロッド側油室の圧力変化率及びボトム側油室の圧力変化率を演算する。
 ステップS233において、ステップS230で演算した圧力変化率Pcの大きさ|Pc|が所定値Pc0以下であるか否かを判定する。ステップS233において、ステップS230で演算した全ての圧力変化率Pc(ブームシリンダ5のロッド側油室の圧力変化率及びボトム側油室の圧力変化率、アームシリンダ6のロッド側油室の圧力変化率及びボトム側油室の圧力変化率、並びに、バケットシリンダ7のロッド側油室の圧力変化率及びボトム側油室の圧力変化率)の大きさ|Pc|が、それぞれ所定値Pc0以下であると判定されると、ステップS236へ進む。ステップS233において、ステップS230で演算した圧力変化率Pcのうち、その大きさ|Pc|が所定値Pc0よりも大きいものが少なくとも1つあると判定されると、ステップS239へ進む。
 ステップS236において、操縦モード変更判定部272は、作業装置1Aに対する負荷状態は安定しているものとして負荷安定フラグをオンに設定し、図20に示す負荷状態判定処理を終了し、図19に示すステップS142へ進む。ステップS239において、操縦モード変更判定部272は、作業装置1Aに対する負荷状態は安定していないものとして負荷安定フラグをオフに設定し、図20に示す負荷状態判定処理を終了し、図19に示すステップS142へ進む。
 図19に示すように、ステップS142において、操縦モード変更判定部272は、静止状態フラグがオンに設定されているか否かを判定する。ステップS142において、静止状態フラグがオンに設定されていると判定されるとステップS244へ進み、静止状態フラグがオンに設定されていない(オフに設定されている)と判定されると図19のフローチャートに示す処理を終了する。
 ステップS244において、操縦モード変更判定部272は、負荷安定フラグがオンに設定されているか否かを判定する。ステップS244において、負荷安定フラグがオンに設定されていると判定されるとステップS146へ進み、負荷安定フラグがオンに設定されていない(オフに設定されている)と判定されると図19のフローチャートに示す処理を終了する。
 ステップS146において、操縦モード変更判定部272は、モード変更条件が成立したものとして、操縦モード変更許可指令を操縦モード変更実行部173へ出力し、図19のフローチャートに示す処理を終了する。
 負荷状態が安定していない場合に自動操縦を開始した場合、作業によっては、適切な作業が行えない場合がある。第2実施形態に係る制御装置270は、油圧ショベル1が静止状態であるか否かだけでなく、アクチュエータ(油圧シリンダ5,6,7)の負荷に基づいて、モード変更条件が成立しているか否かを判定する。制御装置270は、油圧ショベル1が静止状態であり、かつ、作業装置1Aの負荷が安定している状態であるときに、モード変更条件が成立したものとして、操縦モードの変更が許可される。
 このため、第2実施形態によれば、上記第1実施形態と同様の作用効果に加え、例えば、転圧作業において、作業姿勢が一時的に殆ど変化のない状態であっても、負荷状態が不安定な状態(外乱がある状況)において、操縦モードの変更が行われることが防止される。このため、負荷状態が安定していない場合において自動操縦がなされることにより、作業が適切に行えなくなるといった問題を回避することができる。
 <第2実施形態の変形例>
 上記第2実施形態では、油圧シリンダ5,6,7の圧力変化率を加味して、モード変更条件が成立しているか否かを判定する例について説明したが、これに代えて、油圧シリンダ5,6,7の圧力の大きさを加味して、モード変更条件が成立しているか否かを判定してもよい。
 操縦モード変更判定部272は、油圧ショベル1が静止状態であり、かつ、作業装置1Aが無負荷状態である場合に、モード変更条件が成立したと判定する。また、操縦モード変更判定部272は、油圧ショベル1が静止状態でない場合、あるいは、作業装置1Aが無負荷状態でない場合には、モード変更条件は成立していないと判定する。
 なお、操縦モード変更判定部272は、負荷検出装置51で検出された油圧シリンダ5,6,7のいずれかの圧力が予め定めた圧力閾値以上となったときには作業装置1Aは負荷状態であると判定し、油圧シリンダ5,6,7の全ての圧力が予め定めた圧力閾値未満であるときには作業装置1Aは無負荷状態であると判定する。
 無負荷状態でない場合に自動操縦を開始した場合、作業によっては、適切な作業が行えない場合がある。第2実施形態の変形例によれば、無負荷状態でない場合において、操縦モードの変更が行われることが防止される。このため、無負荷状態でない場合(外乱がある状況)において自動操縦がなされることにより、作業が適切に行えなくなるといった問題を回避することができる。
 <第3実施形態>
 図21~図23を参照して、第3実施形態に係る油圧ショベル1の制御システム307について説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図21は、図7と同様の図であり、第3実施形態に係る制御システム307の機能ブロック図である。
 上記第1実施形態では、モード変更条件が成立してから所定時間t0経過した後に操縦モードを切り替える例(図11参照)について説明した。これに対して第3実施形態では、モード変更条件が成立すると、モード変更条件が成立していることを表す情報を含む確認操作画面353(図22参照)を表示装置53の表示画面に表示させ、オペレータによる確認操作がなされた場合に操縦モードを切り替える。
 図21に示すように、操縦モード変更実行部373は、操縦モード変更判定部172から操縦モード変更許可指令が入力されると、発光装置52による報知の実行を許可するための報知許可指令を外部報知制御部178へ出力する。さらに、操縦モード変更実行部373は、表示装置53の表示画面に確認操作画面353を表示させるための確認操作画面表示指令を表示制御部376へ出力する。
 表示制御部376は、操縦モード変更実行部373から確認操作画面表示指令が入力されると、確認操作画面データを生成し、表示装置53の表示画面に確認操作画面353(図22参照)を表示させる。図22は、表示装置53兼入力装置43であるタッチパネルの表示画面に表示される確認操作画面353の一例について示す図である。図22に示すように、確認操作画面353は、モード変更条件が成立しており、操縦モードの変更が行われることをオペレータに知らせるためのメッセージ画像353aと、操縦モードの変更の実行を許可するための確認操作領域353bと、操縦モードの変更の実行を禁止するためのキャンセル操作領域353cと、を有する。メッセージ画像353aは、例えば「操縦モードを自動操縦モードへ切り替えます。よろしければ、確認ボタンをタッチしてください。」といったメッセージの画像である。
 オペレータによって、確認操作領域353bがタッチ操作されると、入力装置(タッチパネル)43から操縦モード変更実行部373へ確認操作指令が出力される。オペレータによって、キャンセル操作領域353cがタッチ操作されると、入力装置(タッチパネル)43から操縦モード変更実行部373へキャンセル操作指令が出力される。操縦モード変更実行部373は、入力装置43から確認操作指令が入力されると、現在の操縦モードとは異なる操縦モードを設定するための操縦モード設定指令を操縦モード記憶部174に出力する。
 図23を参照して、制御装置(操縦モード変更実行部373)370により実行される操縦モード変更実行処理の一例について説明する。図23は、図11と同様の図であり、図11の処理と同じ処理には同じ符号を付している。図23では、図11のフローチャートのステップS153の処理に代えて、ステップS352,S353の処理が実行される。
 図23に示すように、ステップS150において、操縦モード変更実行部373は、報知許可指令を外部報知制御部178へ出力してステップS352へ進む。ステップS352において、操縦モード変更実行部373は、確認操作画面表示指令を表示制御部376へ出力してステップS353へ進む。
 ステップS353において、操縦モード変更実行部373は、入力装置43から確認操作指令が入力されたか否かを判定する。ステップS353の処理は、入力装置43から確認操作指令が入力されるまで繰り返し行われる。ステップS353において、入力装置43から確認操作指令が入力されたと判定されると、ステップS156へ進む。
 ステップS156において、操縦モード変更実行部373は、操縦モード設定指令を操縦モード記憶部174へ出力し、図22のフローチャートに示す処理を終了する。なお、図示はしないが、操縦モード変更実行部373は、入力装置43からキャンセル操作指令が入力されたか否かの監視を行っている。操縦モード変更実行部373は、入力装置43からキャンセル操作指令が入力された場合、操縦モードの変更は中止されたものとして、所定の初期化処理を行い、再び、操縦モード変更検出処理(図8参照)を行う。
 このように、第3実施形態に係る制御装置370は、モード変更条件が成立していると判定されると、モード変更条件が成立していることを表す情報を含む画像(例えば、確認操作画面353)を表示装置53の表示画面に表示させる。さらに、その後、所定の入力(例えば、確認操作指令の入力)があった場合に、油圧ショベル(作業機械)1の操縦モードの変更を行う。
 このような第3実施形態によれば、発光装置52により、油圧ショベル1の周囲に操縦モードが変更されることを知らせるための報知が行われた後、オペレータの確認操作のタイミングで操縦モードの変更が行われる。したがって、オペレータは、油圧ショベル1の周囲の作業者の数、作業内容等、周囲の環境に応じて、操縦モードの変更が実行されるタイミングを調整することができる。
 また、発光装置52により、油圧ショベル1の周囲に操縦モードが変更されることを知らせるための報知が行われた後、油圧ショベル1の周囲の作業者から操縦モードの変更を実行しないで欲しいといった要望がある場合に、操縦モードの変更をキャンセルすることもできる。
 なお、操縦モード変更実行部373は、入力装置43から確認操作指令が入力された場合に、さらに静止状態判定処理を実行し、油圧ショベル1が静止状態である場合に、操縦モードの変更を実行するようにしてもよい。この場合、操縦モード変更判定部172及び操縦モード変更実行部373のそれぞれで油圧ショベル1の静止状態を判定する2段階認証となるため、静止状態での操縦モードの変更の確実性をより高めることができる。
 <第4実施形態>
 図24を参照して、第4実施形態に係る油圧ショベル1の制御システム407について説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図24は、図7と同様の図であり、第4実施形態に係る制御システム407の機能ブロック図である。
 上記第1実施形態では、操縦モードとして、自動操縦モードと手動操縦モードとがあり、自動操縦モードと手動操縦モードとの間で操縦モードが切り替えられる場合について説明した。これに対して、第4実施形態では、操縦モードとして、油圧ショベル1の運転室17内に設けられる操作装置45,46,47の操作により運転される搭乗操縦モードと、油圧ショベル1の外部からの操作指令に基づいて運転される外部指令操縦モードとがあり、搭乗操縦モードと外部指令操縦モードとの間で操縦モードが切り替えられる場合について説明する。なお、搭乗操縦モードは、第1実施形態で説明した手動操縦モードに相当する。
 第4実施形態に係る制御装置470は、搭乗操縦モードが設定されているときにモード変更スイッチ41が操作され、モード変更条件が成立した場合には操縦モードを外部指令操縦モードに切り替える。また、制御装置470は、外部指令操縦モードが設定されているときにモード変更スイッチ41が操作され、モード変更条件が成立した場合には操縦モードを搭乗操縦モードに切り替える。
 図24に示すように、本実施形態に係る制御システム407は、第1実施形態で説明した構成に加え、油圧ショベル1を遠隔地から操作するための遠隔操作装置440と、油圧ショベル1の周囲等を撮影するための撮影装置461と、遠隔操作装置440と無線通信によって情報のやりとりを行うための通信装置462と、を備えている。
 撮影装置461は、バケット10及びバケット10の周囲を撮影するための車載カメラ、及び、油圧ショベル1の周囲を撮影するための周囲監視カメラを含む。車載カメラは、運転室17の上部等に取り付けられる。周囲監視カメラは、上部旋回体12に複数取り付けられる。
 通信装置462は、通信アンテナを有し、無線基地局463及び通信回線469等を介して、遠隔操作装置440と通信を行うための装置であり、運転室17の上部等に取り付けられる。通信回線469は、携帯電話事業者等が展開する携帯電話通信網(移動通信網)、インターネット等である。このように、本実施形態に係る制御システム407では、油圧ショベル1と遠隔操作装置440との間で広域ネットワークの通信回線469を介して双方向通信を行うことができるように構成されている。
 制御装置470は、第1実施形態で説明した機能に加え、画像送信制御部481としての機能を有する。画像送信制御部481は、撮影装置461で撮影した映像を通信装置462を介して遠隔操作装置440に送信する。
 遠隔操作装置440は、操作レバーと、操作レバーの操作量及び操作方向に応じた操作指令を通信回線469を介して油圧ショベル1に送信する通信装置と、通信装置を介して受信した映像を表示画面に表示させる表示装置と、を有する。
 電磁比例弁制御部475は、操縦モードが搭乗操縦モードに設定されている場合には、遠隔操作装置440からの操作指令を無効とし、操作装置45,46,47からの操作指令を有効とする。つまり、搭乗操縦モードが設定されている状態では、電磁比例弁制御部475は、操作装置45,46,47からの操作指令に基づいて電磁弁ユニット160に制御信号を出力する。
 電磁比例弁制御部475は、操縦モードが外部指令操縦モードに設定されている場合には、操作装置45,46,47からの操作指令を無効とし、遠隔操作装置440からの操作指令を有効とする。つまり、外部指令操縦モードが設定されている状態では、電磁比例弁制御部475は、遠隔操作装置440からの操作指令に基づいて電磁弁ユニット160に制御信号を出力する。
 このように、第4実施形態に係る制御システム407では、搭乗操縦モードから外部指令操縦モードに操縦モードが変更される前に、発光装置52によって操縦モードの変更が行われることが油圧ショベル1の周囲に対して報知される。これにより、油圧ショベル(作業機械)1の周囲で作業を行う作業者は、操縦モードが搭乗操縦モードから外部指令操縦モードに変更されることを事前に把握することができる。また、第4実施形態に係る制御システム407では、外部指令操縦モードから搭乗操縦モードに操縦モードが変更される前に、発光装置52によって操縦モードの変更が行われることが油圧ショベル1の周囲に対して報知される。これにより、油圧ショベル(作業機械)1の周囲で作業を行う作業者は、操縦モードが外部指令操縦モードから搭乗操縦モードに変更されることを事前に把握することができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせることも可能である。
 <変形例1>
 例えば、操縦モードには、上記第1実施形態で説明した自動操縦モード、上記第4実施形態で説明した外部指令操縦モード、並びに、上記第1実施形態及び第4実施形態で説明した搭乗操縦モード(手動操縦モード)の3つの操縦モードが含まれていてもよい。この場合、発光装置52によって操縦モードの変更の内容に応じた所定の報知を行うことが好ましい。また、モード変更スイッチ41は、3つの操縦モードを設定するための操作位置を設け、それぞれの操作位置から対応する操縦モードに変更するための指令が出力されるように構成することが好ましい。
 この変形例では、遠隔操作装置440には、自動操縦モードと外部指令操縦モードとの間で操縦モードを切り替えるためのモード変更スイッチが設けられる。遠隔操作装置440のモード変更スイッチが操作されることにより、自動操縦モードから外部指令操縦モードに切り替えるための操縦モード変更指令、または、外部指令操縦モードから自動操縦モードに切り替えるための操縦モード変更指令が、無線通信により油圧ショベル1の制御装置に送信される。
 このような変形例によれば、自動操縦モードから外部指令操縦モードに操縦モードを切り替えることができる。したがって、例えば、自動運転中にハードウェアまたはソフトウェアの障害により自動運転が適切に行われなくなってしまう失陥が生じた場合において、油圧ショベル1に近づくことなく、遠隔から油圧ショベル1を操作することにより、復旧作業を効率的に行うことができる。また、復旧作業の際、油圧ショベル1を操作するために、オペレータが油圧ショベル1に近づく必要がないので、オペレータが立ち入ることのできないような作業現場において、油圧ショベル1による自動運転を行うこともできる。
 <変形例2>
 上記実施形態では、被駆動部材の速度(角速度)に基づいて、油圧ショベル1が静止状態であるか否かを判定する例について説明したが、本発明はこれに限定されない。油圧ショベル1の静止状態の判定方法は、種々の方法を採用することができる。
 <変形例2-1>
 例えば、制御装置570は、ゲートロックレバー装置14がロック位置に操作されている場合に、油圧ショベル1は静止状態であると判定してもよい。図25は、変形例2-1に係る制御システム507の機能ブロック図である。図25に示すように、操縦モード変更判定部572は、ゲートロックレバー装置14からの信号に基づいて、モード変更条件が成立しているか否かを判定する。操縦モード変更判定部572は、上記第1実施形態と同様、操縦モード変更判定処理(図9参照)を実行する。操縦モード変更判定部572は、図9のステップS120において、ゲートロックレバー装置14の操作位置を表す情報を取得し、ステップS126へ進んで静止状態判定処理を実行する。
 図26は、変形例2-1に係る制御装置(操縦モード変更判定部572)570により実行される静止状態判定処理の一例について示すフローチャートである。図26に示すように、ステップS533において、操縦モード変更判定部572は、ゲートロックレバー装置14がロック位置に操作されているか否かを判定する。ステップS533において、ゲートロックレバー装置14がロック位置に操作されていると判定されると、ステップS136へ進む。ステップS533において、操縦モード変更判定部572は、ゲートロックレバー装置14がロック位置に操作されていない(すなわちロック解除位置に操作されている)と判定されると、ステップS139へ進む。
 ステップS136において、操縦モード変更判定部572は、油圧ショベル1は静止状態であるものとして静止状態フラグをオンに設定し、図26に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。ステップS139において、操縦モード変更判定部572は、油圧ショベル1は静止状態でないものとして静止状態フラグをオフに設定し、図26に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。
 <変形例2-2>
 制御装置670は、エンジン18が停止状態である場合に、油圧ショベル1は静止状態であると判定してもよい。図27は、変形例2-2に係る制御システム607の機能ブロック図である。図27に示すように、操縦モード変更判定部672は、エンジン回転数検出装置42からの信号に基づいて、モード変更条件が成立しているか否かを判定する。操縦モード変更判定部672は、上記第1実施形態と同様、操縦モード変更判定処理(図9参照)を実行する。操縦モード変更判定部672は、図9のステップS120において、エンジン回転数検出装置42で検出されたエンジン回転数の情報を取得し、ステップS126へ進んで静止状態判定処理を実行する。
 図28は、変形例2-2に係る制御装置(操縦モード変更判定部672)670により実行される静止状態判定処理の一例について示すフローチャートである。図28に示すように、ステップS633において、操縦モード変更判定部672は、ステップS120で取得したエンジン回転数に基づいて、エンジン18が停止状態であるか否かを判定する。ステップS633において、エンジン回転数が予め定められた所定回転数未満である場合、操縦モード変更判定部672は、エンジン18が停止状態であると判定し、ステップS136へ進む。ステップS633において、エンジン回転数が予め定められた所定回転数以上である場合、操縦モード変更判定部672は、エンジン18は停止状態でないと判定し、ステップS139へ進む。
 ステップS136において、操縦モード変更判定部672は、油圧ショベル1は静止状態であるものとして静止状態フラグをオンに設定し、図28に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。ステップS139において、操縦モード変更判定部672は、油圧ショベル1は静止状態でないものとして静止状態フラグをオフに設定し、図28に示す静止状態判定処理を終了し、図9に示すステップS142へ進む。
 なお、エンジン回転数に基づいて、エンジン18が停止状態であるか否かを判定することに代えて、CAN等の車載ネットワークからエンジン18の運転状態に関する情報を取得し、取得した情報に基づいてエンジン18が停止状態であるか否かを判定してもよい。
 本変形例によれば、オペレータは、操縦モードを切り替えるためには、イグニッションスイッチ(エンジンキースイッチ)をオフに操作した後、オン位置に操作する必要がある。本変形例では、操縦モードが切り替わる際、エンジン18が停止することになるため、油圧ショベル1の周囲の作業者に対して、操縦モードが変更される旨を知らせるための時間を容易に確保することができる。
 <変形例3>
 上記実施形態では、ブーム8、アーム9及びバケット10の姿勢に関する情報を取得するためのセンサとして、ブーム8、アーム9及びバケット10の角度を検出する角度センサを用いる例について説明したが、本発明はこれに限定されない。ブーム8、アーム9及びバケット10の姿勢に関する情報を取得するためのセンサとして、ブームシリンダ5、アームシリンダ6及びバケットシリンダ7のストローク量を検出するストロークセンサを用いてもよい。この場合、制御装置170は、ストロークセンサで検出されたストローク量の時間変化率に基づいて、作業装置1Aが静止状態であるか否かを判定することができる。
 <変形例4>
 上記実施形態では、油圧ショベル1の周囲に報知を行う報知装置として発光装置52を設ける例について説明したが、本発明はこれに限定されない。操縦モードが切り替えられることを周囲に知らせるためのメッセージを表示する表示パネルを報知装置として設けてもよい。また、操縦モードが切り替えられることを周囲に知らせるためのメッセージを音声により出力したり、予め定められた警告音を出力したりする音出力装置を報知装置として設けてもよい。
 <変形例5>
 上記実施形態では、モード変更スイッチ41がモーメンタリ動作型のトグルスイッチである例について説明したが、本発明はこれに限定されない。モード変更スイッチ41はオルタネイト動作型のスイッチであってもよい。
 <変形例6>
 上記実施形態で説明した制御装置の機能は、それらの一部または全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現してもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 1…油圧ショベル(作業機械)、1A…作業装置、1B…機体、3…走行油圧モータ(アクチュエータ)、4…旋回油圧モータ(アクチュエータ)、5…ブームシリンダ(アクチュエータ)、6…アームシリンダ(アクチュエータ)、7…バケットシリンダ(アクチュエータ)、8…ブーム(被駆動部材)、9…アーム(被駆動部材)、10…バケット(被駆動部材)、11…下部走行体(被駆動部材)、12…上部旋回体(被駆動部材)、14…ゲートロックレバー装置(ロックレバー装置)、16a~16f…圧力センサ(負荷センサ)、17…運転室、18…エンジン、19…クローラベルト(被駆動部材)、41…モード変更スイッチ、42…エンジン回転数検出装置、43…入力装置、45,46,47…操作装置、50…姿勢検出装置、51…負荷検出装置、52…発光装置(報知装置)、53…表示装置、107,107A,107B,207,307,407,507,607…制御システム、170,170A,170B,270,370,470,570,670…制御装置、440…遠隔操作装置

Claims (10)

  1.  機体と、前記機体に取り付けられる作業装置と、作業機械を制御する制御装置と、を備える作業機械において、
     前記制御装置は、
     操縦モードの変更指令が検出されると、前記作業機械が静止状態である条件を含むモード変更条件が成立しているか否かを判定し、
     前記モード変更条件が成立している場合に、前記作業機械の操縦モードの変更を行う、
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     報知装置を備え、
     前記制御装置は、前記作業機械の操縦モードの変更の前に、前記報知装置によって前記操縦モードの変更が行われることを前記作業機械の周囲に知らせるための報知を行わせる、
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     アクチュエータと、前記アクチュエータによって駆動される被駆動部材と、前記アクチュエータの負荷を検出する負荷センサと、を備え、
     前記制御装置は、
     前記アクチュエータの負荷に基づいて、前記モード変更条件が成立しているか否かを判定する、
     ことを特徴とする作業機械。
  4.  請求項1に記載の作業機械において、
     アクチュエータと、前記アクチュエータによって駆動される被駆動部材と、前記アクチュエータを操作するための操作装置と、を備え、
     前記制御装置は、
     前記操作装置の操作に基づいて、前記モード変更条件が成立しているか否かを判定する、
     ことを特徴とする作業機械。
  5.  請求項1に記載の作業機械において、
     表示装置を備え、
     前記制御装置は、
     前記モード変更条件が成立していると判定されると、前記モード変更条件が成立していることを表す情報を前記表示装置の表示画面に表示させ、
     その後、所定の入力があった場合に、前記作業機械の操縦モードの変更を行う、
     ことを特徴とする作業機械。
  6.  請求項1に記載の作業機械において、
     アクチュエータと、前記アクチュエータによって駆動される被駆動部材と、を備え、
     前記制御装置は、
     前記被駆動部材の速度に基づいて、前記作業機械が静止状態であるか否かを判定する、
     ことを特徴とする作業機械。
  7.  請求項1に記載の作業機械において、
     アクチュエータと、前記アクチュエータによって駆動される被駆動部材と、前記アクチュエータの動作を禁止するロック位置と前記アクチュエータの動作を許可するロック解除位置とに選択的に操作されるロックレバー装置と、を備え、
     前記制御装置は、
     前記ロックレバー装置が前記ロック位置に操作されている場合に、前記作業機械は静止状態であると判定する、
     ことを特徴とする作業機械。
  8.  請求項1に記載の作業機械において、
     エンジンを備え、
     前記制御装置は、
     前記エンジンが停止状態である場合に、前記作業機械は静止状態であると判定する、
     ことを特徴とする作業機械。
  9.  請求項1に記載の作業機械において、
     前記操縦モードには、前記作業機械を自動で運転する自動操縦モードと、前記作業機械を手動で運転する手動操縦モードと、が含まれる、
     ことを特徴とする作業機械。
  10.  請求項1に記載の作業機械において、
     前記操縦モードには、前記作業機械の運転室内に設けられる操作装置の操作により運転される搭乗操縦モードと、前記作業機械の外部からの操作指令に基づいて運転される外部指令操縦モードと、が含まれる、
     ことを特徴とする作業機械。
PCT/JP2020/011561 2020-03-16 2020-03-16 作業機械 WO2021186517A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011561 WO2021186517A1 (ja) 2020-03-16 2020-03-16 作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011561 WO2021186517A1 (ja) 2020-03-16 2020-03-16 作業機械

Publications (1)

Publication Number Publication Date
WO2021186517A1 true WO2021186517A1 (ja) 2021-09-23

Family

ID=77770935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011561 WO2021186517A1 (ja) 2020-03-16 2020-03-16 作業機械

Country Status (1)

Country Link
WO (1) WO2021186517A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190120A1 (ja) * 2022-03-31 2023-10-05 住友建機株式会社 ショベル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233521A (ja) * 2011-04-28 2012-11-29 Hitachi Constr Mach Co Ltd バケットを有する作業車両の走行制御装置
JP2018053605A (ja) * 2016-09-29 2018-04-05 ヤンマー株式会社 建設機械
WO2018117176A1 (ja) * 2016-12-22 2018-06-28 株式会社クボタ 作業機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233521A (ja) * 2011-04-28 2012-11-29 Hitachi Constr Mach Co Ltd バケットを有する作業車両の走行制御装置
JP2018053605A (ja) * 2016-09-29 2018-04-05 ヤンマー株式会社 建設機械
WO2018117176A1 (ja) * 2016-12-22 2018-06-28 株式会社クボタ 作業機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190120A1 (ja) * 2022-03-31 2023-10-05 住友建機株式会社 ショベル

Similar Documents

Publication Publication Date Title
KR102659158B1 (ko) 쇼벨
CN112513378B (zh) 作业机械
JP6860329B2 (ja) 作業機械
JP7439053B2 (ja) ショベル及びショベルの管理装置
US20210002850A1 (en) Shovel
US11987957B2 (en) Shovel
JPWO2020101005A1 (ja) ショベル、ショベルの制御装置
US20200385953A1 (en) Shovel
CN113056591A (zh) 挖土机、挖土机的控制装置及挖土机的支援装置
JPWO2019088065A1 (ja) 作業機械
JP2024092244A (ja) ショベル、ショベルの操作システム
KR20220140610A (ko) 작업 기계
WO2021186517A1 (ja) 作業機械
JP7342285B2 (ja) 作業機械
US20240318402A1 (en) Excavator
JP7449314B2 (ja) ショベル、遠隔操作支援装置
JPWO2020095935A1 (ja) ショベル
WO2022196145A1 (ja) 作業機械
JP7152370B2 (ja) 現場監視装置および現場監視システム
JP2021055433A (ja) ショベル
WO2021192277A1 (ja) 作業機械の制御システム
WO2021066057A1 (ja) 侵入監視制御システムおよび作業機械
US20240209589A1 (en) Shovel
JP2023146900A (ja) 作業機械
JP2021110135A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP