WO2021192277A1 - 作業機械の制御システム - Google Patents

作業機械の制御システム Download PDF

Info

Publication number
WO2021192277A1
WO2021192277A1 PCT/JP2020/014237 JP2020014237W WO2021192277A1 WO 2021192277 A1 WO2021192277 A1 WO 2021192277A1 JP 2020014237 W JP2020014237 W JP 2020014237W WO 2021192277 A1 WO2021192277 A1 WO 2021192277A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
deceleration
driven
control device
angle
Prior art date
Application number
PCT/JP2020/014237
Other languages
English (en)
French (fr)
Inventor
勝道 伊東
井村 進也
晃司 塩飽
孝昭 千葉
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2020/014237 priority Critical patent/WO2021192277A1/ja
Publication of WO2021192277A1 publication Critical patent/WO2021192277A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • the present invention relates to a work machine control system.
  • Patent Document 1 discloses a work machine that restricts the operation of at least one of the running of the lower traveling body and the turning of the upper turning body when it is detected that there is an obstacle in the monitoring area around the working machine. There is.
  • Patent Document 2 describes an electric motor that swivels and drives an upper swivel body with respect to a lower traveling body, a swivel range setting means that sets a swivel range of the upper swivel body, and swivel in which a swivel angle is set by the swivel range setting means.
  • a turning control device for a work machine including a stop control means for stopping the operation of an electric motor so as not to exceed the range is disclosed.
  • An object of the present invention is to prevent the work machine from operating in a direction not intended by the operator when the operation of the driven member is restricted.
  • a work machine control system includes a work machine having a plurality of actuators and a plurality of driven members driven by the actuators, and a control device for controlling the work machine.
  • the control device operates the plurality of driven members while holding the moving direction of the predetermined position of the driven members when a predetermined limiting condition is satisfied. Control multiple actuators to be limited.
  • the driven member when the operation of the driven member is restricted, it is possible to prevent the work machine from operating in a direction not intended by the operator.
  • the block diagram of the hydraulic excavator The figure which shows the hydraulic system of a hydraulic excavator together with a control device. It is a detailed view of the solenoid valve unit in FIG. 2, and shows the solenoid proportional valve used for the control of a hydraulic cylinder. It is a detailed view of the solenoid valve unit in FIG. 2, and shows the solenoid proportional valve used for the control of a hydraulic motor.
  • the figure which shows the coordinate system in the hydraulic excavator of FIG. Hardware configuration diagram of the control system of the hydraulic excavator.
  • the functional block diagram of the control system which concerns on 1st Embodiment.
  • the flowchart which shows the content of the deceleration coefficient calculation processing executed by the control apparatus which concerns on 3rd Embodiment.
  • the traveling hydraulic motor 3a and 3b may be collectively referred to as the traveling hydraulic motor 3.
  • FIG. 1 is a configuration diagram of the hydraulic excavator 1
  • FIG. 2 is a diagram showing the hydraulic system 140 of the hydraulic excavator 1 together with the control device 170.
  • 3 and 4 are detailed views of the solenoid valve unit 160 in FIG. 2, FIG. 3 shows electromagnetic proportional valves 54 to 56 used for controlling hydraulic cylinders (5 to 7), and FIG. 4 shows hydraulic motors (5 to 7).
  • the solenoid proportional valves 57 to 59 used for controlling 4, 3a and 3b) are shown below.
  • the hydraulic excavator 1 includes an airframe (body) 1B and a work device 1A attached to the airframe 1B.
  • the machine body 1B includes a lower traveling body 11 that travels by the left and right traveling hydraulic motors 3 (3a, 3b), and an upper rotating body 12 that is mounted on the lower traveling body 11 and swivels by the swivel hydraulic motor 4.
  • the upper swing body 12 is a driven member that is rotationally driven with respect to the lower traveling body 11 by a swing hydraulic motor 4 that is an actuator.
  • the lower traveling body 11 is a driven member driven by traveling hydraulic motors 3a and 3b which are actuators.
  • the crawler belt 19 on the right side of the lower traveling body 11 is a driven member driven by the traveling hydraulic motor 3a on the right side
  • the crawler belt 19 on the left side of the lower traveling body 11 is the traveling hydraulic motor 3b on the left side. It is a driven member driven by.
  • the working device 1A includes a plurality of driven members (boom 8, arm 9 and bucket 10) connected in series, and a plurality of actuators (boom cylinders) for driving the driven members (boom 8, arm 9 and bucket 10).
  • An articulated work device including an arm cylinder 6 and a bucket cylinder 7).
  • the boom 8 is rotatably connected to its base end by a boom pin 91 (see FIG. 5) at the front of the upper swing body 12.
  • the base end of the arm 9 is rotatably connected to the tip of the boom 8 by an arm pin 92 (see FIG. 5).
  • the bucket 10 is rotatably connected by a bucket pin 93 (see FIG. 5) at the tip of the arm 9.
  • the boom pin 91, the arm pin 92, and the bucket pin 93 are arranged in parallel with each other, and the driven members (boom 8, arm 9, and bucket 10) can rotate relative to each other in the same plane.
  • the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • One end of the bucket cylinder 7 is connected to the arm 9, and the other end is connected to the bucket 10 via the bucket link 13.
  • a boom angle sensor 30 for measuring the rotation angle (hereinafter referred to as boom angle) ⁇ (see FIG. 5) of the boom 8 with respect to the upper swing body 12 is attached to the boom pin 91.
  • An arm angle sensor 31 for measuring the rotation angle (hereinafter referred to as an arm angle) ⁇ (see FIG. 5) of the arm 9 with respect to the boom 8 is attached to the arm pin 92.
  • a bucket angle sensor 32 for measuring the rotation angle (hereinafter referred to as a bucket angle) ⁇ (see FIG. 5) of the bucket 10 with respect to the arm 9 is attached to the bucket link 13.
  • the angle sensors 30, 31, and 32 can be replaced with angle sensors (ground angle sensors) with respect to a reference plane (for example, a horizontal plane), respectively.
  • a turning angle sensor 34 for measuring a turning angle ⁇ (see FIG. 5), which is a relative angle between the upper turning body 12 and the lower traveling body 11 in a plane orthogonal to the turning center axis, is attached to the machine body 1B.
  • the operation device 45a (FIG. 2) for operating the boom cylinder 5 (boom 8) by sharing 22a (FIG. 1) and the operation right lever 22a (FIG. 1) are shared to operate the bucket cylinder 7 (bucket 10).
  • the operating device 45a and the operating device 45b are collectively referred to as the operating device 45
  • the operating device 46a and the operating device 46b are collectively referred to as the operating device 46
  • the operating device 47a and the operating device 47b are collectively referred to as the operating device 47.
  • the engine 18 which is the prime mover is mounted on the upper swing body 12.
  • the engine 18 drives the main pumps 2a and 2b and the pilot pump 48 (see FIG. 2).
  • the main pumps 2a and 2b are variable displacement hydraulic pumps in which the discharge capacity (pushing volume) per rotation is variably controlled by the regulators 2aa and 2ba.
  • the pilot pump 48 is a fixed-capacity hydraulic pump.
  • the main pumps 2a and 2b and the pilot pump 48 suck in and discharge the hydraulic oil, which is the hydraulic fluid stored in the tank 38.
  • the discharge flow rate of the main pumps 2a and 2b is controlled based on the control signal by inputting a predetermined control signal from the control device 170 to the regulators 2aa and 2ba. ..
  • the pump line 49a which is the discharge pipe of the pilot pump 48, is connected to the solenoid proportional valves 54 to 59 (see FIGS. 3 and 4) in the solenoid valve unit 160.
  • a lock valve 39 is provided between the pilot pump 48 and the solenoid valve unit 160 in the pump line 49a.
  • the lock valve 39 is an electromagnetic switching valve, and is switched by a gate lock lever device 14 (see FIG. 1) arranged in the cab 17.
  • the gate lock lever device 14 has a lock position (raised position) that allows the driver's cab 17 to enter and exit and prohibits the operation of the actuators (3 to 7), and the actuator (3 to 7) that prohibits the driver's cab 17 from entering and exiting. It has a lever that is selectively operated at an unlocked position (lowering position) that permits the operation of the lever, and a position detector that detects the position of the lever.
  • the operating devices 45, 46, 47 are electric operating devices including a detector that detects the operating direction and operating amount of the operating levers 22 and 23, and the operating directions of the operating levers 22 and 23 by the operator (operator). And generate an electric signal according to the amount of operation (operation angle).
  • the electric signals output from the operating devices 45, 46, 47 are input to the control device 170.
  • the control device 170 generates a control signal for driving the solenoid proportional valves 54 to 59 (see FIGS. 3 and 4) based on the operating directions and operating amounts of the operating devices 45, 46, 47, and generates a control signal to drive the solenoid valve unit. Output to 160. As shown in FIGS.
  • the electromagnetic proportional valves 54 to 59 generate a pilot pressure acting on the hydraulic drive units 150a to 155b of the flow rate control valves 15a to 15f corresponding to the input control signal.
  • the electromagnetic proportional valves 54 to 59 output the generated pilot pressure to the hydraulic drive units 150a to 155b of the flow rate control valves 15a to 15f corresponding to the input control signals via the pilot lines 144a to 149b.
  • the pilot pressure acts on the hydraulic drive units 150a to 155b
  • the flow control valves 15a to 15f are driven according to the pilot pressure. That is, the pilot pressure output from the electromagnetic proportional valves 54 to 59 is used as a control signal for driving the flow rate control valves 15a to 15f.
  • the hydraulic oil (pressure oil) discharged from the main pump 2a is supplied to the bucket cylinder 7 through the flow rate control valve 15c, is supplied to the boom cylinder 5 through the flow rate control valve 15a, and is supplied to the boom cylinder 5 through the flow rate control valve 15f. It is supplied to the traveling hydraulic motor 3b through.
  • the hydraulic oil (pressure oil) discharged from the main pump 2b is supplied to the arm cylinder 6 through the flow rate control valve 15b, is supplied to the swing hydraulic motor 4 through the flow rate control valve 15d, and is supplied to the traveling hydraulic motor 3a through the flow rate control valve 15e. Be supplied.
  • the boom cylinder 5, arm cylinder 6 and bucket cylinder 7 are pressure sensors that detect the pressure in the hydraulic cylinder (cylinder pressure) and output the detection result (electric signal) to the control device 170 via a signal line (not shown). 16a to 16f are provided.
  • the pressure sensor 16a detects the pressure in the oil chamber on the bottom side of the boom cylinder 5, and the pressure sensor 16b detects the pressure in the oil chamber on the rod side of the boom cylinder 5.
  • the pressure sensor 16c detects the pressure in the oil chamber on the bottom side of the arm cylinder 6, and the pressure sensor 16d detects the pressure in the oil chamber on the rod side of the arm cylinder 6.
  • the pressure sensor 16e detects the pressure in the oil chamber on the bottom side of the bucket cylinder 7, and the pressure sensor 16f detects the pressure in the oil chamber on the rod side of the bucket cylinder 7.
  • the engine 18 includes an engine rotation speed detection device 42, which is a rotation sensor for detecting the engine rotation speed [rpm].
  • FIG. 5 is a diagram showing a coordinate system in the hydraulic excavator 1 of FIG.
  • the excavator reference coordinate system of FIG. 5 is a coordinate system set for the lower traveling body 11.
  • the turning center axis of the upper turning body 12 is set as the Z axis.
  • the Z-axis (swivel center axis) and the boom pin 91 are orthogonal to each other, and the swivel center axis and the boom pin
  • the axis passing through the central axis of 91 is set as the X axis. That is, the axis extending in the front-rear direction of the lower traveling body 11 is set as the X-axis.
  • an axis orthogonal to each of the X-axis and the Z-axis is set as the Y-axis, and the intersection of the X-axis, the Y-axis, and the Z-axis is set as the origin O.
  • the tilt angle of the boom 8 with respect to the XY plane is the boom angle ⁇
  • the tilt angle of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the tilt angle of the bucket 10 with respect to the arm 9 is the bucket angle ⁇
  • the upper swing body 12 with respect to the lower traveling body 11 Let the rotation angle of be the turning angle ⁇ .
  • the tilt angle of the airframe 1B (upper swing body 12) with respect to the horizontal plane (reference plane) is defined as the vehicle body tilt angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the vehicle body tilt angle ⁇ is detected by the vehicle body tilt angle sensor 33.
  • the boom angle ⁇ becomes the minimum when the boom 8 is raised to the maximum (maximum) (when the boom cylinder length is the longest), and when the boom 8 is lowered to the minimum (minimum) (when the boom cylinder length is the shortest). It becomes the maximum.
  • the arm angle ⁇ becomes the minimum when the arm cylinder length is the shortest, and becomes the maximum when the arm cylinder length is the longest.
  • the bucket angle ⁇ is the minimum when the bucket cylinder length is the shortest, and is maximum when the bucket cylinder length is the longest.
  • the length from the origin O to the center position of the boom pin 91 is L0
  • the length from the center position of the boom pin 91 to the center position of the arm pin 92 is L1
  • the length from the center position of the arm pin 92 to the center position of the bucket pin 93 is Assuming that the length from the center position of L2 and the bucket pin 93 to the tip of the bucket 10 (for example, the tip of the bucket 10) Pb is L3
  • the position of the tip Pb of the bucket 10 in the excavator reference coordinates is Px in the X direction.
  • the position, Py as the Y-direction position, and Pz as the Z-direction position can be expressed by the following equation (1).
  • the hydraulic excavator 1 is provided with a pair of left and right GNSS (Global Navigation Satellite System) antennas (hereinafter referred to as GNSS antennas) 25 (see FIG. 6) on the upper swivel body 12.
  • the control device 170 calculates the position and orientation of the hydraulic excavator 1 in the global coordinate system based on the information from the GNSS antenna 25. Further, the control device 170 is based on the position and orientation of the hydraulic excavator 1 in the global coordinate system, the position of the tip Pb of the bucket 10 in the excavator reference coordinate system, and the vehicle body inclination angle ⁇ , and the tip of the bucket 10 in the global coordinate system. The position of the part Pb is calculated.
  • GNSS Global Navigation Satellite System
  • FIG. 6 is a hardware configuration diagram of the control system 107 of the hydraulic excavator 1.
  • the control system 107 includes a hydraulic excavator 1 and a control device 170 mounted on the hydraulic excavator 1 to control the hydraulic excavator 1.
  • the hydraulic excavator 1 includes a posture detecting device 50, operating devices 45, 46, 47, an engine speed detecting device 42, a movable range setting device 43, and a solenoid valve unit 160. ..
  • the movable range setting device 43 is an input device for setting the turning range of the upper turning body 12 with respect to the lower traveling body 11, and is, for example, a touch panel display device provided in the driver's cab 17.
  • a touch panel display device provided in the driver's cab 17.
  • the attitude detection device 50 includes a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, a vehicle body tilt angle sensor 33, and a turning angle sensor 34. These angle sensors 30 to 34 function as posture sensors for detecting the posture of the hydraulic excavator 1 (the posture of the work device 1A, the posture of the machine body 1B).
  • the solenoid valve unit 160 includes solenoid proportional valves 54a to 56b (see FIG. 3) and electromagnetic proportional valves 57a to 59b whose primary port side is connected to the pilot pump 48 via the pump line 49a. (See FIG. 4).
  • the electromagnetic proportional valves 54a to 56b shown in FIG. 3 are pressure reducing valves that reduce the pilot pressure from the pilot pump 48 and output it to the pilot lines 144a to 146b.
  • the electromagnetic proportional valves 57a to 59b shown in FIG. 4 are pressure reducing valves that reduce the pilot pressure from the pilot pump 48 and output it to the pilot lines 147a to 149b.
  • the pilot pressure output to the pilot lines 144a to 149b acts on the hydraulic drive units 150a to 155b of the flow control valves 15a to 15f.
  • the electromagnetic proportional valves 54a to 59b have the minimum opening when not energized, and the opening increases as the current, which is a control signal from the control device 170, is increased. In this way, the opening degree of each of the electromagnetic proportional valves 54a to 59b corresponds to the control signal from the control device 170.
  • the flow control valves 15a to 15f are driven by outputting a control signal from the control device 170 to control the solenoid proportional valves 54a to 59b of the solenoid valve unit 160, and the actuators (3 to 7) are driven. Can be operated. Therefore, even when the operating levers 22 and 23 are not operated, the control device 170 outputs a control signal to the solenoid valve unit 160, and the solenoid valve unit 160 generates a pilot pressure to generate each actuator (3). It is also possible to forcibly operate ⁇ 7).
  • the control device 170 includes a CPU (Central Processing Unit) 72 as an operating circuit, a ROM (Read Only Memory) 73 and a RAM (Random Access Memory) 74 as a storage device, an input interface 71, and an output interface. It consists of a microcomputer equipped with 75 and other peripheral circuits.
  • the control device 170 may be composed of one computer or a plurality of computers.
  • the input interface 71 displays a signal indicating an angle from the angle sensors 30 to 34, which is an attitude detection device 50, a signal indicating an operation amount from the operation devices 45, 46, 47, and an engine rotation speed from the engine rotation speed detection device 42.
  • the signal to be represented and the signal for setting the turning range from the movable range setting device 43 are converted so that the CPU 72 can calculate.
  • ROM 73 is a non-volatile memory such as EEPROM.
  • the ROM 73 stores a program that allows the CPU 72 to execute various operations as shown in the flowchart described later. That is, the ROM 73 is a storage medium capable of reading a program that realizes the functions of the present embodiment.
  • the RAM 74 is a volatile memory, and is a work memory that directly inputs and outputs data to and from the CPU 72.
  • the RAM 74 temporarily stores necessary data while the CPU 72 calculates and executes the program.
  • the CPU 72 is a processing device that expands the program stored in the ROM 73 into the RAM 74 and executes calculations, and performs predetermined arithmetic processing on the signals taken in from the input interface 71 and the ROM 73 and the RAM 74 according to the program.
  • the output interface 75 generates an output signal according to the calculation result of the CPU 72, and outputs the signal to the solenoid proportional valves 54 to 59 of the solenoid valve unit 160.
  • the control device 170 includes semiconductor memories called ROM 73 and RAM 74 as storage devices, but any storage device can be substituted.
  • the control device 170 may include a magnetic storage device such as a hard disk drive as a storage device.
  • FIG. 7 is a functional block diagram of the control system 107.
  • the control device 170 executes the target operation calculation unit 171, the deceleration request calculation unit 172, the target operation correction unit 173, the electromagnetic proportional valve control unit 174, and the movable range setting unit 175. Functions as.
  • the target motion calculation unit 171 sets the target motion of the driven member as the target speed of the driven member (target angular velocity of the boom 8, target angular velocity of the arm 9, target angular velocity of the bucket 10, target turning speed of the upper swivel body 12, lower portion).
  • the target traveling speed of the traveling body 11) is calculated.
  • the target motion calculation unit 171 is based on the operation amount (operation angle) L of the operation levers 22 and 23 detected by the operation devices 45, 46, 47 and the engine speed detected by the engine speed detection device 42. Then, the target speed of the driven member corresponding to the operation of the operating devices 45, 46, 47 is calculated.
  • FIG. 8 is a diagram showing the relationship between the operation amount L of the operation levers 22 and 23 and the target speed Vat of the driven member.
  • the characteristic C (e) shown in FIG. 8 is stored in the ROM 73 of the control device 170 in the lookup table format.
  • the characteristic C (e) is a characteristic that the target speed Vat of the driven member increases as the operation amount L increases.
  • a plurality of characteristics C (e) are provided according to the engine speed.
  • FIG. 8 shows the characteristic C (e1) when the engine speed is e1, the characteristic C (e2) when the engine speed is e2, and the characteristic C (e3) when the engine speed is e3. There is.
  • the magnitude relationship between the engine speeds e1, e2, and e3 is e1> e2> e3.
  • the target speed Vat determined by the characteristic C (e) becomes a smaller value as the engine speed decreases.
  • the target operation calculation unit 171 selects a table of characteristic C (e) based on the engine speed detected by the engine speed detection device 42, refers to the table of the selected characteristic C (e), and refers to the operation device 45. , 46, 47, the target speed Vat is calculated based on the manipulated variable L detected.
  • the characteristic C (e) is set for each driven member (boom 8, arm 9, bucket 10, upper swing body 12, lower traveling body 11).
  • the movable range setting unit 175 shown in FIG. 7 sets the turning range As of the upper turning body 12 with respect to the lower traveling body 11 based on the input signal from the movable range setting device 43.
  • FIG. 9A is a diagram showing a swivel range As of the upper swivel body 12. As shown in FIG. 9A, the movable range setting unit 175 sets the left turning stop angle ⁇ L0, which is the left end of the turning range As, and the right turning stop angle ⁇ R0, which is the right end of the turning range As.
  • the movable range setting unit 175 sets a position deviated inward (that is, clockwise in the figure) by a predetermined angle ⁇ from the left turning stop angle ⁇ L0 in the turning range As as the left turning deceleration start angle ⁇ L1.
  • the movable range setting unit 175 sets a position deviated inward (that is, counterclockwise in the drawing) by a predetermined angle ⁇ from the right turning stop angle ⁇ R0 in the turning range As as the right turning deceleration start angle ⁇ R1.
  • the predetermined angle ⁇ is an angle for setting a region (deceleration range) for decelerating the upper swing body 12, as will be described later.
  • the movable range setting unit 175 responds to the operator's operation on the movable range setting device 43 (for example, an operation of inputting ⁇ L0, ⁇ R0, ⁇ ), the left turn stop angle ⁇ L0, the left turn deceleration start angle ⁇ L1, and the right turn stop.
  • the angle ⁇ R0 and the right turn deceleration start angle ⁇ R1 are set.
  • the deceleration request calculation unit 172 shown in FIG. 7 calculates a deceleration coefficient Cs for decelerating the upper swing body (driven member) 12 when a predetermined limiting condition is satisfied.
  • the limiting condition is satisfied when the upper swing body (driven member) 12 exceeds the preset normal movable range (range of ⁇ L1 or more and ⁇ R1 or less), and the upper swing body (driven member) is satisfied. ) 12 does not hold if it does not exceed the normal drive range.
  • the preset normal movable range range of ⁇ L1 or more and ⁇ R1 or less
  • the operator sets the turning range As by the movable range setting device 43 before starting the work by the hydraulic excavator 1.
  • the deceleration request calculation unit 172 generates a deceleration coefficient table Tcs and stores it in the ROM 73.
  • the deceleration request calculation unit 172 sets the deceleration coefficient table Tcs based on the right turn deceleration stop angle ⁇ R0, the right turn deceleration start angle ⁇ R1, the left turn deceleration stop angle ⁇ L0, and the left turn deceleration start angle ⁇ L1.
  • FIG. 9B is a diagram showing a reduction coefficient table Tcs.
  • the deceleration coefficient table Tcs is a table that determines the relationship between the turning angle ⁇ and the deceleration coefficient Cs.
  • the deceleration request calculation unit 172 sets the deceleration coefficient Cs to 1 at the turning angle ⁇ ( ⁇ L1 ⁇ ⁇ ⁇ ⁇ R1) between the left turning deceleration start angle ⁇ L1 and the right turning deceleration start angle ⁇ R1.
  • the deceleration request calculation unit 172 sets the deceleration coefficient Cs so that the deceleration coefficient Cs gradually decreases from 1 to 0 (zero) from the right turn deceleration start angle ⁇ R1 to the right turn stop angle ⁇ R0.
  • the deceleration request calculation unit 172 sets the deceleration coefficient Cs so that the deceleration coefficient Cs gradually decreases from 1 to 0 (zero) from the left turn deceleration start angle ⁇ L1 to the left turn stop angle ⁇ L0.
  • the deceleration request calculation unit 172 sets the deceleration coefficient table Tcs so that the deceleration coefficient Cs is linearly proportional to the turning angle ⁇ in the range of ⁇ R1 ⁇ R0 and ⁇ L0 ⁇ ⁇ L1. do.
  • the deceleration request calculation unit 172 may set the deceleration coefficient table Tcs so that the deceleration coefficient Cs changes in a curve with respect to the turning angle ⁇ .
  • the deceleration request calculation unit 172 shown in FIG. 7 refers to the deceleration coefficient table Tcs (FIG. 9B) and calculates the deceleration coefficient Cs based on the turning angle ⁇ detected by the turning angle sensor 34 of the attitude detection device 50.
  • the target motion correction unit 173 commands the driven member based on the target speed Vat of each driven member calculated by the target motion calculation unit 171 and the deceleration coefficient Cs calculated by the deceleration request calculation unit 172. Calculate speed.
  • the reduction coefficient Cs is set in order to reduce the operating speed of the driven member.
  • the reduction coefficient Cs 1
  • the operation of the driven member is not limited, and the driven member operates at a target speed corresponding to the amount of operation of the operating levers 22 and 23.
  • the deceleration coefficient Cs is less than 1, the operating speed of the driven member becomes lower than the target speed set according to the operating amount of the operating levers 22 and 23. That is, the operation of the driven member is restricted.
  • the deceleration coefficient Cs is 1 in the normal movable range, and when the upper swing body 12 turns beyond the normal movable range, the deceleration coefficient Cs becomes less than 1. That is, in the present embodiment, when the upper swing body 12 turns beyond the preset normal movable range (range of ⁇ L1 or more and ⁇ R1 or less), the restriction condition for the upper swing body 12 is satisfied, and the upper swing body 12 is satisfied. When is swivel within the normal movable range (range of ⁇ L1 or more and ⁇ R1 or less), it can be said that the restriction condition for the upper swivel body 12 is not satisfied.
  • the electromagnetic proportional valve control unit 174 calculates the command speed of each actuator that drives each driven member based on the command speed Vacc of each driven member calculated by the target motion correction unit 173.
  • the command speed of each actuator (boom cylinder 5, arm cylinder 6 and bucket cylinder 7) constituting the work device 1A is the command speed Vacc of the driven member (boom 8, arm 9 and bucket 10) constituting the work device 1A. It is calculated based on the dimensional data of the hydraulic excavator 1 and the detection result of the attitude detection device 50.
  • the command speed of the swing hydraulic motor 4 is calculated by multiplying the command speed of the upper swing body 12 by a predetermined proportional constant.
  • the command speed of the traveling hydraulic motor 3a is calculated by multiplying the command speed of the crawler on the right side of the lower traveling body 11 by a predetermined proportional constant
  • the command speed of the traveling hydraulic motor 3b is the command speed of the crawler on the left side of the lower traveling body 11. It is calculated by multiplying the command speed by a predetermined proportional constant.
  • FIG. 10 is a diagram showing various dimensions used for calculating the command speed of the boom cylinder 5.
  • a straight line (PQ) connecting the length of the boom cylinder 5 that is, the center point P of the pin on the bottom side of the boom cylinder 5 and the center point Q of the pin on the rod side of the boom cylinder 5.
  • Is Lcylb the length of the straight line (AQ) connecting the center point A and the point Q of the boom pin 91 is La1
  • Equation (5) is obtained by time-differentiating both sides of equation (4).
  • Lcylb is represented by the following equations (7) from the equation (4).
  • the boom angle ⁇ is calculated based on the detection result of the posture detection device 50.
  • the electromagnetic proportional valve control unit 174 calculates the command speed of the boom cylinder 5 by substituting the command speed (target correction speed) Vacc calculated by the target operation correction unit 173 into ⁇ 'in the equation (5). Similarly, the electromagnetic proportional valve control unit 174 of the arm cylinder 6 and the bucket cylinder 7 is based on the dimensional data of the hydraulic excavator 1, the detection result of the attitude detection device 50, and the calculation result of the target motion correction unit 173. Calculate the command speed. The command speed of the bucket cylinder 7 is calculated in consideration of the dimensional data related to the bucket link 13. Further, the electromagnetic proportional valve control unit 174 calculates the command speed of the swing hydraulic motor 4 and the command speed of the traveling hydraulic motor 3 based on the calculation result of the target motion correction unit 173.
  • the electromagnetic proportional valve control unit 174 has a target value of pilot pressure (target pilot pressure) applied to the hydraulic drive units 150a to 155b of the flow control valves 15a to 15f corresponding to each actuator based on the calculated command speed of each actuator. ) Is calculated.
  • the electromagnetic proportional valve control unit 174 calculates the target current It of the electromagnetic proportional valves 54 to 59 corresponding to each actuator based on the calculated target pilot pressure.
  • the target current It is a target value of the control current supplied to the solenoids of the electromagnetic proportional valves 54 to 59. That is, the electromagnetic proportional valve control unit 174 controls the electromagnetic proportional valves 54 to 59 so that the actual speed of each driven member becomes the command speed calculated by the target operation correction unit 173. In other words, the electromagnetic proportional valve control unit 174 controls the electromagnetic proportional valves 54 to 59 so that the actual speed of each actuator becomes the command speed of each actuator.
  • the solenoid proportional valve control unit 174 controls the control current supplied to the solenoids of the solenoid proportional valves 54 to 59 of the solenoid valve unit 160 so as to be the target current It calculated by the solenoid proportional valve control unit 174.
  • Control flowchart> The contents of the actuator control process executed by the control device 170 will be described with reference to FIG.
  • the processing of the flowchart shown in FIG. 11 is started by turning on the ignition switch (not shown), and is repeatedly executed in a predetermined calculation cycle (control cycle) after the initial setting (not shown) is performed. It is assumed that the deceleration start angles ⁇ L1 and ⁇ R1, the turning stop angles ⁇ L0 and ⁇ R0, and the deceleration coefficient table Tcs are set.
  • step S100 the control device 170 is the lever operation amount detected by the operation devices 45, 46, 47, the angle of the driven member detected by the attitude detection device 50, and the engine speed detection device. Information such as the engine speed detected in 42 is acquired, and the process proceeds to step S110.
  • step S110 the control device 170 calculates the target speed Vat of each driven member based on the lever operation amount and the engine speed acquired in step S100, and proceeds to step S120.
  • step S120 the control device 170 refers to the deceleration coefficient table Tcs stored in the ROM 73, calculates the deceleration coefficient Cs of the upper swivel body 12 based on the swivel angle ⁇ acquired in step S100, and proceeds to step S170. move on.
  • step S170 the control device 170 calculates the command speed Vatt of each driven member by multiplying the deceleration coefficient Cs calculated in step S120 by the target speed Vat of each driven member calculated in step S110. , Step S180.
  • step S180 the control device 170 calculates the target current It of the electromagnetic proportional valves 54 to 59 based on the command speed Vacc calculated in step S170, and ends the process shown in the flowchart of FIG.
  • the control device 170 controls the control current supplied to the solenoids of the electromagnetic proportional valves 54 to 59 so as to be the target current It. As a result, the operation of each actuator is controlled so that each driven member is driven at a command speed.
  • the control device 170 calculates the command speed Vat by multiplying each of the target speed Vat of the boom 8, the arm 9, and the upper swing body 12 by the deceleration coefficient Cs.
  • the boom 8, the arm 9, and the upper swing body 12 each decelerate at the same deceleration degree.
  • the operation of the upper swing body 12 is restricted, and the operations of the boom 8 and the arm 9 are similarly restricted.
  • the moving direction of the tip Pb of the bucket 10 (the operating direction of the bucket 10) is maintained.
  • FIG. 12A and 12B are diagrams for explaining the operation of the hydraulic excavator 901 according to the comparative example of the present embodiment.
  • FIG. 12A shows an operation when the restriction condition is not satisfied
  • FIG. 12B shows an operation when the restriction condition is satisfied.
  • the deceleration coefficient Cs is only the target speed of the upper swivel body 12 among these target speeds. Multiplies to calculate the command speed. As shown in FIG.
  • the upper swivel body 12 when the swivel position of the upper swivel body 12 is within the normal movable range ( ⁇ L1 ⁇ ⁇ ⁇ ⁇ R1), the upper swivel body 12, the boom 8 and the arm 9 are set as in the present embodiment. Performs operations according to the operator's operation. That is, in the example shown in FIG. 12A, the direction in which the operator wants to operate coincides with the actual operating direction.
  • an obstacle exists around the hydraulic excavator 1, and the normal movable range is set smaller than the example shown in FIG. 12A in order to prevent interference with the obstacle.
  • the hydraulic excavator 901 in the hydraulic excavator 901 according to the comparative example, when the swivel position of the upper swivel body 12 enters the deceleration range from the normal movable range ( ⁇ R1 ⁇ ⁇ R0), only the upper swivel body 12 decelerates. , Boom 8 and arm 9 do not decelerate. Therefore, the boom 8 and the arm 9 will operate in a direction different from the operating direction intended by the operator.
  • the movement locus of the tip Pb of the bucket 10 is different from the case shown in FIG. 12A. That is, in the example shown in FIG. 12B, there is a deviation between the direction in which the operator wants to operate and the actual operating direction.
  • the hydraulic excavator 901 according to the comparative example when the restriction condition for the upper swing body 12 is satisfied and the operation of the upper swing body 12 is restricted, the hydraulic excavator 1 operates in a direction different from the direction intended by the operator. As a result, there is a possibility that the bucket 10 may come into contact with the already constructed construction surface, which may lead to a decrease in work efficiency.
  • Equation (9) is obtained by multiplying the angular velocities ⁇ ', ⁇ ', ⁇ ', and ⁇ ', which are the time change rates of each angle ⁇ , ⁇ , ⁇ , and ⁇ , by the deceleration coefficient (constant) Cs.
  • the working device 1A can be operated in the direction in which the operator (operator) wants to operate. , Work efficiency can be improved.
  • the control device 170 determines a predetermined position (bucket 10) of the driven member when a predetermined limiting condition is satisfied.
  • a plurality of actuators swing hydraulic motor 4, boom cylinder
  • the limiting condition is satisfied when the driven member (upper swivel body 12) exceeds a preset normal movable range.
  • the control device 170 calculates the target speed Vat of the plurality of driven members (upper swivel body 12, boom 8 and arm 9), and if the limiting condition is not satisfied, the driven member (upper part).
  • the actuators swivel hydraulic motor 4, boom cylinder 5 and arm cylinder 6) are controlled so that the swivel body 12, boom 8 and arm 9) operate at a target speed.
  • the control device 170 calculates the deceleration coefficient Cs and is driven.
  • the control device 170 holds a plurality of driven members (upper swivel body) in a state of holding the moving direction of the predetermined position (tip Pb of the bucket 10) of the driven member (upper swivel body 12, boom 8 and arm 9). 12.
  • the target speed Vat is corrected so that the operating speed of the boom 8 and the arm 9) is limited, and the target speed (command speed Vatc) corrected by the plurality of driven members (upper swivel body 12, boom 8 and arm 9) is corrected. ),
  • the actuators swing hydraulic motor 4, boom cylinder 5 and arm cylinder 6) are controlled.
  • a plurality of driven devices are driven by the deceleration coefficient Cs set according to the turning angle ⁇ .
  • the target speed Vat of the members (upper swing body 12, boom 8 and arm 9) is corrected.
  • the plurality of driven members (upper swing body 12, boom 8 and arm 9) driven by the actuators (swing hydraulic motor 4, boom cylinder 5 and arm cylinder 6) are each decelerated to the same degree of deceleration. NS.
  • FIG. 13 is a diagram similar to FIG. 7, and is a functional block diagram of the control system 207 according to the second embodiment.
  • the control system 207 includes a target surface setting device 251 which is a device for setting the target surface St (see FIG. 14A).
  • the target surface setting device 251 is a device capable of inputting information on the target surface St (position information of one target surface or a plurality of target surfaces, information on the inclination angle of the target surface with respect to the reference surface (horizontal plane), etc.) to the control device 270. Is.
  • the target surface setting device 251 is connected to an external terminal (not shown) that stores three-dimensional data of the target surface defined on the global coordinate system (absolute coordinate system).
  • the cross-sectional shape obtained by cutting the target surface of the three-dimensional data acquired from the external terminal on the plane on which the work device 1A moves (the operation plane of the work device) is used as the target surface St (two-dimensional target surface). ..
  • the operator may manually input the target surface St via the target surface setting device 251.
  • the target motion calculation unit 271 determines the posture of the work device 1A in the local coordinate system (excavator reference coordinates) based on the signal (information about the angle) from the posture detection device 50 and the dimensional data of the hydraulic excavator 1 stored in the ROM 73. , The position of the tip Pb of the bucket 10 is calculated. As described above, the position (Px, Py, Pz) of the tip portion Pb of the bucket 10 can be calculated by the equations (1) to (3). The target motion calculation unit 271 calculates the position of the hydraulic excavator 1 in the global coordinate system (for example, each position of the pair of GNSS antennas 25) and the orientation (direction) of the hydraulic excavator 1 from the signal of the GNSS antenna 25.
  • the target motion calculation unit 271 is based on the position and orientation of the hydraulic excavator 1 in the global coordinate system, the position of the tip Pb of the bucket 10 in the excavator reference coordinate system, and the vehicle body inclination angle ⁇ , and the tip of the bucket 10 in the global coordinate system.
  • the position of the part Pb is calculated.
  • the target motion calculation unit 271 calculates the shortest distance from the calculated position of the tip Pb of the bucket 10 to the target surface St as the bucket-target surface distance D (see FIG. 14A). When the target motion calculation unit 271 can draw a perpendicular line from the tip portion Pb of the bucket 10 to the target surface St, the target motion calculation unit 271 sets the length of the perpendicular line as the bucket-target surface distance D.
  • control device 270 performs semi-automatic control that automatically controls the boom 8 so that the bucket 10 does not dig too much beyond the target surface St when the arm is operated.
  • the control device 270 issues a boom raising or boom lowering command so that the velocity vector of the tip Pb of the bucket 10 is along the target surface St.
  • the target operation calculation unit 271 selects a table of characteristic C (e) (see FIG. 8) based on the engine speed detected by the engine speed detection device 42, and refers to the table of selected characteristic C (e). Then, the target speed Vat (a) is calculated based on the operation amount L for the arm 9 detected by the operation device 45b.
  • the target motion calculation unit 271 has a target velocity Vat (b) of the boom 8 based on the positional relationship (for example, distance D) between the target velocity Vat (a) of the arm 9 and the tip Pb of the bucket 10 and the target surface St. ) Is calculated.
  • the movable range setting device 243 is an input device for setting the rotation range of the boom 8 with respect to the upper swing body 12, and is, for example, a touch panel display device provided in the driver's cab 17.
  • the operator operates the movable range setting device 243 and causes the boom 8 to stand up (raise) to cause the boom 8 to become an obstacle.
  • the rotation range of the boom 8 is set so as not to interfere with the boom 8.
  • the movable range setting unit 275 sets the rotation range Ab of the boom 8 with respect to the upper swing body 12 based on the input signal from the movable range setting device 243.
  • FIG. 14A is a diagram showing a rotation range Ab of the boom 8. As shown in FIG. 14A, the movable range setting unit 275 sets the standing / stopping angle ⁇ u0, which is the upper end of the rotation range Ab. The lower end of the rotation range Ab is the lower limit angle ⁇ L of the mechanical boom 8. Further, the movable range setting unit 275 sets a position deviated inward (that is, counterclockwise in the drawing) by a predetermined angle ⁇ from the standing / stopping angle ⁇ u0 in the rotation range Ab as the standing / deceleration start angle ⁇ u1.
  • the predetermined angle ⁇ is an angle for setting a region (deceleration range) for decelerating the boom 8, as will be described later.
  • the movable range setting unit 275 sets the standing / stopping angle ⁇ u0 and the standing / deceleration start angle ⁇ u1 according to the operator's operation on the movable range setting device 243 (for example, an operation of inputting ⁇ u0 and ⁇ ).
  • the deceleration request calculation unit 272 shown in FIG. 13 calculates a deceleration coefficient Cb for decelerating the boom (driven member) 8 when a predetermined limiting condition is satisfied.
  • the limiting condition is satisfied when the boom (driven member) 8 exceeds a preset normal movable range (a range of ⁇ L or more and ⁇ u1 or less), and the boom (driven member) 8 is usually It does not hold if the drive range is not exceeded.
  • a preset normal movable range a range of ⁇ L or more and ⁇ u1 or less
  • the operator sets the rotation range Ab by the movable range setting device 243 before starting the work by the hydraulic excavator 1.
  • the deceleration request calculation unit 272 generates a deceleration coefficient table Tcb and stores it in the ROM 73.
  • the deceleration request calculation unit 272 sets the deceleration coefficient table Tcb based on the standing / deceleration start angle ⁇ u1 and the standing / stopping angle ⁇ u0.
  • FIG. 14B is a diagram showing a reduction coefficient table Tcb.
  • the deceleration coefficient table Tcb is a table that determines the relationship between the boom angle ⁇ and the deceleration coefficient Cb.
  • the deceleration request calculation unit 272 sets the deceleration coefficient Cb to 1 at the rotation angle ⁇ ( ⁇ L ⁇ ⁇ ⁇ ⁇ u1) between the lower limit angle ⁇ L and the standing deceleration start angle ⁇ u1.
  • the deceleration request calculation unit 272 sets the deceleration coefficient Cb so that the deceleration coefficient Cb gradually decreases from 1 to 0 from the standing / deceleration start angle ⁇ u1 to the standing / stopping angle ⁇ u0.
  • the deceleration request calculation unit 272 sets the deceleration coefficient table Tcb so that the deceleration coefficient Cb is linearly proportional to the boom angle ⁇ in the range of ⁇ u1 ⁇ ⁇ ⁇ ⁇ u0.
  • the deceleration request calculation unit 272 may set the deceleration coefficient table Tcb so that the deceleration coefficient Cb changes in a curve with respect to the boom angle ⁇ .
  • the deceleration request calculation unit 272 shown in FIG. 13 refers to the deceleration coefficient table Tcb (FIG. 14B) and calculates the deceleration coefficient Cb based on the boom angle ⁇ detected by the boom angle sensor 30 of the attitude detection device 50.
  • the arm 9 operates according to the operation of the operator, and the boom 8 operates so that the tip Pb of the bucket 10 moves along the target surface St.
  • the deceleration coefficient Cb is a value smaller than 1. Is set. The deceleration coefficient Cb becomes smaller as the boom 8 approaches the upper end of the rotation range Ab.
  • the control device 270 calculates the command speed Vat by multiplying each of the target speed Vat of the boom 8 and the arm 9 by the deceleration coefficient Cb. As a result, the boom 8 and the arm 9 decelerate at the same deceleration degree. In other words, the movement of the boom 8 is restricted and the movement of the arm 9 is similarly restricted. At this time, since the deceleration degree of the boom 8 and the arm 9 is the same, the moving direction of the tip Pb of the bucket 10 (the operating direction of the bucket 10) is maintained. That is, the tip Pb of the bucket 10 moves along the target surface St as intended by the operator (operator).
  • the control device 270 determines the driven member when a predetermined limiting condition is satisfied when a plurality of driven members (boom 8 and arm 9) are driven.
  • a plurality of actuators (boom cylinder 5 and arm cylinder 6) so that the operation of the plurality of driven members (boom 8 and arm 9) is restricted while holding the moving direction of the position (tip Pb of the bucket 10).
  • the limiting condition is satisfied when the driven member (boom 8) exceeds a preset normal movable range.
  • the control device 270 When the limiting condition is satisfied by the boom 8 rotating beyond the normal movable range, the control device 270 has a plurality of driven members (boom 8 and arm 9) according to the deceleration coefficient Cb set according to the boom angle ⁇ .
  • the target velocity Vat of is corrected.
  • the plurality of driven members (boom 8 and arm 9) driven by the actuators (boom cylinder 5 and arm cylinder 6) are each decelerated to the same degree of deceleration.
  • the work machine (hydraulic excavator 1)
  • the work machine can be operated in the direction intended by the operator. Therefore, work efficiency and work accuracy can be improved.
  • FIG. 15 is a diagram similar to FIG. 7, and is a functional block diagram of the control system 307 according to the third embodiment.
  • the control system 307 includes an ambient monitoring device 352 that monitors the surroundings of the hydraulic excavator 1.
  • the ambient monitoring device 352 includes a plurality of cameras 352a, 352b, 352c provided on the upper swing body 12.
  • the plurality of cameras 352a, 352b, and 352c are photographing devices that continuously photograph their respective directions (right side, rear, left side).
  • a plurality of lidars may be provided instead of the plurality of cameras 352a, 352b, 352c.
  • the target operation calculation unit 371, the deceleration request calculation unit 372, the target operation correction unit 173, the electromagnetic proportional valve control unit 174, and the electromagnetic proportional valve control unit 174 are executed by executing the program stored in the ROM 73. It functions as an obstacle detection unit 376.
  • the obstacle detection unit 376 determines whether or not there is an obstacle around the hydraulic excavator 1 based on the data of the captured images taken by the cameras 352a, 352b, and 352c of the surrounding monitoring device 352. When the obstacle detection unit 376 determines that an obstacle exists around the hydraulic excavator 1, it considers that the obstacle has been detected and sets the obstacle detection flag to ON. In addition, the obstacle detection unit 376 calculates the position of the detected obstacle (positional coordinates in the excavator reference coordinate system). The position of the obstacle to be calculated includes the position of the portion of the obstacle closest to the hydraulic excavator 1. When the obstacle detection unit 376 determines that no obstacle exists around the hydraulic excavator 1, it assumes that no obstacle has been detected and sets the obstacle detection flag to off.
  • the deceleration request calculation unit 372 is the upper swivel body 12 obtained from the position of the obstacle detected by the obstacle detection unit 376 and the detection result by the swivel angle sensor 34.
  • the turning stop angle ⁇ S0 of the upper turning body 12 is calculated based on the turning direction of.
  • FIG. 16A is a diagram showing a turning stop angle ⁇ S0 of the upper turning body 12.
  • the turning stop angle ⁇ S0 corresponds to a target angle for stopping the turning operation of the upper turning body 12 so as not to come into contact with an obstacle.
  • the turning stop angle ⁇ S0 is set in consideration of a predetermined safety factor so that the hydraulic excavator 1 does not interfere with obstacles.
  • the deceleration request calculation unit 372 determines whether or not ⁇ S is less than the threshold value ⁇ t.
  • the threshold value ⁇ t corresponds to the angle at which the deceleration of the turning operation of the upper turning body 12 is started (the angle from the turning stop angle).
  • the deceleration request calculation unit 372 calculates the threshold value ⁇ t based on the target speed (target turning speed) Vat of the upper turning body 12 and the turning deceleration acceleration as stored in the ROM 73 in advance.
  • the threshold value ⁇ t needs to be set to a larger value as the turning deceleration acceleration as is smaller.
  • the target speed (target turning speed) Vat has a positive value when turning right and a negative value when turning left. Therefore, the turning acceleration / deceleration as is a negative value when turning right and a positive value when turning left.
  • Equations (11) and (12) to ⁇ t are represented by the following equation (13).
  • the deceleration request calculation unit 372 substitutes the turning deceleration acceleration as stored in the ROM 73 in advance into the equation (13), and substitutes the target speed Vat of the upper rotating body 12 as Vs0 into the equation (13) to obtain a threshold value. Calculate ⁇ t.
  • the deceleration request calculation unit 372 calculates the required deceleration speed Vreq.
  • the required deceleration speed Vreq is calculated by the following equation (14) based on the previous value Vacc'of the command speed Vacc of the upper swivel body 12, the predetermined swivel deceleration acceleration as, and the calculation cycle (cycle time) tk. Will be done.
  • the previous value Vacc'of the command speed Vacc is calculated in step S170 (see FIG. 11) of the previous (for example, one previous) calculation cycle.
  • Vrec Vacc'+ as ⁇ tk... (14)
  • the deceleration request calculation unit 372 compares the magnitude of the absolute value
  • the deceleration request calculation unit 372 calculates the deceleration coefficient Cs by the following equation (15).
  • Cs Vreq / Vat ... (15)
  • the deceleration coefficient calculation process shown in the flowchart of FIG. 17 is a process performed in place of the process of step S120 of FIG. 11 described in the first embodiment.
  • step S323 the control device 370 determines whether or not there is an obstacle around the hydraulic excavator 1. If it is determined that there is an obstacle around the hydraulic excavator 1, the process proceeds to step S325, and if it is determined that there is no obstacle around the hydraulic excavator 1, the process proceeds to step S337.
  • step S325 the control device 370 sets the turning stop angle ⁇ S0 based on the position of the obstacle, and proceeds to step S327.
  • step S327 the control device 370 calculates ⁇ S based on the turning stop angle ⁇ S0 calculated in step S325 and the turning angle ⁇ acquired in step S100 in FIG. 11, and proceeds to step S329.
  • step S329 the control device 370 determines whether or not ⁇ S calculated in step S327 is less than ⁇ t.
  • the threshold value ⁇ t is calculated from the target speed Vat of the upper swivel body 12 calculated in step S110 of FIG. 11 and the preset swivel deceleration acceleration as.
  • step S329 if it is determined that ⁇ S is less than the threshold value ⁇ t, the process proceeds to step S331, and if it is determined that ⁇ S is equal to or more than the threshold value ⁇ t, the process proceeds to step S337.
  • step S331 the control device 370 has the previous value Vacc', which is the command speed Vacc of the upper swivel body 12 calculated in step S170 (see FIG. 11) of the previous calculation cycle, and the swivel stored in the ROM 73.
  • the required deceleration speed Vreq is calculated based on the deceleration acceleration as and the cycle time tc, and the process proceeds to step S333. If the calculated sign (positive or negative) of the required deceleration speed Vreq is different from the sign (positive or negative) of the target speed Vat of the upper swing body 12 in step S331, the required deceleration speed Vreq is set to 0 (zero). ). This prevents the upper swing body 12 from operating in a direction opposite to the operating direction intended by the operator.
  • step S333 in the control device 370, the absolute value
  • step S335 the control device 370 calculates the deceleration coefficient Cs based on the required deceleration speed Vreq and the target speed Vat, ends the process shown in the flowchart of FIG. 17, and proceeds to step S170 of FIG.
  • step S337 the control device 370 sets the deceleration coefficient Cs to 1, ends the process shown in the flowchart of FIG. 17, and proceeds to step S170 of FIG.
  • FIG. 16B is a time chart showing changes in the turning angle ⁇ and the turning speed Vs when the upper turning body 12 that turns at a predetermined turning speed Vs0 starts decelerating from the time point ts and stops at the time point te.
  • the operator operates the operating devices 45a, 45b, and 46b in combination to operate the boom 8, arm 9, and upper swing body 12 in combination.
  • the turning speed Vs0 of the upper turning body 12 is sufficiently high, and the turning operation of the operator is held by a predetermined operation amount. That is, in the determination process of step S333 of FIG. 17, the absolute value
  • the control device 370 does not perform deceleration correction of the target speed Vat. Therefore, the upper swing body 12 turns at a constant turning speed Vs0 until the time point ts. As a result, the upper swing body 12, the boom 8 and the arm 9 operate according to the operation of the operator.
  • the control device 370 calculates the command speed Vat by multiplying each of the target speed Vat of the upper swing body 12, the boom 8 and the arm 9 by the deceleration coefficient Cs. That is, the control device 370 corrects the deceleration of the target speed Vat. Therefore, the upper swing body 12 starts deceleration from the time point ts.
  • the control device 370 corrects each target speed Vat by multiplying the deceleration coefficient Cs not only by the target speed Vat of the upper swing body 12 but also by the target speed Vat of the boom 8 and the arm 9. As a result, the upper swing body 12, the boom 8 and the arm 9 each decelerate at the same deceleration degree.
  • the movement of the upper swing body 12 is restricted, and the movements of the boom 8 and the arm 9 are similarly restricted.
  • the boom 8 and the arm 9 are the same, the moving direction of the tip Pb of the bucket 10 (the operating direction of the bucket 10) is maintained.
  • the deceleration coefficient Cs becomes 0 (zero).
  • the control device 370 calculates the command speed Vatc by multiplying each of the target speed Vat of the upper swing body 12, the boom 8 and the arm 9 by the deceleration coefficient Cs. Since the deceleration coefficient Cs is 0 (zero), the command speed Vacc of the upper swing body 12, the boom 8 and the arm 9 is 0 (zero). As a result, the upper swing body 12 is stopped and the boom 8 and the arm 9 are stopped.
  • the control device 370 when a plurality of driven members (upper swing body 12, boom 8 and arm 9) are driven, the control device 370 satisfies a predetermined limiting condition.
  • a plurality of driven members (upper swivel body 12, boom 8 and arm 9) are restricted from operating while holding the moving direction of a predetermined position (tip Pb of the bucket 10) of the driven member. It controls the actuators (swing hydraulic motor 4, boom cylinder 5 and arm cylinder 6).
  • the limiting condition exceeds a predetermined position (a position corresponding to an angle ( ⁇ S0- ⁇ t)) determined from the position of an obstacle existing around the hydraulic excavator (working machine) 1 and the turning speed (target turning speed). This is established when the upper swing body (driven member) 12 approaches an obstacle.
  • the boom in addition to the same action and effect as in the first embodiment, when an obstacle exists around the work machine (hydraulic excavator 1), the boom is automatically performed together with the upper swing body 12.
  • the 8 and the arm 9 are decelerated, and the operation of the upper swivel body 12 can be stopped at an angle (turning stop angle) that does not come into contact with an obstacle.
  • ⁇ Modification example 1> An example in which the configuration described in the first embodiment and the configuration described in the second embodiment are combined will be described as a modification 1.
  • the first modification when the upper swing body 12 exceeds the normal movable range and the boom 8 exceeds the normal movable range, the smaller of the deceleration coefficient Cs and the deceleration coefficient Cb is selected and selected. The target speeds of a plurality of driven members that operate according to the deceleration coefficient are corrected.
  • the content of the actuator control process executed by the control device according to the first modification will be described with reference to FIG.
  • the control device according to the first modification has the functions of the control device 170 described in the first embodiment and the control device 270 described in the second embodiment.
  • FIG. 18 is a diagram similar to that of FIG. 11, and the same processing as that of FIG. 11 is designated by the same reference numerals.
  • the processes of steps S420 and S460 are performed.
  • the process of step S470 is performed instead of the process of step S170 in the flowchart of FIG.
  • FIG. 18 a part different from the processing of FIG. 11 will be mainly described.
  • step S420 the control device refers to the deceleration coefficient table Tcs (FIG. 9B), calculates the deceleration coefficient Cs of the upper swivel body 12 based on the swivel angle ⁇ , and calculates the deceleration coefficient table Tcb.
  • the deceleration coefficient Cb of the boom 8 is calculated based on the boom angle ⁇ , and the process proceeds to step S460.
  • step S460 the control device selects the smallest deceleration coefficient among the deceleration coefficients Cs and Cb calculated in step S420 as a representative value, and proceeds to step S470.
  • the deceleration coefficient Cs is selected as the minimum deceleration coefficient (representative value) Cmin
  • the deceleration coefficient Cb is the minimum deceleration. It is selected as the coefficient (representative value) Cmin.
  • step S470 the control device multiplies each of the target speed Vat of each driven member calculated in step S110 by the minimum deceleration coefficient (representative value) Cmin selected in step S460, so that the driven member The command speed Vacc is calculated, and the process proceeds to step S180.
  • the limiting condition is set for each of the plurality of driven members. Specifically, a limiting condition for the upper swing body 12 and a limiting condition for the boom 8 are set.
  • the restriction condition of the upper swivel body 12 is satisfied when the upper swivel body 12 exceeds the normal movable range (range of ⁇ L1 or more and ⁇ R1 or less), and is satisfied when the upper swivel body 12 does not exceed the normal movable range. do not.
  • the restriction condition of the boom 8 is satisfied when the boom 8 exceeds the normal movable range (the range of ⁇ L or more and ⁇ u1 or less), and is not satisfied when the boom 8 does not exceed the normal movable range.
  • the control device limits the operation of the plurality of driven members according to the strictest of the restrictions imposed by the establishment of the limiting conditions.
  • the control device limits the operation of the plurality of driven members according to the strictest of the restrictions imposed by the establishment of the limiting conditions.
  • the normal movable range is set for the upper swing body 12 and the boom 8, and when either or both of the upper swing body 12 and the boom 8 exceeds the normal movable range, the driven member
  • the normal rotation range can be set for other driven members.
  • a normal movable range can be set for each of the arm 9 and the bucket 10 as well as the upper swing body 12 and the boom 8.
  • step S420 of FIG. 18 the control device calculates the deceleration coefficient Cs of the upper swing body 12, the deceleration coefficient Cbo of the boom 8, the deceleration coefficient Ca of the arm 9, and the deceleration coefficient Cbu of the bucket 10. Further, in step S460, the control device selects the smallest deceleration coefficient among the deceleration coefficients Cs, Cbo, Ca, and Cbu calculated in step S420 as the minimum deceleration coefficient (representative value) Cmin, and proceeds to step S470. The control device excludes the driven member that is not operating from the selection target of the deceleration coefficient. The control device may set the deceleration coefficient to 1 for the driven member that is not operating.
  • ⁇ Modification 2> An example in which the configuration described in the first embodiment and the configuration described in the third embodiment are combined will be described as a modification 2.
  • the boom 8 normally exceeds the movable range, and the upper swing body 12 approaches the obstacle beyond a predetermined position determined from the position of the obstacle existing around the hydraulic excavator 1.
  • the smaller of the deceleration coefficient Cb and the deceleration coefficient Cs is selected, and the target speeds of the plurality of driven members operating according to the selected deceleration coefficient are corrected.
  • the content of the actuator control process executed by the control device according to the second modification will be described with reference to FIG.
  • the control device according to the second modification has the functions of the control device 270 described in the second embodiment and the control device 370 described in the third embodiment.
  • FIG. 19 is a diagram similar to that of FIG. 11, and the same processing as that of FIG. 11 is designated by the same reference numerals.
  • the process of step S520 is executed instead of the process of step S120 of the flowchart of FIG. 11, and the process of step S570 is executed instead of the process of step S170.
  • step S110 when the target speed calculation process (step S110) is completed, the process proceeds to step S520, and the control device calculates the minimum deceleration coefficient Cmin.
  • the contents of the minimum deceleration coefficient calculation process executed by the control device will be described with reference to FIG. FIG. 20 is a diagram similar to that of FIG. 17, and the same processing as that of FIG. 17 is designated by the same reference numerals.
  • step S540 is executed in parallel with the deceleration coefficient calculation process of steps S323 to S337 of the flowchart of FIG. Further, the process of step S545 is added after steps S335, S337, and S540.
  • step S545 is added after steps S335, S337, and S540.
  • step S540 the control device refers to the deceleration coefficient table Tcb (FIG. 14B) and calculates the deceleration coefficient Cb of the boom 8 based on the boom angle ⁇ .
  • step S335 When the deceleration coefficient Cs is calculated in step S335 or step S337 and the deceleration coefficient Cb is calculated in step S540, the process proceeds to step S545.
  • step S545 the control device selects the smallest deceleration coefficient Cs among the deceleration coefficient Cs calculated in step S335 or step S337 and the deceleration coefficient Cb calculated in step S540 as representative values, and proceeds to step S570 in FIG. move on.
  • the deceleration coefficient Cs is selected as the minimum deceleration coefficient (representative value) Cmin
  • the deceleration coefficient Cb is the minimum deceleration. It is selected as the coefficient (representative value) Cmin.
  • step S570 the control device multiplies the minimum deceleration coefficient (representative value) Cmin calculated in step S520 by the target speed Vat of each driven member calculated in step S110, thereby causing each driven member.
  • the command speed Vacc is calculated, and the process proceeds to step S180.
  • the limiting condition is set for each of the plurality of driven members.
  • a limiting condition for the upper swing body 12 and a limiting condition for the boom 8 are set.
  • the limiting condition of the upper swivel body 12 is that an obstacle exists around the hydraulic excavator 1, and the upper swivel body 12 is at a predetermined position (angle ( ⁇ S0- ⁇ t)) determined from the position of the obstacle and the swivel speed (target swivel speed). ) Is exceeded when approaching an obstacle, and is not established in other cases.
  • the restriction condition of the boom 8 is satisfied when the boom 8 exceeds the normal movable range (the range of ⁇ L or more and ⁇ u1 or less), and is not satisfied when the boom 8 does not exceed the normal movable range. Then, when a plurality of limiting conditions are satisfied, the control device limits the operation of the plurality of driven members according to the strictest of the restrictions imposed by the establishment of the limiting conditions. As a result, even when limiting conditions are set for each of the plurality of driven members, a plurality of driven members are driven while maintaining the moving direction of the predetermined position (tip Pb of the bucket 10) of the driven member. The operation of the member can be restricted.
  • FIG. 21 is a functional block diagram of the control system 607 according to the third modification.
  • the control device 670 according to the third modification has the same function as the control device 270 described in the second embodiment.
  • the hydraulic excavator 1 according to this modification uses a communication method such as Bluetooth (registered trademark) or Wi-Fi (registered trademark) from the work command device 661 outside the hydraulic excavator 1 instead of the operating devices 45, 46, 47.
  • the work command receiving device 651 for receiving the work command transmitted wirelessly is provided.
  • the hydraulic excavator 1 starts the automatic operation.
  • the target motion calculation unit 671 calculates the target speed Vat of the boom 8 and the arm 9 so that the position of the tip portion Pb of the bucket 10 moves along the target surface St stored in the ROM 73 in advance. ..
  • the hydraulic excavator 1 ends the automatic operation.
  • automatic operation can be applied to operations for various tasks such as leveling work and excavation work.
  • the worker operates the work command device 661 to select one work from various works, and transmits a work command for executing the selected work.
  • the control device 270 controls the actuator that operates each driven member so that the work according to the work command is performed.
  • the work content may be configured so that it can be appropriately modified according to the progress of the work.
  • the operator operates the work command device 661 from the outside of the hydraulic excavator 1 without the operator boarding the driver's cab 17 of the hydraulic excavator 1, and transmits the work command to the hydraulic excavator 1.
  • the present invention can also be applied to a configuration in which 1 is automatically operated. As a result, even if the limiting condition is satisfied during the automatic operation in which the boom 8 and the arm 9 operate in combination, the boom 8 and the arm 9 are decelerated at the same deceleration degree, so that the operator intends to do so. As shown above, the position of the tip portion Pb of the bucket 10 can be moved along the target surface St.
  • FIG. 22 is a functional block diagram of the control system 707 according to the modified example 4.
  • the control system 707 according to this modification includes a hydraulic excavator 701 and external equipment 790 provided outside the hydraulic excavator 701.
  • the hydraulic excavator 701 has the same configuration as the hydraulic excavator 1 described in the first embodiment.
  • the hydraulic excavator 701 includes a control device 770A mounted on the upper swing body 12 and a communication device 780.
  • the communication device 780 has a communication antenna and is a device for communicating with the external equipment 790 via the radio base station 763, the communication line 769, and the like.
  • the communication device 780 includes a receiving unit 780a that receives a signal transmitted from the external equipment 790 and outputs the signal to the control device 770A, and various devices (engine rotation speed detecting device 42, movable range setting device 43, operating devices 45, 46, 47 and a transmission unit 780b for transmitting a signal output from the attitude detection device 50) to the external equipment 790.
  • the external equipment 790 is, for example, a server system installed in a management center or the like.
  • the external equipment 790 includes a control device (for example, a server) 770B and a communication device 781 for wireless communication with the hydraulic excavator 701.
  • the communication device 781 is a device having a communication antenna and for communicating with the hydraulic excavator 701 via the radio base station 763, the communication line 769, and the like.
  • the communication device 781 includes a receiving unit 781a that receives a signal transmitted from the hydraulic excavator 701 and outputs the signal to the control device 770B, and a transmitting unit 781b that transmits a signal output from the control device 770B to the hydraulic excavator 1. ..
  • the communication line 769 is a mobile phone communication network (mobile communication network) developed by a mobile phone operator or the like, the Internet, or the like.
  • the control system 707 according to the present embodiment is configured to enable bidirectional communication between the hydraulic excavator 701 and the external equipment 790 via the communication line 769 of the wide area network.
  • the transmission unit 780b of the communication device 780 of the hydraulic excavator 701 transmits signals from the operation devices 45, 46, 47, the engine rotation speed detection device 42, the attitude detection device 50, and the movable range setting device 43 via the communication line 769 and the like. It is transmitted to the external equipment 790.
  • the receiving unit 781a of the communication device 781 of the external equipment 790 receives these signals and outputs them to the control device 770B.
  • the control device 770B is a microcomputer provided with a CPU as an operating circuit, a ROM and RAM as a storage device, an input interface and an output interface, and other peripheral circuits. Consists of.
  • the control device 770B serves as the target motion calculation unit 171, the deceleration request calculation unit 172, the movable range setting unit 175, and the target motion correction unit 173 described in the first embodiment.
  • the target operation calculation unit 171, the deceleration request calculation unit 172, and the movable range setting unit 175 acquire information necessary for calculation processing from the communication device 781.
  • the target motion correction unit 173 calculates the command speed of each driven member based on the calculation result of the target motion calculation unit 171 and the calculation result of the deceleration request calculation unit 172, and the calculation result is transmitted to the communication device 781. It is transmitted to the hydraulic excavator 701 by 781b.
  • the receiving unit 780a of the communication device 780 of the hydraulic excavator 701 receives the information of the command speed of each driven member from the external equipment 790 and outputs the information to the control device 770A.
  • the control device 770A has a function as the electromagnetic proportional valve control unit 174 described in the first embodiment by executing the program stored in the ROM 73.
  • the electromagnetic proportional valve control unit 174 calculates the target current It of the electromagnetic proportional valves 54 to 59 based on the information (data) of the command speed of the driven member acquired from the receiving unit 780a and the detection result by the attitude detection device 50. Then, the control current supplied to the electromagnetic proportional valves 54 to 59 is controlled.
  • the control device described in the fourth modification an example in which a part of the functions of the control device described in the first embodiment is provided to the control device of the external equipment 790 has been described, but the control device described in the second embodiment and the second embodiment have been described. It is also possible to allow the control device of the external equipment 790 to have a part of the functions of the control device described in the third embodiment. Further, in the case where the obstacle detection unit 376 described in the third embodiment is provided in the control device of the external equipment 790, the surrounding monitoring device 352 is installed outside the hydraulic excavator 1, and the hydraulic excavator 1 is photographed from the outside. The data can also be configured to be transmitted by the communication device 780 to the control device (obstacle detection unit) of the external equipment 790.
  • ⁇ Modification 7> The functions of the control device described in the above-described embodiment may be partially or completely realized by hardware (for example, the logic for executing each function is designed by an integrated circuit).
  • the combined operation of the upper swing body 12, the boom 8 and the arm 9 has been described as an example, and in the second embodiment, the combined operation of the boom 8 and the arm 9 has been described as an example.
  • the invention is not limited to these.
  • the present invention may be applied to the combined operation of the upper rotating body 12 and the lower traveling body 11 and the combined operation of the lower traveling body 11 and the working device 1A.
  • the present invention may be applied to the combined operation of the traveling hydraulic motor 3a for driving the crawler belt 19 on the right side of the lower traveling body 11 and the traveling hydraulic motor 3b for driving the crawler belt 19 on the left side.
  • the deceleration coefficient table Tcs (see FIG. 9B) has described an example in which the deceleration coefficient Cs is set to 0 at the turning stop angles ⁇ L0 and ⁇ R0, but the turning stop angle is taken into consideration in consideration of the control response delay and the like.
  • the deceleration coefficient table Tcs may be set so that the deceleration coefficient Cs becomes 0 before ⁇ L0 and ⁇ R0.
  • the deceleration coefficient table Tcb (see FIG. 14B) has described an example in which the deceleration coefficient Cb is set to 0 at the standing / stopping angle ⁇ u0, but the standing / stopping is taken into consideration in consideration of the control response delay and the like.
  • the deceleration coefficient table Tcb may be set so that the deceleration coefficient Cb becomes 0 before the angle ⁇ u0.
  • the operation of the upper swivel body 12 is restricted so that the upper swivel body 12 does not exceed the swivel range As, and in the second embodiment, the boom 8 does not exceed the swivel range Ab.
  • An example in which the operation is restricted has been described. That is, in the first and second embodiments, the driven member is configured not to exceed the set operating range, but an entry prohibition region is provided around the hydraulic excavator 1 in an arbitrary shape. The operation of the driven member may be restricted so as not to enter the restricted area.
  • ⁇ Modification example 12> In the above embodiment, an example in which an operator rides on a hydraulic excavator and operates it has been described, but the present invention is not limited thereto.
  • the control system may be configured so that the operator does not board the driver's cab 17 and each part of the hydraulic excavator 1 can be remotely controlled by a remote control device installed outside the hydraulic excavator 1.
  • a preset turning deceleration acceleration as (constant) was used when obtaining the required deceleration speed Vreq, but the turning deceleration acceleration as was set in consideration of the influence of inertia due to the posture of the working device 1A. It may be a variable configuration.
  • ⁇ Modification 14> In the above embodiment, an example in which a hydraulic device such as a hydraulic motor or a hydraulic cylinder is provided as an actuator has been described, but the present invention may be applied to a work machine including an electric device such as an electric motor or an electric cylinder as an actuator. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械の制御システムは、複数のアクチュエータ、及びアクチュエータによって駆動される複数の被駆動部材を有する作業機械と、作業機械を制御する制御装置と、を備える。制御装置は、複数の被駆動部材が駆動されているときに、予め定められた制限条件が成立した場合、被駆動部材の所定位置の移動方向を保持した状態で複数の被駆動部材の動作が制限されるように、複数のアクチュエータを制御する。

Description

作業機械の制御システム
 本発明は、作業機械の制御システムに関する。
 特許文献1には、作業機械周辺の監視領域に障害物があることを検出した場合、下部走行体の走行及び上部旋回体の旋回のうち少なくともいずれかの作動を制限する作業機械が開示されている。
 特許文献2には、下部走行体に対して上部旋回体を旋回駆動する電動モータと、上部旋回体の旋回範囲を設定する旋回範囲設定手段と、旋回角が旋回範囲設定手段で設定された旋回範囲を超えないように電動モータの作動を停止させる停止制御手段と、を備える作業機械の旋回制御装置が開示されている。
特開2018-159194号公報 特開2011-052383号公報
 しかしながら、特許文献1,2に記載の技術では、複数の被駆動部材(例えば、上部旋回体、ブーム及びアーム)がアクチュエータによって駆動されているときに、特定の被駆動部材(例えば、上部旋回体)の動作だけに制限をかけると、作業機械が作業者の意図しない方向に動作してしまうおそれがある。
 本発明は、被駆動部材の動作が制限される際に、作業機械が作業者の意図しない方向に動作してしまうことを防止することを目的とする。
 本発明の一態様による作業機械の制御システムは、複数のアクチュエータ、及びアクチュエータによって駆動される複数の被駆動部材を有する作業機械と、作業機械を制御する制御装置と、を備える。制御装置は、複数の被駆動部材が駆動されているときに、予め定められた制限条件が成立した場合、被駆動部材の所定位置の移動方向を保持した状態で複数の被駆動部材の動作が制限されるように、複数のアクチュエータを制御する。
 本発明によれば、被駆動部材の動作が制限される際に、作業機械が作業者の意図しない方向に動作してしまうことを防止することができる。
油圧ショベルの構成図。 油圧ショベルの油圧システムを制御装置と共に示す図。 図2中の電磁弁ユニットの詳細図であり、油圧シリンダの制御に用いられる電磁比例弁について示す。 図2中の電磁弁ユニットの詳細図であり、油圧モータの制御に用いられる電磁比例弁について示す。 図1の油圧ショベルにおける座標系を示す図。 油圧ショベルの制御システムのハードウェア構成図。 第1実施形態に係る制御システムの機能ブロック図。 操作レバーの操作量Lと被駆動部材の目標速度Vatとの関係を示す図。 上部旋回体の旋回範囲Asを示す図。 減速係数テーブルTcsを示す図。 ブームシリンダの指令速度の演算に用いる各種寸法について示す図。 第1実施形態に係る制御装置により実行されるアクチュエータ制御処理の内容について示すフローチャート。 比較例に係る油圧ショベルの動作について説明する図であり、制限条件が成立していない場合の動作について示す。 比較例に係る油圧ショベルの動作について説明する図であり、制限条件が成立している場合の動作について示す。 第2実施形態に係る制御システムの機能ブロック図。 ブームの回動範囲Abを示す図。 減速係数テーブルTcbを示す図。 第3実施形態に係る制御システムの機能ブロック図。 上部旋回体の旋回停止角度θS0を示す図。 所定の旋回速度Vs0で旋回する上部旋回体が時点tsから減速を開始して時点teで停止するときの旋回角θと旋回速度Vsの変化を示すタイムチャート。 第3実施形態に係る制御装置により実行される減速係数演算処理の内容について示すフローチャート。 変形例1に係る制御装置により実行されるアクチュエータ制御処理の内容について示すフローチャート。 変形例2に係る制御装置により実行されるアクチュエータ制御処理の内容について示すフローチャート。 変形例2に係る制御装置により実行される最小減速係数演算処理の内容について示すフローチャート。 変形例3に係る制御システムの機能ブロック図。 変形例4に係る制御システムの機能ブロック図
 図面を参照して、本発明の実施形態について説明する。なお、以下では、作業装置1Aの先端の作業具(アタッチメント)としてバケット10を備えるクローラ式の油圧ショベルを作業機械の一例として説明するが、本発明は、クローラ式の油圧ショベル以外の作業機械への適用も可能である。
 本稿の以下の説明では、同一の構成要素が複数存在する場合、符号(数字)の末尾にアルファベットを付すことがあるが、当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば、2つの走行油圧モータ3a,3bを総称して、走行油圧モータ3と記すことがある。
 <第1実施形態> 
 <基本構成> 
 図1は油圧ショベル1の構成図であり、図2は油圧ショベル1の油圧システム140を制御装置170と共に示す図である。図3及び図4は図2中の電磁弁ユニット160の詳細図であり、図3は油圧シリンダ(5~7)の制御に用いられる電磁比例弁54~56について示し、図4は油圧モータ(4,3a,3b)の制御に用いられる電磁比例弁57~59について示す。
 図1に示すように、油圧ショベル1は、機体(車体)1Bと、機体1Bに取り付けられる作業装置1Aと、を備える。機体1Bは、左右の走行油圧モータ3(3a,3b)により走行する下部走行体11と、下部走行体11上に取り付けられ、旋回油圧モータ4により旋回する上部旋回体12と、を備える。上部旋回体12は、アクチュエータである旋回油圧モータ4によって、下部走行体11に対して回転駆動される被駆動部材である。また、下部走行体11は、アクチュエータである走行油圧モータ3a,3bによって走行駆動される被駆動部材である。より具体的には、下部走行体11の右側のクローラベルト19が右側の走行油圧モータ3aによって駆動される被駆動部材であり、下部走行体11の左側のクローラベルト19が左側の走行油圧モータ3bによって駆動される被駆動部材である。
 作業装置1Aは、直列的に連結される複数の被駆動部材(ブーム8、アーム9及びバケット10)と、被駆動部材(ブーム8、アーム9及びバケット10)を駆動する複数のアクチュエータ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)と、を備えた多関節型の作業装置である。ブーム8は、その基端部が上部旋回体12の前部においてブームピン91(図5参照)によって回動可能に連結される。アーム9は、その基端部がブーム8の先端部においてアームピン92(図5参照)によって回動可能に連結される。バケット10は、アーム9の先端部においてバケットピン93(図5参照)によって回動可能に連結される。ブームピン91、アームピン92及びバケットピン93は、互いに平行に配置され、被駆動部材(ブーム8、アーム9及びバケット10)はそれぞれ同一面内で相対回転可能とされている。
 ブーム8はブームシリンダ5によって駆動され、アーム9はアームシリンダ6によって駆動され、バケット10はバケットシリンダ7によって駆動される。なお、バケットシリンダ7は、一端がアーム9に連結され、他端がバケットリンク13を介して、バケット10に連結される。
 ブームピン91には上部旋回体12に対するブーム8の回動角度(以下、ブーム角と記す)α(図5参照)を測定するためのブーム角度センサ30が取り付けられる。アームピン92には、ブーム8に対するアーム9の回動角度(以下、アーム角と記す)β(図5参照)を測定するためのアーム角度センサ31が取り付けられる。バケットリンク13には、アーム9に対するバケット10の回動角度(以下、バケット角と記す)γ(図5参照)を測定するためのバケット角度センサ32が取り付けられる。上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(機体1B)の傾斜角度φ(図5参照)を測定するための車体傾斜角度センサ33が取り付けられる。なお、角度センサ30,31,32はそれぞれ基準面(例えば水平面)に対する角度センサ(対地角センサ)に代替可能である。
 機体1Bには、旋回中心軸に直交する平面内における上部旋回体12と下部走行体11の相対角度である旋回角θ(図5参照)を測定するための旋回角度センサ34が取り付けられる。
 上部旋回体12に設けられた運転室17内には、走行右レバー23a(図1)を有し油圧ショベル1の右側の走行油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と、走行左レバー23b(図1)を有し油圧ショベル1の左側の走行油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と、操作右レバー22a(図1)を共有しブームシリンダ5(ブーム8)を操作するための操作装置45a(図2)と、操作右レバー22a(図1)を共有しバケットシリンダ7(バケット10)を操作するための操作装置46a(図2)と、操作左レバー22b(図1)を共有しアームシリンダ6(アーム9)を操作するための操作装置45b(図2)と、操作左レバー22b(図1)を共有し旋回油圧モータ4(上部旋回体12)を操作するための操作装置46b(図2)と、が設けられる。以下では、走行右レバー23a及び走行左レバー23bを総称して操作レバー23と記し、操作右レバー22a及び操作左レバー22bを総称して操作レバー22と記す。また、操作装置45a及び操作装置45bを総称して操作装置45と記し、操作装置46a及び操作装置46bを総称して操作装置46と記し、操作装置47a及び操作装置47bを総称して操作装置47と記す。
 上部旋回体12には、原動機であるエンジン18が搭載される。エンジン18は、メインポンプ2a,2b及びパイロットポンプ48(図2参照)を駆動する。図2に示すように、メインポンプ2a,2bは、レギュレータ2aa,2baによって1回転あたりの吐出容量(押しのけ容積)が可変制御される可変容量型の油圧ポンプである。パイロットポンプ48は、固定容量型の油圧ポンプである。メインポンプ2a,2b及びパイロットポンプ48は、タンク38に貯留されている作動流体である作動油を吸い込み、吐出する。レギュレータ2aa,2baの詳細構成は省略するが、制御装置170から所定の制御信号がレギュレータ2aa,2baに入力されることにより、メインポンプ2a,2bの吐出流量が当該制御信号に基づいて制御される。
 パイロットポンプ48の吐出配管であるポンプライン49aは、電磁弁ユニット160内の各電磁比例弁54~59(図3、図4参照)に接続されている。ポンプライン49aにおけるパイロットポンプ48と電磁弁ユニット160との間には、ロック弁39が設けられている。ロック弁39は、電磁切換弁であり、運転室17に配置されたゲートロックレバー装置14(図1参照)によって切り換えられる。
 ゲートロックレバー装置14は、運転室17の出入りを許可するとともにアクチュエータ(3~7)の動作を禁止するロック位置(上げ位置)と、運転室17の出入りを禁止するとともにアクチュエータ(3~7)の動作を許可するロック解除位置(下げ位置)とに選択的に操作されるレバーと、そのレバーのポジションを検出する位置検出器と、を有する。
 ゲートロックレバー装置14のレバーがロック解除位置に操作されると、図示しないリレーが閉状態(オン状態)とされ、バッテリ(不図示)からロック弁39に電力が供給される。ロック弁39に電力が供給されると、ロック弁39の電磁駆動部(ソレノイド)が励磁されてロック弁39が連通位置に切り換えられる。このため、ゲートロックレバー装置14のレバーがロック解除位置にある状態では、操作レバー22,23の操作量に応じた指令パイロット圧が電磁比例弁54~59によって生成され、操作された操作レバー22,23の操作方向に対応するアクチュエータ(3~7)が動作する。
 ゲートロックレバー装置14のレバーがロック位置に操作されると、図示しないリレーが開状態(オフ状態)とされ、バッテリからロック弁39への電力の供給が遮断される。ロック弁39への電力の供給が遮断されると、ロック弁39の電磁駆動部(ソレノイド)が消磁されてロック弁39が遮断位置に切り換えられる。これにより、電磁比例弁54~59へのパイロット元圧が遮断され、操作レバー22,23による操作が無効化される。
 このように、ゲートロックレバー装置14のポジションがロック位置にあればロック弁39が閉じてポンプライン49aが遮断され、ロック解除位置にあればロック弁39が開いてポンプライン49aが開通する。つまり、ポンプライン49aが遮断された状態では操作レバー22,23による操作が無効化され、走行、旋回、掘削等の動作が禁止される。
 操作装置45,46,47は、操作レバー22,23の操作方向及び操作量を検出する検出器を備えた電気式の操作装置であり、オペレータ(作業者)による操作レバー22,23の操作方向と操作量(操作角)に応じた電気信号を発生させる。操作装置45,46,47から出力された電気信号は制御装置170に入力される。制御装置170は、操作装置45,46,47の操作方向及び操作量に基づいて、電磁比例弁54~59(図3及び図4参照)を駆動させるための制御信号を生成し、電磁弁ユニット160に出力する。図3及び図4に示すように、電磁比例弁54~59は、入力された制御信号に対応する流量制御弁15a~15fの油圧駆動部150a~155bに作用させるパイロット圧を生成する。電磁比例弁54~59は、生成したパイロット圧を、パイロットライン144a~149bを介して、入力された制御信号に対応する流量制御弁15a~15fの油圧駆動部150a~155bに出力する。流量制御弁15a~15fは、油圧駆動部150a~155bにパイロット圧が作用すると、パイロット圧に応じて駆動する。つまり、電磁比例弁54~59から出力されるパイロット圧は、流量制御弁15a~15fを駆動する制御信号として利用される。
 図2に示すように、メインポンプ2aから吐出される作動油(圧油)は、流量制御弁15cを通じてバケットシリンダ7に供給され、流量制御弁15aを通じてブームシリンダ5に供給され、流量制御弁15fを通じて走行油圧モータ3bに供給される。メインポンプ2bから吐出される作動油(圧油)は、流量制御弁15bを通じてアームシリンダ6に供給され、流量制御弁15dを通じて旋回油圧モータ4に供給され、流量制御弁15eを通じて走行油圧モータ3aに供給される。
 作動油が油圧シリンダ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)に供給されると、油圧シリンダ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)が伸縮する。これにより、被駆動部材(ブーム8、アーム9及びバケット10)が回動し、作業装置1Aの姿勢及びバケット10の先端部Pb(図5参照)の位置が変化する。作動油が旋回油圧モータ4に供給されると、旋回油圧モータ4が回転する。これにより、下部走行体11に対して上部旋回体12が旋回する。作動油が走行油圧モータ3に供給されると、走行油圧モータ3が回転する。これにより、下部走行体11が走行する。
 ブームシリンダ5、アームシリンダ6及びバケットシリンダ7には、油圧シリンダ内の圧力(シリンダ圧)を検出し、その検出結果(電気信号)を図示しない信号線を介して制御装置170へ出力する圧力センサ16a~16fが設けられる。圧力センサ16aはブームシリンダ5のボトム側油室の圧力を検出し、圧力センサ16bはブームシリンダ5のロッド側油室の圧力を検出する。圧力センサ16cはアームシリンダ6のボトム側油室の圧力を検出し、圧力センサ16dはアームシリンダ6のロッド側油室の圧力を検出する。圧力センサ16eはバケットシリンダ7のボトム側油室の圧力を検出し、圧力センサ16fはバケットシリンダ7のロッド側油室の圧力を検出する。
 エンジン18は、エンジン回転数[rpm]を検出するための回転センサであるエンジン回転数検出装置42を備えている。
 油圧ショベル1の姿勢は、図5のショベル基準座標系に基づいて定義できる。図5は、図1の油圧ショベル1における座標系を示す図である。図5のショベル基準座標系は、下部走行体11に対して設定される座標系である。ショベル基準座標系では、上部旋回体12の旋回中心軸がZ軸として設定される。ショベル基準座標系では、上部旋回体12の前後方向が下部走行体11の前後方向と一致している姿勢において、Z軸(旋回中心軸)及びブームピン91に直交し、かつ、旋回中心軸及びブームピン91の中心軸を通る軸がX軸として設定される。つまり、下部走行体11の前後方向に延在する軸がX軸として設定される。ショベル基準座標系では、X軸とZ軸のそれぞれに直交する軸がY軸として設定され、X軸、Y軸及びZ軸の交点が原点Oとして設定される。X-Y平面に対するブーム8の傾斜角度をブーム角α、ブーム8に対するアーム9の傾斜角度をアーム角β、アーム9に対するバケット10の傾斜角度をバケット角γ、下部走行体11に対する上部旋回体12の回動角度を旋回角θとする。水平面(基準面)に対する機体1B(上部旋回体12)の傾斜角度を車体傾斜角φとする。
 ブーム角αはブーム角度センサ30により、アーム角βはアーム角度センサ31により、バケット角γはバケット角度センサ32により、車体傾斜角φは車体傾斜角度センサ33により検出される。ブーム角αは、ブーム8を最大(最高)まで上げたとき(ブームシリンダ長が最長のとき)に最小となり、ブーム8を最小(最低)まで下げたとき(ブームシリンダ長が最短のとき)に最大となる。アーム角βは、アームシリンダ長が最短のときに最小となり、アームシリンダ長が最長のときに最大となる。バケット角γは、バケットシリンダ長が最短のときに最小となり、バケットシリンダ長が最長のときに最大となる。
 原点Oからブームピン91の中心位置までの長さをL0、ブームピン91の中心位置からアームピン92の中心位置までの長さをL1、アームピン92の中心位置からバケットピン93の中心位置までの長さをL2、バケットピン93の中心位置からバケット10の先端部(例えば、バケット10の爪先)Pbまでの長さをL3とすると、ショベル基準座標におけるバケット10の先端部Pbの位置は、PxをX方向位置、PyをY方向位置、PzをZ方向位置として、以下の式(1)で表すことができる。 
Figure JPOXMLDOC01-appb-M000001
 式(1)のRsは次式(2)で表される。 
Figure JPOXMLDOC01-appb-M000002
 式(1)のPuは次式(3)で表される。 
Figure JPOXMLDOC01-appb-M000003
 油圧ショベル1は、上部旋回体12に左右一対のGNSS(Global Navigation Satellite System:全地球衛星測位システム)用のアンテナ(以下、GNSSアンテナと記す)25(図6参照)を備えている。制御装置170は、GNSSアンテナ25からの情報に基づき、グローバル座標系における油圧ショベル1の位置及び方位を算出する。さらに、制御装置170は、グローバル座標系における油圧ショベル1の位置及び方位、ショベル基準座標系におけるバケット10の先端部Pbの位置、並びに、車体傾斜角φに基づき、グローバル座標系におけるバケット10の先端部Pbの位置を算出する。
 図6は、油圧ショベル1の制御システム107のハードウェア構成図である。制御システム107は、油圧ショベル1と、油圧ショベル1に搭載され油圧ショベル1を制御する制御装置170と、を備える。図6に示すように、油圧ショベル1は、姿勢検出装置50と、操作装置45,46,47と、エンジン回転数検出装置42と、可動範囲設定装置43と、電磁弁ユニット160と、を備える。
 可動範囲設定装置43は、下部走行体11に対する上部旋回体12の旋回範囲を設定するための入力装置であり、例えば、運転室17内に設けられるタッチパネルディスプレイ装置である。作業現場において油圧ショベル1の側方に建物、地山等の障害物があった場合、オペレータは、可動範囲設定装置43を操作して、旋回動作によって油圧ショベル1が障害物に干渉しないように上部旋回体12の旋回範囲を設定する。
 姿勢検出装置50は、ブーム角度センサ30、アーム角度センサ31、バケット角度センサ32、車体傾斜角度センサ33、及び、旋回角度センサ34を有する。これらの角度センサ30~34は、油圧ショベル1の姿勢(作業装置1Aの姿勢、機体1Bの姿勢)を検出する姿勢センサとして機能する。
 電磁弁ユニット160は、図3及び図4に示すように、一次ポート側がポンプライン49aを介してパイロットポンプ48に接続される電磁比例弁54a~56b(図3参照)及び電磁比例弁57a~59b(図4参照)を備える。図3に示す電磁比例弁54a~56bは、パイロットポンプ48からのパイロット圧を減圧してパイロットライン144a~146bに出力する減圧弁である。図4に示す電磁比例弁57a~59bは、パイロットポンプ48からのパイロット圧を減圧してパイロットライン147a~149bに出力する減圧弁である。パイロットライン144a~149bに出力されたパイロット圧は、流量制御弁15a~15fの油圧駆動部150a~155bに作用する。
 電磁比例弁54a~59bは、非通電時には開度が最小で、制御装置170からの制御信号である電流を増大させるほど開度が大きくなる。このように各電磁比例弁54a~59bの開度は制御装置170からの制御信号に応じたものとなる。
 本実施形態では、制御装置170から制御信号を出力して、電磁弁ユニット160の電磁比例弁54a~59bを制御することにより、流量制御弁15a~15fを駆動し、各アクチュエータ(3~7)を動作させることができる。したがって、操作レバー22,23が操作されていない場合であっても、制御装置170が制御信号を電磁弁ユニット160に出力し、電磁弁ユニット160によってパイロット圧を発生させることにより、各アクチュエータ(3~7)を強制的に動作させることも可能である。
 図6に示すように、制御装置170は、動作回路であるCPU(Central Processing Unit)72、記憶装置であるROM(Read Only Memory)73及びRAM(Random Access Memory)74、入力インタフェース71及び出力インタフェース75、並びに、その他の周辺回路を備えたマイクロコンピュータで構成される。制御装置170は、1つのコンピュータで構成してもよいし、複数のコンピュータで構成してもよい。
 入力インタフェース71は、姿勢検出装置50である角度センサ30~34からの角度を表す信号、操作装置45,46,47からの操作量を表す信号、エンジン回転数検出装置42からのエンジン回転数を表す信号、及び、可動範囲設定装置43からの旋回範囲を設定するための信号を、CPU72が演算可能なように変換する。
 ROM73はEEPROM等の不揮発性メモリである。ROM73には、後述するフローチャートに示すような各種演算をCPU72によって実行可能なプログラムが格納されている。すなわち、ROM73は、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体である。
 RAM74は揮発性メモリであり、CPU72との間で直接的にデータの入出力を行うワークメモリである。RAM74は、CPU72がプログラムを演算実行している間、必要なデータを一時的に記憶する。
 CPU72は、ROM73に記憶されたプログラムをRAM74に展開して演算実行する処理装置であって、プログラムに従って入力インタフェース71及びROM73,RAM74から取り入れた信号に対して所定の演算処理を行う。
 出力インタフェース75は、CPU72での演算結果に応じた出力用の信号を生成し、その信号を電磁弁ユニット160の電磁比例弁54~59等に出力する。
 なお、制御装置170は、記憶装置としてROM73及びRAM74という半導体メモリを備えているが、記憶装置であれば代替することが可能である。例えば、制御装置170は、ハードディスクドライブ等の磁気記憶装置を記憶装置として備えてもよい。
 図7は、制御システム107の機能ブロック図である。制御装置170は、ROM73に記憶されているプログラムを実行することにより、目標動作演算部171、減速要求演算部172、目標動作補正部173、電磁比例弁制御部174、及び、可動範囲設定部175として機能する。
 目標動作演算部171は、被駆動部材の目標動作として、被駆動部材の目標速度(ブーム8の目標角速度、アーム9の目標角速度、バケット10の目標角速度、上部旋回体12の目標旋回速度、下部走行体11の目標走行速度)を演算する。目標動作演算部171は、操作装置45,46,47で検出された操作レバー22,23の操作量(操作角)Lと、エンジン回転数検出装置42で検出されたエンジン回転数と、に基づいて、操作装置45,46,47の操作に対応する被駆動部材の目標速度を演算する。
 図8は、操作レバー22,23の操作量Lと被駆動部材の目標速度Vatとの関係を示す図である。制御装置170のROM73には、図8に示す特性C(e)がルックアップテーブル形式で記憶されている。特性C(e)は、操作量Lが大きくなるほど被駆動部材の目標速度Vatが大きくなる特性である。なお、特性C(e)は、エンジン回転数に応じて複数設けられている。図8では、エンジン回転数がe1のときの特性C(e1)、エンジン回転数がe2のときの特性C(e2)、及び、エンジン回転数がe3のときの特性C(e3)を示している。なお、エンジン回転数e1,e2,e3の大小関係は、e1>e2>e3である。特性C(e)によって定められる目標速度Vatは、エンジン回転数が小さいほど、小さい値となる。
 目標動作演算部171は、エンジン回転数検出装置42で検出されたエンジン回転数に基づいて特性C(e)のテーブルを選択し、選択した特性C(e)のテーブルを参照し、操作装置45,46,47で検出された操作量Lに基づいて、目標速度Vatを演算する。目標速度Vatは、操作レバー22,23が中立位置(操作量L=0)を含む不感帯にあるときには最小値Vatmin(=0)となり、操作レバー22,23が最大操作位置(操作量L=Lmax)に操作されているときには最大値Vatmaxとなる。特性C(e)は、被駆動部材(ブーム8、アーム9、バケット10、上部旋回体12、下部走行体11)ごとに設定される。
 図7に示す可動範囲設定部175は、可動範囲設定装置43からの入力信号に基づいて、下部走行体11に対する上部旋回体12の旋回範囲Asを設定する。図9Aは、上部旋回体12の旋回範囲Asを示す図である。図9Aに示すように、可動範囲設定部175は、旋回範囲Asの左端である左旋回停止角度θL0と、旋回範囲Asの右端である右旋回停止角度θR0と、を設定する。また、可動範囲設定部175は、旋回範囲As内における左旋回停止角度θL0から内側に向かって(すなわち図示時計まわりに)所定角度Δθだけずれた位置を左旋回減速開始角度θL1として設定する。可動範囲設定部175は、旋回範囲As内における右旋回停止角度θR0から内側に向かって(すなわち図示反時計まわりに)所定角度Δθだけずれた位置を右旋回減速開始角度θR1として設定する。
 所定角度Δθは、後述するように、上部旋回体12を減速させる領域(減速範囲)を設定するための角度である。可動範囲設定部175は、オペレータの可動範囲設定装置43に対する操作(例えば、θL0,θR0,Δθを入力する操作)に応じて、左旋回停止角度θL0及び左旋回減速開始角度θL1並びに右旋回停止角度θR0及び右旋回減速開始角度θR1を設定する。
 図7に示す減速要求演算部172は、予め定められた制限条件が成立した場合に、上部旋回体(被駆動部材)12を減速させるための減速係数Csを演算する。本実施形態において、制限条件は、上部旋回体(被駆動部材)12が予め設定された通常可動範囲(θL1以上かつθR1以下の範囲)を超えた場合に成立し、上部旋回体(被駆動部材)12が通常駆動範囲を超えていない場合には成立しない。以下、具体的に説明する。
 オペレータは、油圧ショベル1による作業を開始する前に、可動範囲設定装置43により旋回範囲Asを設定する。旋回範囲Asが設定されると、減速要求演算部172は、減速係数テーブルTcsを生成し、ROM73に記憶する。
 減速要求演算部172は、右旋回停止角度θR0、右旋回減速開始角度θR1、左旋回停止角度θL0及び左旋回減速開始角度θL1に基づいて、減速係数テーブルTcsを設定する。図9Bは、減速係数テーブルTcsを示す図である。図9Bに示すように、減速係数テーブルTcsは、旋回角θと減速係数Csとの関係を定めるテーブルである。なお、本実施形態において、旋回角θは、X軸を基準(θ=0)として、右旋回方向を正(+)、左旋回方向を負(-)の値として説明する。
 減速要求演算部172は、左旋回減速開始角度θL1と右旋回減速開始角度θR1との間の旋回角θ(θL1≦θ≦θR1)では、減速係数Csを1に設定する。減速要求演算部172は、右旋回減速開始角度θR1から右旋回停止角度θR0にかけて、減速係数Csが1から0(ゼロ)まで徐々に減少するように減速係数Csを設定する。減速要求演算部172は、左旋回減速開始角度θL1から左旋回停止角度θL0にかけて、減速係数Csが1から0(ゼロ)まで徐々に減少するように減速係数Csを設定する。
 減速要求演算部172は、θR1<θ≦θR0の範囲、及び、θL0≦θ<θL1の範囲において、減速係数Csが旋回角θに対して直線的に比例するように、減速係数テーブルTcsを設定する。なお、減速要求演算部172は、減速係数Csが旋回角θに対して曲線的に変化するように、減速係数テーブルTcsを設定してもよい。
 図7に示す減速要求演算部172は、減速係数テーブルTcs(図9B)を参照し、姿勢検出装置50の旋回角度センサ34で検出された旋回角θに基づいて、減速係数Csを演算する。
 目標動作補正部173は、目標動作演算部171で演算された各被駆動部材の目標速度Vatと、減速要求演算部172で演算された減速係数Csと、に基づいて、各被駆動部材の指令速度を演算する。目標動作補正部173は、目標動作演算部171で演算された各被駆動部材の目標速度Vatに、減速係数Csを乗じることにより、各被駆動部材の指令速度Vatcを演算する(Vatc=Vat・Cs)。換言すれば、目標動作補正部173は、複数の被駆動部材の目標速度Vatに減速係数Csを乗じることにより目標速度Vatを補正して、補正後の目標速度としての指令速度Vatcを演算する。減速係数Csは、被駆動部材の動作速度を低下させるために設定される。減速係数Cs=1の場合は、被駆動部材の動作は制限されず、操作レバー22,23の操作量に応じた目標速度で被駆動部材が動作する。減速係数Csが1未満の場合は、被駆動部材の動作速度が、操作レバー22,23の操作量に応じて設定される目標速度に対して低くなる。つまり、被駆動部材の動作が制限される。
 上述したように、通常可動範囲では減速係数Csが1であり、通常可動範囲を超えて上部旋回体12が旋回すると、減速係数Csが1未満になる。つまり、本実施形態では、上部旋回体12が予め設定された通常可動範囲(θL1以上θR1以下の範囲)を超えて旋回する場合に、上部旋回体12に対する制限条件が成立し、上部旋回体12が通常可動範囲(θL1以上θR1以下の範囲)内で旋回する場合は、上部旋回体12に対する制限条件は成立していないといえる。
 電磁比例弁制御部174は、目標動作補正部173で演算された各被駆動部材の指令速度Vatcに基づいて、各被駆動部材を駆動させる各アクチュエータの指令速度を演算する。作業装置1Aを構成する各アクチュエータ(ブームシリンダ5、アームシリンダ6及びバケットシリンダ7)の指令速度は、作業装置1Aを構成する被駆動部材(ブーム8、アーム9及びバケット10)の指令速度Vatc、油圧ショベル1の寸法データ、及び、姿勢検出装置50での検出結果に基づいて演算される。
 旋回油圧モータ4の指令速度は、上部旋回体12の指令速度に所定の比例定数を乗じることにより演算される。走行油圧モータ3aの指令速度は、下部走行体11の右側のクローラの指令速度に所定の比例定数を乗じることにより演算され、走行油圧モータ3bの指令速度は、下部走行体11の左側のクローラの指令速度に所定の比例定数を乗じることにより演算される。
 図10を参照して、アクチュエータの指令速度の演算方法の一例として、ブームシリンダ5の指令速度の演算方法について説明する。図10は、ブームシリンダ5の指令速度の演算に用いる各種寸法について示す図である。
 図10に示すように、ブームシリンダ5の長さ(すなわちブームシリンダ5のボトム側のピンの中心点Pとブームシリンダ5のロッド側のピンの中心点Qを結ぶ直線である線分(PQ)の長さ)をLcylb、ブームピン91の中心点Aと点Qを結ぶ直線である線分(AQ)の長さをLa1、点Aと点Pを結ぶ直線である線分(AP)の長さをLa2、線分(AQ)と点Aとアームピン92の中心点Bを結ぶ直線である線分(AB)とのなす角∠BAQをαu、線分(AP)とX軸とのなす角∠PAXをαt、線分(AB)とX軸とのなす角∠BAXであるブーム角をαとすると、点A,P,Qを頂点とする三角形に対しては、余弦定理により、次式(4)が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 式(4)の両辺を時間微分すると、式(5)が得られる。 
Figure JPOXMLDOC01-appb-M000005
 なお、α´は、式(6)により表される。 
Figure JPOXMLDOC01-appb-M000006
 また、Lcylbは、式(4)から次式(7)で表される。 
Figure JPOXMLDOC01-appb-M000007
 式(4)~式(7)における油圧ショベル1の寸法データ(La1=AQ,La2=AP,αu=∠BAQ,αt=∠PAX)は、予めROM73に記憶されている。ブーム角αは、姿勢検出装置50での検出結果に基づいて演算される。
 式(5)のとおり、ブームシリンダ5の速度Lcylb´は、ROM73に記憶されている寸法データ(La1=AQ,La2=AP,αu=∠BAQ,αt=∠PAX)と、姿勢検出装置50での検出結果に基づいて演算されるブーム角αと、ブーム8の角速度α´と、に基づいて求めることができる。
 電磁比例弁制御部174は、式(5)のα´に目標動作補正部173で演算された指令速度(目標補正速度)Vatcを代入することにより、ブームシリンダ5の指令速度を演算する。電磁比例弁制御部174は、同様に、油圧ショベル1の寸法データ、姿勢検出装置50での検出結果、及び、目標動作補正部173での演算結果に基づいて、アームシリンダ6及びバケットシリンダ7の指令速度を演算する。なお、バケットシリンダ7の指令速度は、バケットリンク13に関する寸法データも加味して演算される。また、電磁比例弁制御部174は、目標動作補正部173での演算結果に基づいて、旋回油圧モータ4の指令速度及び走行油圧モータ3の指令速度を演算する。
 電磁比例弁制御部174は、演算された各アクチュエータの指令速度に基づいて、各アクチュエータに対応する流量制御弁15a~15fの油圧駆動部150a~155bに作用させるパイロット圧の目標値(目標パイロット圧)を演算する。電磁比例弁制御部174は、演算された目標パイロット圧に基づいて、各アクチュエータに対応する電磁比例弁54~59の目標電流Itを演算する。目標電流Itは、電磁比例弁54~59のソレノイドに供給される制御電流の目標値である。つまり、電磁比例弁制御部174は、各被駆動部材の実速度が目標動作補正部173で演算された指令速度となるように電磁比例弁54~59を制御する。換言すれば、電磁比例弁制御部174は、各アクチュエータの実速度が各アクチュエータの指令速度となるように電磁比例弁54~59を制御する。
 電磁比例弁制御部174は、電磁弁ユニット160の電磁比例弁54~59のソレノイドに供給する制御電流を、電磁比例弁制御部174で演算された目標電流Itとなるように制御する。
 <制御フローチャート> 
 図11を参照して、制御装置170により実行されるアクチュエータ制御処理の内容について説明する。図11に示すフローチャートの処理は、イグニッションスイッチ(不図示)がオンされることにより開始され、図示しない初期設定が行われた後、所定の演算周期(制御周期)で繰り返し実行される。なお、減速開始角度θL1,θR1及び旋回停止角度θL0,θR0並びに減速係数テーブルTcsは設定されているものとして説明する。
 図11に示すように、ステップS100において、制御装置170は、操作装置45,46,47で検出されるレバー操作量、姿勢検出装置50で検出される被駆動部材の角度、エンジン回転数検出装置42で検出されるエンジン回転数等の情報を取得し、ステップS110へ進む。
 ステップS110において、制御装置170は、ステップS100で取得したレバー操作量及びエンジン回転数に基づいて、各被駆動部材の目標速度Vatを演算し、ステップS120へ進む。
 ステップS120において、制御装置170は、ROM73に記憶されている減速係数テーブルTcsを参照し、ステップS100で取得した旋回角θに基づいて、上部旋回体12の減速係数Csを演算し、ステップS170へ進む。
 ステップS170において、制御装置170は、ステップS120で演算された減速係数CsをステップS110で演算された各被駆動部材の目標速度Vatに乗算することで、各被駆動部材の指令速度Vatcを演算し、ステップS180へ進む。
 ステップS180において、制御装置170は、ステップS170で演算された指令速度Vatcに基づいて電磁比例弁54~59の目標電流Itを演算し、図11のフローチャートに示す処理を終了する。制御装置170は、電磁比例弁54~59のソレノイドに供給する制御電流を目標電流Itとなるように制御する。これにより、各被駆動部材が指令速度で駆動されるように、各アクチュエータの動作が制御される。
 <動作> 
 本実施形態の動作の一例について説明する。以下では、オペレータが、操作装置45a,45b,46bを複合操作し、ブーム8、アーム9及び上部旋回体12を複合動作させる場合について説明する。
 <通常可動範囲内での動作> 
 図9A及び図9Bに示すように、上部旋回体12の旋回位置が通常可動範囲内にある場合(θL1≦θ≦θR1)、すなわち制限条件が成立していない場合、減速係数Csは1となる。このため、目標動作補正部173は、オペレータの操作装置45a,45b,46bのそれぞれの操作量Lに基づいて演算されたブーム8、アーム9及び上部旋回体12の目標速度Vatを、そのまま指令速度Vatc(=Vat)として演算する。つまり、制御装置170は、目標速度Vatの減速補正を行わない。その結果、上部旋回体12、ブーム8及びアーム9は、オペレータの操作に応じた動作を行う。
 <減速範囲内での動作> 
 上部旋回体12がさらに回動し、上部旋回体12の旋回位置が通常可動範囲から減速範囲内に進入すると(θL0<θ<θL1,θR1<θ<θR0)、すなわち制限条件が成立すると、減速係数Csは1よりも小さい値が設定される。減速係数Csは、上部旋回体12が旋回範囲Asの端に近づくにつれて小さくなる。
 制御装置170は、ブーム8、アーム9及び上部旋回体12の目標速度Vatのそれぞれに減速係数Csを乗じて指令速度Vatcを演算する。その結果、ブーム8、アーム9及び上部旋回体12は、それぞれ同じ減速度合いで減速する。換言すれば、上部旋回体12の動作が制限されるとともに、ブーム8、アーム9の動作が同様に制限される。このとき、ブーム8、アーム9及び上部旋回体12の減速度合いは同じであるので、バケット10の先端部Pbの移動方向(バケット10の動作方向)は保持されている。
 図12A及び図12Bは、本実施形態の比較例に係る油圧ショベル901の動作について説明する図である。図12Aでは制限条件が成立していない場合の動作について示し、図12Bでは制限条件が成立している場合の動作について示す。本実施形態の比較例に係る油圧ショベル901では、ブーム8、アーム9及び上部旋回体12が複合操作された場合に、これらの目標速度のうち、上部旋回体12の目標速度にのみ減速係数Csを乗じて指令速度を演算する。図12Aに示すように、上部旋回体12の旋回位置が通常可動範囲内にあるとき(θL1≦θ≦θR1)には、本実施形態と同様、上部旋回体12、ブーム8及びアーム9は、オペレータの操作に応じた動作を行う。つまり、図12Aに示す例では、オペレータが動作させたい方向と、実際の動作方向とが一致する。
 図12Bに示す例では、油圧ショベル1の周囲に障害物が存在しており、障害物との干渉を防止するために、通常可動範囲が図12Aに示す例よりも小さく設定されている。図12Bに示すように、比較例に係る油圧ショベル901では、上部旋回体12の旋回位置が通常可動範囲から減速範囲内に進入すると(θR1<θ<θR0)、上部旋回体12のみが減速し、ブーム8及びアーム9は減速しない。このため、オペレータの意図する動作方向とは異なる方向に、ブーム8及びアーム9が動作してしまうことになる。その結果、バケット10の先端部Pbの移動軌跡は、図12Aに示す場合とは異なるものとなる。つまり、図12Bに示す例では、オペレータが動作させたい方向と、実際の動作方向との間にずれが生じる。このように、比較例に係る油圧ショベル901では、上部旋回体12に対する制限条件が成立して上部旋回体12の動作に制限がかかると、オペレータの意図した方向と違う方向に油圧ショベル1が動作してしまうことで、施工済みの施工面にバケット10が接触してしまう等の可能性があり、作業効率の低下を招いてしまうおそれがある。
 これに対して、本実施形態では、動作している被駆動部材の全てが同じ減速度合いで減速する。これにより、バケット10の動作方向(バケット10の先端部Pbの移動方向)を保持させた状態で減速させることができる。以下、被駆動部材の速度と、バケット10の先端部Pbの移動速度との関係について説明する。
 上述の式(1)を時間微分すると、バケット10の先端部Pbの移動速度(Vx,Vy,Vz)は式(8)で表される。 
Figure JPOXMLDOC01-appb-M000008
 各角度α,β,γ,θの時間変化率である角速度α′,β′,γ′,θ′に減速係数(定数)Csを乗じると、式(9)が得られる。 
Figure JPOXMLDOC01-appb-M000009
 式(9)から、バケット10の先端部Pbは、その移動方向(移動軌跡)が変わらずに速度の大きさだけがCs倍されることがわかる。したがって、動作する複数の被駆動部材を同じ減速度合いで減速させることにより、バケット10の先端部Pbの移動方向を保持することができる。換言すれば、制限条件が成立していない状態でのバケット10の先端部Pbの移動軌跡と、制限条件が成立している状態でのバケット10の先端部Pbの移動軌跡とを同じにすることができる。
 このため、本実施形態によれば、上部旋回体12が減速するように旋回動作が制限される場合においても、オペレータ(作業者)が動作させたい方向に作業装置1Aを動作させることができるので、作業効率の向上を図ることができる。
 <旋回停止> 
 上部旋回体12がさらに回動し、上部旋回体12の旋回位置が旋回範囲Asの端(θ=θL0,θ=θR0)に達すると、減速係数Csは0(ゼロ)となる。制御装置170は、ブーム8、アーム9及び上部旋回体12の目標速度Vatのそれぞれに減速係数Csを乗じて指令速度Vatcを演算する。減速係数Csは0(ゼロ)であるため、各被駆動部材の指令速度Vatcは0(ゼロ)となる。これにより、上部旋回体12が停止するとともに、ブーム8及びアーム9が停止する。
 上述した実施形態によれば、次の作用効果を奏する。
 制御装置170は、複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)が駆動されているときに、予め定められた制限条件が成立した場合、被駆動部材の所定位置(バケット10の先端部Pb)の移動方向を保持した状態で複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の動作が制限されるように、複数のアクチュエータ(旋回油圧モータ4、ブームシリンダ5及びアームシリンダ6)を制御する。なお、制限条件は、被駆動部材(上部旋回体12)が予め設定された通常可動範囲を超えた場合に成立する。
 より具体的には、制御装置170は、複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の目標速度Vatを演算し、制限条件が成立していない場合、被駆動部材(上部旋回体12、ブーム8及びアーム9)が目標速度で動作するようにアクチュエータ(旋回油圧モータ4、ブームシリンダ5及びアームシリンダ6)を制御する。また、制御装置170は、複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)が駆動されているときに制限条件が成立した場合、減速係数Csを演算し、駆動されている複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の目標速度Vatに減速係数Csを乗じることにより、被駆動部材(上部旋回体12、ブーム8及びアーム9)の目標速度Vatを補正する。つまり、制御装置170は、被駆動部材(上部旋回体12、ブーム8及びアーム9)の所定位置(バケット10の先端部Pb)の移動方向を保持した状態で複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の動作速度が制限されるように目標速度Vatを補正し、複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)が補正した目標速度(指令速度Vatc)で動作するようにアクチュエータ(旋回油圧モータ4、ブームシリンダ5及びアームシリンダ6)を制御する。
 したがって、本実施形態に係る制御システム107では、上部旋回体12が通常可動範囲を超えて旋回することにより制限条件が成立すると、旋回角θに応じて設定される減速係数Csによって複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の目標速度Vatが補正される。この結果、アクチュエータ(旋回油圧モータ4、ブームシリンダ5及びアームシリンダ6)によって駆動されている複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)は、それぞれが同じ減速度合いで減速される。
 これにより、制限条件が成立した場合において、作業者の意図しない方向に作業機械(油圧ショベル1)が動作してしまうことを防止することができる。換言すれば、本実施形態によれば、作業者の意図した方向に作業機械(油圧ショベル1)を動作させることができる。このため、作業効率の向上を図ることができる。
 <第2実施形態> 
 図13、図14A及び図14Bを参照して、第2実施形態に係る制御システム207について説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図13は、図7と同様の図であり、第2実施形態に係る制御システム207の機能ブロック図である。
 図13に示すように、制御システム207は、目標面St(図14A参照)を設定するための装置である目標面設定装置251を備えている。目標面設定装置251は、目標面Stに関する情報(1つの目標面または複数の目標面の位置情報、目標面の基準面(水平面)に対する傾斜角度の情報等)を制御装置270に入力可能な装置である。目標面設定装置251は、グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されている。本実施形態では、外部端末から取得した3次元データの目標面を作業装置1Aが移動する平面(作業装置の動作平面)で切断した断面形状を目標面St(2次元の目標面)として利用する。なお、目標面設定装置251を介した目標面Stの入力は、オペレータが手動で行ってもよい。
 目標動作演算部271は、姿勢検出装置50からの信号(角度に関する情報)及びROM73に記憶されている油圧ショベル1の寸法データに基づき、ローカル座標系(ショベル基準座標)における作業装置1Aの姿勢と、バケット10の先端部Pbの位置を演算する。上述したとおり、バケット10の先端部Pbの位置(Px,Py,Pz)は、式(1)~式(3)により演算できる。目標動作演算部271は、GNSSアンテナ25の信号からグローバル座標系における油圧ショベル1の位置(例えば、一対のGNSSアンテナ25のそれぞれの位置)と、油圧ショベル1の方位(向き)を演算する。目標動作演算部271は、グローバル座標系における油圧ショベル1の位置及び方位と、ショベル基準座標系におけるバケット10の先端部Pbの位置と、車体傾斜角φに基づき、グローバル座標系におけるバケット10の先端部Pbの位置を算出する。
 目標動作演算部271は、演算したバケット10の先端部Pbの位置から目標面Stまでの最短距離をバケット-目標面間距離D(図14A参照)として演算する。目標動作演算部271は、バケット10の先端部Pbから目標面Stに垂線が下ろせる場合には、その垂線の長さをバケット-目標面間距離Dとして設定する。
 本実施形態では、制御装置270は、アーム操作を行ったときに、バケット10が目標面Stを越えて掘りすぎないようにブーム8を自動的に制御する半自動制御を行う。制御装置270は、アーム操作がなされているときに、バケット10の先端部Pbの速度ベクトルが目標面Stに沿うようにブーム上げまたはブーム下げの指令を行う。
 目標動作演算部271は、エンジン回転数検出装置42で検出されたエンジン回転数に基づいて特性C(e)のテーブル(図8参照)を選択し、選択した特性C(e)のテーブルを参照し、操作装置45bで検出されたアーム9に対する操作量Lに基づいて、目標速度Vat(a)を演算する。目標動作演算部271は、アーム9の目標速度Vat(a)と、バケット10の先端部Pbと目標面Stとの位置関係(例えば、距離D)に基づいて、ブーム8の目標速度Vat(b)を演算する。
 可動範囲設定装置243は、上部旋回体12に対するブーム8の回動範囲を設定するための入力装置であり、例えば、運転室17内に設けられるタッチパネルディスプレイ装置である。作業現場において油圧ショベル1の上方に電線、屋根等の障害物があった場合、オペレータは、可動範囲設定装置243を操作して、ブーム8の起立動作(上げ動作)によって、ブーム8が障害物に干渉しないようにブーム8の回動範囲を設定する。
 可動範囲設定部275は、可動範囲設定装置243からの入力信号に基づいて、上部旋回体12に対するブーム8の回動範囲Abを設定する。図14Aは、ブーム8の回動範囲Abを示す図である。図14Aに示すように、可動範囲設定部275は、回動範囲Abの上端である起立停止角度αu0を設定する。なお、回動範囲Abの下端は、機械的なブーム8の下限角度αLである。また、可動範囲設定部275は、回動範囲Ab内における起立停止角度αu0から内側に向かって(すなわち図示反時計まわりに)所定角度Δαだけずれた位置を起立減速開始角度αu1として設定する。
 所定角度Δαは、後述するように、ブーム8を減速させる領域(減速範囲)を設定するための角度である。可動範囲設定部275は、オペレータの可動範囲設定装置243に対する操作(例えば、αu0,Δαを入力する操作)に応じて、起立停止角度αu0及び起立減速開始角度αu1を設定する。
 図13に示す減速要求演算部272は、予め定められた制限条件が成立した場合に、ブーム(被駆動部材)8を減速させるための減速係数Cbを演算する。本実施形態において、制限条件は、ブーム(被駆動部材)8が予め設定された通常可動範囲(αL以上かつαu1以下の範囲)を超えた場合に成立し、ブーム(被駆動部材)8が通常駆動範囲を超えていない場合には成立しない。以下、具体的に説明する。
 オペレータは、油圧ショベル1による作業を開始する前に、可動範囲設定装置243により回動範囲Abを設定する。回動範囲Abが設定されると、減速要求演算部272は、減速係数テーブルTcbを生成し、ROM73に記憶する。
 減速要求演算部272は、起立減速開始角度αu1及び起立停止角度αu0に基づいて、減速係数テーブルTcbを設定する。図14Bは、減速係数テーブルTcbを示す図である。図14Bに示すように、減速係数テーブルTcbは、ブーム角αと減速係数Cbとの関係を定めるテーブルである。なお、ここでは、ブーム角αがX軸を基準(α=0)として、起立方向(上げ方向)を正(+)、倒伏方向(下げ方向)を負(-)の値として説明する。
 減速要求演算部272は、下限角度αLと起立減速開始角度αu1との間の回動角度α(αL≦α≦αu1)では、減速係数Cbを1に設定する。減速要求演算部272は、起立減速開始角度αu1から起立停止角度αu0にかけて、減速係数Cbが1から0まで徐々に減少するように減速係数Cbを設定する。
 減速要求演算部272は、αu1≦α≦αu0の範囲において、減速係数Cbがブーム角αに対して直線的に比例するように、減速係数テーブルTcbを設定する。なお、減速要求演算部272は、減速係数Cbがブーム角αに対して曲線的に変化するように、減速係数テーブルTcbを設定してもよい。
 図13に示す減速要求演算部272は、減速係数テーブルTcb(図14B)を参照し、姿勢検出装置50のブーム角度センサ30で検出されたブーム角αに基づいて、減速係数Cbを演算する。
 目標動作補正部273は、目標動作演算部271で演算されたブーム8の目標速度Vat(b)に、減速係数Cbを乗じることにより、ブーム8の指令速度Vatc(b)を演算する(Vatc(b)=Vat(b)・Cb)。また、目標動作補正部273は、目標動作演算部271で演算されたアーム9の目標速度Vat(a)に、減速係数Cbを乗じることにより、アーム9の指令速度Vatc(a)を演算する(Vatc(a)=Vat(a)・Cb)。
 <動作> 
 本実施形態の動作の一例について説明する。以下では、オペレータが、操作装置45bによってアーム引き(アームクラウド)操作を行うことによりアーム9が動作するとともに、制御装置270によってブーム8が上げ動作する複合動作について説明する。
 <通常可動範囲内での動作> 
 図14A及び図14Bに示すように、ブーム8の位置が通常可動範囲内にある場合(αL≦α≦αu1)、すなわち制限条件が成立していない場合、減速係数Cbは1となる。このため、目標動作補正部273は、目標動作演算部271で演算されたブーム8及びアーム9の目標速度Vatを、そのまま指令速度Vatc(=Vat)として演算する。つまり、制御装置270は、目標速度Vatの減速補正を行わない。その結果、アーム9はオペレータの操作に応じた動作を行うとともに、バケット10の先端部Pbが目標面Stに沿って移動するように、ブーム8が動作する。
 <減速範囲内での動作> 
 ブーム8がさらに回動(起立)し、ブーム8の位置が通常可動範囲から減速範囲内に進入すると(αu1<α<αu0)、すなわち制限条件が成立すると、減速係数Cbは1よりも小さい値が設定される。減速係数Cbは、ブーム8が回動範囲Abの上端に近づくにつれて小さくなる。
 制御装置270は、ブーム8及びアーム9の目標速度Vatのそれぞれに減速係数Cbを乗じて指令速度Vatcを演算する。その結果、ブーム8及びアーム9は、それぞれ同じ減速度合いで減速する。換言すれば、ブーム8の動作が制限されるとともに、アーム9の動作が同様に制限される。このとき、ブーム8及びアーム9の減速度合いは同じであるので、バケット10の先端部Pbの移動方向(バケット10の動作方向)は保持されている。つまり、バケット10の先端部Pbは、オペレータ(作業者)が意図しているように、目標面Stに沿って移動する。
 <起立停止> 
 ブーム8がさらに上方へ回動し、ブーム8の回動位置が回動範囲Abの上端(α=αu0)に達すると、減速係数Cbは0(ゼロ)となる。制御装置270は、ブーム8及びアーム9の目標速度Vatのそれぞれに減速係数Cbを乗じて指令速度Vatcを演算する。減速係数Cbは0(ゼロ)であるため、ブーム8及びアーム9の指令速度Vatcは0(ゼロ)となる。これにより、ブーム8が停止するとともにアーム9が停止する。
 このように第2実施形態では、制御装置270は、複数の被駆動部材(ブーム8及びアーム9)が駆動されているときに、予め定められた制限条件が成立した場合、被駆動部材の所定位置(バケット10の先端部Pb)の移動方向を保持した状態で複数の被駆動部材(ブーム8及びアーム9)の動作が制限されるように、複数のアクチュエータ(ブームシリンダ5及びアームシリンダ6)を制御する。なお、制限条件は、被駆動部材(ブーム8)が予め設定された通常可動範囲を超えた場合に成立する。
 制御装置270は、ブーム8が通常可動範囲を超えて回動することにより制限条件が成立すると、ブーム角αに応じて設定される減速係数Cbによって複数の被駆動部材(ブーム8及びアーム9)の目標速度Vatが補正される。この結果、アクチュエータ(ブームシリンダ5及びアームシリンダ6)によって駆動されている複数の被駆動部材(ブーム8及びアーム9)は、それぞれが同じ減速度合いで減速される。
 これにより、第1実施形態と同様、制限条件が成立した場合において、作業者の意図しない方向に作業機械(油圧ショベル1)が動作してしまうことを防止することができる。換言すれば、本実施形態によれば、作業者の意図した方向に作業機械(油圧ショベル1)を動作させることができる。このため、作業効率及び作業精度の向上を図ることができる。
 <第3実施形態> 
 図15~図17を参照して、第3実施形態に係る制御システム307について説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図15は、図7と同様の図であり、第3実施形態に係る制御システム307の機能ブロック図である。
 第1実施形態では、上部旋回体(被駆動部材)12が予め設定された通常可動範囲を超えた場合に制限条件が成立する例について説明した。これに対して、第3実施形態では、油圧ショベル1の周囲に存在する障害物の位置から決定される所定位置を超えて、上部旋回体(被駆動部材)12が障害物に近づいた場合に、制限条件が成立する例について説明する。
 図15に示すように、制御システム307は、油圧ショベル1の周囲を監視する周囲監視装置352を備えている。周囲監視装置352は、図16Aに示すように、上部旋回体12に設けられる複数のカメラ352a,352b,352cを備えている。複数のカメラ352a,352b,352cは、それぞれの方向(右側方、後方、左側方)を連続して撮影する撮影装置である。なお、複数のカメラ352a,352b,352cに代えて、複数のLidarを設けてもよい。
 第3実施形態に係る制御装置370は、ROM73に記憶されているプログラムが実行されることにより、目標動作演算部371、減速要求演算部372、目標動作補正部173、電磁比例弁制御部174及び障害物検出部376として機能する。
 障害物検出部376は、周囲監視装置352のカメラ352a,352b,352cで撮影された撮影画像のデータに基づいて、油圧ショベル1の周囲に障害物が存在するか否かを判定する。障害物検出部376は、油圧ショベル1の周囲に障害物が存在していると判定した場合、障害物が検出されたものとして、障害物検出フラグをオンに設定する。また、障害物検出部376は、検出した障害物の位置(ショベル基準座標系での位置座標)を演算する。演算する障害物の位置には、障害物において油圧ショベル1に最も近い部分の位置が含まれる。障害物検出部376は、油圧ショベル1の周囲に障害物が存在していないと判定した場合、障害物は検出されていないものとして、障害物検出フラグをオフに設定する。
 減速要求演算部372は、障害物検出フラグがオンに設定されている場合、障害物検出部376で検出された障害物の位置と、旋回角度センサ34での検出結果から得られる上部旋回体12の旋回方向に基づいて、上部旋回体12の旋回停止角度θS0を演算する。図16Aは、上部旋回体12の旋回停止角度θS0を示す図である。旋回停止角度θS0は、障害物に接触しないように上部旋回体12の旋回動作を停止させる目標角度に相当する。旋回停止角度θS0は、油圧ショベル1が障害物に干渉しないように、所定の安全率を考慮して設定される。
 減速要求演算部372は、旋回停止角度θS0と、旋回角度センサ34で検出される上部旋回体12の旋回角θとの差ΔθS(=θS0-θ)を演算する。減速要求演算部372は、ΔθSが閾値θt未満であるか否かを判定する。閾値θtは、上部旋回体12の旋回動作の減速を開始する角度(旋回停止角度からの角度)に相当する。減速要求演算部372は、上部旋回体12の目標速度(目標旋回速度)Vatと予めROM73に記憶されている旋回減速加速度asに基づいて閾値θtを演算する。閾値θtは、旋回減速加速度asが小さいほど大きい値に設定する必要がある。
 閾値θtは、次のようにして求められる。上部旋回体12の旋回動作の減速が開始する時刻t=0における上部旋回体12の目標速度VatをVs0とし、旋回減速加速度をasとすると、減速範囲における上部旋回体12の旋回速度Vsは、次式(10)で表される。なお、目標速度(目標旋回速度)Vatは、右旋回のときには正の値となり、左旋回のときには負の値となる。このため、旋回加減速度asは、右旋回のときには負の値となり、左旋回のときには正の値となる。
Figure JPOXMLDOC01-appb-M000010
 また、上部旋回体12の旋回動作の減速が終了(停止)する時刻をt=t1としたとき時刻t=t1における旋回速度Vs1は0(ゼロ)であるので、式(11)が得られる。
Figure JPOXMLDOC01-appb-M000011
 時刻t=0から時刻t=t1の間で旋回する角度θtは、次式(12)で表される。
Figure JPOXMLDOC01-appb-M000012
 式(11)と式(12)からθtは、次式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 減速要求演算部372は、予めROM73に記憶されている旋回減速加速度asを式(13)に代入するとともに、上部旋回体12の目標速度VatをVs0として式(13)に代入することにより、閾値θtを演算する。
 ΔθSが閾値θt未満であると判定されると、減速要求演算部372は、要求減速速度Vreqを演算する。要求減速速度Vreqは、上部旋回体12の指令速度Vatcの前回値Vatc’と、予め定められた旋回減速加速度asと、演算周期(サイクルタイム)tcと、に基づいて次式(14)により演算される。なお、指令速度Vatcの前回値Vatc’は、前回(例えば、一つ前)の演算サイクルのステップS170(図11参照)で計算される。 
 Vreq=Vatc’+as・tc …(14)
 減速要求演算部372は、要求減速速度Vreqの絶対値|Vreq|と、目標動作演算部371で演算される上部旋回体12の目標速度Vatの絶対値|Vat|の大きさを比較し、|Vreq|が|Vat|以上であるか否かを判定する。
 |Vreq|が|Vat|以上でない(|Vreq|が|Vat|未満である)と判定されると、減速要求演算部372は、減速係数Csを次式(15)によって演算する。 
 Cs=Vreq/Vat   …(15)
 |Vreq|が|Vat|以上であると判定されると、減速要求演算部372は、減速係数Csを1に設定する(Cs=1)。
 図17を参照して、制御装置370により実行される減速係数演算処理の内容について説明する。図17のフローチャートに示す減速係数演算処理は、第1実施形態で説明した図11のステップS120の処理に代えて行われる処理である。
 図17に示すように、ステップS323において、制御装置370は、油圧ショベル1の周囲に障害物が存在するか否かを判定する。油圧ショベル1の周囲に障害物が存在すると判定されると、ステップS325へ進み、油圧ショベル1の周囲に障害物が存在しないと判定されると、ステップS337へ進む。
 ステップS325において、制御装置370は、障害物の位置に基づいて、旋回停止角度θS0を設定し、ステップS327へ進む。
 ステップS327において、制御装置370は、ステップS325で演算した旋回停止角度θS0と、図11のステップS100で取得した旋回角θと、に基づいて、ΔθSを演算し、ステップS329へ進む。
 ステップS329において、制御装置370は、ステップS327で演算されたΔθSがθt未満であるか否かを判定する。ここで、閾値θtは、図11のステップS110で演算した上部旋回体12の目標速度Vatと、予め設定されている旋回減速加速度asから演算される。
 ステップS329において、ΔθSが閾値θt未満であると判定されるとステップS331へ進み、ΔθSが閾値θt以上であると判定されるとステップS337へ進む。
 ステップS331において、制御装置370は、一つ前の演算サイクルのステップS170(図11参照)で演算された上部旋回体12の指令速度Vatcである前回値Vatc’と、ROM73に記憶されている旋回減速加速度asと、サイクルタイムtcと、に基づいて、要求減速速度Vreqを演算し、ステップS333へ進む。なお、ステップS331において、演算された要求減速速度Vreqの符号(正負)が上部旋回体12の目標速度Vatの符号(正負)と異なることとなった場合には、要求減速速度Vreqを0(ゼロ)に設定する。これにより、上部旋回体12の動作方向がオペレータの意図する動作方向とは反対の方向に動作することが防止される。
 ステップS333において、制御装置370は、ステップS331で演算された要求減速速度の絶対値|Vreq|が、ステップS110(図11参照)で演算された上部旋回体12の目標速度の絶対値|Vat|以上であるか否かを判定する。要求減速速度の絶対値|Vreq|が目標速度の絶対値|Vat|以上であると判定されるとステップS337へ進み、要求減速速度の絶対値|Vreq|が目標速度の絶対値|Vat|未満であると判定されるとステップS335へ進む。
 ステップS335において、制御装置370は、要求減速速度Vreqと目標速度Vatに基づいて減速係数Csを演算し、図17のフローチャートに示す処理を終了し、図11のステップS170へ進む。
 ステップS337において、制御装置370は、減速係数Csを1に設定し、図17のフローチャートに示す処理を終了し、図11のステップS170へ進む。
 <動作> 
 図16A及び図16Bを参照して、本実施形態の動作の一例について説明する。図16Bは、所定の旋回速度Vs0で旋回する上部旋回体12が時点tsから減速を開始して時点teで停止するときの旋回角θと旋回速度Vsの変化を示すタイムチャートである。以下では、オペレータが、操作装置45a,45b,46bを複合操作し、ブーム8、アーム9及び上部旋回体12を複合動作させる場合について説明する。なお、上部旋回体12の旋回速度Vs0は十分に速く、オペレータの旋回操作は所定の操作量で保持されているものとする。つまり、図17のステップS333の判定処理において、目標速度の絶対値|Vat|は要求減速速度|Vreq|以下にはならない。
 <ΔθSが閾値θt以上のとき> 
 図16A及び図16Bに示すように、上部旋回体12の基準線BLから旋回停止角度θs0までの角度であるΔθSが閾値θt以上(旋回角θが(θS0-θt)以下)の場合、すなわち制限条件が成立していない場合、減速係数Csは1となる。このため、目標動作補正部173は、オペレータの操作装置45a,45b,46bのそれぞれの操作量Lに基づいて演算されたブーム8、アーム9及び上部旋回体12の目標速度Vatを、そのまま指令速度Vatc(=Vat)として演算する。つまり、制御装置370は、目標速度Vatの減速補正を行わない。このため、上部旋回体12は、時点tsまで一定の旋回速度Vs0で旋回する。その結果、上部旋回体12、ブーム8及びアーム9は、オペレータの操作に応じた動作を行う。
 <ΔθSが閾値θt未満とき> 
 上部旋回体12がさらに回動し、時点tsにおいてΔθSが閾値θt未満になると(旋回角θが(θS0-θt)を超えると)、すなわち制限条件が成立すると、減速係数Csは1よりも小さい値が設定される。
 制御装置370は、上部旋回体12、ブーム8及びアーム9の目標速度Vatのそれぞれに減速係数Csを乗じて指令速度Vatcを演算する。つまり、制御装置370は、目標速度Vatの減速補正を行う。このため、上部旋回体12は、時点tsから減速を開始する。制御装置370は、減速係数Csを上部旋回体12の目標速度Vatだけでなく、ブーム8及びアーム9の目標速度Vatにも乗じて、各目標速度Vatを補正する。その結果、上部旋回体12、ブーム8及びアーム9は、それぞれ同じ減速度合いで減速する。換言すれば、上部旋回体12の動作が制限されるとともに、ブーム8及びアーム9の動作が同様に制限される。このとき、上部旋回体12、ブーム8及びアーム9の減速度合いは同じであるので、バケット10の先端部Pbの移動方向(バケット10の動作方向)は保持されている。
 上部旋回体12の旋回角θが旋回停止角度θS0に達すると(時点te)、減速係数Csは0(ゼロ)となる。制御装置370は、上部旋回体12、ブーム8及びアーム9の目標速度Vatのそれぞれに減速係数Csを乗じて指令速度Vatcを演算する。減速係数Csは0(ゼロ)であるため、上部旋回体12、ブーム8及びアーム9の指令速度Vatcは0(ゼロ)となる。これにより、上部旋回体12が停止するとともにブーム8及びアーム9が停止する。
 このように第3実施形態では、制御装置370は、複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)が駆動されているときに、予め定められた制限条件が成立した場合、被駆動部材の所定位置(バケット10の先端部Pb)の移動方向を保持した状態で複数の被駆動部材(上部旋回体12、ブーム8及びアーム9)の動作が制限されるように、複数のアクチュエータ(旋回油圧モータ4、ブームシリンダ5及びアームシリンダ6)を制御する。なお、制限条件は、油圧ショベル(作業機械)1の周囲に存在する障害物の位置と旋回速度(目標旋回速度)から決定される所定位置(角度(θS0-θt)に相当する位置)を超えて、上部旋回体(被駆動部材)12が障害物に近づいた場合に成立する。
 このような第3実施形態によれば、第1実施形態と同様の作用効果に加え、作業機械(油圧ショベル1)の周囲に障害物が存在する場合には、自動で上部旋回体12とともにブーム8及びアーム9が減速され、障害物に接触しない角度(旋回停止角度)で上部旋回体12の動作を停止させることができる。また、第3実施形態では、上部旋回体12の通常可動範囲を予め設定しておく必要がないため、より作業効率の向上を図ることができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせることも可能である。
 <変形例1> 
 第1実施形態で説明した構成と第2実施形態で説明した構成を組み合わせた場合の一例を変形例1として説明する。変形例1では、上部旋回体12が通常可動範囲を超えており、かつ、ブーム8が通常可動範囲を超えている場合には、減速係数Cs及び減速係数Cbのうち小さい方を選択し、選択した減速係数によって動作する複数の被駆動部材の目標速度を補正する。以下、図18を参照して、変形例1に係る制御装置により実行されるアクチュエータ制御処理の内容について説明する。本変形例1に係る制御装置は、第1実施形態で説明した制御装置170及び第2実施形態で説明した制御装置270の機能を有する。
 図18は、図11と同様の図であり、図11の処理と同じ処理には同じ符号を付している。図18では、図11のフローチャートのステップS120の処理に代えて、ステップS420及びステップS460の処理が行われる。また、図18では、図11のフローチャートのステップS170の処理に代えて、ステップS470の処理が行われる。以下、図18を参照し、図11の処理とは異なる部分を主に説明する。
 図18に示すように、ステップS420において、制御装置は、減速係数テーブルTcs(図9B)を参照し、旋回角θに基づいて上部旋回体12の減速係数Csを演算するとともに、減速係数テーブルTcb(図14B)を参照し、ブーム角αに基づいてブーム8の減速係数Cbを演算してステップS460へ進む。
 ステップS460において、制御装置は、ステップS420で演算された減速係数Cs,Cbのうちで最も小さい減速係数を代表値として選択し、ステップS470へ進む。減速係数Csが減速係数Cbよりも小さい場合には、減速係数Csが最小減速係数(代表値)Cminとして選択され、減速係数Cbが減速係数Csよりも小さい場合には、減速係数Cbが最小減速係数(代表値)Cminとして選択される。
 ステップS470において、制御装置は、ステップS460で選択された最小減速係数(代表値)CminをステップS110で演算された各被駆動部材の目標速度Vatのそれぞれに乗算することで、各被駆動部材の指令速度Vatcを演算し、ステップS180へ進む。
 このように、本変形例1では、制限条件が、複数の被駆動部材ごとに設定されている。具体的には、上部旋回体12に対する制限条件とブーム8に対する制限条件とが設定されている。上部旋回体12の制限条件は、上部旋回体12が通常可動範囲(θL1以上かつθR1以下の範囲)を超えた場合に成立し、上部旋回体12が通常可動範囲を超えていない場合には成立しない。ブーム8の制限条件は、ブーム8が通常可動範囲(αL以上かつαu1以下の範囲)を超えた場合に成立し、ブーム8が通常可動範囲を超えていない場合には成立しない。そして、制御装置は、複数の制限条件が成立した場合、それらの制限条件の成立により課される制限のうちで最も厳しいものに合わせて、複数の被駆動部材の動作を制限する。これにより、複数の被駆動部材ごとに制限条件を設定している場合であっても、被駆動部材の所定位置の移動方向を保持した状態で、複数の被駆動部材の動作を制限することができる。
 なお、本変形例では、上部旋回体12及びブーム8に対して通常可動範囲を設定し、上部旋回体12及びブーム8のいずれかまたは双方が通常可動範囲を超えた場合に、被駆動部材の動作が制限される例について説明したが、その他の被駆動部材に対して通常回動範囲を設定することもできる。例えば、上部旋回体12及びブーム8だけでなく、アーム9及びバケット10のそれぞれに対して通常可動範囲を設定することもできる。
 この場合、図18のステップS420において、制御装置は、上部旋回体12の減速係数Cs、ブーム8の減速係数Cbo、アーム9の減速係数Ca及びバケット10の減速係数Cbuを演算する。さらに、ステップS460において、制御装置は、ステップS420で演算された減速係数Cs,Cbo,Ca,Cbuのうちで最も小さい減速係数を最小減速係数(代表値)Cminとして選択し、ステップS470へ進む。制御装置は、動作していない被駆動部材に対しては、減速係数の選択対象から除外する。なお、制御装置は、動作していない被駆動部材に対しては、減速係数を1に設定してもよい。
 <変形例2> 
 第1実施形態で説明した構成と第3実施形態で説明した構成を組み合わせた場合の一例を変形例2として説明する。変形例2では、ブーム8が通常可動範囲を超えており、かつ、油圧ショベル1の周囲に存在する障害物の位置から決定される所定位置を超えて、上部旋回体12が障害物に近づいた場合には、減速係数Cb及び減速係数Csのうち小さい方を選択し、選択した減速係数によって動作する複数の被駆動部材の目標速度を補正する。以下、図19を参照して、変形例2に係る制御装置により実行されるアクチュエータ制御処理の内容について説明する。本変形例2に係る制御装置は、第2実施形態で説明した制御装置270及び第3実施形態で説明した制御装置370の機能を有する。
 図19は、図11と同様の図であり、図11の処理と同じ処理には同じ符号を付している。図19では、図11のフローチャートのステップS120の処理に代えて、ステップS520の処理が実行され、ステップS170の処理に代えて、ステップS570の処理が実行される。
 図19に示すように、目標速度演算処理(ステップS110)が終了すると、ステップS520へ進み、制御装置は、最小減速係数Cminを演算する。図20を参照して、制御装置により実行される最小減速係数演算処理の内容について説明する。図20は、図17と同様の図であり、図17の処理と同じ処理には同じ符号を付している。
 図20では、図17のフローチャートのステップS323~S337の減速係数演算処理と並列にステップS540の処理が実行される。また、ステップS335,S337,S540の後にステップS545の処理が追加されている。以下、図20を参照し、図17の処理とは異なる部分を主に説明する。
 図20に示すように、ステップS540において、制御装置は、減速係数テーブルTcb(図14B)を参照し、ブーム角αに基づいてブーム8の減速係数Cbを演算する。
 ステップS335またはステップS337において減速係数Csが演算され、ステップS540において減速係数Cbが演算されると、ステップS545へ進む。
 ステップS545において、制御装置は、ステップS335またはステップS337で演算された減速係数Cs及びステップS540で演算された減速係数Cbのうちで最も小さい減速係数を代表値として選択し、図19のステップS570へ進む。減速係数Csが減速係数Cbよりも小さい場合には、減速係数Csが最小減速係数(代表値)Cminとして選択され、減速係数Cbが減速係数Csよりも小さい場合には、減速係数Cbが最小減速係数(代表値)Cminとして選択される。
 ステップS570において、制御装置は、ステップS520で演算された最小減速係数(代表値)CminをステップS110で演算された各被駆動部材の目標速度Vatのそれぞれに乗算することで、各被駆動部材の指令速度Vatcを演算し、ステップS180へ進む。
 このように、本変形例2では、制限条件が、複数の被駆動部材ごとに設定されている。具体的には、上部旋回体12に対する制限条件とブーム8に対する制限条件とが設定されている。上部旋回体12の制限条件は、油圧ショベル1の周囲に障害物が存在し、上部旋回体12が障害物の位置と旋回速度(目標旋回速度)から決定される所定位置(角度(θS0-θt)に相当する位置)を超えて障害物に近づいた場合に成立し、それ以外の場合には成立しない。ブーム8の制限条件は、ブーム8が通常可動範囲(αL以上かつαu1以下の範囲)を超えた場合に成立し、ブーム8が通常可動範囲を超えていない場合には成立しない。そして、制御装置は、複数の制限条件が成立した場合、それらの制限条件の成立により課される制限のうちで最も厳しいものに合わせて、複数の被駆動部材の動作を制限する。これにより、複数の被駆動部材ごとに制限条件を設定している場合であっても、被駆動部材の所定位置(バケット10の先端部Pb)の移動方向を保持した状態で、複数の被駆動部材の動作を制限することができる。
 <変形例3> 
 上記実施形態では、オペレータが運転室17に搭乗して、操作装置45,46,47を操作することにより、油圧ショベル1の各被駆動部材の動作が制御される例について説明したが、本発明はこれに限定されない。油圧ショベル1が自動運転される制御システム607に本発明を適用してもよい。
 図21は、変形例3に係る制御システム607の機能ブロック図である。変形例3に係る制御装置670は、第2実施形態で説明した制御装置270と同様の機能を備えている。本変形例に係る油圧ショベル1は、操作装置45,46,47に代えて、油圧ショベル1の外部の作業指令装置661からBluetooth(登録商標)、Wi-Fi(登録商標)等の通信方式で無線送信される作業指令を受信する作業指令受信装置651を備えている。
 作業指令受信装置651によって作業を開始させるための作業指令(作業開始指令)が受信されると、油圧ショベル1は自動運転を開始する。自動運転では、目標動作演算部671が、予めROM73に記憶されている目標面Stに沿ってバケット10の先端部Pbの位置が移動するように、ブーム8及びアーム9の目標速度Vatを演算する。作業指令受信装置651によって作業を終了させるための作業指令(作業終了指令)が受信されると、油圧ショベル1は自動運転を終了する。
 なお、自動運転は、整地作業、掘削作業等、種々の作業のための動作に適用することができる。作業者は、作業指令装置661を操作して、種々の作業から一の作業を選択し、選択した作業を実行させるための作業指令を送信する。作業指令受信装置651によって作業指令を受信すると、制御装置270は、作業指令に応じた作業が行われるように、各被駆動部材を動作させるアクチュエータを制御する。なお、作業内容は、作業の進捗に合わせて適宜修正できるように構成してもよい。
 このように、油圧ショベル1の運転室17にオペレータが搭乗することなく、作業者が油圧ショベル1の外部から作業指令装置661を操作し、作業指令を油圧ショベル1に送信することによって、油圧ショベル1を自動で運転する構成においても本発明を適用することができる。これにより、ブーム8及びアーム9が複合的に動作する自動運転中に制限条件が成立した場合であっても、ブーム8及びアーム9が同じ減速度合いで減速することになるので、作業者が意図しているように、目標面Stに沿ってバケット10の先端部Pbの位置を移動させることができる。
 <変形例4> 
 上記実施形態では、制御装置170,270,370が油圧ショベル1に搭載されている例について説明したが、制御装置170,270,370が備える機能の一部を有する制御装置を油圧ショベル1の外部に設けるようにしてもよい。
 図22は、変形例4に係る制御システム707の機能ブロック図である。本変形例に係る制御システム707は、油圧ショベル701と、油圧ショベル701の外部に設けられる外部設備790と、を備える。油圧ショベル701は、第1実施形態で説明した油圧ショベル1と同様の構成を有している。
 油圧ショベル701は、上部旋回体12に搭載される制御装置770Aと、通信装置780と、を備える。通信装置780は、通信アンテナを有し、無線基地局763及び通信回線769等を介して外部設備790と通信を行うための装置である。通信装置780は、外部設備790から送信された信号を受信して制御装置770Aに出力する受信部780aと、各種装置(エンジン回転数検出装置42、可動範囲設定装置43、操作装置45,46,47及び姿勢検出装置50)から出力された信号を外部設備790に送信する送信部780bと、を有する。
 外部設備790は、例えば、管理センタ等に設置されるサーバシステムである。外部設備790は、制御装置(例えば、サーバ)770Bと、油圧ショベル701と無線通信を行うための通信装置781と、を備える。通信装置781は、通信アンテナを有し、無線基地局763及び通信回線769等を介して油圧ショベル701と通信を行うための装置である。通信装置781は、油圧ショベル701から送信された信号を受信して制御装置770Bに出力する受信部781aと、制御装置770Bから出力された信号を油圧ショベル1に送信する送信部781bと、を有する。
 通信回線769は、携帯電話事業者等が展開する携帯電話通信網(移動通信網)、インターネット等である。このように、本実施形態に係る制御システム707では、油圧ショベル701と外部設備790との間で広域ネットワークの通信回線769を介して双方向通信を行うことができるように構成されている。
 油圧ショベル701の通信装置780の送信部780bは、操作装置45,46,47、エンジン回転数検出装置42、姿勢検出装置50、及び可動範囲設定装置43からの信号を通信回線769等を介して外部設備790に送信する。外部設備790の通信装置781の受信部781aは、これらの信号を受信し、制御装置770Bへ出力する。
 制御装置770Bは、油圧ショベル701に搭載されている制御装置770Aと同様、動作回路であるCPU、記憶装置であるROM及びRAM、入力インタフェース及び出力インタフェース、並びに、その他の周辺回路を備えたマイクロコンピュータで構成される。制御装置770Bは、ROMに記憶されているプログラムを実行することにより、第1実施形態で説明した目標動作演算部171、減速要求演算部172、可動範囲設定部175及び目標動作補正部173としての機能を有する。目標動作演算部171、減速要求演算部172及び可動範囲設定部175は、演算処理に必要な情報を通信装置781から取得する。
 目標動作補正部173は、目標動作演算部171での演算結果及び減速要求演算部172での演算結果に基づいて各被駆動部材の指令速度を演算し、その演算結果を通信装置781の送信部781bによって油圧ショベル701に向けて送信する。
 油圧ショベル701の通信装置780の受信部780aは、外部設備790からの各被駆動部材の指令速度の情報を受信し、制御装置770Aに出力する。制御装置770Aは、ROM73に記憶されているプログラムを実行することにより、第1実施形態で説明した電磁比例弁制御部174としての機能を有する。電磁比例弁制御部174は、受信部780aから取得した被駆動部材の指令速度の情報(データ)及び姿勢検出装置50での検出結果に基づいて、電磁比例弁54~59の目標電流Itを演算し、電磁比例弁54~59に供給される制御電流を制御する。
 このように、上記実施形態で説明した制御装置の機能の一部を油圧ショベル701の外部に設置される外部設備790の制御装置に持たせるようにした場合であっても、上記実施形態と同様の作用効果を得ることができる。
 なお、本変形例4では、第1実施形態で説明した制御装置の機能の一部を外部設備790の制御装置に持たせる例について説明したが、第2実施形態で説明した制御装置、及び第3実施形態で説明した制御装置の機能の一部を外部設備790の制御装置に持たせるようにすることもできる。また、第3実施形態で説明した障害物検出部376を外部設備790の制御装置に持たせる場合において、周囲監視装置352を油圧ショベル1の外部に設置し、油圧ショベル1を外部から撮影した画像データを通信装置780によって外部設備790の制御装置(障害物検出部)に送信するように構成することもできる。
 <変形例5> 
 上記実施形態では、ブーム8、アーム9及びバケット10の姿勢に関する情報を取得するためのセンサとして、ブーム8、アーム9及びバケット10の角度を検出する角度センサを用いる例について説明したが、本発明はこれに限定されない。ブーム8、アーム9及びバケット10の姿勢に関する情報を取得するためのセンサとして、ブームシリンダ5、アームシリンダ6及びバケットシリンダ7のストローク量を検出するストロークセンサを用いてもよい。
 <変形例6> 
 上記実施形態では、電気レバー方式の操作装置45,46,47を備える油圧ショベルを例として説明したが、油圧パイロットレバー方式の操作装置を備える油圧ショベルに本発明を適用してもよい。この場合、操作装置で生成される指令パイロット圧を電磁比例弁によって制御する構成とすることにより、アクチュエータ及び被駆動部材の動作を制限することができる。
 <変形例7> 
 上記実施形態で説明した制御装置の機能は、それらの一部または全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現してもよい。
 <変形例8> 
 第1、第3実施形態では、上部旋回体12、ブーム8及びアーム9の複合動作を例に説明し、第2実施形態では、ブーム8及びアーム9の複合動作を例に説明したが、本発明はこれらに限定されない。例えば、上部旋回体12と下部走行体11の複合動作、下部走行体11と作業装置1Aの複合動作に本発明を適用してもよい。また、下部走行体11の右側のクローラベルト19を駆動させる走行油圧モータ3aと、左側のクローラベルト19を駆動させる走行油圧モータ3bの複合動作に本発明を適用してもよい。
 <変形例9> 
 減速係数テーブルTcs(図9B参照)は、旋回停止角度θL0,θR0で減速係数Csが0となるように設定されている例について説明したが、制御の応答遅れ等を考慮して、旋回停止角度θL0,θR0の手前で減速係数Csが0となるように減速係数テーブルTcsを設定してもよい。同様に、減速係数テーブルTcb(図14B参照)は、起立停止角度αu0で減速係数Cbが0となるように設定されている例について説明したが、制御の応答遅れ等を考慮して、起立停止角度αu0の手前で減速係数Cbが0となるように減速係数テーブルTcbを設定してもよい。
 <変形例10> 
 第1実施形態では、上部旋回体12が旋回範囲Asから超えないように上部旋回体12の動作が制限され、第2実施形態では、ブーム8が回動範囲Abから超えないようにブーム8の動作が制限される例について説明した。つまり、第1、第2実施形態では、被駆動部材が設定された動作範囲から超えないように構成されていたが、油圧ショベル1の周囲に任意の形状で進入禁止領域を設け、設けられた進入禁止領域に進入しないように被駆動部材の動作を制限するようにしてもよい。
 <変形例11> 
 上記実施形態では、作業機械がクローラ式の油圧ショベルである場合を例に説明したが、本発明はこれに限定されない。ホイール式の油圧ショベル、ホイールローダ、クローラクレーン等、複数のアクチュエータによって複数の被駆動部材を駆動する種々の作業機械に本発明を適用することができる。
 <変形例12> 
 上記実施形態では、オペレータが油圧ショベルに搭乗して操作する例について説明したが、本発明はこれに限定されない。運転室17にオペレータが搭乗せず、油圧ショベル1の外部に設置される遠隔操作装置によって油圧ショベル1の各部を遠隔操作できるように制御システムを構成してもよい。
 <変形例13> 
 第3実施形態では、要求減速速度Vreqを求めるときに、予め設定された旋回減速加速度as(定数)を用いたが、作業装置1Aの姿勢による慣性の影響を考慮して、旋回減速加速度asを可変できる構成としてもよい。
 <変形例14> 
 上記実施形態では、アクチュエータとして、油圧モータ、油圧シリンダ等の油圧機器を備える例に説明したが、アクチュエータとして、電動モータ、電動シリンダ等の電動機器を備える作業機械に本発明を適用してもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
1,701…油圧ショベル(作業機械)、1A…作業装置、1B…機体、3a…走行油圧モータ(アクチュエータ)、3b…走行油圧モータ(アクチュエータ)、4…旋回油圧モータ(アクチュエータ)、5…ブームシリンダ(アクチュエータ)、6…アームシリンダ(アクチュエータ)、7…バケットシリンダ(アクチュエータ)、8…ブーム(被駆動部材)、9…アーム(被駆動部材)、10…バケット(被駆動部材)、11…下部走行体(被駆動部材)、12…上部旋回体(被駆動部材)、19…クローラベルト(被駆動部材)、43…可動範囲設定装置、50…姿勢検出装置、170,270,370,670,770A,770B…制御装置、107,207,307,607,707…制御システム、352…周囲監視装置、Cb,Cs…減速係数、Vat…目標速度、Vatc…指令速度(目標補正速度)

Claims (6)

  1.  複数のアクチュエータ、及び前記アクチュエータによって駆動される複数の被駆動部材を有する作業機械と、前記作業機械を制御する制御装置と、を備える作業機械の制御システムにおいて、
     前記制御装置は、
     前記複数の被駆動部材が駆動されているときに、予め定められた制限条件が成立した場合、前記被駆動部材の所定位置の移動方向を保持した状態で前記複数の被駆動部材の動作が制限されるように、前記複数のアクチュエータを制御する、
     ことを特徴とする作業機械の制御システム。
  2.  請求項1に記載の作業機械の制御システムにおいて、
     前記制御装置は、
     前記複数の被駆動部材の目標速度を演算し、
     前記制限条件が成立していない場合、前記被駆動部材が前記目標速度で動作するように前記アクチュエータを制御し、
     前記複数の被駆動部材が駆動されているときに前記制限条件が成立した場合、前記被駆動部材の所定位置の移動方向を保持した状態で前記複数の被駆動部材の動作速度が制限されるように前記目標速度を補正し、前記複数の被駆動部材が前記補正した目標速度で動作するように前記アクチュエータを制御する、
     ことを特徴とする作業機械の制御システム。
  3.  請求項2に記載の作業機械の制御システムにおいて、
     前記制御装置は、
     前記制限条件が成立した場合、減速係数を演算し、
     駆動されている前記複数の被駆動部材の目標速度に前記減速係数を乗じることにより、前記被駆動部材の目標速度を補正する、
     ことを特徴とする作業機械の制御システム。
  4.  請求項1に記載の作業機械の制御システムにおいて、
     前記制限条件は、前記被駆動部材が予め設定された通常可動範囲を超えた場合に成立する、
     ことを特徴とする作業機械の制御システム。
  5.  請求項1に記載の作業機械の制御システムにおいて、
     前記制限条件は、前記作業機械の周囲に存在する障害物の位置から決定される所定位置を超えて、前記被駆動部材が障害物に近づいた場合に成立する、
     ことを特徴とする作業機械の制御システム。
  6.  請求項1に記載の作業機械の制御システムにおいて、
     前記制限条件は、前記複数の被駆動部材ごとに設定され、
     前記制御装置は、複数の前記制限条件が成立した場合、それらの制限条件の成立により課される制限のうちで最も厳しいものに合わせて、前記複数の被駆動部材の動作を制限する、
     ことを特徴とする作業機械の制御システム。
PCT/JP2020/014237 2020-03-27 2020-03-27 作業機械の制御システム WO2021192277A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014237 WO2021192277A1 (ja) 2020-03-27 2020-03-27 作業機械の制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014237 WO2021192277A1 (ja) 2020-03-27 2020-03-27 作業機械の制御システム

Publications (1)

Publication Number Publication Date
WO2021192277A1 true WO2021192277A1 (ja) 2021-09-30

Family

ID=77889974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014237 WO2021192277A1 (ja) 2020-03-27 2020-03-27 作業機械の制御システム

Country Status (1)

Country Link
WO (1) WO2021192277A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144349A (ja) * 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd 建設機械の安全装置
JP2015131371A (ja) * 2014-01-14 2015-07-23 日立建機株式会社 双腕作業機
JP2016176289A (ja) * 2015-03-20 2016-10-06 住友建機株式会社 建設機械
JP2019157409A (ja) * 2018-03-08 2019-09-19 大成建設株式会社 作業車両用旋回制御システム及び作業車両用警報制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144349A (ja) * 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd 建設機械の安全装置
JP2015131371A (ja) * 2014-01-14 2015-07-23 日立建機株式会社 双腕作業機
JP2016176289A (ja) * 2015-03-20 2016-10-06 住友建機株式会社 建設機械
JP2019157409A (ja) * 2018-03-08 2019-09-19 大成建設株式会社 作業車両用旋回制御システム及び作業車両用警報制御システム

Similar Documents

Publication Publication Date Title
US20210262190A1 (en) Shovel and control device for shovel
KR102029828B1 (ko) 작업 기계
CN111032969B (zh) 作业机械
KR102459283B1 (ko) 작업 기계
US11987957B2 (en) Shovel
CN109689978B (zh) 作业机械
US20210262191A1 (en) Shovel and controller for shovel
KR20200135391A (ko) 쇼벨
WO2021065384A1 (ja) 作業機械
CN112601864B (zh) 作业机械
WO2021192277A1 (ja) 作業機械の制御システム
US20220341124A1 (en) Shovel and remote operation support apparatus
JPWO2020095935A1 (ja) ショベル
WO2022085556A1 (ja) 作業機械
WO2021186517A1 (ja) 作業機械
EP3913146B1 (en) Work machine with collision mitigation system
CN114402111B (zh) 侵入监视控制系统以及作业机械
JP7161561B2 (ja) 作業機械
WO2021065952A1 (ja) 作業機械
JP2022067532A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP