WO2021184993A1 - 一种波分复用器和硅光集成芯片 - Google Patents

一种波分复用器和硅光集成芯片 Download PDF

Info

Publication number
WO2021184993A1
WO2021184993A1 PCT/CN2021/075297 CN2021075297W WO2021184993A1 WO 2021184993 A1 WO2021184993 A1 WO 2021184993A1 CN 2021075297 W CN2021075297 W CN 2021075297W WO 2021184993 A1 WO2021184993 A1 WO 2021184993A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
waveguide
wavelength division
division multiplexer
output
Prior art date
Application number
PCT/CN2021/075297
Other languages
English (en)
French (fr)
Inventor
郭德汾
李显尧
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2021184993A1 publication Critical patent/WO2021184993A1/zh
Priority to US17/891,818 priority Critical patent/US20220390678A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29397Polarisation insensitivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • G02B6/29355Cascade arrangement of interferometers

Definitions

  • This application relates to the field of optical communication technology, and in particular to a wavelength division multiplexer and a silicon-optical integrated chip.
  • Wavelength division multiplexing technology is an effective means to increase the capacity of optical communications.
  • the key components are the wavelength division multiplexing device (MUX) and the wavelength division multiplexing device (DEMUX).
  • the main structure of the planar waveguide type wavelength division multiplexer includes arrayed waveguide grating, etched diffraction grating and cascaded Mach-Zehnder interferometer (MZI).
  • the wavelength division multiplexer of the cascaded Mach-Zehnder interferometer structure in silicon optics includes three Mach-Zehnder interferometers 10' Composed in parallel and cascade, a single Mach-Zehnder interferometer 10' includes two 2 ⁇ 2 3dB couplers 11' and two connecting arms 12', a monitoring detector 13', and one of the connecting arms is adjustable phase Move the arm (indicated by the dashed line in the figure).
  • the existing cascaded Mach-Zehnder interferometer structure wavelength division multiplexer In use, it is necessary to combine the monitoring detector 13' to adjust the adjustable phase shift arms of each cascaded Mach-Zehnder interferometer 10', which is inconvenient for the adjustment process and consumes a lot of power.
  • the optical bandwidth of the 3dB coupler 11' is limited.
  • the wavelength division multiplexer of multiple cascaded Mach-Zehnder interferometers 10' has multiple 3dB couplers 11' in the optical path, which significantly reduces the wavelength division multiplexer performance.
  • the purpose of this application is to provide a wavelength division multiplexer and silicon-optical integrated chip, which reduces the number of phase shift arms and has the advantages of low power consumption, large optical bandwidth, easy adjustment, and good stability.
  • this application provides a wavelength division multiplexer, which includes at least two polarization control structures and at least one polarization-independent Mach-Zehnder interferometer provided on a silicon substrate;
  • a single polarization control structure includes two input ports and one output port;
  • a single Mach-Zehnder interferometer includes two input ports and an optical signal output port, and the optical signal output port is used to output a multiplexed optical signal;
  • the output port of the polarization control structure is connected to the input port of the Mach-Zehnder interferometer;
  • the single polarization control structure receives two paths of polarized light in the incident ray polarized light, and synthesizes a sub-multiplexed optical signal output with two linear polarization states perpendicular to each other, and is output by one input port of the Mach-Zehnder interferometer Input; the at least one polarization-independent Mach-Zehnder interferometer receives the sub-multiplexed optical signals output by the at least two polarization control structures, and combines them into a multiplexed optical signal output with two linear polarization states that are perpendicular to each other.
  • the wavelength division multiplexer includes n polarization control structures and n-1 polarization-independent Mach-Zehnder interferometers, where n is an integer greater than or equal to 2.
  • the polarization control structure is an integrated polarization rotation-combiner.
  • the integrated polarization rotation-combiner includes a through waveguide and a cross waveguide, a through port and a cross port respectively connecting the through waveguide and the cross waveguide, and a mode conversion structure connecting the through waveguide
  • the through-waveguide and the cross-waveguide constitute a mode multiplexing structure; the through-port and the cross-port both include a wedge-shaped structure of a strip waveguide to a ridge waveguide; the mode conversion structure is a double-layer wedge-shaped mode conversion structure.
  • the polarization control structure includes a polarization rotator and a polarization beam combiner.
  • the polarization beam combiner includes three identical mode conversion couplers, and a single mode conversion coupler includes a single-mode access waveguide and a multimode bus waveguide;
  • the first mode conversion coupler and the second mode conversion coupler of the three mode conversion couplers are arranged in parallel, and the multimode bus waveguide of the third mode conversion coupler is connected to the multimode bus waveguide of the first mode conversion coupler,
  • the single-mode access waveguide is connected to the output end of the single-mode access waveguide of the second mode conversion coupler.
  • a single Mach-Zehnder interferometer includes a 2 ⁇ 2 input 3dB coupler, two phase shift arms, and a 2 ⁇ 2 output 3dB coupler connected in sequence; the two phase shifts At least one of the arms is an adjustable phase shift arm;
  • the input 3dB coupler and the output 3dB coupler are both polarization-independent couplers, and polarization rotators are both provided on the phase shift arms.
  • the Mach-Zehnder interferometer further includes a monitoring detector, and the monitoring detector is optically connected to an output port of the output 3dB coupler.
  • This application also provides a silicon-optical integrated chip, including the wavelength division multiplexer described in any of the above embodiments.
  • the silicon optical integrated chip further includes an optical modulator; after multiple incident optical signals are modulated by the optical modulator, a multiplexed optical signal is output; The input port of the polarization control structure of the wavelength division multiplexer is input, and a multiplexed optical signal is output after the polarization control structure and the Mach-Zehnder interferometer.
  • the polarization control structure with designable bandwidth is adopted to increase the optical bandwidth of the wavelength division multiplexer and reduce the optical loss; reduce the number of phase shift arms that need to be adjusted and feedback, and reduce the overall power consumption of the device; and the production tolerance of the polarization control structure is large , Good stability, can effectively improve the reliability and yield of the wavelength division multiplexer.
  • Figure 1 is a schematic diagram of the current MZI type wavelength division multiplexer structure in silicon optics
  • FIG. 2 is a schematic diagram of the structure of a wavelength division multiplexer according to Embodiment 1 of the application;
  • Fig. 3 is a schematic diagram of the structure of the integrated silicon-based polarization rotation-beam combiner (PSR) in embodiment 1;
  • PSR polarization rotation-beam combiner
  • Figure 4 is a schematic diagram of the structure of a polarization-independent 2 ⁇ 2 input 3dB coupler
  • Figure 5 is a schematic diagram of the structure of a polarization-independent 2 ⁇ 2 output 3dB coupler
  • Figure 6 is a schematic diagram of the structure of a polarization rotator (PR);
  • FIG. 7 is a schematic structural diagram of a wavelength division multiplexer according to Embodiment 2 of the application.
  • FIG 8 is a schematic diagram of the structure of a polarization beam combiner (PBC);
  • FIG. 9 is a schematic diagram of an extended structure of the wavelength division multiplexer of this application.
  • FIG. 10 is a schematic diagram of another extended structure of the wavelength division multiplexer of this application.
  • FIG. 11 is a schematic diagram of a silicon optical integrated chip according to Embodiment 3 of the application.
  • relative position in space are for the purpose of facilitating explanation to describe a unit or feature as shown in the drawings relative to The relationship of another unit or feature.
  • the terms of relative spatial position may be intended to include different orientations of the device in use or operation other than those shown in the figures. For example, if the device in the figure is turned over, the units described as being “below” or “beneath” other units or features will be “above” the other units or features. Therefore, the exemplary term “below” can encompass both the above and below orientations.
  • the device can be oriented in other ways (rotated by 90 degrees or other orientations), and the space-related descriptors used herein are explained accordingly.
  • an element or layer When an element or layer is referred to as being “on” or “connected” to another component or layer, it can be directly on, connected to, or connected to the other component or layer, or There may be intermediate elements or layers.
  • the wavelength division multiplexer of the present application includes a silicon-based substrate, a buried oxygen layer, a waveguide layer, and an upper cladding layer. As shown in FIG. 2, at least two polarization control structures 200 and at least one polarization control structure 200 are provided on the silicon-based substrate. Unrelated Mach-Zehnder interferometer 100. Wherein, a single polarization control structure 200 includes two input ports and one output port, and a single Mach-Zehnder interferometer 100 includes two input ports and an optical signal output port, and the optical signal output port is used to output a multiplexed optical signal; The output port of the control structure 200 is connected to the input port of the Mach-Zehnder interferometer.
  • a single polarization control structure 200 receives two paths of polarized light in the incident ray polarized light, synthesizes a sub-multiplexed optical signal output with two linear polarization states perpendicular to each other, and is input from an input port of the Mach-Zehnder interferometer 100.
  • the at least one polarization-independent Mach-Zehnder interferometer 100 receives the sub-multiplexed optical signals output by the at least two polarization control structures 200, and combines them into a multiplexed optical signal output with two linear polarization states perpendicular to each other.
  • the wavelength division multiplexer adopts a polarization control structure with designable bandwidth, which increases the optical bandwidth of the wavelength division multiplexer and reduces optical loss; reduces the number of phase shift arms that need to be adjusted for feedback, and reduces the overall power consumption of the device; and polarization
  • the control structure has large manufacturing tolerance and good stability, which can effectively improve the reliability and yield of the wavelength division multiplexer.
  • a four-wavelength wavelength division multiplexer is taken as an example, which includes two parallel polarization control structures 200 and a Mach-Zehnder interferometer 100.
  • a single polarization control structure 200 adopts an integrated polarization rotation-beam combiner (PSR, polarization splitter-rotator), as shown in FIG. 3, the integrated polarization rotation-combiner 210 includes a through waveguide 211 and a cross waveguide 212, a through port 213 and a cross port 214 respectively connecting the through waveguide 211 and the cross waveguide 212, and a connection Straight through the mode conversion structure 215 of the waveguide 211.
  • PSR integrated polarization rotation-beam combiner
  • the through waveguide 211 and the cross waveguide 212 constitute a mode multiplexing structure
  • the through port 213 and the cross port 214 each include a wedge-shaped structure of a strip waveguide to a ridge waveguide, which is an input port of the polarization control structure.
  • the mode conversion structure 215 is a double-layer wedge-shaped mode conversion structure, which serves as an output port of the polarization control structure to output multiplexed optical signals.
  • the polarization-independent Mach-Zehnder interferometer 100 includes a 2 ⁇ 2 input 3dB coupler 110, two phase shift arms 130, and a 2 ⁇ 2 output 3dB coupler 120 connected in sequence, and two phase shifts. At least one of the arms 130 is an adjustable phase shift arm, as shown by the dashed line in FIG. 2 as an adjustable phase shift arm.
  • the input 3dB coupler 110 and the output 3dB coupler 120 are both polarization independent (polarization Independent, PI) 3dB coupler, namely "PI 0.5", is also provided with a polarization rotator 140 on the phase shift arm 130.
  • the two ports of the input end of the input 3dB coupler 110 are used as the input port of the Mach-Zehnder interferometer 100, and one of the two ports of the output end of the output 3dB coupler 120 is used as the optical signal output port of the Mach-Zehnder interferometer 100 to output multiplexing.
  • the other port is optically connected to a monitoring detector (MPD) 150 for feedback of the tuning status of the adjustable phase shift arm.
  • MPD monitoring detector
  • the polarization rotator (PR) 140 includes a ridge waveguide 141 and a part of the planar waveguide 142 on the side of the ridge waveguide 141.
  • the ridge waveguide 141 includes a first wedge-shaped structure 141a, a linear structure 141b, and a second wedge-shaped structure 141c that are sequentially connected.
  • the structure 141b is connected, and the width of the second wedge-shaped structure 141c gradually widens along the optical path direction until it is connected to the optical waveguide of the phase shift arm.
  • the height of part of the planar waveguide 142 is lower than the height of the ridge waveguide 141, and includes a third wedge structure 142a and a fourth wedge structure 142b located on the same side of the ridge waveguide 141 and connected to each other.
  • the third wedge structure 142a is adjacent to the side surface of the first wedge structure 141a
  • the fourth wedge structure 142b is adjacent to the side surface of the linear structure 141b
  • the tip of the third wedge structure 142a is close to the side surface of the wider end of the first wedge structure 141a
  • the tip of 142b is adjacent to the narrower end of the second wedge structure 141c.
  • Linearly polarized light is incident from the wider end of the first wedge-shaped structure 141a of the ridge waveguide 141.
  • the light mode is distributed to the ridge waveguide 141 and the planar waveguide 142 to rotate its polarization state.
  • the polarization direction has been rotated by 90 degrees, and is coupled into the optical waveguide of the phase shift arm through the second wedge structure 141c.
  • the polarization rotation-beam combiner (PSR) shown in Figure 3 can also be used as the polarization rotator.
  • Linearly polarized light is incident from the cross port, coupled to the through waveguide through the cross waveguide, and finally output through the mode conversion structure. Linearly polarized light rotated 90 degrees.
  • the modes are all TE0 linearly polarized optical signals of ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4.
  • Port 214 is input and enters the through waveguide 211 and the cross waveguide 212 respectively.
  • the ⁇ 1 optical signal mode in the through waveguide 211 remains unchanged, and the TE0 mode ⁇ 1 optical signal is still output through the mode conversion structure 215;
  • the ⁇ 3 optical signal in the cross waveguide 212 is coupled to the through waveguide 211, and the optical signal in the through waveguide 211 is combined.
  • ⁇ 3 optical signal mode is converted to TE1, converted to TM0 mode by mode conversion structure 215, and combined with the ⁇ 1 optical signal of TE0 mode in the original through waveguide 211 into a beam of ⁇ 1 and ⁇ 3 multiplexed light including TE0+TM0 mode Signal.
  • ⁇ 2 and ⁇ 4 are respectively input from the through port 213 and cross port 214 of another integrated polarization rotation-recombiner (PSR) 210, enter the through waveguide 211 and the cross waveguide 212 respectively, and finally output one channel by the mode conversion structure 215 Contains the sub-multiplexed optical signal of ⁇ 2 in the TE0 mode and ⁇ 4 in the TM0 mode.
  • PSR integrated polarization rotation-recombiner
  • the two submultiplexed optical signals ⁇ 1(TE0)+ ⁇ 3(TM0) and ⁇ 2(TE0)+ ⁇ 4(TM0) are respectively input from the polarization-independent 2 ⁇ 2 input of the Mach-Zehnder interferometer 100 and the two 3dB couplers 110 Input port input, the two phase shift arms 130 respectively transmit 1/2 of the optical power ⁇ 1(TE0) / ⁇ 2(TE0)/ ⁇ 3(TM0) / ⁇ 4(TM0) through the polarization rotator 140 in the phase shift arm 130 After rotating the polarization direction of each wavelength light by 90°, the polarization state of each wavelength light becomes ⁇ 1(TM0)/ ⁇ 2(TM0) / ⁇ 3(TE0)/ ⁇ 4(TE0).
  • the phase difference between the TE mode and the TM mode in the two phase shift arms 130 is controlled, so that the optical signals in the two phase shift arms 130 Both are output from the same port of the polarization-independent output 3dB coupler 120, and the monitoring detector 150 at the other port detects an optical power approaching zero, that is, the 2 ⁇ 2 output of the Mach-Zehnder interferometer 100 is 3dB
  • One port of the coupler 120 outputs a multiplexed optical signal ⁇ 1(TM0)/ ⁇ 2(TM0)/ ⁇ 3(TE0)/ ⁇ 4(TE0).
  • the optical power of the other output port of the output 3dB coupler 120 can be monitored by the monitoring detector 150 until the optical power of the output port is zero or approaches zero, or the minimum value. If the phase of the output light is changed by the environment or other factors, and the output light cannot be completely synthesized and output with another light, the monitoring detector will detect the increase of the light power and feed it back to the controller, and the controller can adjust the output light. Adjust the phase of the phase shift arm until the optical power detected by the monitoring detector approaches zero or the minimum value again.
  • the four-wavelength wavelength division multiplexer adopts two passive polarization control structures with designable bandwidth, which reduces the bandwidth limitation of the 3dB coupler, increases the optical bandwidth of the wavelength division multiplexer, and reduces optical loss.
  • four-wavelength wavelength division multiplexing can be realized by adjusting only one phase shift arm. There are fewer phase shift arms that need to be adjusted for feedback, which reduces the overall power consumption of the device; and the polarization control structure has a large manufacturing tolerance and stability Good performance, which can effectively improve the reliability and yield of the wavelength division multiplexer.
  • the single polarization control structure 200 in this embodiment includes a polarization rotator (PR) 220 and a polarization combiner (Polarization rotator, PR) 220. Beam Combiner, PBC) 230.
  • the polarization rotator 220 adopts the structure shown in FIG. 6, which is similar to the polarization rotator structure in the first embodiment, and includes a ridge waveguide and a part of the planar waveguide on one side of the ridge waveguide, which will not be repeated here.
  • the polarization rotation-beam combiner (PSR) shown in Figure 3 can also be used as the polarization rotator.
  • Linearly polarized light is incident from the cross port, coupled to the through waveguide through the cross waveguide, and finally output through the mode conversion structure. Linearly polarized light rotated 90 degrees.
  • the polarization beam combiner 230 includes three identical mode conversion couplers 231, 232, and 233, and a single mode conversion coupler includes a single-mode access waveguide and a multimode bus waveguide.
  • the first mode conversion coupler 231 and the second mode conversion coupler 232 are arranged in parallel and are located at the input end of the polarization beam combiner.
  • the single-mode access waveguides 231a and 232a of the two mode conversion couplers 232 and 232 are respectively connected to the polarization rotator.
  • the output port and the input port of the wavelength division multiplexer are respectively connected to the polarization rotator.
  • the third mode conversion coupler 233 cascades the above two mode conversion couplers 231 and 232, and the multimode bus waveguide 233b of the third mode conversion coupler 233 is connected to the output end of the multimode bus waveguide 231b of the first mode conversion coupler 231 ,
  • the single-mode access waveguide 233a is connected to the output end of the single-mode access waveguide 232a of the second mode conversion coupler 232.
  • the modes are all TE linearly polarized ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 four-wavelength optical signals
  • ⁇ 1 and ⁇ 3 are separated from the two polarization control structures 200.
  • ⁇ 1 is directly incident on the polarization beam combiner 230
  • ⁇ 3 is rotated 90 degrees by the polarization rotator 220, and then the linearly polarized light in the TM mode is incident on the polarization beam combiner 230.
  • the TE mode ⁇ 1 and the TM mode ⁇ 3 is combined by the polarization beam combiner 230 into a sub-multiplexed optical signal ⁇ 1(TE)/ ⁇ 3(TM) and output.
  • ⁇ 2 and ⁇ 4 are respectively input from the two input ports of another polarization control structure 200, ⁇ 2 is directly incident on the polarization beam combiner 230, and ⁇ 4 is rotated 90 degrees by the polarization rotator 220 to become linearly polarized light in TM mode.
  • the two submultiplexed optical signals ⁇ 1(TE0)+ ⁇ 3(TM0) and ⁇ 2(TE0)+ ⁇ 4(TM0) are respectively input from the polarization-independent 2 ⁇ 2 input of the Mach-Zehnder interferometer 100 and the two 3dB couplers 110 Input port input, the two phase shift arms 130 respectively transmit 1/2 of the optical power ⁇ 1(TE0) / ⁇ 2(TE0)/ ⁇ 3(TM0) / ⁇ 4(TM0) through the polarization rotator 140 in the phase shift arm 130 After rotating the polarization direction of each wavelength light by 90°, the polarization state of each wavelength light becomes ⁇ 1(TM0)/ ⁇ 2(TM0) / ⁇ 3(TE0)/ ⁇ 4(TE0).
  • the phase difference between the TE mode and the TM mode in the two phase shift arms 130 is controlled so that the optical signals in the two phase shift arms are both From the same port output of the polarization-independent output 3dB coupler 120, the monitoring detector 150 of the other port detects the optical power approaching zero or the minimum value, that is, the 2 ⁇ 2 power of the Mach-Zehnder interferometer 110
  • One port of the output 3dB coupler 120 outputs a multiplexed optical signal ⁇ 1(TM0)/ ⁇ 2(TM0)/ ⁇ 3(TE0)/ ⁇ 4(TE0).
  • a polarization beam combiner composed of three mode conversion couplers and a polarization rotator are used to polarize and combine two incident optical signals with the same linear polarization state, thereby reducing crosstalk.
  • the mode conversion coupler since the mode conversion coupler has the characteristics of low loss and large bandwidth, the optical loss is further reduced and the optical bandwidth of the device is improved.
  • the wavelength division multiplexer can also be used for other multi-wavelength wavelength division multiplexing.
  • this embodiment provides a silicon-optical integrated chip, which includes an optical modulator 300 and the wavelength division multiplexer of any of the foregoing embodiments. After the multiple incident optical signals are modulated by the optical modulator 300, the multiple modulated optical signals are output. The multiplexed optical signal is input through each input port of the wavelength division multiplexer, and is combined by the polarization control structure 200 and the Mach-Zehnder interferometer 100 and then outputs a combined optical signal.
  • the silicon-optical integrated chip integrates the wavelength division multiplexer of any of the foregoing embodiments for wavelength division multiplexing, which can effectively reduce device power consumption, increase optical bandwidth, and improve product reliability and yield.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种波分复用器和硅光集成芯片。波分复用器包括设于硅基上的至少两个偏振控制结构(200)和至少一个偏振无关的马赫-曾德尔干涉仪(100)。单个偏振控制结构(200)包括两个输入端口和一个输出端口,单个马赫-曾德尔干涉仪(100)包括两个输入端口和一个用于输出合波光信号的输出端口。偏振控制结构(200)的输出端口连接马赫-曾德尔干涉仪(100)的输入端口。采用可设计带宽的偏振控制结构(200),提高波分复用器的光学带宽降低光学损耗,减少需要调节反馈的相移臂的数量,降低了器件的整体功耗,偏振控制结构(200)的制作容差大、稳定性好,可有效提高波分复用器的可靠性和良率。

Description

一种波分复用器和硅光集成芯片 技术领域
本申请涉及光通信技术领域,尤其涉及一种波分复用器和硅光集成芯片。
背景技术
波分复用技术是增加光通信容量的有效手段,关键器件是波分复用器件(MUX)和波分解复用器件(DEMUX)。平面波导型波分复用器的主要结构有阵列波导光栅、刻蚀衍射光栅和级联马赫-曾德尔干涉仪(MZI)等。
硅光芯片是实现光互连的关键器件,能够有效降低光通信中模块的成本。如图1所示,目前,硅光中的级联马赫-曾德尔干涉仪结构的波分复用器,以四通道的波分复用为例,包括3个马赫-曾德尔干涉仪10’并联和级联组成,单个马赫-曾德尔干涉仪10’包括两个2×2的3dB耦合器11’和两个连接臂12’、一个监视探测器13’,其中一个连接臂为可调相移臂(图中以虚线表示)。
技术问题
现有级联马赫-曾德尔干涉仪结构波分复用器。使用时需要结合监视探测器13’对级联的各个马赫-曾德尔干涉仪10’的可调相移臂进行调节,调节过程不方便,功耗较大。3dB耦合器11’的光学带宽有限,多个级联的马赫-曾德尔干涉仪10’的波分复用器的光路中具有多个3dB耦合器11’,明显降低了波分复用器的性能。
技术解决方案
本申请的目的在于提供一种波分复用器及硅光集成芯片,减少了相移臂的数量,具有功耗较低、光学带宽较大、易于调节和稳定性好等优点。
为了实现上述目的之一,本申请提供了一种波分复用器,包括设于硅基上的至少两个偏振控制结构和至少一个偏振无关的马赫-曾德尔干涉仪;
单个所述偏振控制结构包括两个输入端口和一个输出端口;单个所述马赫-曾德尔干涉仪包括两个输入端口和一个光信号输出端口,所述光信号输出端口用于输出合波光信号;所述偏振控制结构的输出端口连接所述马赫-曾德尔干涉仪的输入端口;
单个所述偏振控制结构接收入射线偏振光中的两路线偏振光,合成一路具有相互垂直的两个线偏振态的次合波光信号输出,并由所述马赫-曾德尔干涉仪的一个输入端口输入;所述至少一个偏振无关的马赫-曾德尔干涉仪接收所述至少两个偏振控制结构输出的次合波光信号,合为一路具有相互垂直的两个线偏振态的合波光信号输出。
作为实施方式的进一步改进,所述波分复用器包括n个偏振控制结构和n-1个偏振无关的马赫-曾德尔干涉仪,其中n为大于或等于2的整数。
作为实施方式的进一步改进,所述偏振控制结构为一集成的偏振旋转-合束器。
作为实施方式的进一步改进,所述集成的偏振旋转-合束器包括直通波导和交叉波导、分别连接所述直通波导和交叉波导的直通端口和交叉端口,以及连接所述直通波导的模式变换结构;所述直通波导与所述交叉波导组成模式复用结构;所述直通端口和交叉端口均包括条波导转脊波导的楔形结构;所述模式变换结构为双层楔形的模式变换结构。
作为实施方式的进一步改进,所述偏振控制结构包括一偏振旋转器和一偏振合束器。
作为实施方式的进一步改进,所述偏振合束器包括三个相同的模式转换耦合器组成,单个模式转换耦合器包括一个单模接入波导和一个多模总线波导;
所述三个模式转换耦合器中的第一模式转换耦合器和第二模式转换耦合器并列设置,第三模式转换耦合器的多模总线波导连接第一模式转换耦合器的多模总线波导,单模接入波导连接第二模式转换耦合器的单模接入波导的输出端。
作为实施方式的进一步改进,单个所述马赫-曾德尔干涉仪包括依次连接的2×2的输入3dB耦合器、两个相移臂和2×2的输出3dB耦合器;所述两个相移臂的其中至少一个为可调相移臂;
所述输入3dB耦合器和输出3dB耦合器均为偏振无关的耦合器,所述相移臂上均设有偏振旋转器。
作为实施方式的进一步改进,所述马赫-曾德尔干涉仪还包括监视探测器,所述监视探测器光连接所述输出3dB耦合器的一个输出端口。
本申请还提供了一种硅光集成芯片,包括上述任一实施例所述的波分复用器。
作为实施方式的进一步改进,所述硅光集成芯片还包括光调制器;多路入射光信号经所述光调制器调制之后,输出多路调制光信号;所述多路调制光信号分别经所述波分复用器的偏振控制结构的输入端口输入,经所述偏振控制结构和马赫-曾德尔干涉仪之后输出一路合波光信号。
有益效果
采用可设计带宽的偏振控制结构,提高波分复用器的光学带宽、降低光学损耗;减少需要调节反馈的相移臂数量,降低了器件的整体功耗;而且偏振控制结构的制作容差大、稳定性好,可有效提高波分复用器的可靠性和良率。
附图说明
图1为目前硅光中的MZI型波分复用器结构示意图;
图2为本申请实施例1的波分复用器结构示意图;
图3为实施例1中集成的硅基偏振旋转-合束器(PSR)结构示意图;
图4为偏振无关的2×2的输入3dB耦合器结构示意图;
图5为偏振无关的2×2的输出3dB耦合器结构示意图;
图6为偏振旋转器(PR)结构示意图;
图7为本申请实施例2的波分复用器结构示意图;
图8为偏振合束器(PBC)结构示意图;
图9为本申请波分复用器的一种扩展结构示意图;
图10为本申请波分复用器的另一种扩展结构示意图;
图11为本申请实施例3的硅光集成芯片示意图。
本发明的实施方式
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
在本申请的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本申请的主题的基本结构。
另外,本文使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。当元件或层被称为在另一部件或层“上”、与另一部件或层“连接”时,其可以直接在该另一部件或层上、连接到该另一部件或层,或者可以存在中间元件或层。
实施例1
本申请的波分复用器包括硅基衬底、埋氧层、波导层和上包层,如图2所示,在硅基衬底上设有至少两个偏振控制结构200和至少一个偏振无关的马赫-曾德尔干涉仪100。其中,单个偏振控制结构200包括两个输入端口和一个输出端口,单个马赫-曾德尔干涉仪100包括两个输入端口和一个光信号输出端口,该光信号输出端口用于输出合波光信号;偏振控制结构200的输出端口连接马赫-曾德尔干涉仪的输入端口。单个偏振控制结构200接收入射线偏振光中的两路线偏振光,合成一路具有相互垂直的两个线偏振态的次合波光信号输出,并由马赫-曾德尔干涉仪100的一个输入端口输入。上述至少一个偏振无关的马赫-曾德尔干涉仪100接收上述至少两个偏振控制结构200输出的次合波光信号,合为一路具有相互垂直的两个线偏振态的合波光信号输出。该波分复用器采用可设计带宽的偏振控制结构,提高了波分复用器的光学带宽、降低光学损耗;减少需要调节反馈的相移臂数量,降低了器件的整体功耗;而且偏振控制结构的制作容差大、稳定性好,可有效提高波分复用器的可靠性和良率。
如图2-6所示,以四波长的波分复用器为例,包括两个并列的偏振控制结构200和一个马赫-曾德尔干涉仪100。该实施例中,单个偏振控制结构200采用的是集成的偏振旋转-合束器(PSR,polarization splitter-rotator),如图3所示,该集成的偏振旋转-合束器210包括直通波导211和交叉波导212、分别连接直通波导211和交叉波导212的直通端口213和交叉端口214,以及连接直通波导211的模式变换结构215。这里,直通波导211与交叉波导212组成模式复用结构,直通端口213和交叉端口214均包括条波导转脊波导的楔形结构,为偏振控制结构的输入端口。模式变换结构215为双层楔形的模式变换结构,作为偏振控制结构的输出端口,输出合波光信号。
该实施例中,偏振无关的马赫-曾德尔干涉仪100包括依次连接的2×2的输入3dB耦合器110、两个相移臂130和2×2的输出3dB耦合器120,两个相移臂130的其中至少一个为可调相移臂,如图2中虚线表示为可调相移臂。这里,输入3dB耦合器110和输出3dB耦合器120均为偏振无关(polarization independent,PI)的3dB耦合器,即“PI 0.5”,在相移臂130上也设有偏振旋转器140。输入3dB耦合器110输入端的两个端口作为马赫-曾德尔干涉仪100的输入端口,输出3dB耦合器120输出端的两个端口中一个作为马赫-曾德尔干涉仪100的光信号输出端口输出合波光束,另一个端口光连接一监视探测器(MPD)150,用于反馈可调相移臂的调谐情况。
如图6所示,偏振旋转器(PR)140包括一脊波导141和位于脊波导141一侧的部分平面波导142。其中,脊波导141包括依次连接的第一楔形结构141a、线性结构141b和第二楔形结构141c,第一楔形结构141a作为偏振旋转器140的输入端,其宽度沿光路方向逐渐变窄直至与线性结构141b连接,第二楔形结构141c的宽度沿光路方向逐渐变宽,直至与相移臂的光波导连接。部分平面波导142的高度低于脊波导141的高度,包括位于脊波导141同一侧且相互连接的第三楔形结构142a和第四楔形结构142b。第三楔形结构142a紧邻第一楔形结构141a的侧面,第四楔形结构142b紧邻线性结构141b的侧面,第三楔形结构142a的尖端紧贴第一楔形结构141a较宽一端的侧面,第四楔形结构142b的尖端临近第二楔形结构141c较窄一端。线偏振光从脊波导141的第一楔形结构141a较宽的一端入射,在第一楔形结构141a和线性结构141b段,光模式分布到脊波导141和平面波导142内,使其偏振态发生旋转,在入射到第二楔形结构141c时偏振方向已经旋转90度,通过第二楔形结构141c耦合到相移臂的光波导内。在其它实施例中,也可以采用图3所示的偏振旋转-合束器(PSR)作为偏振旋转器,线偏振光从交叉端口入射,经交叉波导耦合到直通波导,最后经模式变换结构输出旋转了90度的线偏振光。
工作时,模式均为TE0线偏振的λ1、λ2、λ3和λ4四个波长的光信号中,λ1和λ3分别从其中一个集成的偏振旋转-合束器(PSR)210的直通端口213和交叉端口214输入,分别进入直通波导211和交叉波导212。直通波导211内的λ1光信号模式不变,经模式变换结构215依然输出TE0模式的λ1光信号;交叉波导212内的λ3光信号耦合到直通波导211内,与直通波导211内的光信号进行模式复用,λ3光信号模式转成TE1,经模式变换结构215变换为TM0模式,与原直通波导211内的TE0模式的λ1光信号合成一束包括TE0+TM0模式的λ1和λ3次合波光信号。同样,λ2和λ4分别从另一个集成的偏振旋转-合束器(PSR)210的直通端口213和交叉端口214输入,分别进入到直通波导211和交叉波导212,最后由模式变换结构215输出一路包含TE0模式的λ2和TM0模式的λ4的次合波光信号。两路次合波光信号λ1(TE0)+λ3(TM0)和λ2(TE0)+λ4(TM0)分别从马赫-曾德尔干涉仪100的偏振无关的2×2的输入3dB耦合器110的两个输入端口输入,两个相移臂130中分别传输1/2光功率的λ1(TE0) /λ2(TE0)/λ3(TM0) /λ4(TM0),经过相移臂130中的偏振旋转器140将各波长光的偏振方向旋转90°之后,各波长光的偏振态变成λ1(TM0)/λ2(TM0) /λ3(TE0)/λ4(TE0)。通过调节可调相移臂,结合两个相移臂130上的偏振旋转器140,控制两个相移臂130中TE模式和TM模式的相位差,使得两个相移臂130中的光信号都从偏振无关的输出3dB耦合器120的同一个端口输出,另一个端口的监视探测器150探测到趋近于零的光功率,即由马赫-曾德尔干涉仪100的2×2的输出3dB耦合器120的一个端口输出合波光信号λ1(TM0)/λ2(TM0)/λ3(TE0)/λ4(TE0)。调节可调相移臂时,可通过监视探测器150监测输出3dB耦合器120另一输出端口的光功率,直到该输出端口的光功率为零或趋近于零,或最小值。输出光的相位如果受环境或其他因素影响而改变,导致输出光不能与另一路光完全合成输出时,监视探测器将检测到光功率增大,并反馈给控制器,通过控制器调节该可调相移臂的相位,直到监视探测器检测到的光功率重新趋近于零或最小值。
该四波长的波分复用器采用两个无源的可设计带宽的偏振控制结构,减少了3dB耦合器的带宽限制,提高了波分复用器的光学带宽、降低了光学损耗。工作过程中,只需要调节一个相移臂即可实现四波长的波分复用,需要调节反馈的相移臂少,降低了器件的整体功耗;而且偏振控制结构的制作容差大、稳定性好,可有效提高波分复用器的可靠性和良率。
实施例2
如图7和8所示的实施例,与实施例1不同的是,该实施例中的单个偏振控制结构200包括一个偏振旋转器(polarization rotator,PR)220和一个偏振合束器(Polarization Beam Combiner,PBC)230。该实施例中,偏振旋转器220采用如图6所示的结构,跟实施例1中的偏振旋转器结构类似,包括一脊波导和位于脊波导一侧的部分平面波导,这里不再赘述。在其它实施例中,也可以采用图3所示的偏振旋转-合束器(PSR)作为偏振旋转器,线偏振光从交叉端口入射,经交叉波导耦合到直通波导,最后经模式变换结构输出旋转了90度的线偏振光。
如图8所示,上述偏振合束器230包括三个相同的模式转换耦合器231、232、233组成,单个模式转换耦合器包括一个单模接入波导和一个多模总线波导。其中第一模式转换耦合器231和第二模式转换耦合器232并列,位于偏振合束器的输入端,两个模式转换耦合器232、232的单模接入波导231a、232a分别连接偏振旋转器的输出端口和波分复用器的输入端口。第三模式转换耦合器233级联上述两个模式转换耦合器231、232,第三模式转换耦合器233的多模总线波导233b连接第一模式转换耦合器231的多模总线波导231b的输出端,单模接入波导233a连接第二模式转换耦合器232的单模接入波导232a的输出端。
以四波长的波分复用器为例,工作时,模式均为TE线偏振的λ1、λ2、λ3和λ4四个波长的光信号中,λ1和λ3分别从其中一个偏振控制结构200的两个输入端口输入。其中,λ1直接入射到偏振合束器230上,λ3则经过偏振旋转器220旋转90度,变成TM模式的线偏振光再入射到偏振合束器230上,TE模式的λ1和TM模式的λ3经偏振合束器230合为次合波光信号λ1(TE)/ λ3(TM)输出。同样,λ2和λ4分别从另一个偏振控制结构200的两个输入端口输入,λ2直接入射到偏振合束器230上,λ4则经过偏振旋转器220旋转90度,变成TM模式的线偏振光再入射到偏振合束器230上,TE模式的λ2和TM模式的λ4经偏振合束器230合为次合波光信号λ2(TE)/ λ4(TM)输出。两路次合波光信号λ1(TE0)+λ3(TM0)和λ2(TE0)+λ4(TM0)分别从马赫-曾德尔干涉仪100的偏振无关的2×2的输入3dB耦合器110的两个输入端口输入,两个相移臂130中分别传输1/2光功率的λ1(TE0) /λ2(TE0)/λ3(TM0) /λ4(TM0),经过相移臂130中的偏振旋转器140将各波长光的偏振方向旋转90°之后,各波长光的偏振态变成λ1(TM0)/λ2(TM0) /λ3(TE0)/λ4(TE0)。通过调节可调相移臂,结合两个相移臂130上的偏振旋转器140,控制两个相移臂130中TE模式和TM模式的相位差,使得两个相移臂中的光信号都从偏振无关的输出3dB耦合器120的同一个端口输出,另一个端口的监视探测器150探测到趋近于零或最小值的光功率,即由马赫-曾德尔干涉仪110的2×2的输出3dB耦合器120的一个端口输出合波光信号λ1(TM0)/λ2(TM0)/λ3(TE0)/λ4(TE0)。
该实施例采用三个模式转换耦合器组成的偏振合束器结合偏振旋转器对两路具有相同线偏振态的入射光信号进行偏振合束,减小了串扰。而且由于模式转换耦合器具有低损耗大带宽的特性,进一步降低了光学损耗,提高了器件的光学带宽。
上述实施例1和2均以四波长的波分复用为例进行解释说明 ,在其它实施例中,该波分复用器也可以用于其它多波长的波分复用,根据复用的波长通道数量设置相应数量的偏振控制结构和马赫-曾德尔干涉仪的并联和级联即可。即该波分复用器包括n个偏振控制结构和n-1个偏振无关的马赫-曾德尔干涉仪,其中n为大于或等于2的整数,当n=2时即为上述4波长的波分复用器。如图9和10所示,分别为n=3和n=4时,扩展成6波长通道和8波长通道的波分复用器,当然还可以做更多的扩展。
实施例3
如图11所示,该实施例提供了一种硅光集成芯片,包括光调制器300和上述任一实施例的波分复用器。多路入射光信号经光调制器300调制之后,输出多路调制光信号。多路调制光信号分别经波分复用器的各个输入端口输入,经偏振控制结构200和马赫-曾德尔干涉仪100的合波之后输出一路合波光信号。该硅光集成芯片集成了上述任一实施例的波分复用器进行波分复用,可有效降低器件功耗,提升光学带宽,提高产品的可靠性和良率。
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种波分复用器,其特征在于:包括设于硅基上的至少两个偏振控制结构和至少一个偏振无关的马赫-曾德尔干涉仪;
    单个所述偏振控制结构包括两个输入端口和一个输出端口;单个所述马赫-曾德尔干涉仪包括两个输入端口和一个光信号输出端口,所述光信号输出端口用于输出合波光信号;所述偏振控制结构的输出端口连接所述马赫-曾德尔干涉仪的输入端口;
    单个所述偏振控制结构接收入射线偏振光中的两路线偏振光,合成一路具有相互垂直的两个线偏振态的次合波光信号输出,并由所述马赫-曾德尔干涉仪的一个输入端口输入;所述至少一个偏振无关的马赫-曾德尔干涉仪接收所述至少两个偏振控制结构输出的次合波光信号,合为一路具有相互垂直的两个线偏振态的合波光信号输出。
  2. 根据权利要求1所述的波分复用器,其特征在于:所述波分复用器包括n个偏振控制结构和n-1个偏振无关的马赫-曾德尔干涉仪,其中n为大于或等于2的整数。
  3. 根据权利要求1所述的波分复用器,其特征在于:所述偏振控制结构为一集成的偏振旋转-合束器。
  4. 根据权利要求3所述的波分复用器,其特征在于:所述集成的偏振旋转-合束器包括直通波导和交叉波导、分别连接所述直通波导和交叉波导的直通端口和交叉端口,以及连接所述直通波导的模式变换结构;所述直通波导与所述交叉波导组成模式复用结构;所述直通端口和交叉端口均包括条波导转脊波导的楔形结构;所述模式变换结构为双层楔形的模式变换结构。
  5. 根据权利要求1所述的波分复用器,其特征在于:所述偏振控制结构包括一偏振旋转器和一偏振合束器。
  6. 根据权利要求5所述的波分复用器,其特征在于:所述偏振合束器包括三个相同的模式转换耦合器组成,单个模式转换耦合器包括一个单模接入波导和一个多模总线波导;
    所述三个模式转换耦合器中的第一模式转换耦合器和第二模式转换耦合器并列设置,第三模式转换耦合器的多模总线波导连接第一模式转换耦合器的多模总线波导,单模接入波导连接第二模式转换耦合器的单模接入波导的输出端。
  7. 根据权利要求1-6任一项所述的波分复用器,其特征在于:单个所述马赫-曾德尔干涉仪包括依次连接的2×2的输入3dB耦合器、两个相移臂和2×2的输出3dB耦合器;所述两个相移臂的其中至少一个为可调相移臂;
    所述输入3dB耦合器和输出3dB耦合器均为偏振无关的耦合器,所述相移臂上均设有偏振旋转器。
  8. 根据权利要求7所述的波分复用器,其特征在于:所述马赫-曾德尔干涉仪还包括监视探测器,所述监视探测器光连接所述输出3dB耦合器的一个输出端口。
  9. 一种硅光集成芯片,其特征在于:包括如权利要求1-8任一项所述的波分复用器。
  10. 根据权利要求9所述的硅光集成芯片,其特征在于:所述硅光集成芯片还包括光调制器;多路入射光信号经所述光调制器调制之后,输出多路调制光信号;所述多路调制光信号分别经所述波分复用器的偏振控制结构的输入端口输入,经所述偏振控制结构和马赫-曾德尔干涉仪之后输出一路合波光信号。
PCT/CN2021/075297 2020-03-17 2021-02-04 一种波分复用器和硅光集成芯片 WO2021184993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/891,818 US20220390678A1 (en) 2020-03-17 2022-08-19 Wavelength division multiplexer and silicon photonic integrated chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010184838.6 2020-03-17
CN202010184838.6A CN113406747B (zh) 2020-03-17 2020-03-17 一种波分复用器和硅光集成芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/891,818 Continuation US20220390678A1 (en) 2020-03-17 2022-08-19 Wavelength division multiplexer and silicon photonic integrated chip

Publications (1)

Publication Number Publication Date
WO2021184993A1 true WO2021184993A1 (zh) 2021-09-23

Family

ID=77676931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075297 WO2021184993A1 (zh) 2020-03-17 2021-02-04 一种波分复用器和硅光集成芯片

Country Status (3)

Country Link
US (1) US20220390678A1 (zh)
CN (1) CN113406747B (zh)
WO (1) WO2021184993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546063B1 (en) 2022-02-23 2023-01-03 King Fahd University Of Petroleum And Minerals Laser light source and optical network system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337842B (zh) * 2021-11-26 2024-03-29 军事科学院系统工程研究院网络信息研究所 偏振可编程多功能微波光子信号处理方法
CN116594116A (zh) * 2022-02-07 2023-08-15 苏州湃矽科技有限公司 片上集成波分复用器及芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048443A1 (en) * 2000-08-22 2002-04-25 Nippon Telegraph And Telephone Corporation Optical waveguide and fabricating method thereof, and optical waveguide circuit
GB2394375A (en) * 2002-10-19 2004-04-21 Bookham Technology Plc Integrated optical monitor with polarisation scrambling
CN105408786A (zh) * 2013-06-27 2016-03-16 株式会社藤仓 高阶偏振波转换元件、光波导元件以及dp-qpsk调制器
CN108227084A (zh) * 2018-01-16 2018-06-29 上海理工大学 一种基于氮化硅波导的偏振无关集成光开关及其制作方法
US20190007157A1 (en) * 2017-06-29 2019-01-03 Cisco Technology, Inc. Polarization-based wavelength multiplexer
CN109946790A (zh) * 2017-12-20 2019-06-28 中兴光电子技术有限公司 一种光偏振调制器及光偏振调制的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660982B2 (ja) * 1986-12-11 1994-08-10 日本電信電話株式会社 導波形マツハ・ツエンダ光干渉計
JPH05323243A (ja) * 1992-05-22 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> 偏波制御器
CN100575885C (zh) * 2008-07-25 2009-12-30 北京交通大学 马赫-曾德光纤干涉仪偏振衰落和相位衰落控制系统
CN110601768B (zh) * 2019-10-18 2024-07-16 中国电子科技集团公司电子科学研究院 集成波导解码装置和量子密钥分发系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048443A1 (en) * 2000-08-22 2002-04-25 Nippon Telegraph And Telephone Corporation Optical waveguide and fabricating method thereof, and optical waveguide circuit
GB2394375A (en) * 2002-10-19 2004-04-21 Bookham Technology Plc Integrated optical monitor with polarisation scrambling
CN105408786A (zh) * 2013-06-27 2016-03-16 株式会社藤仓 高阶偏振波转换元件、光波导元件以及dp-qpsk调制器
US20190007157A1 (en) * 2017-06-29 2019-01-03 Cisco Technology, Inc. Polarization-based wavelength multiplexer
CN109946790A (zh) * 2017-12-20 2019-06-28 中兴光电子技术有限公司 一种光偏振调制器及光偏振调制的方法
CN108227084A (zh) * 2018-01-16 2018-06-29 上海理工大学 一种基于氮化硅波导的偏振无关集成光开关及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546063B1 (en) 2022-02-23 2023-01-03 King Fahd University Of Petroleum And Minerals Laser light source and optical network system
US12057888B2 (en) 2022-02-23 2024-08-06 King Fahd University Of Petroleum And Minerals Laser light system with wavelength attenuation

Also Published As

Publication number Publication date
CN113406747A (zh) 2021-09-17
CN113406747B (zh) 2022-06-21
US20220390678A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021184993A1 (zh) 一种波分复用器和硅光集成芯片
US6816637B2 (en) Magneto-optical switching backplane for processor interconnection
WO2016134323A1 (en) Integrated polarization splitter and rotator
US11048052B2 (en) Polarization splitter and rotator
WO2021259027A1 (zh) 硅基可调滤波器、激光器及光模块
WO2012086846A1 (ja) 光導波路デバイス及び光導波路デバイスの製造方法
EP0963072A2 (en) Wavelength-division-multiplexing progammable add/drop using interleave-chirped waveguide grating router
WO2022170829A1 (zh) 光子集成芯片及光发射组件和光收发模块
CN102033335B (zh) 集成光学多功能调制器及其制造方法
WO2024060818A1 (zh) 多通道有源光缆光子集成芯片及有源光缆
TWI838821B (zh) 片上集成波分複用器及晶片
US20210041644A1 (en) Architecture of an integrated optics device
CN113985521B (zh) 硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片
CN104918145A (zh) 单片集成式多波长偏振复用/解复用器
CN110850524A (zh) 一种实现片上多波长复用的系统
CN111399118A (zh) 一种基于薄膜铌酸锂波导的集成型偏振分束器
CN108833016B (zh) 一种单片集成的波分复用单纤双向数据传输模块
CN211928232U (zh) 硅基波分复用器及硅光集成芯片
CN110779440B (zh) 一种基于马赫泽德干涉仪结构的偏振不敏感光开关
GB2602757A (en) High-density integrated optical waveguide
CN102841406B (zh) 一种光学交错滤波设备
WO2019203307A1 (ja) 波長選択光スイッチ
CN104422989A (zh) 光组件、光隔离器组件和光发射系统
CN117118519B (zh) 一种光学输入输出芯片及分布式计算系统
JP7248931B2 (ja) ノード装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772004

Country of ref document: EP

Kind code of ref document: A1