WO2021184859A1 - 工具头位姿的调整方法、装置及可读存储介质 - Google Patents

工具头位姿的调整方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2021184859A1
WO2021184859A1 PCT/CN2020/136749 CN2020136749W WO2021184859A1 WO 2021184859 A1 WO2021184859 A1 WO 2021184859A1 CN 2020136749 W CN2020136749 W CN 2020136749W WO 2021184859 A1 WO2021184859 A1 WO 2021184859A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool head
laser
pose
normal vector
adjusting
Prior art date
Application number
PCT/CN2020/136749
Other languages
English (en)
French (fr)
Inventor
巫超
李爱镇
Original Assignee
智美康民(珠海)健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智美康民(珠海)健康科技有限公司 filed Critical 智美康民(珠海)健康科技有限公司
Priority to EP20925967.0A priority Critical patent/EP4116042A4/en
Priority to JP2022557115A priority patent/JP7415036B2/ja
Priority to KR1020227035574A priority patent/KR20220154189A/ko
Priority to CA3174424A priority patent/CA3174424A1/en
Publication of WO2021184859A1 publication Critical patent/WO2021184859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37275Laser, interferometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40613Camera, laser scanner on end effector, hand eye manipulator, local
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40623Track position of end effector by laser beam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45122Laser skin treatment

Definitions

  • the invention relates to the technical field of robots, and in particular to a method, a device and a readable storage medium for adjusting the pose of a tool head.
  • Personal care robot as a kind of robot, includes a tool head with care functions (massage, moxibustion, makeup, beauty, etc.) installed at the end of the robotic arm.
  • the tool head is in direct contact with the human body being treated or maintains a specific distance and Posture to perform nursing homework.
  • the solutions to determine the pose (position and posture) of nursing robots at work mainly include machine vision solutions, contact multi-axis force sensor solutions, and radar (ultrasonic or laser, etc.) sensors.
  • the above solutions are all unsatisfactory.
  • the robot of the machine vision solution is expensive, the robot vision solution requires special light source illumination, the scanning time and coordinate generation time are long, the real-time performance is poor, and the large size of the camera is not conducive to integration in the tool head.
  • the robot of the contact multi-axis force sensor solution is expensive, only suitable for the scene where the tool head is in contact with the human body, and is not forward-looking for the tool head position guidance;
  • the robot of the radar solution is expensive and accurate Poor, large blind area, easy to be interfered, and long-term radar wave radiation has potential risks to human health. Therefore, how to provide a tool head pose determination solution with low price, high accuracy, strong real-time performance and accurate pose determination becomes a problem to be solved.
  • the main purpose of the present invention is to provide a tool head pose determination solution with low price, high precision, strong real-time performance and accurate pose determination.
  • the present invention provides a method for adjusting the pose of a tool head.
  • the method for adjusting the pose of the tool head includes:
  • the step of calculating the integrated plane normal vector of the plane determined by the coordinates of each laser point includes:
  • a weighted average algorithm is used to calculate the weighted average of each of the plane normal vectors, and the weighted average is used as the integrated plane normal vector.
  • the pose expression includes Euler angle, quaternion or rotation matrix expression.
  • the number of the laser distance sensors is three, and the laser beams of the laser distance sensors are parallel to each other.
  • the step of calculating the laser point coordinates of each laser point on the part to be detected based on the distance value, the initial coordinates and the laser direction includes:
  • the unit vectors of the laser directions are respectively Ra (r x1 , ry1 , r z1 ), R b (r x2 , ry2 , r z2 ), and R c (r x3 , ry3 , r z3 ),
  • the coordinates of the tool head coordinate system where each laser distance sensor is located are P a (x 1 , y 1 , z 1 ), P b (x 2 , y 2 , z 2 ), P c (x 3 , y 3 , z 3 ), each of the distance values is d 1 , d 2 , d 3 , and the coordinates of each of the laser points are U a , U b , U c. , then
  • the step of calculating the pose parameters of the to-be-adjusted pose of the tool head of the robot based on the preset pose expression, the distance value and the integrated plane normal vector includes:
  • M( ⁇ , ⁇ , ⁇ )*[0, 0, 1] T V norm T.
  • M( ⁇ , ⁇ , ⁇ ) is the rotation matrix in the Euler angle rotation formula
  • V norm represents the normal vector of the integrated plane with a modulus of 1
  • ⁇ , ⁇ , and ⁇ represent the Euler angles respectively;
  • the pose parameter is obtained based on the preset formula, the distance value, and the Euler angle rotation formula.
  • the step of obtaining the pose parameter based on the preset formula, the distance value, and the Euler angle rotation formula includes:
  • the pose parameters of the tool head to be adjusted are x 0 , y 0 , z 0 , R x , R y , and R z .
  • the preset algorithm includes an average algorithm and a weighted average algorithm.
  • the present invention also provides a device for adjusting the pose of the tool head.
  • the device for adjusting the pose of the tool head includes: a memory, a processor, and a A program for adjusting the position of the tool head is executed by the processor to implement the steps of the method for adjusting the position of the tool head as described above.
  • the present invention also provides a readable storage medium, the readable storage medium stores a tool head pose adjustment program, which is implemented when the tool head pose adjustment program is executed by a processor The steps of the method for adjusting the pose of the tool head as described above.
  • the invention provides a method for adjusting the position of a tool head and a device readable storage medium, which can accurately determine the position of the robot tool head, thereby improving the working efficiency of the robot;
  • the laser distance sensor of the invention has low cost, small size and accuracy High, it can be well integrated on the tool head of the robot, which is conducive to the determination of the position of the tool head, the position of the laser distancer can be adjusted in real time, and the invention can adapt to the scene where the tool head is in contact with the human body or keep the human body A certain distance scene.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for adjusting the pose of a tool head according to the present invention
  • Figure 2 is a schematic diagram of a moxibustion instrument robot performing acupuncture on the site to be tested;
  • Fig. 3 is a schematic diagram of three laser distance sensors on the tool head in the first embodiment.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for adjusting the pose of a tool head according to the present invention.
  • the execution body of the method for adjusting the position of the tool head is a system for adjusting the position of the tool head.
  • the system for adjusting the position of the tool head includes a device for adjusting the position of the tool head.
  • the device can be a robotic device, for example, a moxibustion device, a massage device, etc., of course, it can also be a terminal device such as a PC and a handheld computer.
  • the present invention detects the distance value of the laser point through the laser distance sensor, and each laser point can construct at least one plane, thereby determining each plane corresponding to the part to be detected, calculating the comprehensive normal vector of each plane, and calculating the robot tool using the pose expression
  • a moxibustion instrument is taken as an example for description.
  • the adjustment method of the tool head pose includes the following steps:
  • Step S10 controlling the laser point of the laser distance sensor to irradiate the part to be detected so that each of the laser points is not in a straight line, wherein the number of the laser distance sensor is greater than two;
  • Figure 2 is a schematic diagram of a moxibustion machine robot performing acupuncture on a part to be detected.
  • the part to be detected includes the patient's body part to be acupuncture.
  • the laser distance sensor can be installed on the acupuncture machine robot.
  • On the tool head for example, three or more laser distance sensors 2 are installed on the surface of the robot tool head with a fixed linkage relationship. Of course, it can also be installed in other positions of the robot, and the manipulator 1 is used to adjust the position of the tool head.
  • the part to be detected enters the range of the distance from the laser distance sensor 2
  • the laser beam of each laser distance sensor 2 hits the part to be detected to form a laser spot on the part to be detected.
  • the number of the laser distance sensor 2 is greater than or equal to 3 , Since each laser spot must be able to construct a plane, the laser spot cannot be on the same straight line. Preferably, it is avoided that the laser beams of the laser distance sensor 2 converge at one point. The laser beams are parallel to each other and never intersect. This can simplify the algorithm when calculating the laser point coordinates, thereby improving the data processing efficiency and speeding up the tool head pose. The adjustment efficiency.
  • Step S20 Obtain the distance value measured by each of the laser distance sensors, the initial coordinates of each of the laser distance sensors, and the laser direction of each of the laser distance sensors, where the distance value is between the laser distance sensor and the corresponding The distance of the laser spot;
  • the laser distance sensor 2 can measure the distance to the laser point, set the tool head coordinate system, and obtain the initial coordinates of the laser distance sensor 2 in the tool head coordinate system and the laser direction of the laser distance sensor 2.
  • the laser direction of the sensor 2 can be represented by a unit vector.
  • Step S30 Calculate the laser point coordinates of each laser point on the part to be detected based on the distance value, the initial coordinates and the laser direction, and calculate the integrated plane normal vector of the plane determined by the laser point coordinates, Wherein, the integrated plane normal vector is obtained from the plane normal vector of the plane determined by the laser point coordinates;
  • Figure 3 is a schematic diagram of three laser distance sensors 2 on the tool head. If the number of laser distance sensors 2 is three, the integrated plane normal vector is the plane where the three laser points are located. Plane normal vector, where the plane normal vector can be calculated by vector cross multiplication; if the laser distance sensor 2 is greater than 3, then the integrated normal vector can use the normal vector obtained by the weighted average algorithm or other algorithms, for example, if each The laser points can construct four planes, and the normal vectors of the four planes are calculated by vector cross multiplication respectively, and then the weighted average of the four normal vectors is calculated by the weighted average algorithm to obtain the integrated normal vector.
  • the laser beams of each laser distance sensor 2 are parallel to each other, and the unit vectors of each laser direction are respectively Ra (r x1 , ry1 , r z1 ), R b (r x2 , ry2 , r z2 ), R c (r x3 , ry3 , r z3 ), the coordinates of the tool head coordinate system where each laser distance sensor is located are P a (x 1 , y 1 , z 1 ), P b ( x 2 , y 2 , z 2 ), P c (x 3 , y 3 , z 3 ), each distance value is d 1 , d 2 , d 3 , and the coordinates of each laser point are U a , U b , U c . , Then
  • each laser point Ua U ax , U ay , U az
  • U b U bx , U by , U bz
  • Uc U cx , U cy , U cz
  • Step S40 Calculate the pose parameters of the tool head of the robot to be adjusted based on the preset pose expression, the distance value and the integrated plane normal vector, and control the robot based on the pose parameters Adjust the tool head to the position to be adjusted.
  • the preset pose expressions include expressions such as Euler angles, quaternions, or rotation matrices. According to the integrated plane normal vector and the distance value, the pose expressions are used to obtain the robot's pose to be adjusted. Pose parameters.
  • the following uses the Euler angle rotation formula to calculate the pose parameters of the robot to be adjusted.
  • the obtained integrated plane normal vector is V(v x , v y , v z ), and v z > 0, where, if v z ⁇ 0, the integrated plane normal vector is multiplied by -1, where is In order to calculate the unit normal vector of the plane integrated normal vector, so as to determine the direction of the integrated normal vector;
  • the Euler angle rotation formula is:
  • M( ⁇ , ⁇ , ⁇ )*[0, 0, 1] T V norm T.
  • M( ⁇ , ⁇ , ⁇ ) is the rotation matrix in the Euler angle rotation formula, where ⁇ , ⁇ , and ⁇ represent the Euler angles respectively, and V norm represents the normal vector of the integrated plane with a modulus of 1, ⁇ , ⁇ and ⁇ represent Euler angles respectively.
  • the parameters are x 0 , y 0 , z 0 , R x , R y , R z , where the preset algorithm includes an average algorithm and a weighted average algorithm, for example, the average algorithm is used to calculate d 1 , d 2 , d 3 The average value of, get d aver .
  • the position and posture of the tool head are adjusted according to the position and posture parameters to be adjusted, so that the robot can accurately treat the detected parts for acupuncture care.
  • This embodiment proposes a method for adjusting the position of the tool head.
  • the laser point of the laser distance sensor is controlled to irradiate the part to be detected so that the laser points are not on a straight line, wherein the number of the laser distance sensors is greater than 2.
  • the embodiment of the present invention also provides a readable storage medium.
  • the readable storage medium of the present invention stores a tool head pose adjustment program, and when the tool head pose adjustment program is executed by a processor, the following steps are implemented:
  • the step of calculating the integrated plane normal vector of the plane determined by the coordinates of each laser point includes:
  • a weighted average algorithm is used to calculate the weighted average of each of the plane normal vectors, and the weighted average is used as the integrated plane normal vector.
  • the pose expression includes Euler angle, quaternion or rotation matrix expression.
  • the number of the laser distance sensors is three, and the laser beams of the laser distance sensors are parallel to each other.
  • the step of calculating the laser point coordinates of each laser point on the part to be detected based on the distance value, the initial coordinates and the laser direction includes:
  • the unit vectors of the laser directions are respectively Ra (r x1 , ry1 , r z1 ), R b (r x2 , ry2 , r z2 ), and R c (r x3 , ry3 , r z3 ),
  • the coordinates of the tool head coordinate system where each laser distance sensor is located are P a (x 1 , y 1 , z 1 ), P b (x 2 , y 2 , z 2 ), P c (x 3 , y 3 , z 3 ), each of the distance values is d 1 , d 2 , d 3 , and the coordinates of each of the laser points are U a , U b , U c. , then
  • P a , P b , and P c are the coordinates of the laser distance sensors Ua (U ax , U ay , U az ), U b (U bx , U by , U bz ), Uc(U cx , U cy , U cz ).
  • the step of calculating the pose parameters of the to-be-adjusted pose of the tool head of the robot based on the preset pose expression, the distance value and the integrated plane normal vector includes:
  • the obtained integrated plane normal vector is V(v x , v y , v z ), and it is agreed that v z >0, where, if v z ⁇ 0, the integrated plane normal vector is multiplied by -1;
  • the pose parameters are obtained based on the preset formula, the distance value, and the Euler angle rotation formula, where V norm represents the integrated plane normal vector with a modulus of 1, and ⁇ , ⁇ , and ⁇ represent Euler respectively Horn.
  • the step of obtaining the pose parameters based on the preset formula, the distance value and the Euler angle rotation formula includes:
  • the pose parameters of the tool head to be adjusted are x 0 , y 0 , z 0 , R x , R y , and R z .
  • the preset algorithm includes an average algorithm and a weighted average algorithm.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , Magnetic disks, optical disks), including several instructions to make a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种工具头位姿的调整方法、装置及可读存储介质,通过激光距离传感器(2)检测到激光点的距离值,各激光点能构建至少一平面,从而确定待检测部位对应的各平面,并计算各平面的综合法向量,利用位姿表达式计算机器人工具头的位姿参数,从而调整工具头的位姿。所述工具头位姿的调整方法、装置能够准确确定工具头待调整位姿的位姿参数,进而提高了艾灸仪的作业效率,并且,激光距离传感器成本低,机器人作业时,精度高、实时性强,能够适应工具头与人体接触式场景或保持人体一定距离的场景。

Description

工具头位姿的调整方法、装置及可读存储介质 技术领域
本发明涉及机器人技术领域,尤其涉及一种工具头位姿的调整方法、装置及可读存储介质。
背景技术
随着机器人技术的发展,机器人的性能和安全性有了长足的提升,人机协作机器人的出现,更是标志着人和机器人协同工作成为切实可行的事情。近十年现代工业飞速发展,机器人的普及应用也使得机器人的成本在近两年迅速靠近消费者可负担的水平。个人护理机器人作为机器人的一种,包括安装在机械手臂末端带有护理功能(按摩,艾灸,化妆,美容等)的工具头,该工具头与被护理的人体直接接触或者保持特定的距离和姿势来进行护理作业。
目前,确定护理机器人工作时位姿(位置和姿态)的解决方案主要有机器视觉方案、接触式多轴力传感器方案、雷达(超声波或者激光等)传感器。上述解决方案都有不尽人意的地方,例如,机器视觉方案的机器人价格昂贵,机器人视觉方案需要特殊光源照射,扫描时间和坐标生成时间长,实时性差,摄像头的体积大不利于集成在工具头,并且暴露了客户的隐私部位;接触式多轴力传感器方案的机器人价格昂贵,只适用于工具头与人体接触式场景,对工具头位姿指导没有前瞻性;雷达方案的机器人价格昂贵、精度差、盲区大、容易受干扰,且长时间雷达波的放射对人体健康有潜在风险。所以,如何提供一种价格低廉、精度高、实时性强及位姿确定准确的工具头位姿确定方案成为待解决的问题。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于提供一种价格低廉、精度高、实时性强及位姿确定准确的工具头位姿确定方案。
为实现上述目的,本发明提供一种工具头位姿的调整方法,所述工具头位姿的调整方法包括:
控制激光距离传感器的激光点照射到待检测部位上,使得各所述激光点不在一条直线上,其中,所述激光距离传感器的数量大于2个;
获取各所述激光距离传感器测量的距离值、各所述激光距离传感器的初始坐标及各所述激光距离传感器的激光方向,其中,所述距离值为所述激光距离传感器与对应的所述激光点的距离;
基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标,计算各所述激光点坐标所确定的平面的综合平面法向量,其中,所述综合平面法向量由所述激光点坐标确定的平面的平面法向量求得;
基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数,并基于所述位姿参数控制所述机器人的工具头调整至所述待调整位姿。
可选地,若所述激光距离传感器的数量大于3个,所述计算各所述激光点坐标所确定的平面的综合平面法向量的步骤包括:
计算所述激光点坐标所确定的对应平面的平面法向量;
利用加权平均算法计算各所述平面法向量的加权平均值,将所述加权平均值作为所述综合平面法向量。
可选地,所述位姿表达式包括欧拉角、四元数或者旋转矩阵表达式。
可选地,所述激光距离传感器的数量为3个,各所述激光距离传感器的激光束互相平行。
可选地,所述基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标的步骤包括:
设各所述激光方向的单位向量分别为R a(r x1,r y1,r z1)、R b(r x2,r y2,r z2)、R c(r x3,r y3,r z3),各所述激光距离传感器所在工具头坐标系的坐标为P a(x 1,y 1,z 1)、P b(x 2,y 2,z 2)、P c(x 3,y 3,z 3),各所述距离值为d 1、d 2、d 3,各所述激光点的坐标为U a、U b、U c.,则
U a.x=x 1+r x1*d 1,U a.y=y 1+r y1*d 1,U a.z=z 1+r z1*d 1
U b.x=x 2+r x2*d 2,U b.y=y 2+r y2*d 2,U b.z=z 2+r z2*d 2
U c.x=x 3+r x3*d 3,U c.y=y 3+r y3*d 3,U c.z=z 3+r z3*d 3
即求得各所述激光点的坐标Ua(U a.x,U a.y,U a.z)、U b(U b.x,U by,U b.z)、Uc(U c.x,U c.y,U c.z)。
可选地,所述基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数的步骤包括:
设求得的所述综合平面法向量为V(v x,v y,v z),约定v z>0,其中,若v z<0,则所述综合平面法向量乘以-1;
预设公式M(α,β,γ)*[0,0,1] T=V norm T。,其中M(α,β,γ)为欧拉角旋转公式中的旋转矩阵,V norm表示模为1的所述综合平面法向量,α、β、γ分别表示欧拉角;
基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数。
可选地,所述基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数的步骤包括:
令r x=0,基于所述预设公式及所述欧拉角旋转公式联立方程组求出r y、r z,其中,r x、r y、r z分别为欧拉角α、β、γ;
基于所述距离值利用预设算法计算综合距离值,设为d aver
将所述工具头坐标系的原点在z方向加上d aver,使得所述原点设置在所述待检测部位;
获取所述原点设置在所述待检测部位时,所述原点相对于机械手基座的基座坐标系的位姿参数,设为x 0、y 0、z 0、r x0、r y0、r z0
设所述工具头的待调整位姿的欧拉角参数为R x、R y、R z,则
R x=r x0,R y=r y0+r y,R z=r z0+r z,则
所述工具头的待调整位姿的位姿参数为x 0、y 0、z 0、R x、R y、R z
可选地,所述预设算法包括平均值算法及加权平均算法。
此外,为实现上述目的,本发明还提供一种工具头位姿的调整装置,所述工具头位姿的调整装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的工具头位姿的调整程序,所述工具头位姿的调整程序被所述处理器执行时实现如上所述的工具头位姿的调整方法的步骤。
此外,为实现上述目的,本发明还提供一种可读存储介质,所述可读存储介质上存储有工具头位姿的调整程序,所述工具头位姿的调整程序被处理器执行时实现如上所述的工具头位姿的调整方法的步骤。
本发明提供一种工具头位姿的调整方法、装置可读存储介质,能够准确确定机器人工具头的位姿,从而提高了机器人的作业效率;本发明的激光距离传感器成本低、体积小、精度高,能够很好的集成在机器人的工具头上,从而有利于工具头位姿的确定,能够实时对激光距离器的位置进行调整,并且本发明能够适应工具头与人体接触式场景或保持人体一定距离的场景。
附图说明
图1为本发明工具头位姿的调整方法第一实施例的流程示意图;
图2为艾灸仪机器人在待检测部位进行针灸的示意图;
图3为第一实施例中3个激光距离传感器在工具头上的示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本发明进一步提供一种工具头位姿的调整方法。参照图1,图1为本发明工具头位姿的调整方法第一实施例的流程示意图。
在本实施例中,该工具头位姿的调整方法的执行主体为工具头位姿的调整系统,该工具头位姿的调整系统包括工具头位姿的调整装置,该工具头位姿的调整装置可以是机器人设备,例如,艾灸仪、按摩仪等,当然,也可以是PC、掌上电脑等终端设备。本发明通过激光距离传感器检测到激光点的距离值,各激光点能构建至少一平面,从而确定待检测部位对应的各平面,并计算各平面的综合法向量,利用位姿表达式计算机器人工具头的位姿参数,从而调整工具头的位姿;本发明能够准确确定工具头待调整位姿的位姿参数。本实施例以艾灸仪为例进行说明。该工具头位姿的调整方法包括以下步骤:
步骤S10,控制激光距离传感器的激光点照射到待检测部位上,使得各所述激光点不在一条直线上,其中,所述激光距离传感器的数量大于2个;
在本实施例中,参照图2,图2为艾灸仪机器人在待检测部位进行针灸的示意图,该待检测部位包括患者待针灸的身体部位,该激光距离传感可以安装在针灸仪机器人的工具头上,例如,在机器人工具头具有固定联动关系的面上安装三个或三个以上的激光距离传感器2。当然,也可以安装在机器人的其它位置上,机械手1用于调整工具头的位姿。在待检测部位进入距离激光距离传感器2的量程范围时,各激光距离传感器2的激光束射到待检测部上,在待检测部位形成激光点,该激光距离传感器2的数量大于或等于3个,由于各激光点必须能够构建平面,所以,该激光点不能在同一直线上。优选地,避免该激光距离传感器2的激光束汇集于一点,该激光束互相平行,永远没有相交点,这样能够在计算激光点坐标时简化算法,从而提高数据处理效率,进而加快工具头位姿的调整效率。
步骤S20,获取各所述激光距离传感器测量的距离值、各所述激光距离传感器的初始坐标及各所述激光距离传感器的激光方向,其中,所述距离值为所述激光距离传感器与对应的所述激光点的距离;
在本实施例中,激光距离传感器2可以测量到激光点的距离,设定工具头坐标系,获取激光距离传感器2在工具头坐标系的初始坐标及激光距离传感器2的激光方向,该激光距离传感器2的激光方向可以用单位向量表示。
步骤S30,基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标,计算各所述激光点坐标所确定的平面的综合平面法向量,其中,所述综合平面法向量由所述激光点坐标确定的平面的平面法向量求得;
在本实施例中,参照图3,图3为3个激光距离传感器2在工具头上的示意图,若该激光距离传感器2为3个,则该综合平面法向量为三个激光点所在平面的平面法向量,其中,可以通过向量叉乘法计算得到该平面法向量;若该激光距离传感器2大于3个,则该综合法向量可以利用加权平均算法或者其他算法得到的法向量,例如,若各激光点能够构建四个平面,则分别通过向量叉乘法计算四个平面的法向量,然后通过加权平均算法计算四个法向量的加权平均值,从而得到综合法向量。
其中,若该激光距离传感器2数量为3个,各激光距离传感器2的激光束互相平行,设各激光方向的单位向量分别为R a(r x1,r y1,r z1)、R b(r x2,r y2,r z2)、R c(r x3,r y3,r z3),各激光距离传感器所在工具头坐标系的坐标为P a(x 1,y 1,z 1)、P b(x 2,y 2,z 2)、P c(x 3,y 3,z 3),各距离值为d 1、d 2、d 3,各激光点的坐标为U a、U b、U c.,则
U a.x=x 1+r x1*d 1,U a.y=y 1+r y1*d 1,U a.z=z 1+r z1*d 1
U b.x=x 2+r x2*d 2,U b.y=y 2+r y2*d 2,U b.z=z 2+r z2*d 2
U c.x=x 3+r x3*d 3,U c.y=y 3+r y3*d 3,U c.z=z 3+r z3*d 3
即求得各激光点的坐标Ua(U a.x,U a.y,U a.z)、U b(U b.x,U by,U b.z)、Uc(U c.x,U c.y,U c.z),通过向量叉乘法可以计算三个激光点的平面法向量。
步骤S40,基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数,并基于所述位姿参数控制所述机器人的工具头调整至所述待调整位姿。
在本实施例中,该预设的位姿表达式包括欧拉角、四元数或者旋转矩阵等表达式,根据综合平面法向量及距离值利用位姿表达式求得机器人待调整位姿的位姿参数。
以下利用欧拉角旋转公式计算机器人待调整位姿的位姿参数。
设求得的综合平面法向量为V(v x,v y,v z),约定v z>0,其中,若v z<0,则综合平面法向量乘以-1,其中,该处是为了计算平面综合法向量的单位法向量,从而确定该综合法向量的方向;
欧拉角旋转公式为:
Figure PCTCN2020136749-appb-000001
预设公式M(α,β,γ)*[0,0,1] T=V norm T。,其中M(α,β,γ)为欧拉角旋转公式中的旋转矩阵,其中,α、β、γ分别表示欧拉角,V norm表示模为1的所述综合平面法向量,α、β、γ分别表示欧拉角。
令r x=0,基于所述预设公式及所述欧拉角旋转公式联立方程组求出r y、r z,其中,r x、r y、r z分别为欧拉角α、β、γ,基于距离值利用预设算法计算综合距离值,设为d aver,将工具头坐标系的原点在z方向加上d aver,使得该原点设置在待检测部位,然后获取该原点设置在该待检测部位时,该原点相对于机械 手基座的基座坐标系的位姿参数,设为x 0、y 0、z 0、r x0、r y0、r z0,设工具头的待调整位姿的欧拉角参数为R x、R y、R z,则R x=r x0,R y=r y0+r y,R z=r z0+r z,则工具头的待调整位姿的位姿参数为x 0、y 0、z 0、R x、R y、R z,其中,该预设算法包括平均值算法及加权平均算法,例如,利用平均值算法计算d 1、d 2、d 3的平均值,得到d aver
根据待调整位姿的位姿参数调整工具头的位姿,从而机器人能够准确对待检测部位进行针灸护理。
本实施例提出逇工具头位姿的调整方法,通过控制激光距离传感器的激光点照射到待检测部位上,使得各所述激光点不在一条直线上,其中,所述激光距离传感器的数量大于2个,获取各所述激光距离传感器测量的距离值、各所述激光距离传感器的初始坐标及各所述激光距离传感器的激光方向,其中,所述距离值为所述激光距离传感器与对应的所述激光点的距离;基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标,计算各所述激光点坐标所确定的平面的综合平面法向量,其中,所述综合平面法向量由所述激光点坐标确定的平面的平面法向量求得;基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数,并基于所述位姿参数控制所述机器人的工具头调整至所述待调整位姿;从而实现了准确确定工具头待调整位姿的位姿参数,进而提高了艾灸仪的作业效率,并且,本发明的激光距离传感器成本低,机器人作业时,精度高、实时性强,能够适应工具头与人体接触式场景或保持人体一定距离的场景。
此外,本发明实施例还提出一种可读存储介质。本发明可读存储介质上存储有工具头位姿的调整程序,所述工具头位姿的调整程序被处理器执行时实现如下步骤:
控制激光距离传感器的激光点照射到待检测部位上,使得各所述激光点不在一条直线上,其中,所述激光距离传感器的数量大于2个;
获取各所述激光距离传感器测量的距离值、各所述激光距离传感器的初始坐标及各所述激光距离传感器的激光方向,其中,所述距离值为所述激光距离传感器与对应的所述激光点的距离;
基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标,计算各所述激光点坐标所确定的平面的综合平面法向量,其中,所述综合平面法向量由所述激光点坐标确定的平面的平面法向量求得;
基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数,并基于所述位姿参数控制所述机器人的工具头调整至所述待调整位姿。
进一步地,若所述激光距离传感器的数量大于3个,所述计算各所述激光点坐标所确定的平面的综合平面法向量的步骤包括:
计算所述激光点坐标所确定的对应平面的平面法向量;
利用加权平均算法计算各所述平面法向量的加权平均值,将所述加权平均值作为所述综合平面法向量。
进一步地,所述位姿表达式包括欧拉角、四元数或者旋转矩阵表达式。
进一步地,所述激光距离传感器的数量为3个,各所述激光距离传感器的激光束互相平行。
进一步地,所述基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标的步骤包括:
设各所述激光方向的单位向量分别为R a(r x1,r y1,r z1)、R b(r x2,r y2,r z2)、R c(r x3,r y3,r z3),各所述激光距离传感器所在工具头坐标系的坐标为P a(x 1,y 1,z 1)、P b(x 2,y 2,z 2)、P c(x 3,y 3,z 3),各所述距离值为d 1、d 2、d 3,各所述激光点的坐标为U a、U b、U c.,则
U a.x=x 1+r x1*d 1,U a.y=y 1+r y1*d 1,U a.z=z 1+r z1*d 1
U b.x=x 2+r x2*d 2,U b.y=y 2+r y2*d 2,U b.z=z 2+r z2*d 2
U c.x=x 3+r x3*d 3,U c.y=y 3+r y3*d 3,U c.z=z 3+r z3*d 3
即求得各所述激光点的坐标,其中,P a、P b、P c分别为各所述激光距离传感器的坐标Ua(U a.x,U a.y,U a.z)、U b(U b.x,U by,U b.z)、Uc(U c.x,U c.y, U c.z)。
进一步地,所述基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数的步骤包括:
设求得的所述综合平面法向量为V(v x,v y,v z),约定v z>0,其中,若v z<0,则所述综合平面法向量乘以-1;
预设公式M(α,β,γ)*[0,0,1] T=V norm T。,其中M(α,β,γ)为欧拉角旋转公式中的旋转矩阵;
基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数,其中,V norm表示模为1的所述综合平面法向量,α、β、γ分别表示欧拉角。
进一步地,所述基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数的步骤包括:
令r x=0,基于所述预设公式及所述欧拉角旋转公式联立方程组求出r y、r z,其中,r x、r y、r z分别为欧拉角α、β、γ;
基于所述距离值利用预设算法计算综合距离值,设为d aver
将所述工具头坐标系的原点在z方向加上d aver,使得所述原点设置在所述待检测部位;
获取所述原点设置在所述待检测部位时,所述原点相对于机械手基座的基座坐标系的位姿参数,设为x 0、y 0、z 0、r x0、r y0、r z0
设所述工具头的待调整位姿的欧拉角参数为R x、R y、R z,则
R x=r x0,R y=r y0+r y,R z=r z0+r z,则
所述工具头的待调整位姿的位姿参数为x 0、y 0、z 0、R x、R y、R z
进一步地,所述预设算法包括平均值算法及加权平均算法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下, 由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种工具头位姿的调整方法,用于机器人,其特征在于,所述工具头位姿的调整方法包括:
    控制激光距离传感器的激光点照射到待检测部位上,使得各所述激光点不在一条直线上,其中,所述激光距离传感器的数量大于2个;
    获取各所述激光距离传感器测量的距离值、各所述激光距离传感器的初始坐标及各所述激光距离传感器的激光方向,其中,所述距离值为所述激光距离传感器与对应的所述激光点的距离;
    基于所述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标,计算各所述激光点坐标所确定的平面的综合平面法向量,其中,所述综合平面法向量由所述激光点坐标确定的平面的平面法向量求得;
    基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数,并基于所述位姿参数控制所述机器人的工具头调整至所述待调整位姿。
  2. 如权利要求1所述的工具头位姿的调整方法,其特征在于,若所述激光距离传感器的数量大于3个,所述计算各所述激光点坐标所确定的平面的综合平面法向量的步骤包括:
    计算所述激光点坐标所确定的对应平面的平面法向量;
    利用加权平均算法计算各所述平面法向量的加权平均值,将所述加权平均值作为所述综合平面法向量。
  3. 如权利要求1所述的工具头位姿的调整方法,其特征在于,所述位姿表达式包括欧拉角、四元数或者旋转矩阵表达式。
  4. 如权利要求1所述的工具头位姿的调整方法,其特征在于,所述激光距离传感器的数量为3个,各所述激光距离传感器的激光束互相平行。
  5. 如权利要求4所述的工具头位姿的调整方法,其特征在于,所述基于所 述距离值、所述初始坐标及所述激光方向计算所述待检测部位上各激光点的激光点坐标的步骤包括:
    设各所述激光方向的单位向量分别为R a(r x1,r y1,r z1)、R b(r x2,r y2,r z2)、R c(r x3,r y3,r z3),各所述激光距离传感器所在工具头坐标系的坐标为P a(x 1,y 1,z 1)、P b(x 2,y 2,z 2)、P c(x 3,y 3,z 3),各所述距离值为d 1、d 2、d 3,各所述激光点的坐标为U a、U b、U c.,则
    U a.x=x 1+r x1*d 1,U a.y=y 1+r y1*d 1,U a.z=z 1+r z1*d 1
    U b.x=x 2+r x2*d 2,U b.y=y 2+r y2*d 2,U b.z=z 2+r z2*d 2
    U c.x=x 3+r x3*d 3,U c.y=y 3+r y3*d 3,U c.z=z 3+r z3*d 3
    即求得各所述激光点的坐标Ua(U a.x,U a.y,U a.z)、U b(U b.x,U by,U b.z)、Uc(U c.x,U c.y,U c.z)。
  6. 如权利要求3所述的工具头位姿的调整方法,其特征在于,所述基于预设的位姿表达式、所述距离值及所述综合平面法向量计算所述机器人的工具头待调整位姿的位姿参数的步骤包括:
    设求得的所述综合平面法向量为V(v x,v y,v z),约定v z>0,其中,若v z<0,则所述综合平面法向量乘以-1;
    预设公式M(α,β,γ)*[0,0,1] T=V norm T。,其中M(α,β,γ)为欧拉角旋转公式中的旋转矩阵,V norm表示模为1的所述综合平面法向量,α、β、γ分别表示欧拉角;
    基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数。
  7. 如权利要求6所述的工具头位姿的调整方法,其特征在于,所述基于所述预设公式、所述距离值及欧拉角旋转公式求得所述位姿参数的步骤包括:
    令r x=0,基于所述预设公式及所述欧拉角旋转公式联立方程组求出r y、r z,其中,r x、r y、r z分别为欧拉角α、β、γ;
    基于所述距离值利用预设算法计算综合距离值,设为d aver
    将所述工具头坐标系的原点在z方向加上d aver,使得所述原点设置在所述待检测部位;
    获取所述原点设置在所述待检测部位时,所述原点相对于机械手基座的 基座坐标系的位姿参数,设为x 0、y 0、z 0、r x0、r y0、r z0
    设所述工具头的待调整位姿的欧拉角参数为R x、R y、R z,则
    R x=r x0,R y=r y0+r y,R z=r z0+r z,则
    所述工具头的待调整位姿的位姿参数为x 0、y 0、z 0、R x、R y、R z
  8. 如权利要求7所述的工具头位姿的调整方法,其特征在于,所述预设算法包括平均值算法及加权平均算法。
  9. 一种工具头位姿的调整装置,其特征在于,所述工具头位姿的调整装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的工具头位姿的调整程序,所述工具头位姿的调整程序被所述处理器执行时实现如权利要求1至8中任一项所述的方法的步骤。
  10. 一种可读存储介质,其特征在于,所述可读存储介质上存储有工具头位姿的调整程序,所述工具头位姿的调整程序被处理器执行时实现如权利要求1至8中任一项所述的工具头位姿的调整方法步骤。
PCT/CN2020/136749 2020-03-19 2020-12-16 工具头位姿的调整方法、装置及可读存储介质 WO2021184859A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20925967.0A EP4116042A4 (en) 2020-03-19 2020-12-16 METHOD AND APPARATUS FOR ADJUSTING TOOL HEAD POSITION AND READABLE STORAGE MEDIA
JP2022557115A JP7415036B2 (ja) 2020-03-19 2020-12-16 ツールヘッドの位置姿勢の調整方法、装置及び可読記憶媒体
KR1020227035574A KR20220154189A (ko) 2020-03-19 2020-12-16 툴헤드 자세의 조정방법, 장치 및 판독 가능한 저장매체
CA3174424A CA3174424A1 (en) 2020-03-19 2020-12-16 Tool head posture adjustment method, apparatus and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010194511.7A CN111438689B (zh) 2020-03-19 2020-03-19 工具头位姿的调整方法、装置及可读存储介质
CN202010194511.7 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184859A1 true WO2021184859A1 (zh) 2021-09-23

Family

ID=71629601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136749 WO2021184859A1 (zh) 2020-03-19 2020-12-16 工具头位姿的调整方法、装置及可读存储介质

Country Status (6)

Country Link
EP (1) EP4116042A4 (zh)
JP (1) JP7415036B2 (zh)
KR (1) KR20220154189A (zh)
CN (1) CN111438689B (zh)
CA (1) CA3174424A1 (zh)
WO (1) WO2021184859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781270A (zh) * 2022-11-03 2023-03-14 中国工程物理研究院激光聚变研究中心 一种光学元件位姿校正系统及装配校正方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438689B (zh) * 2020-03-19 2021-09-21 智美康民(珠海)健康科技有限公司 工具头位姿的调整方法、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091744A (zh) * 2015-05-07 2015-11-25 中国科学院自动化研究所 一种基于视觉传感器和激光测距仪的位姿检测装置与方法
KR20170058720A (ko) * 2015-11-19 2017-05-29 대우조선해양 주식회사 레이저 거리 센서를 구비한 용접 로봇 및 그의 교정방법
CN108177143A (zh) * 2017-12-05 2018-06-19 上海工程技术大学 一种基于激光视觉引导的机器人定位抓取方法及系统
CN108839027A (zh) * 2018-08-31 2018-11-20 河南工程学院 基于激光测距传感器的机器人自动对准控制方法
CN110575386A (zh) * 2019-08-13 2019-12-17 珠海市万瑙特健康科技有限公司 一种艾灸机械手的控制方法、装置及设备
CN111438689A (zh) * 2020-03-19 2020-07-24 珠海市万瑙特健康科技有限公司 工具头位姿的调整方法、装置及可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944840B2 (ja) 2008-06-09 2012-06-06 鹿島建設株式会社 誘導システム及び誘導方法
JP2011062786A (ja) 2009-09-18 2011-03-31 Ihi Corp レーザセンサ制御装置及びレーザセンサ制御方法
CN102284956B (zh) * 2011-05-04 2013-11-20 南京航空航天大学 一种自动钻铆机器人的法向找正方法
CN103447877B (zh) * 2013-09-16 2015-08-19 南京航空航天大学 自主移动机构法矢检测与调姿运动方法
CN103471545A (zh) * 2013-09-25 2013-12-25 吉林大学 六自由度位姿测量系统及测量方法
WO2016031364A1 (ja) 2014-08-29 2016-03-03 日立オートモティブシステムズ株式会社 部品の製造方法及びそれを用いた製造装置、容積測定方法
CN104816307B (zh) * 2015-03-25 2016-08-17 西北工业大学 工业机器人精准制孔的四点法向调平方法
CN106965180A (zh) * 2017-04-13 2017-07-21 北京理工大学 流水线上瓶子的机械臂抓取装置与方法
CN108453743B (zh) * 2018-05-14 2020-06-19 清华大学深圳研究生院 机械臂抓取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091744A (zh) * 2015-05-07 2015-11-25 中国科学院自动化研究所 一种基于视觉传感器和激光测距仪的位姿检测装置与方法
KR20170058720A (ko) * 2015-11-19 2017-05-29 대우조선해양 주식회사 레이저 거리 센서를 구비한 용접 로봇 및 그의 교정방법
CN108177143A (zh) * 2017-12-05 2018-06-19 上海工程技术大学 一种基于激光视觉引导的机器人定位抓取方法及系统
CN108839027A (zh) * 2018-08-31 2018-11-20 河南工程学院 基于激光测距传感器的机器人自动对准控制方法
CN110575386A (zh) * 2019-08-13 2019-12-17 珠海市万瑙特健康科技有限公司 一种艾灸机械手的控制方法、装置及设备
CN111438689A (zh) * 2020-03-19 2020-07-24 珠海市万瑙特健康科技有限公司 工具头位姿的调整方法、装置及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116042A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781270A (zh) * 2022-11-03 2023-03-14 中国工程物理研究院激光聚变研究中心 一种光学元件位姿校正系统及装配校正方法
CN115781270B (zh) * 2022-11-03 2024-05-07 中国工程物理研究院激光聚变研究中心 一种光学元件位姿校正系统的装配校正方法

Also Published As

Publication number Publication date
JP7415036B2 (ja) 2024-01-16
EP4116042A4 (en) 2023-08-23
JP2023517395A (ja) 2023-04-25
EP4116042A1 (en) 2023-01-11
CA3174424A1 (en) 2021-09-23
KR20220154189A (ko) 2022-11-21
CN111438689A (zh) 2020-07-24
CN111438689B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2021184859A1 (zh) 工具头位姿的调整方法、装置及可读存储介质
CN110355754B (zh) 机器人手眼系统、控制方法、设备及存储介质
Rucker et al. A geometrically exact model for externally loaded concentric-tube continuum robots
US9519736B2 (en) Data generation device for vision sensor and detection simulation system
JP7035657B2 (ja) ロボットの制御装置、ロボット、ロボットシステム、並びに、カメラの校正方法
Wang et al. A screw axis identification method for serial robot calibration based on the POE model
WO2019146201A1 (ja) 情報処理装置、情報処理方法及び情報処理システム
CA2292491A1 (en) Method and device for robot tool frame calibration
CN108466265B (zh) 机械手臂路径规划与作业方法、装置以及计算机设备
JP6897396B2 (ja) 制御装置、ロボットシステムおよび制御方法
CN116277035B (zh) 机器人的控制方法、装置、处理器及电子设备
Wang et al. Task space compliant control and six-dimensional force regulation toward automated robotic ultrasound imaging
CN116019564B (zh) 膝关节手术机器人和控制方法
CN110900608B (zh) 基于最优测量构型选择的机器人运动学标定方法
JPH05111897A (ja) 複数台のロボツトの相対位置関係取得方式
Chen et al. A force-sensing surgical drill for real-time force feedback in robotic mastoidectomy
CN114376726B (zh) 经颅磁刺激导航过程的路径规划方法及相关装置
JP3884249B2 (ja) 人間型ハンドロボット用教示システム
He et al. A local POE-based self-calibration method using position and distance constraints for collaborative robots
JP4244705B2 (ja) 回転機構付きレーザ加工ヘッドのキャリブレーション装置およびその方法
JPH0727408B2 (ja) 固定3次元視覚併用ロボットハンドリング装置
CN114750153B (zh) 机器人机械臂的运动控制系统、协作机器人及存储介质
JP2005055311A (ja) スキャナ装置のキャリブレーション方法
CN116330303B (zh) Scara机器人运动控制方法、装置、终端设备及介质
US20230398688A1 (en) Motion trajectory generation method for robot, motion trajectory generation apparatus for robot, robot system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3174424

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227035574

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020925967

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE