WO2021184781A1 - 停靠站、机器人系统及机器人系统的控制方法 - Google Patents

停靠站、机器人系统及机器人系统的控制方法 Download PDF

Info

Publication number
WO2021184781A1
WO2021184781A1 PCT/CN2020/128146 CN2020128146W WO2021184781A1 WO 2021184781 A1 WO2021184781 A1 WO 2021184781A1 CN 2020128146 W CN2020128146 W CN 2020128146W WO 2021184781 A1 WO2021184781 A1 WO 2021184781A1
Authority
WO
WIPO (PCT)
Prior art keywords
mop
charging
docking station
bin
lifting device
Prior art date
Application number
PCT/CN2020/128146
Other languages
English (en)
French (fr)
Inventor
毋宏兵
王彪
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020332248.9U external-priority patent/CN212118053U/zh
Priority claimed from CN202010186370.4A external-priority patent/CN113397438A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021184781A1 publication Critical patent/WO2021184781A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven

Definitions

  • the invention relates to the technical field of household appliances, in particular to a control method of a docking station, a robot system and a robot system.
  • Sweeping robots also known as automatic sweepers, smart vacuum cleaners, robotic vacuum cleaners, etc.
  • automatic sweepers are a type of smart household appliances that can automatically complete floor cleaning in the room by virtue of a certain artificial intelligence.
  • sweeping robots With the improvement of people's living standards, sweeping robots have gradually replaced human labor and become one of the mainstream products in the current society.
  • the current sweeping robots all use automatic recharging technology, that is, an infrared receiver is set on the robot body, and an array of infrared signals is transmitted through the docking station. After the infrared receiving device receives the infrared signal, it judges the location of the docking station based on the signal, and then automatically moves to Charging at the docking station. Or the LDS (Laser Direct Structuring, Lidar) that comes with the robot body scans the surrounding feature points to determine the location of the stop. As for the latter method, it must require the feature point and the LDS to be located at the same height, otherwise the LDS cannot scan the feature point and cannot determine the location of the stop.
  • LDS Laser Direct Structuring, Lidar
  • the existing docking stations are generally equipped with infrared emitters, and the infrared emitters and the LDS on the robot body are located at a similar height. Therefore, it is impossible to find a suitable location to set feature points on the docking station of the current structure.
  • a type of stop including:
  • a lifting device connected to the main body of the docking station, and an optical recognition area is provided on the outer surface of the lifting device;
  • the first control device is connected with the lifting device and is used for controlling the lifting and lowering of the lifting device, thereby adjusting the height of the optical recognition zone.
  • the lifting device includes a lifting frame, a transmission mechanism, and a driving mechanism
  • the light recognition area is provided on the outer surface of the lifting frame
  • the lifting frame is connected to the transmission mechanism
  • the transmission mechanism Connected with the driving mechanism, the driving mechanism provides driving force for the transmission mechanism, so that the transmission mechanism drives the displacement of the lifting frame.
  • the docking station body includes a charging bin, a charging interface is arranged in the charging bin, and the lifting device is arranged outside the charging bin.
  • the docking station body includes a charging bin, a charging interface is provided in the charging bin, an accommodating space is provided on the top of the charging bin, the lifting device is a telescopic structure, and one end is fixed to the In the accommodating space, the other end can extend out of the accommodating space and shrink to the accommodating space.
  • the docking station body includes:
  • the charging compartment which is provided with a charging interface
  • the first mop bin is arranged above the charging bin and is used to store the mop to be replaced;
  • the second mop bin is arranged side by side with the first mop bin, and is located on the side of the first mop bin away from the charging bin, and is used for storing replaced mops;
  • the lifting frame includes a first lifting frame and a second lifting frame, and the first lifting frame and the second lifting frame are respectively arranged below the first mop bin and the second mop bin, and are used to run along Transport the mop in the height direction.
  • the optical recognition area includes a number of concave-convex structures arranged at intervals;
  • the optical recognition area includes several blocks arranged at intervals of black and white;
  • the optical recognition area includes a plurality of blocks arranged at intervals, and the surface of one block of two adjacent blocks is a slope.
  • a robot system includes a robot body and the above-mentioned docking station set independently of the robot body.
  • the robot body is provided with a signal scanning device.
  • the signal scanning light path emitted by the signal scanning device is parallel to the horizontal plane and is used for scanning the light recognition
  • the first control device is used to control the lifting device to rise and fall, so that the height of the optical recognition area is the same as the height of the signal scanning optical path.
  • the signal scanning device is a laser radar scanning device.
  • it further includes:
  • the second control device is arranged inside the robot body and is used to send control instructions to the docking station;
  • the first control device is used to receive a control instruction of the second control device, and control the lifting device to lift according to the control instruction.
  • a control method of a robot system includes:
  • the lifting device is adjusted so that the robot body can enter the docking station to replace the mop.
  • the above-mentioned docking station provided by this application includes a docking station body and a lifting device, and the optical identification area is arranged on the lifting device, so that the height of the optical identification area can be adjusted by adjusting the height of the lifting device.
  • the height of the light recognition area can be adjusted to the same height as the signal scanning light path emitted by the signal scanning device in the robot body, that is, the scanning signal can be accurately irradiated to the light recognition area, thereby determining the position of the docking station.
  • Figure 1 is a schematic structural diagram of a stop provided by Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is a schematic top view of a stop provided by Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic structural diagram of a robot system provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a robot system provided by Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a robot system provided by Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of the optical identification zone
  • FIG. 7 is a schematic structural diagram of another embodiment of the optical identification zone.
  • 11- Docking station body 111- charging warehouse; 112- first mop warehouse; 113- second mop warehouse; 114- mop rack; 115- mop;
  • 12-lifting device 121-lifting frame; 1211-first lifting frame; 1212-second lifting frame; 122-transmission mechanism; 1221-timing belt; 1222-synchronous wheel; 1223-locking; 123-drive mechanism;
  • connection can also be a detachable connection or an integrated connection; it can be a mechanical connection or an electrical connection.
  • This embodiment provides a docking station, which can be applied to household service robots or commercial service robots such as sweeping robots or mopping robots that need to be docked or automatically refilled or replaced with mops.
  • the embodiments and drawings of this application only use mopping robots. Take an example for illustration.
  • the docking station includes a docking station body 11 and a lifting device 12.
  • the lifting device 12 is connected to the docking station body 11 and is displaced in the height direction under the action of a driving force.
  • the outer surface of the lifting device 12 is provided with a light Identification area 13.
  • the docking station body 11 includes a charging compartment 111, which can accommodate the robot body 2, and a charging interface is provided in the charging compartment 111.
  • the charging interface can be set in the form of a socket or It is in the form of charging terminal.
  • the charging interface of the robot body 2 should also be set as a plug matching the socket; when the charging interface is in the form of a charging terminal, the charging interface of the robot body 2 should also be set as a matching charging terminal. It should be noted that there can be multiple forms of the charging interface, as long as the charging function can be realized, and there is no restriction here.
  • the charging interface can be set on the inner wall of the charging bin 111 or on the base of the charging bin 111.
  • the position setting of the charging interface is related to the position setting of the charging interface of the supporting robot body 2, so there is no restriction here.
  • the lifting device 12 may be directly arranged outside the charging bin 111. That is, the lifting device 12 is directly connected to the charging compartment 111 and is arranged outside the charging compartment 111 (door), and does not occupy the space in the charging compartment 111.
  • the lifting device 12 when the robot body 2 performs cleaning work outside, the lifting device 12 can be lowered to a certain height, that is, the optical recognition area 13 on the outer surface of the robot body can reach a suitable height for the robot body 2
  • the light source emitted from above can recognize the light recognition area 13.
  • the lifting device 12 rises so that the robot body 2 can enter the compartment.
  • the lifting device may also be indirectly arranged outside the charging bin, that is, there may be other intermediate elements between the charging bin and the lifting device, which does not affect the realization of the purpose of the present invention.
  • the top of the charging bin 111 can be provided with an accommodating space
  • the lifting device 12 is a telescopic structure, one end is fixed in the accommodating space, and the other end can be extended out of the accommodating space or contracted to the accommodating space.
  • the lifting device 12 shrinks into the accommodating space.
  • the lifting device 12 extends from the accommodating space and rises or drops to a certain height, thereby enabling light recognition
  • the zone 13 reaches a position corresponding to the light source emitted from the robot body 2. As a result, the overall volume of the docking station can be reduced.
  • the lifting device 12 may include a lifting frame 121, a transmission mechanism 122 and a driving mechanism 123, and the light recognition area 13 is provided on the outer surface of the lifting frame 121.
  • the lifting frame 121 is connected with the transmission mechanism 122
  • the transmission mechanism 122 is connected with the driving mechanism 123.
  • the driving mechanism 123 provides driving force for the transmission mechanism 122, so that the transmission mechanism 122 drives the lifting frame 121 to drive, thereby causing the lifting frame 121 to move in the height direction.
  • the optical recognition zone 13 on the lifting frame 121 can also be displaced in the height direction.
  • the transmission mechanism 122 is preferably a matching structure of a timing belt 1221 and a timing wheel 1222
  • the driving mechanism 123 is preferably a drive motor.
  • the driving mechanism 123 can also drive the transmission mechanism 122 so that the transmission mechanism 122 drives the lifting frame 121 to be displaced in the horizontal direction, so that the optical identification zone 13 is subsequently displaced in the horizontal direction to meet actual requirements.
  • the lifting device may be a mechanical device that swings from side to side or some other device capable of realizing the displacement in the height direction of the optical identification zone, both of which can achieve the purpose of the present application.
  • the docking station body 11 includes a charging bin 111, a first mop bin 112, and a second mop bin 113, and the lifting device 12 is arranged corresponding to the first mop bin 112 and the second mop bin 113, respectively, for Transport the mop in the height direction.
  • a charging interface is provided in the charging compartment 111.
  • the first mop compartment 112 is disposed above the charging compartment 111 and is used to store the mop 115 to be replaced, that is, a clean mop.
  • the mop 115 to be replaced can be stacked in the first mop compartment 112 in a vertical direction.
  • the second mop warehouse 113 is arranged side by side with the first mop warehouse 112, and is located on the side of the first mop warehouse 112 away from the charging warehouse 111, and is used to store the replaced mop 115, that is, the dirty mop.
  • the replaced mop 115 can be vertically oriented The direction is stacked in the second mop bin 113.
  • a mop frame 114 is also provided, and one end of the replaced mop 115 can be fixed on the mop frame 114.
  • the first mop bin 112 can be a bin body with only one side opening.
  • the mop 115 can be taken and dropped through the opening, or it can only be a carrying platform.
  • the mop 115 is stacked on the carrying platform, and it can also have other structures. As long as it can carry the mop 115, there is no restriction here.
  • the second mop bin 113 is the same as the first mop bin 112, and will not be repeated here.
  • the lifting frame 121 includes a first lifting frame 1211 and a second lifting frame 1212, and the first lifting frame 1211 and the second lifting frame 1212 are correspondingly disposed directly below the first mop warehouse 112 and the second mop warehouse 113, respectively.
  • the first lifting frame 1211 is used to transfer the mop 115 from the first mop bin 112 to the bottom for the robot body 2
  • the second lifting frame 1212 is used to transfer the mop 115 that has been replaced by the robot body 2 to the upper part.
  • the second mop warehouse 113 Inside the second mop warehouse 113.
  • the first lifting frame 1211 and the second lifting frame 1212 are connected together, and the connection method is not limited, and is preferably a detachable connection, which is not limited here.
  • the driving mechanism 123 drives the transmission mechanism 122 to drive the first lifting frame 1211 and the second lifting frame 1212 to descend.
  • the first lifting frame 1211 will take away a piece of the first mop warehouse 112
  • the mop to be replaced, the way to take the mop is not limited, it can be automatically opened by the first mop warehouse 112, and the mop 115 is automatically dropped on the first lifting frame 1211, or an automatic grabbing component can be provided on the first lifting frame 1211, The mop is grabbed by the grabbing component to the first lifting frame 1211, which is not limited here.
  • the robot body 2 enters the second lifting frame 1212
  • the used mop can be removed, and then moved forward to the first lifting frame 1211 to replace the mop to be replaced.
  • the first lifting frame 1211 and the second lifting frame 1212 rise under the driving of the transmission mechanism 122, and the mops placed on the second lifting frame 1212 are stacked into the second mop bin 113, and the entire process of changing the mop is finished.
  • first lifting frame 1211 and the second lifting frame 1212 can be set separately and independently, which can also achieve the purpose of the present invention.
  • the light recognition area 13 is provided on the outer surface of the second lifting frame 1212. Specifically, the light recognition area 13 is provided on the side of the second lifting frame 1212 that faces the robot body 2, thereby ensuring that the robot body 2 When the light source is emitted, the light recognition area 13 can be irradiated with a greater probability, and the location of the stop can be quickly determined.
  • the driving mechanism 123 drives the transmission mechanism 122 to drive, and then drives the lifting frame 121 to move up and down
  • the light identification zone 13 on the second lifting frame 1212 will also move up and down accordingly, that is, the level of the light identification zone 13 is variable.
  • the height of the light recognition area 13 can be adjusted to a height that is compatible with the height of the light source emitted by the robot body 2, so that the light source can illuminate the light recognition area 13 to identify and confirm the location of the stop.
  • the upper part of the docking station is equipped with a rag bin, and the lower part is a doorway for the robot host to enter, so there is no suitable place to set up a light recognition area.
  • the above-mentioned solution of the application of applying the lifting device with the optical recognition area to the docking station with the rag replacement function can flexibly adjust the height of the optical recognition area without hindering the replacement of the rag at the docking station, so that the height of the optical recognition area can be adjusted flexibly.
  • Adapt to the height of the light source emitted by the robot body which is helpful for the robot body to recognize and confirm the position of the docking station.
  • the transmission mechanism 122 is a synchronous belt 1221 and a synchronous wheel 1222 that are used in conjunction with each other, and the driving mechanism 123 is a drive motor.
  • the output end of the drive motor is connected to the synchronous wheel 1222.
  • the synchronous wheel 1222 is driven by the driving force of the drive motor.
  • the rotation drives the timing belt 1221 sleeved on the timing wheel 1222 to drive.
  • the timing belt 1221 and the lifting frame 121 are connected by a lock 1223, that is, the lifting frame 121 connected to the timing belt 1221 is driven to drive.
  • other structures capable of lifting and lowering can also be used, which can achieve the purpose of the present invention, and there is no limitation on this.
  • the optical recognition area 13 includes a number of concave-convex structures 131 arranged at intervals.
  • the distance signal reflected by the light recognition area 13 received at the light source has a relatively regular difference, which can be identified
  • the location of the light-emitting identification zone 13 is the location of the stop.
  • the light recognition area 13 includes several black and white blocks arranged at intervals. Since the light source shines on the black area, the black area will not reflect the light signal, and the light source shines on the white area, the white area will reflect the light signal, when the black and white interval is set, the signal received at the light source will be separated Whether there is or not, the position of the optical recognition area 13, that is, the position of the docking station can be judged from this.
  • the optical identification area 13 includes a number of blocks arranged at intervals, and the surface of one block of two adjacent blocks is an inclined surface 132.
  • the reflected light of the area where the inclined surface 13 is located will not return to the light source in its original path, so the reflected light signal cannot be received at the light source, that is, the signal received at the light source will be separated or not. From this, the position of the optical recognition zone 13 can be determined, that is, the position of the stop.
  • the blocks in the above three implementations are all arranged at intervals in the horizontal direction. This is because the light beam emitted by the robot body 2 is generally distributed in the horizontal direction. Therefore, the blocks in the light recognition area 13 are also It is set to be distributed in the horizontal direction, which is conducive to light recognition.
  • the spacing distance in the spacing setting mentioned in the above three embodiments is not limited, as long as the entire optical recognition area is ensured to be within the beam irradiation range, the objective of the present invention can be achieved.
  • the arrangement of the light identification area 13 is not limited to the above three embodiments, and any other method that can be identified by the light source is acceptable, and there is no limitation here.
  • the docking station provided in this embodiment further includes a first control device, which is connected to the lifting device, and is used to control the lifting device to lift and adjust the height of the optical identification zone.
  • This embodiment provides a robot system, as shown in Figs. 3-5, including a robot body 2 and the docking station provided in the first embodiment, and the robot body 2 and the docking station are arranged independently.
  • the robot body 2 is provided with a signal scanning device 21, and the signal scanning light path emitted by the signal scanning device 21 is parallel to the horizontal plane, and is used for scanning the optical recognition area 13.
  • the signal scanning device 21 can be a laser radar scanning device.
  • the signal scanning device 21 can be arranged on the top of the robot body 2 or on the side of the robot body 2, and the number of the signal scanning device 21 is not limited, and it can be one, or two or more. , Does not affect the implementation of the embodiments of the present invention.
  • the height of the light recognition area 13 can be adjusted to the same height as the laser light path emitted by the signal scanning device 21 in the robot body 2, that is, the scanning signal can be accurately irradiated to the light recognition area 13. Then determine the location of the stop.
  • the robot system provided in this embodiment further includes a second control device.
  • the second control device is arranged inside the robot body 2 and is used to send control instructions to the docking station;
  • the first control device arranged in the docking station is used to receive the control instructions of the second control device, and according to the control instructions of the second control device
  • the control command controls the lifting device 12 to lift, so as to adjust the height of the light identification zone 13.
  • the height of the light recognition area 13 can be adjusted according to the actual needs of the robot body 2.
  • the height of the light recognition area 13 can be adjusted to the height of the signal scanning light path.
  • the lifting device 12 can be controlled to rise or fall.
  • the robot system provided in this embodiment further includes a first communication module and a second communication module.
  • the first communication module and the second communication module are respectively disposed inside the robot body 2 and inside the docking station. Used to transfer control commands between the robot body 2 and the docking station.
  • both the first communication module and the second communication module use short-distance communication modules, such as Bluetooth, Wi-Fi, NFC, ZigBee, and so on.
  • This embodiment provides a control method of a robot system, which is applied to the docking station provided in Embodiment 1 and the robot system provided in Embodiment 2, which is executed by the docking station side, and includes the following steps:
  • Step S31 Receive the control instruction of the robot body 2.
  • the control instructions of the robot body 2 mainly include charging, docking, changing the mop, and going out to clean.
  • Step S32 Adjust the height of the lifting device 12 according to the control instruction of the robot body 2.
  • step S32 includes:
  • the lifting device 12 is adjusted so that the height of the light recognition area 13 on the lifting device 12 is the same as the height of the signal scanning light path emitted by the signal scanning device 21 on the robot body.
  • the lifting device 12 When the docking station receives the charging instruction or the docking instruction of the robot body, the lifting device 12 is adjusted so that the robot body can enter the docking station body 11 for charging or docking. In this embodiment, specifically, the lifting device 12 is heightened to show that the main body of the robot can enter the charging compartment 111.
  • the lifting device 12 When the docking station receives a mop replacement instruction from the robot body, the lifting device 12 is adjusted, specifically, the lifting device 12 is lowered.
  • the lifting device 12 For details, please refer to the description of replacing the mop in the first embodiment, which will not be repeated here.
  • the method further includes:
  • Step S30 Set the mapping relationship between the control instruction of the robot body 2 and the stroke of the lifting device 12, and store the mapping relationship. For example, three strokes of high, medium, and low are set.
  • the high stroke corresponds to the position that the lifting device 12 needs to reach when the robot body 2 needs to be charged
  • the middle stroke corresponds to the position that the lifting device 12 needs to reach when the robot body 2 goes out to clean
  • the low stroke corresponds to the position that the lifting device 12 needs to reach when the robot body 2 needs to replace the mop.

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种停靠站、机器人系统及机器人系统的控制方法。停靠站包括停靠站本体(11)和升降装置(12),升降装置(12)与停靠站本体(11)连接,在驱动力作用下沿高度方向位移,升降装置(12)外表面设置有光识别区(13)。机器人系统包括机器人本体(2)和停靠站(11),机器人本体(2)上方设置有信号扫描装置(21),信号扫描装置(21)发射的信号扫描光路与水平面平行,且光路的高度与光识别区(13)所能到达的其中一种高度相同。由此可通过调节升降装置(12)的高度来调节光识别区(13)的高度,当停靠站应用于机器人中时,光识别区(13)的高度可调节至与机器人本体(2)中的信号扫描装置(21)发射的光路同等的高度,使得信号扫描装置(21)能够准确照射至光识别区(13),进而确定停靠站的位置。

Description

停靠站、机器人系统及机器人系统的控制方法
本申请要求了申请日为2020年03月17日,申请号为202010186370.4和202020332248.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及家用电器技术领域,特别是涉及一种停靠站、机器人系统及机器人系统的控制方法。
背景技术
扫地机器人,又称自动打扫机、智能吸尘器、机器人吸尘器等,属于智能家用电器的一种,其能够凭借一定的人工智能,自动在房间内完成地面清理工作。随着人们生活水平的提高,扫地机器人已经逐渐取代人力劳动,成为当前社会的主流产品之一。
目前的扫地机器人均采用自动回充技术,即,在机器人本体上设置红外接收装置,通过停靠站发射数组红外信号,红外接收装置接收到红外信号后,依据信号判断停靠站位置,进而自动移动至停靠站处进行充电。或者通过机器人本体上自带的LDS(Laser Direct Structuring,激光雷达)扫描周围特征点来判断停靠站位置。就后一种方法而言,其必须要求特征点和LDS位于同等高度的位置,否则LDS无法扫描到特征点,也就无法确定停靠站的位置。但是,现有的停靠站上一般均会设置有红外发射器,且红外发射器与机器人本体上的LDS位于相近高度,因此,在当前结构的停靠站上无法找到合适的位置设置特征点。
发明内容
基于此,有必要针对无法合理布置特征点的问题,提供一种停靠站、机器人系统及机器人系统的控制方法。
一种停靠站,包括:
停靠站本体;
升降装置,与所述停靠站本体连接,所述升降装置外表面设置有光识别区;
第一控制装置,与所述升降装置连接,用于控制所述升降装置升降,进而调整所述光识别区的高度。
在其中一个实施例中,所述升降装置包括升降架、传动机构和驱动机构,所述光识别区设置于所述升降架外表面,所述升降架与所述传动机构连接,所述传动机构与所述驱动机构连接,所述驱动机构为所述传动机构提供驱动力,使得所述传动机构带动所述升降架位移。
在其中一个实施例中,所述停靠站本体包括充电仓,所述充电仓内设置有充电接口,所述升降装置设置于所述充电仓外。
在其中一个实施例中,所述停靠站本体包括充电仓,所述充电仓内设置有充电接口,所述充电仓顶部设置有容置空间,所述升降装置为伸缩结构,一端固定于所述容置空间内,另一端可延伸出所述容置空间以及收缩至所述容置空间。
在其中一个实施例中,所述停靠站本体包括:
充电仓,其内设置有充电接口;
第一拖布仓,设置于所述充电仓的上方,用于存储待替换拖布;
第二拖布仓,与所述第一拖布仓并排设置,且位于所述第一拖布仓远离所述充电仓的一侧,用于存储已替换拖布;
所述升降架包括第一升降架和第二升降架,所述第一升降架和所述第二升降架分别设置于所述第一拖布仓、所述第二拖布仓的下方,用于沿高度方向传送拖布。
在其中一个实施例中,所述光识别区内包括若干间隔设置的凹凸结构;
或者,所述光识别区内包括若干黑白间隔设置的区块;
或者,所述光识别区内包括若干间隔设置的区块,相邻两个所述区块中的一个区块表面为斜面。
一种机器人系统,包括机器人本体和独立于机器人本体设置的上述停靠站,所述机器人本体设置有信号扫描装置,所述信号扫描装置发射的信号扫描光路与水平面平行,用于扫描所述光识别区,所述第一控制装置用于控制所述升降装置升降,以使所述光识别区的高度与所述信号扫描光路的高度相同。
在其中一个实施例中,所述信号扫描装置为激光雷达扫描设备。
在其中一个实施例中,还包括:
第二控制装置,设置于所述机器人本体内部,用于发送控制指令至所述停靠站;
所述第一控制装置用于接收所述第二控制装置的控制指令,并根据所述控制指令控制所述升降装置升降。
一种机器人系统的控制方法,包括:
接收机器人本体的控制指令,所述控制指令包括充电或停靠或更换拖布;
当所述控制指令为充电或停靠时,调节升降装置,以使机器人本体能够进入停靠站内充电或停靠;
当所述控制指令为更换拖布时,调节升降装置,以使机器人本体能够进入停靠站内更换拖布。
本申请提供的上述停靠站,包括停靠站本体和升降装置,且将光识别区设置于升降装置上,由此可通过调节升降装置的高度来调节光识别区的高度,当停靠站应用于机器人中时,光识别区的高度可调节至与机器人本体中的信号扫描装置发射的信号扫描光路同等的高度,即,使得扫描信号能够准确照射至光识别区,进而确定停靠站的位置。
附图说明
图1为本发明实施例1提供的停靠站的结构示意图;
图2为本发明实施例1提供的停靠站的俯视示意图;
图3为本发明实施例2提供的机器人系统的结构示意图;
图4为本发明实施例2提供的机器人系统的结构示意图;
图5为本发明实施例2提供的机器人系统的结构示意图;
图6为光识别区的一种实施方式的结构示意图;
图7为光识别区的另一种实施方式的结构示意图。
附图标记:
11-停靠站本体;111-充电仓;112-第一拖布仓;113-第二拖布仓;114-拖布架;115-拖布;
12-升降装置;121-升降架;1211-第一升降架;1212-第二升降架;122-传动机构;1221-同步带;1222-同步轮;1223-锁扣;123-驱动机构;
13-光识别区;131-凹凸结构;132-斜面;
2-机器人本体;21-信号扫描装置。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件或者一个元件与另一个元件“相连”,它可以是直接连接到另一个元件或者可能同时存在居中元件,并且应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体式连接;可以是机械连接,也可以是电连接。对于本领域中的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
本实施例提供了一种停靠站,可应用于扫地机器人或者拖地机器人等需要停靠或自动回充或更换拖布的家用服务机器人或商用服务机器人,本申请实施 例以及附图仅以拖地机器人为例进行说明。
如图1和图2所示,该停靠站包括停靠站本体11和升降装置12,升降装置12与停靠站本体11连接,在驱动力作用下沿高度方向位移,升降装置12外表面设置有光识别区13。
具体地,作为一种可选的实施方式,停靠站本体11包括充电仓111,充电仓111可容纳机器人本体2,充电仓111内设置有充电接口,充电接口可以设置为插座形式,也可以设置为充电端子形式。当充电接口为插座形式时,机器人本体2的充电接口也应当设置为与插座配套的插头;当充电接口为充电端子形式时,机器人本体2的充电接口也应当设置为配套的充电端子。需要说明的是,充电接口的形式还可以有多种,只要能够实现充电功能均可,在此不做限制。
充电接口可以设置在充电仓111的内侧仓壁上,也可以设置为充电仓111的底座上。充电接口的位置设置与配套使用的机器人本体2的充电接口位置设置相关,因此在此不做限制。
本实施例中,升降装置12可以直接设置于充电仓111外。即,升降装置12直接与充电仓111连接,并设置于充电仓111(门)外部,不占用充电仓111内的空间。实际应用时,如图3所示,当机器人本体2在外执行清扫工作时,升降装置12可下降到一定的高度,即,使其外表面的光识别区13达到合适的高度,以便机器人本体2上发出的光源能够识别到光识别区13。当机器人本体2即将回到充电仓111进行充电时,如图4所示,升降装置12上升以使机器人本体2能够进入仓内。
本领域技术人员应当理解的是,升降装置也可以间接设置于充电仓外,即充电仓与升降装置之间可以存在其他中间元件,不影响实现本发明的目的。
作为变形,充电仓111的顶部可设置容置空间,升降装置12为伸缩结构, 一端固定于所述容置空间内,另一端可延伸出容置空间或收缩至容置空间。机器人本体2在充电仓111内进行充电时,升降装置12收缩至容置空间内,机器人本体2在外清扫时,升降装置12从容置空间内延伸出来,上升或下降到一定高度,进而使光识别区13到达与机器人本体2上发出的光源相对应的位置处。由此可缩小该停靠站整体体积。
本实施例中,如图1、图3、图4、图5所示,升降装置12可以包括升降架121、传动机构122以及驱动机构123,光识别区13设置于升降架121外表面。升降架121与传动机构122连接,传动机构122与驱动机构123连接,驱动机构123为传动机构122提供驱动力,使得传动机构122带动升降架121传动,进而使得升降架121沿高度方向发生位移,与此同时,升降架121上的光识别区13也能随之发生高度方向上的位移。其中,传动机构122优选为同步带1221和同步轮1222的配合结构,驱动机构123优选为驱动电机。
作为变形,驱动机构123也可以驱动传动机构122,以使传动机构122带动升降架121沿水平方向发生位移,使得光识别区13随之发生水平方向上的位移,以适应实际需求。
作为另一种变形,升降装置可以为左右摆动的机械装置或者其他一些能够实现光识别区的高度方向上的位移的装置,均可以实现本申请的目的。
作为一种可替换实施方式,停靠站本体11包括充电仓111、第一拖布仓112和第二拖布仓113,升降装置12分别与第一拖布仓112、第二拖布仓113对应设置,用于沿高度方向传送拖布。
其中,充电仓111内设置有充电接口,关于充电接口部分,可参见前文描述,在此不再赘述。第一拖布仓112设置于充电仓111的上方,用于存储待替换的拖布115,即干净拖布,待替换的拖布115可沿垂直方向叠放于第一拖布仓 112内。第二拖布仓113与第一拖布仓112并排设置,且位于第一拖布仓112远离充电仓111的一侧,用于存储已替换的拖布115,即脏拖布,已替换的拖布115可沿垂直方向叠放于第二拖布仓113内,另外,为了保证已替换拖布115排列整齐,还设置有拖布架114,已替换的拖布115的一端可固定在拖布架114上。
第一拖布仓112可以为一个只有一面开口的仓体,使用时可通过开口处取放拖布115,也可以仅为一个承载台,拖布115均叠放于承载台上,还可以为其他结构,只要可以承载拖布115均可,在此不做限制。同理,第二拖布仓113和第一拖布仓112相同,在此不做赘述。
本实施例中,升降架121包括第一升降架1211和第二升降架1212,第一升降架1211和第二升降架1212分别对应设置于第一拖布仓112和第二拖布仓113的正下方,实际应用中,第一升降架1211用于从第一拖布仓112内将拖布115传送到下方,供机器人本体2使用,第二升降架1212用于将机器人本体2更换下来的拖布115传送至上方的第二拖布仓113内。
作为一种可选实施方式,第一升降架1211和第二升降架1212连接在一起,连接方式不限,优选为可拆卸连接,在此不作限制。当机器人本体2需要更换拖布时,驱动机构123驱动传动机构122带动第一升降架1211和第二升降架1212下降,与此同时,第一升降架1211会取走第一拖布仓112中的一块待替换拖布,取拖布的方式不限,可以是由第一拖布仓112自动开仓,拖布115自动落入第一升降架1211上,也可以在第一升降架1211上设置自动抓取部件,由抓取部件去抓取拖布至第一升降架1211上,在此不作限制。当机器人本体2进入到第二升降架1212处时,可卸除已用过的拖布,再向前运动至第一升降架1211处,更换待替换拖布。最后,第一升降架1211和第二升降架1212在传动机构122的带动下上升,将第二升降架1212上放置的拖布叠放至第二拖布仓113内,整 个换拖布的过程结束。
作为变形,第一升降架1211和第二升降架1212可分开独立设置,也可以实现本发明的目的。
本实施例中,光识别区13设置于第二升降架1212的外表面,具体地,光识别区13设置在第二升降架1212朝向机器人本体2进入的一面上,由此可确保机器人本体2发射光源时能够更大概率地照射到光识别区13,进而快速确定停靠站的位置。当驱动机构123带动传动机构122传动,进而带动升降架121上下运动时,位于第二升降架1212上的光识别区13也会随之上下运动,即,光识别区13的水平高度可变,实际应用时,可将光识别区13的高度调节至与机器人本体2发射的光源高度相适应的高度,以使光源能够照射至光识别区13,进行识别确认停靠站的位置。
由于传统的带有抹布更换功能的停靠站,停靠站上部设置有抹布仓,下部为供机器人主机进入的门洞,因此进一步导致没有合适的地方设置光识别区。本申请上述将带有光识别区的升降装置应用于带有抹布更换功能的停靠站的方案,在不妨碍停靠站更换抹布的同时,能够灵活调整光识别区的高度,使光识别区的高度适应机器人本体发射的光源高度,利于机器人本体识别确认停靠站的位置。
本实施例中,传动机构122为互相配合使用的同步带1221和同步轮1222,驱动机构123为驱动电机,驱动电机的输出端与同步轮1222连接,通过驱动电机的驱动力,带动同步轮1222旋转,进而带动套设于同步轮1222上的同步带1221传动,同步带1221与升降架121之间通过锁扣1223连接,即带动与同步带1221连接的升降架121传动。作为变形,还可以使用其他能够实现升降的结构,均可以实现本发明的目的,对此不做限制。
作为一种可选实施方式,如图2和图6所示,光识别区13内包括若干间隔设置的凹凸结构131。当机器人本体2发射的光源照射到凹凸结构131上时,由于光源到凸面和凹面的距离不同,因此光源处接收到的光识别区13所反射的距离信号存在较为规律的差异,由此可识别出光识别区13的位置,即停靠站的位置。
作为变形,光识别区13内包括若干黑白间隔设置的区块。由于光源照射到黑色区块上,黑色区块不会反射光信号,而光源照射到白色区块上,白色区块会反射光信号,当黑白间隔设置时,光源处接收到的信号则会间隔有无,由此可判断出光识别区13的位置,即停靠站的位置。
作为进一步变形,如图7所示,光识别区13内包括若干间隔设置的区块,相邻两个区块中的一个区块表面为斜面132。当光源照射到斜面132上时,斜面13所在的区块的反射光不会原路返回至光源处,因此光源处无法接收到反射光信号,即,光源处接收到的信号则会间隔有无,由此可判断出光识别区13的位置,即停靠站的位置。
需要说明的是,以上三种实施方式中的区块均是沿水平方向间隔设置,这是由于机器人本体2发出的光束一般是呈水平方向分布,因此,将光识别区13中的区块也设置为水平方向分布,有利于光识别。另外,以上三种实施方式中所提到的间隔设置中的间隔距离不限,只要保证整个光识别区位于光束照射范围之内,均可实现本发明的目的。
还需要说明的是,光识别区13的设置方式不仅局限于以上三种实施方式,其他任何能够被光源识别到的方式均可,在此不做限制。
本实施例所提供的停靠站还包括第一控制装置,第一控制装置与升降装置连接,用于控制升降装置升降,进而调整光识别区的高度。由此可提高停靠站 的自动化程度,提高了光识别区高度调整的便利性。
实施例二
本实施例提供了一种机器人系统,如图3-5所示,包括机器人本体2和实施例一中提供的停靠站,机器人本体2和停靠站独立设置。机器人本体2设置有信号扫描装置21,信号扫描装置21发射的信号扫描光路与水平面平行,用于扫描光识别区13。其中,信号扫描装置21可以选用激光雷达扫描设备。
其中,信号扫描装置21可以设置于机器人本体2的顶部,也可以设置于机器人本体2的侧面,并且对信号扫描装置21的数量不做限定,可以为一个,也可以为两个或更多个,均不影响本发明实施例方案的实施。
当机器人本体2在外清洁时,可将光识别区13的高度调节至与机器人本体2中的信号扫描装置21发射的激光光路同等的高度,即,使得扫描信号能够准确照射至光识别区13,进而确定停靠站的位置。
作为一种可选实施方式,本实施例所提供的机器人系统还包括第二控制装置。其中,第二控制装置设置于机器人本体2内部,用于发送控制指令至停靠站;设置于停靠站的第一控制装置则用于接收第二控制装置的控制指令,并根据第二控制装置的控制指令控制升降装置12升降,以调节光识别区13的高度。
即,可根据机器人本体2的实际需求,调节光识别区13的高度,当机器人本体2在外清洁时,则可调节光识别区13的高度至信号扫描光路的高度,当机器人本体2需要充电或停靠或更换拖布时,则可控制升降装置12上升或下降。
作为一种可选实施方式,本实施例所提供的机器人系统还包括第一通讯模块和第二通讯模块,第一通讯模块和第二通讯模块分别设置于机器人本体2内部和停靠站内部,主要用于传递机器人本体2与停靠站之间的控制指令。其中, 第一通讯模块和第二通讯模块均选用近距离通信模块,例如蓝牙、Wi-Fi、NFC、ZigBee等。
实施例三
本实施例提供了一种机器人系统的控制方法,应用于实施例一中提供的停靠站以及实施例二中提供的机器人系统,由停靠站端执行,包括以下步骤:
步骤S31、接收机器人本体2的控制指令。其中,机器人本体2的控制指令主要包括充电、停靠、更换拖布、外出清洁等。
步骤S32、根据所述机器人本体2的控制指令调节升降装置12的高度。
具体地,步骤S32包括:
当停靠站检测到机器人主体脱离停靠站外出清洁时,调节升降装置12,以使升降装置12上的光识别区13高度与机器人主体上的信号扫描装置21发射的信号扫描光路的高度相同。
当停靠站接收到机器人主体的充电指令或停靠指令时,调节升降装置12,以使机器人主体能够进入停靠站本体11内充电或停靠。本实施例中,具体为调高升降装置12,以示机器人主体能够进入充电仓111内。
当停靠站接收到机器人主体的更换拖布指令时,调节升降装置12,具体为调低升降装置12,具体可参见实施例一中关于更换拖布的描述,在此不赘述。
作为一种可选实施方式,在步骤S31之前还包括:
步骤S30、设置机器人本体2的控制指令与升降装置12行程的映射关系,并存储映射关系。例如,设置高、中、低三种行程,高行程对应的是机器人本体2需要充电时升降装置12需要到达的位置,中行程对应的是机器人本体2外出清扫时升降装置12需要到达的位置,低行程对应的是机器人本体2需要更换 拖布时升降装置12需要到达的位置。由此,当停靠站接收到机器人本体2的控制指令时,能够迅速调节好升降装置12的位置,提高机器人的工作效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种停靠站,其特征在于,包括:
    停靠站本体;
    升降装置,与所述停靠站本体连接,所述升降装置外表面设置有光识别区;所述升降装置包括升降架、传动机构和驱动机构,所述光识别区设置于所述升降架外表面,所述升降架与所述传动机构连接,所述传动机构与所述驱动机构连接,所述驱动机构为所述传动机构提供驱动力,使得所述传动机构带动所述升降架位移;所述光识别区内包括若干间隔设置的凹凸结构;或者,所述光识别区内包括若干黑白间隔设置的区块;或者,所述光识别区内包括若干间隔设置的区块,相邻两个所述区块中的一个区块表面为斜面;
    第一控制装置,与所述升降装置连接,用于控制所述升降装置升降,进而调整所述光识别区的高度。
  2. 根据权利要求1所述的停靠站,其特征在于,所述停靠站本体包括充电仓,所述充电仓内设置有充电接口,所述升降装置设置于所述充电仓外。
  3. 根据权利要求1所述的停靠站,其特征在于,所述停靠站本体包括充电仓,所述充电仓内设置有充电接口,所述充电仓顶部设置有容置空间,所述升降装置为伸缩结构,一端固定于所述容置空间内,另一端可延伸出所述容置空间以及收缩至所述容置空间。
  4. 根据权利要求1所述的停靠站,其特征在于,所述停靠站本体包括:
    充电仓,其内设置有充电接口;
    第一拖布仓,设置于所述充电仓的上方,用于存储待替换拖布;
    第二拖布仓,与所述第一拖布仓并排设置,且位于所述第一拖布仓远离所述充电仓的一侧,用于存储已替换拖布;
    所述升降架包括第一升降架和第二升降架,所述第一升降架和所述第二升 降架分别设置于所述第一拖布仓、所述第二拖布仓的下方,用于沿高度方向传送拖布。
  5. 一种机器人系统,其特征在于,包括机器人本体和独立于所述机器人本体设置的权利要求1-4任一项所述的停靠站,所述机器人本体设置有信号扫描装置,所述信号扫描装置发射的信号扫描光路与水平面平行,用于扫描所述光识别区,所述第一控制装置用于控制所述升降装置升降,以使所述光识别区的高度与所述信号扫描光路的高度相同。
  6. 根据权利要求5所述的机器人系统,其特征在于,所述信号扫描装置为激光雷达扫描设备。
  7. 根据权利要求5所述的机器人系统,其特征在于,还包括:
    第二控制装置,设置于所述机器人本体内部,用于发送控制指令至所述停靠站;
    所述第一控制装置用于接收所述第二控制装置的控制指令,并根据所述控制指令控制所述升降装置升降。
  8. 一种如权利要求6或7所述的机器人系统的控制方法,其特征在于,包括:
    接收机器人本体的控制指令,所述控制指令包括充电或停靠或更换拖布;
    当所述控制指令为充电或停靠时,调节升降装置,以使机器人本体能够进入停靠站内充电或停靠;
    当所述控制指令为更换拖布时,调节升降装置,以使机器人本体能够进入停靠站内更换拖布。
PCT/CN2020/128146 2020-03-17 2020-11-11 停靠站、机器人系统及机器人系统的控制方法 WO2021184781A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020332248.9U CN212118053U (zh) 2020-03-17 2020-03-17 停靠站和机器人系统
CN202010186370.4A CN113397438A (zh) 2020-03-17 2020-03-17 停靠站、机器人系统及机器人系统的控制方法
CN202020332248.9 2020-03-17
CN202010186370.4 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021184781A1 true WO2021184781A1 (zh) 2021-09-23

Family

ID=77769944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128146 WO2021184781A1 (zh) 2020-03-17 2020-11-11 停靠站、机器人系统及机器人系统的控制方法

Country Status (1)

Country Link
WO (1) WO2021184781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027736A (zh) * 2021-11-17 2022-02-11 深圳市银星智能科技股份有限公司 清洁机器人、清洁模块、清洁组件、基座和清洁系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259918A (zh) * 2015-09-18 2016-01-20 莱克电气股份有限公司 机器人吸尘器自动充电回归的方法
CN205144444U (zh) * 2015-09-18 2016-04-13 莱克电气股份有限公司 扫地机器人
CN205681138U (zh) * 2015-12-21 2016-11-09 小米科技有限责任公司 充电桩和自动清洁系统
CN106859512A (zh) * 2017-02-22 2017-06-20 深圳市软晶科技有限公司 一种自动更换拖布的清洁机器人系统
CN107297755A (zh) * 2013-10-31 2017-10-27 Lg电子株式会社 移动机器人、移动机器人的充电座、移动机器人系统
CN208174318U (zh) * 2018-05-15 2018-11-30 江苏美的清洁电器股份有限公司 充电座和移动机器人充电系统
CN109276193A (zh) * 2018-11-13 2019-01-29 苏州苏相机器人智能装备有限公司 一种可调节高度位置的机器人及避障方法
CN109674402A (zh) * 2019-01-04 2019-04-26 云鲸智能科技(东莞)有限公司 一种信息处理方法及相关设备
CN110215160A (zh) * 2019-05-15 2019-09-10 湖南格兰博智能科技有限责任公司 一种智能扫地机的充电对接结构
WO2019240381A1 (ko) * 2018-06-14 2019-12-19 삼성전자주식회사 로봇청소기의 충전 스테이션

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297755A (zh) * 2013-10-31 2017-10-27 Lg电子株式会社 移动机器人、移动机器人的充电座、移动机器人系统
CN105259918A (zh) * 2015-09-18 2016-01-20 莱克电气股份有限公司 机器人吸尘器自动充电回归的方法
CN205144444U (zh) * 2015-09-18 2016-04-13 莱克电气股份有限公司 扫地机器人
CN205681138U (zh) * 2015-12-21 2016-11-09 小米科技有限责任公司 充电桩和自动清洁系统
CN106859512A (zh) * 2017-02-22 2017-06-20 深圳市软晶科技有限公司 一种自动更换拖布的清洁机器人系统
CN208174318U (zh) * 2018-05-15 2018-11-30 江苏美的清洁电器股份有限公司 充电座和移动机器人充电系统
WO2019240381A1 (ko) * 2018-06-14 2019-12-19 삼성전자주식회사 로봇청소기의 충전 스테이션
CN109276193A (zh) * 2018-11-13 2019-01-29 苏州苏相机器人智能装备有限公司 一种可调节高度位置的机器人及避障方法
CN109674402A (zh) * 2019-01-04 2019-04-26 云鲸智能科技(东莞)有限公司 一种信息处理方法及相关设备
CN110215160A (zh) * 2019-05-15 2019-09-10 湖南格兰博智能科技有限责任公司 一种智能扫地机的充电对接结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027736A (zh) * 2021-11-17 2022-02-11 深圳市银星智能科技股份有限公司 清洁机器人、清洁模块、清洁组件、基座和清洁系统

Similar Documents

Publication Publication Date Title
CN212118053U (zh) 停靠站和机器人系统
US20220071467A1 (en) Cleaning robot and cleaning method
EP2457486B1 (en) Robot cleaner and control method thereof
KR20210105908A (ko) 로봇 청소 시스템, 기지국 및 제어 방법
KR102234641B1 (ko) 이동 로봇 및 복수의 이동 로봇의 제어방법
WO2021184781A1 (zh) 停靠站、机器人系统及机器人系统的控制方法
TWI680039B (zh) 自主模組化機械人
CN105775480A (zh) 一种智能扫地垃圾桶
KR102131852B1 (ko) 드론용 무선충전 스테이션
KR101697557B1 (ko) 자율 청소 로봇 시스템
TWI719399B (zh) 清掃機
TW201728376A (zh) 用於清潔儲存系統的儲存柵格的清潔倉
CN111429660A (zh) 一种多功能货柜
CN105011866A (zh) 扫地机器人
WO2023179616A1 (zh) 清洁机器人及其返回、移出基座的方法、装置
CN113397438A (zh) 停靠站、机器人系统及机器人系统的控制方法
KR102103416B1 (ko) 드론용 무선충전 스테이션
CN211534241U (zh) 扫地机器人系统
CN110764516A (zh) 基于激光雷达和红外传感器融合的快速回充方法
US20220287529A1 (en) Robot cleaner and control method therefor
CN216932965U (zh) 具有运载功能的扫地机器人系统
CN210156939U (zh) 一种自移动设备充电座及自移动设备组件
CN214030316U (zh) 一种智能移动垃圾桶系统
EP3949818A1 (en) Robot cleaner
CN113303718B (zh) 具有运载功能的扫地机器人系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925961

Country of ref document: EP

Kind code of ref document: A1