WO2021184474A1 - 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法 - Google Patents

高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法 Download PDF

Info

Publication number
WO2021184474A1
WO2021184474A1 PCT/CN2020/085159 CN2020085159W WO2021184474A1 WO 2021184474 A1 WO2021184474 A1 WO 2021184474A1 CN 2020085159 W CN2020085159 W CN 2020085159W WO 2021184474 A1 WO2021184474 A1 WO 2021184474A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear waste
horizontal
shaft
level radioactive
well
Prior art date
Application number
PCT/CN2020/085159
Other languages
English (en)
French (fr)
Inventor
张云逢
谭庆时
Original Assignee
张云逢
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张云逢 filed Critical 张云逢
Publication of WO2021184474A1 publication Critical patent/WO2021184474A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/24Disposal of liquid waste by storage in the ground; by storage under water, e.g. in ocean
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/22Disposal of liquid waste by storage in a tank or other container
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the invention relates to the field of high-risk radiation protection, in particular to a deep-well landfill disposal structure for high-level radioactive nuclear waste and a deep-well landfill disposal method for high-level radioactive nuclear waste required by the International Atomic Energy Agency.
  • high-level nuclear waste includes low-level and high-level nuclear waste, medium-level and high-level nuclear waste, and high-level nuclear waste.
  • the medium and low-level radioactive high-level radioactive waste mainly refers to the equipment pollution caused by the construction and production of the nuclear power plant, the hydration system of the equipment during its operation, exchange resin, waste water and tools, gloves and other labor protection supplies.
  • High-level nuclear waste refers to spent nuclear fuel rods that are replaced from the reactor core of a nuclear power plant and burned. The burned spent nuclear fuel rods are still extremely radioactive, with a half-life of thousands of years, tens of thousands of years, or even a few years. One hundred thousand years.
  • the International Atomic Energy Agency has strict requirements on the treatment and disposal of high-level radioactive nuclear waste.
  • high-level radioactive nuclear waste For medium and low-level high-level radioactive nuclear waste, the method of dilution, concentration and recycling can be used to recover about 93% of nuclear materials, thereby reducing nuclear radiation damage to The smallest.
  • high-level radioactive nuclear waste only permanent deep burial disposal can be done. This permanent disposal refers to the high level of radioactive nuclear waste that has been deeply buried, disposed of, and sealed to ensure that it will not leak for tens of thousands or even hundreds of thousands of years.
  • the conventional method of landfilling high-level radioactive nuclear waste is to first make the high-level radioactive nuclear waste into a vitrified solid, put it into a metal can that can shield radiation, and then put the The metal cans of high-level radioactive nuclear waste are buried deep in a repository of high-level radioactive nuclear waste built in a layer of stable underground rock.
  • the only repository for high-level radioactive nuclear waste in the world is underground mines (for example, the Onkalo spent fuel permanent burial warehouse in Finland, which is located 400 meters below the surface), but due to the storage time of high-level radioactive nuclear waste As long as tens of thousands of years, the underground environment is likely to change during this period.
  • the high-level nuclear waste metal container In order to ensure the safety of the high-level nuclear waste metal container, it is necessary to prevent the high-level nuclear waste metal container from radially overlapping in the deep well, and at the same time greatly increase The capacity of the deep well.
  • the borehole diameter is less than 50 cm, which has restricted the development and advancement of geological deep burying technology of high-level radioactive nuclear waste.
  • the deep burying and disposal of high-level radioactive nuclear waste in various countries around the world is in a stagnant state.
  • the traditional nuclear waste disposal warehouse is a deep vertical downward. As nuclear waste has been stored for tens of thousands of years, the underground environment is likely to change during this period. In order to ensure the safety of metal cans containing nuclear waste, it should be avoided The metal tanks containing nuclear waste are overlapped in the radial direction of the deep well, which greatly reduces the capacity of the deep well.
  • a deep well landfill disposal structure for high-level radioactive nuclear waste comprising: a vertical well and a plurality of inclined lanes and horizontal wells extending from the side walls of the vertical well along the radial direction of the vertical well to the circumference, and the inclined lanes and horizontal wells are inclined downward Extending, and the included angle between the axial direction of the inclined roadway and the horizontal shaft and the axial direction of the shaft is 30° ⁇ 85°;
  • the inclined lane horizontal shaft is provided with a track extending along the axial direction of the inclined lane horizontal shaft, a plurality of high-level radioactive nuclear waste containers slide into the inclined lane horizontal shaft through the rail, and a plurality of the high-level radioactive nuclear
  • the waste containers are arranged in sequence along the track, and the remaining space in the inclined lane and horizontal shaft is filled with anti-radiation filler, so that the anti-radiation filler wraps the high-level nuclear waste container as a whole.
  • the above-mentioned deep well landfill disposal method of high-level radioactive nuclear waste includes the following steps:
  • a plurality of inclined lanes and horizontal shafts are drilled on the side walls of the shaft along the radial direction of the shaft to form a plurality of inclined lanes and horizontal shafts.
  • the axial angle is 30° ⁇ 85°;
  • a plurality of high-level radioactive nuclear waste containers are slid into the inclined lane and horizontal shaft through the track, and then the whole of the inclined lane and horizontal shaft is sealed with the radiation-proof filling material, so that the radiation-proof filling material can
  • the high-level radioactive nuclear waste container is wrapped up as a whole;
  • the space gaps of the inclined roadways and horizontal wells are integrally sealed with the anti-radiation fillers, and finally the vertical wells are permanently sealed.
  • This innovative deep-well landfill disposal structure for high-level radioactive nuclear waste includes a vertical well and a plurality of horizontal wells extending from the sidewall of the vertical well along the radial direction of the vertical well.
  • the horizontal well is provided with a track extending along the axial direction of the horizontal well.
  • a plurality of high-level radioactive nuclear waste metal containers are gradually slid into the horizontal well through the track, and a plurality of high-level radioactive nuclear waste metal containers are gradually arranged along the track.
  • this kind of high-level nuclear waste landfill disposal structure stores high-level nuclear waste metal containers through inclined lanes and horizontal wells, which can provide a large volume to store high-level nuclear waste.
  • FIG. 1 is a schematic cross-sectional structure diagram of a deep well landfill disposal structure for high-level radioactive nuclear waste according to an embodiment.
  • Figure 2 is a top view of the deep well landfill disposal structure of high-level radioactive nuclear waste as shown in Figure 1.
  • Fig. 3 is a schematic cross-sectional structure diagram of the inclined lane and horizontal well of the deep well landfill disposal structure for high-level radioactive nuclear waste as shown in Fig. 1.
  • FIG. 4 is a schematic structural diagram of a high-level nuclear waste container of the deep-well landfill disposal structure for high-level nuclear waste as shown in FIG. 1.
  • the deep well landfill disposal structure for high-level radioactive nuclear waste as shown in FIG. 1 and FIG. 2 includes: a shaft 100 and a plurality of inclined lanes extending from the side wall of the shaft 100 to the circumference along the radial direction of the shaft 100
  • the horizontal shaft 200 and the inclined roadway horizontal shaft 200 extend downwards obliquely, and the included angle between the axial direction of the inclined roadway horizontal shaft 200 and the axial direction of the shaft 100 is 30° ⁇ 85°.
  • the shaft 100 is an ultra-deep (above -1000 meters) vertical shaft.
  • the inclined lane and horizontal well 200 is provided with a rail 210 extending along the axis of the inclined lane and horizontal well 200, a plurality of high-level radioactive nuclear waste containers 300 slide into the inclined lane and horizontal well 200 through the rail 210, and a plurality of high-level radioactive nuclear
  • the waste containers 300 are arranged in sequence along the track 210, and the remaining space in the inclined lane and horizontal well 200 is filled with anti-radiation fillers, so that the anti-radiation fillers wrap the high-level nuclear waste container 300 as a whole.
  • the inclined lane and horizontal well 200 are arranged obliquely downward, so as to facilitate the gradual sliding down of the high-level radioactive nuclear waste container 300 along the track 210.
  • This innovative deep-well landfill disposal structure for high-level radioactive nuclear waste includes a vertical well 100 and a plurality of horizontal wells 200 extending from the side walls of the vertical well 100 along the radial direction of the vertical well 100.
  • a plurality of high-level radioactive nuclear waste metal containers 300 are gradually slid into the horizontal well 200 through the track 210, and a plurality of high-level radioactive nuclear waste metal containers 300 are gradually arranged along the track 210 in sequence.
  • this kind of high-level nuclear waste landfill disposal structure stores high-level nuclear waste metal containers 300 through inclined lanes and horizontal wells 200, so as to provide a super large volume to store high-level nuclear waste.
  • the depth of the shaft 100 is 1000m ⁇ 2000m, and the overall depth of each inclined roadway and horizontal shaft 200 is more than 600m from the ground.
  • the inclined roadway and horizontal shaft 200 are arranged in layers along the vertical direction, and each layer is provided with 3 to 12 inclined roadways.
  • the vertical distance between the horizontal shaft 200 and the adjacent two-story inclined road shaft 200 is 3m ⁇ 8m.
  • the depth of the shaft 100 is 1300 m to 2000 m, and the overall depth of each inclined roadway and horizontal shaft 200 is more than 1000 m from the ground.
  • the overall depth of the inclined lane and horizontal well 200 is more than 600m from the ground, which means that the inclined lane and horizontal well 200 is above the depth of 600m underground from the opening to the bottom, so as to meet the requirements of the International Atomic Energy Agency’s “deep buried 500 m ⁇ 1,000 m below the ground”. m in a stable geological body” is a mandatory requirement.
  • each layer is provided with 6 inclined lanes and horizontal shafts 200 and 6 inclined lanes and horizontal shafts 200 are arranged symmetrically, and the distance between two adjacent layers of inclined lanes and horizontal shafts 200 in the vertical direction is 4 m.
  • each layer extends from the sidewall of the shaft 100 in six directions along the radial direction of the shaft 100 to the circumference to form six inclined lanes and horizontal shafts 200.
  • the 6 inclined lanes and horizontal wells 200 on each floor form 6 projections on the horizontal plane, the 6 projections are radioactive, and the angle between the two adjacent projections is 60°.
  • 12 inclined lanes and horizontal wells 300 on two adjacent floors form 12 projections on the horizontal plane, and the angle between the two adjacent projections is 30°.
  • the included angle between the axial direction of the inclined roadway horizontal shaft 200 and the axial direction of the shaft 100 is 60° ⁇ 75°.
  • the inclined lane and horizontal well 200 are arranged obliquely downward, so as to facilitate the gradual sliding down of the high-level radioactive nuclear waste container 300 along the track 210.
  • the high-level nuclear waste container 300 contains nuclear waste that needs to be processed.
  • the nuclear waste is a high-level waste nuclear fuel rod wrapped in a solidified glass body.
  • the outer periphery of the high-level radioactive nuclear waste container 300 is provided with a guide structure 310 matching the rail 210.
  • the guiding structure 310 cooperates with the rail 210 so that the high-level radioactive nuclear waste container 300 can be gradually slid into the bottom end of the inclined roadway and horizontal shaft 200 along the rail 210.
  • the high-level radioactive nuclear waste container 300 is provided with a first magnetic attraction member and a second magnetic attraction member disposed oppositely, and two adjacent high-level radioactive nuclear waste containers in each inclined lane and horizontal well 200 300 is magnetically connected and fixed together by a first magnetic member (not shown in the figure) and a second magnetic member (not shown in the figure).
  • the first magnetic member and the second magnetic member are both neodymium iron boron magnets.
  • the NdFeB magnet has a strong magnetic attraction and a certain mechanical strength, which is convenient for magnetic positioning.
  • the positioning between two adjacent high-level nuclear waste containers 300 can be achieved.
  • a magnetic positioning member (not shown in the figure) is provided at the bottom end of the inclined roadway horizontal shaft 200, and the magnetically attracted positioning member is arranged at an end of the track 210 away from the opening of the inclined roadway horizontal shaft 200.
  • the first magnetic member of the high-level nuclear waste container 300 closest to the bottom end of the inclined lane and horizontal well 200 is magnetically connected to the magnetic positioning member, thereby realizing the targeting of the high-level radioactive nuclear waste container 300 closest to the bottom end of the inclined lane and horizontal well 200 position.
  • the deep-well landfill disposal structure for high-level radioactive nuclear waste in this embodiment includes: a large-diameter ( ⁇ 9m ⁇ 12m) vertical shaft 100 and a plurality of strips formed by extending the sidewall of the shaft 100 along the shaft 100 radially and in six directions. Inclined lane and horizontal well 200.
  • the inclined lane and horizontal shaft 200 is provided with an axially extending track 210 extending along the inclined lane and horizontal shaft 200, and the track is 200m long.
  • a plurality of high-level radioactive nuclear waste metal disposal containers 300 are slid into the inclined lane and horizontal well 200 through the track 210 in turn, and a plurality of high-level radioactive nuclear waste metal disposal containers 300 are arranged in an orderly manner along the track 210, and each container is arranged with NdFeB magnets. The suction pieces are closely connected.
  • this deep well landfill disposal structure for high-level radioactive nuclear waste greatly increases the shaft diameter by 100 (up to 12m) and passes through the effective well deployment space of ⁇ 1000m below the surface and 300m deep.
  • the storage of high-level radioactive nuclear waste with 200 staggered volumes in inclined lanes and horizontal wells has fundamentally solved the technical bottleneck of permanent disposal of high-level radioactive nuclear waste throughout the world, thus breaking through the century that has plagued the world. Sexual dilemma.
  • the super large diameter, 1300m deep high-level radioactive nuclear waste permanent deep buried disposal well system project taking the effective volumetric rate of a single inclined roadway horizontal well of 471m3 as an example, the 200m deep inclined roadway horizontal well can be laid on the first floor of 6 Calculated with an effective use space area of 150m, 75 layers can be deployed with a depth of 300m, and the total effective volume space will reach 210,000 m3.
  • the anti-radiation filling material wraps the high-level nuclear waste container 300 as a whole.
  • this arrangement can prevent the radiation from the nuclear waste in the high-level nuclear waste container 300 from leaking, and on the other hand, the anti-radiation filling can also serve as a buffer.
  • the material of the anti-radiation filler is a mixture of skeleton particles, desiccant powder and neutron absorber powder.
  • the particle size of the skeleton particles is larger than that of the desiccant powder, and the particle size of the skeleton particles is larger than that of the neutron absorber.
  • the particle size of the powder is a mixture of skeleton particles, desiccant powder and neutron absorber powder.
  • the particle size of the skeleton particles is larger than that of the desiccant powder, and the particle size of the skeleton particles is larger than the particle size of the neutron absorber powder.
  • the combination of different particle size framework particles, desiccant powder and neutron absorber powder makes the radiation protection filler easier to deform.
  • the combination of different particle size framework particles, desiccant powder and neutron absorber powder The combination also enables the anti-radiation filling material to form a better protection for the high-level radioactive nuclear waste container 300 and avoid the high-level radioactive nuclear waste container 300 from breaking.
  • the skeleton particles play the role of supporting the skeleton, and the desiccant powder and the neutron absorber powder are filled in the gaps between the skeleton particles to play a similar lubrication role.
  • the desiccant powder also plays a role of moisture absorption, which can prevent trace water vapor from penetrating into the high-level nuclear waste metal container 300 during the ten-thousand-year disposal period. This way, on the one hand, it prevents moisture from corroding the container, and on the other hand, it prevents moisture from absorbing radiation and expanding into water vapor in a closed space to cause the container to expand or explode.
  • the neutron absorber powder can absorb a small amount of radiation leaked from the high-level nuclear waste container 300, reduce radiation pollution to rocks, geology and soil, and play a better protective role.
  • the volume ratio of the skeleton particles, the desiccant powder and the neutron absorber powder is 4-12:1-9:11-35.
  • the particle size of the framework particles is 1 mm to 10 mm
  • the particle size of the desiccant powder is 23 ⁇ m to 75 ⁇ m
  • the particle size of the neutron absorber powder is 1 ⁇ m to 100 ⁇ m.
  • the particle size of the framework particles is 1mm ⁇ 10mm, which can play a reasonable supporting role.
  • the particle size of the desiccant powder is 23 ⁇ m ⁇ 75 ⁇ m, and the particle size of the neutron absorber powder is 1 ⁇ m ⁇ 100 ⁇ m, so that the two powders can be filled. In the gaps of the skeleton particles, it can play a similar role as lubrication.
  • the particle size of the skeleton particles is 1 mm to 3 mm.
  • the framework particles are ceramsite and/or foamed metal particles.
  • the skeleton particles are preferably porous particles, so that the desiccant powder and the neutron absorber powder can be filled in the porous
  • the surface pores of the particles and the gaps between the porous particles are filled to make the filling more dense and support greater, and to ensure that the skeleton particles can still be evenly distributed during transportation to avoid stratification.
  • the framework particles are ceramsite.
  • the ceramsite can be one or two of rare earth ceramsite, attapulgite ceramsite, kaolin ceramsite, montmorillonite ceramsite, vermiculite ceramsite, illite ceramsite and allophane ceramsite. One or more than three.
  • Attapulgite ceramsite has a unique dispersion, high temperature resistance, salt and alkali resistance and other good colloidal properties and other comprehensive properties, and the highest strength, and its heat insulation, water absorption, air permeability and stability are also the best.
  • the neutron absorber powder is selected from one of lead powder, steel powder, silica powder, borax, boron carbide powder, boron steel powder, amorphous carbon powder, carbon nanotubes, carbon nanocage and graphite powder.
  • lead powder steel powder
  • silica powder silica powder
  • borax boron carbide powder
  • boron steel powder amorphous carbon powder
  • carbon nanotubes carbon nanocage and graphite powder.
  • graphite powder One, two or more than three types.
  • the desiccant powder is a neutral desiccant powder.
  • the neutral desiccant powder can prevent the desiccant powder from generating acidity or alkalinity after absorbing moisture, thereby causing corrosion to the package or metal shell.
  • the neutral desiccant powder is selected from one, two or more of anhydrous calcium chloride powder, molecular sieve powder, silica gel powder, attapulgite powder, calcium sulfate powder, alumina powder and sodium sulfate powder.
  • the neutral desiccant powder is most preferably attapulgite powder.
  • the material of the high-level radioactive nuclear waste container 300 is: 4 parts to 12 parts of kaolin ceramsite, 1 part to 9 parts of attapulgite powder, 6 parts to 14 parts of Lead powder, 4 parts to 12 parts of silica powder and 1 part to 9 parts of graphite powder.
  • the material of the high-level radioactive nuclear waste container 300 is: 7-9 parts of kaolin ceramsite, 3-7 parts of attapulgite powder, 7-9 parts of attapulgite powder Of lead powder, 6 parts to 10 parts of silica powder and 3 parts to 7 parts of graphite powder.
  • the invention also discloses a method for deep-well landfill disposal of high-level radioactive nuclear waste forming the above-mentioned deep-well landfill disposal structure for high-level radioactive nuclear waste, which includes the following steps:
  • S10 adopts German original large-diameter hard rock vertical rotary milling shaft shield machine.
  • the "2019 Sino-German Joint Research and Development” special customized large-diameter hard rock vertical rotary milling shaft shield machine is used for hard rock and super hard rock (super hard rock with rock hardness in the range of 120MPa to 411MPa) during excavation. Carry out depth rotary milling and drilling construction.
  • the working face is arranged from the ground surface ⁇ 0, and when it reaches the rock layer, it is drilled down for 1,300 meters longitudinally.
  • the main equipment will experience 70MPa ⁇ 360MPa rock hardness. Among them, according to the hardness of the hard rock, the equipment will be continuously adjusted and the drill bit corresponding to the rock hardness will be replaced to ensure the smooth progress of the tunneling.
  • the main shaft engineering of the shaft requires approximately 20 to 36 months of excavation and construction during the entire construction period.
  • the sidewall of the shaft 100 is drilled along the radial direction of the shaft 100 to form a plurality of inclined lanes and horizontal shafts.
  • the inclined lanes and horizontal shafts 200 extend obliquely downward, and the axial direction of the inclined lanes and horizontal shafts 200 is aligned with the axial direction of the shaft 100.
  • the included angle is 30° ⁇ 85°.
  • S20 uses a large-diameter transverse hard rock pipe jacking shield machine made in Germany.
  • the inclined roadway horizontal well 200 is formed by drilling and excavating with a "China-Germany customized version" large-diameter transverse hard rock pipe jacking shield machine.
  • the specific process is as follows: -1300 meters from the bottom of the well, starting from 300 meters upwards, using a second large-diameter transverse hard rock pipe jacking shield machine customized from Germany, from -1300 to ⁇ -1000 meters (straight through 12 meters) this 300 meters In the vertical space, with a vertical spacing of 4 meters, radial beveled shields are made in six horizontal directions, and a large diameter of 3 meters is used to drive the inclined tunnel and horizontal shaft to a horizontal design depth of 200 meters.
  • the equipment will adapt to the construction of super hard rock with rock hardness of 120MPa ⁇ 411MPa.
  • each inclined horizontal roadway can reach 470 cubic meters to 500 cubic meters.
  • S30 is a wall-protecting track transportation project within 2/3 of the effective space (150 meters) at the end of the horizontal shaft of a radial inclined inclined road, and a permanent repository for high-level radioactive nuclear waste is set up. After the completion of the entire permanent disposal deep well integrated system project, the permanent storage and placement of high-level radioactive glass solidified nuclear waste will reach 210,000 cubic meters.
  • the shaft 100 will be permanently closed and backfilled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种高放射性核废料深井填埋处置结构,包括:竖井(100)以及自竖井(100)的侧壁延伸形成的多个斜巷横井(200),斜巷横井(200)倾斜向下延伸;斜巷横井(200)内设有沿着斜巷横井(200)的轴向延伸的轨道(210),多个高放射性核废料容器(300)通过轨道(210)滑入斜巷横井(200)内。这种具有独创性的高放射性核废料深井填埋处置结构中,多个高放射性核废料金属容器(300)通过轨道(210)渐进滑入斜巷横井(200)内,并且多个高放射性核废料金属容器(300)沿着轨道(210)依次渐进排列。相对于传统的竖直向下的深井,这种高放射性核废料深井填埋处置结构通过斜巷横井(200)来储存高放射性核废料金属容器(300),从而可以提供超大容积来储存高放射性核废料,还公开了一种上述的高放射性核废料深井填埋处置方法。

Description

高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法 技术领域
本发明涉及高危防辐射领域,特别是涉及应国际原子能机构所要求的一种高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法。
背景技术
随着全球核能利用及核工业的快速发展,每年产生大量的高放射性核废料。
按放射性的强弱,高放射性核废料包括低放射性高放射性核废料、中放射性高放射性核废料和高放射性核废料。其中,中、低放射性高放射性核废料主要指核电站在建设生产过程中所造成的设备污染、设备检测在其运行时的水化系统、交换树脂、废水废液和工具、手套等劳保用品。而高放射性核废料则是指从核电站反应堆芯中置换出来且燃烧后的废核燃料棒,该燃烧后的废核燃料棒仍具有极强烈的放射性,其半衰期长达数千年、数万年甚至几十万年。
国际原子能机构对于高放射性核废料的处理和处置有严格的要求,对于中、低放射性高放射性核废料采取稀释、浓缩和回收的方式,可回收核原料约93%,从而将核辐射损伤降低到最小。对高放射性核废料,只能做永久性深埋处置,该永久性处置是指:经深埋、处置、封存后的高放射性核废料确保数万年甚至几十万年不泄露。
技术问题
永久性深埋处置必须要解决两个问题:
第一,要绝对安全的将高放射性核废料永久性的封闭在一个容器里,并保证数万年内不泄露不放射;
第二,要寻找一处安全、永久存放高放射性核废料的地点。
依据国际原子能机构“深埋于地表以下500 m~1 000 m 的稳定地质体中”这一强制性规定,常规的高放射性核废料填埋方法是先将高放射性核废料制成玻璃化的固体,装入可屏蔽辐射的金属罐中,再将装有高放射性核废料的金属罐深埋于建在地下稳定岩石层里的高放射性核废料处置库中。
目前全世界仅有的高放射高放射性核废料处置库为地表下废置矿井(如芬兰的翁卡洛乏燃料永久掩埋库,其位于地表以下400米深处),但由于高放射性核废料封存时间长达数万年,地底环境很可能会在此期间发生变化,为了保证装有高放射性核废料金属容器的安全,必须避免该高放射性核废料金属容器在深井内产生径向重叠、同时大幅提升深井的容量。
一直以来,由于垂直深井钻掘技术的制约、钻孔直径小于50厘米,从而限制了高放射性核废料地质深埋技术的发展和推进。造成全球各国高放射性核废料深埋处置均处于停滞状况。
传统的核废料处理库为竖直向下的深井,由于核废料封存时间长达数万年,地底环境很可能会在此期间发生变化,为了保证装有核废料的金属罐的安全,应当避免装有核废料的金属罐在深井的径向重叠,这就大幅降低了深井的容量。
技术解决方案
基于此,为全球寻找一种行之有效的超深垂直竖井施工技术和方法,有效利用核能,就有必要创造和发明一种可以大量容纳核废料的高放射性核废料深井填埋处置结构,以及形成该高放射性核废料深井填埋处置结构的高放射性核废料深井填埋处置方法。
一种高放射性核废料深井填埋处置结构,包括:竖井以及自所述竖井的侧壁沿着所述竖井的径向向四周延伸形成的多个斜巷横井,所述斜巷横井倾斜向下延伸,并且所述斜巷横井的轴向与所述竖井的轴向的夹角为30°~85°;
所述斜巷横井内设有沿着所述斜巷横井的轴向延伸的轨道,多个高放射性核废料容器通过所述轨道滑入所述斜巷横井内,并且多个所述高放射性核废料容器沿着所述轨道依次排列,所述斜巷横井内的剩余空间填满防辐射填充物,从而使得所述防辐射填充物将所述高放射性核废料容器整体包裹起来。
一种上述的高放射性核废料深井填埋处置方法,包括如下步骤:
在地表垂直向下盾构钻掘形成竖井;
在所述竖井的侧壁沿着所述竖井的径向向四周钻掘形成多个斜巷横井,所述斜巷横井倾斜向下延伸,并且所述斜巷横井的轴向与所述竖井的轴向的夹角为30°~85°;
向所述斜巷横井内填充防辐射填充物,接着在所述斜巷横井内设置沿着所述斜巷横井的轴向延伸的轨道;
将多个高放射性核废料容器通过所述轨道滑入所述斜巷横井内,接着用所述防辐射填充物将所述斜巷横井的整体封堵,从而使得所述防辐射填充物将所述高放射性核废料容器整体包裹起来;以及
用所述防辐射填充物将所述斜巷横井的空间缝隙整体封堵,最终将所述竖井进行永久性封闭。
有益效果
这种具有独创性的高放射性核废料深井填埋处置结构包括竖井以及自竖井的侧壁沿着竖井的径向延伸形成的多个横井,横井内设有沿着横井的轴向延伸的轨道,多个高放射性核废料金属容器通过轨道渐进滑入横井内,并且多个高放射性核废料金属容器沿着轨道依次渐进排列。相对于传统的竖直向下的深井,这种高放射性核废料深井填埋处置结构通过斜巷横井来储存高放射性核废料金属容器,从而可以提供超大容积来储存高放射性核废料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一实施方式的高放射性核废料深井填埋处置结构的剖面结构示意图。
图2为如图1所示的高放射性核废料深井填埋处置结构的俯视图。
图3为如图1所示的高放射性核废料深井填埋处置结构的斜巷横井的剖面结构示意图。
图4为如图1所示的高放射性核废料深井填埋处置结构的高放射性核废料容器的结构示意图。
本发明的实施方式
为了便于理解本发明,下面将结合具体实施方式对本发明进行更全面的描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1和图2所示的一实施方式的高放射性核废料深井填埋处置结构,包括:竖井100以及自竖井100的侧壁沿着竖井100的径向向四周延伸形成的多个斜巷横井200,斜巷横井200倾斜向下延伸,并且斜巷横井200的轴向与竖井100的轴向的夹角为30°~85°。
具体来说,竖井100为超深(-1000米以上)垂直竖井。
结合图3,斜巷横井200内设有沿着斜巷横井200的轴向延伸的轨道210,多个高放射性核废料容器300通过轨道210滑入斜巷横井200内,并且多个高放射性核废料容器300沿着轨道210依次排列,斜巷横井200内的剩余空间填满防辐射填充物,从而使得防辐射填充物将高放射性核废料容器300整体包裹起来。
斜巷横井200倾斜向下设置,从而便于高放射性核废料容器300沿着轨道210渐进滑落。
这种具有独创性的高放射性核废料深井填埋处置结构包括竖井100以及自竖井100的侧壁沿着竖井100的径向延伸形成的多个横井200,横井200内设有沿着横井200的轴向延伸的轨道210,多个高放射性核废料金属容器300通过轨道210渐进滑入横井200内,并且多个高放射性核废料金属容器300沿着轨道210依次渐进排列。相对于传统的竖直向下的深井,这种高放射性核废料深井填埋处置结构通过斜巷横井200来储存高放射性核废料金属容器300,从而可以提供超大容积来储存高放射性核废料。
优选的,竖井100的深度为1000m~2000m,每条斜巷横井200的整体深度距离地面超过600m,斜巷横井200沿着竖直方向分层设置,每层设置有3个~12个斜巷横井200,相邻的两层斜巷横井200在竖直方向上的距离为3m~8m。
更优选的,竖井100的深度为1300m~2000m,每条斜巷横井200的整体深度距离地面超过1000m。
斜巷横井200的整体深度距离地面超过600m,是指斜巷横井200自开口到底端均处于地下600m深度以上,以满足国际原子能机构“深埋于地表以下500 m~1 000 m 的稳定地质体中”这一强制性规定。
结合附图,本实施方式中,每层设置有6个斜巷横井200且6个斜巷横井200对称设置,相邻的两层斜巷横井200在竖直方向上的距离为4m。
也就是说,每层自竖井100的侧壁沿着竖井100的径向向四周的六个方向延伸形成的六个斜巷横井200。
具体来说,本实施方式中,每层的6个斜巷横井200在水平面形成6个投影,6个投影放射性分布,并且相邻的两个投影的夹角为60°。
具体来说,本实施方式中,相邻两层的12个斜巷横井300在水平面形成12个投影,相邻的两个投影的夹角为30°。
优选的,斜巷横井200的轴向与竖井100的轴向的夹角为60°~75°。斜巷横井200倾斜向下设置,从而便于高放射性核废料容器300沿着轨道210渐进滑落。
结合图4,高放射性核废料容器300内封装有需要处理的核废料,一般来说,核废料为固化玻璃体包裹的高放射性废核燃料棒。
本实施方式中,高放射性核废料容器300的外周设有与轨道210匹配的导向结构310。导向结构310和轨道210配合,从而使得高放射性核废料容器300可以沿着轨道210渐进滑入斜巷横井200的底端。
在一个优选的实施例中,高放射性核废料容器300上设有相对设置的第一磁吸件和第二磁吸件,每个斜巷横井200内的相邻的两个高放射性核废料容器300通过第一磁吸件(图中未显示)和第二磁吸件(图中未显示)磁吸连接并固定在一起。
优选的,第一磁吸件和第二磁吸件均为钕铁硼磁铁。钕铁硼磁铁的磁吸力较强,并且具有一定的机械强度,便于磁吸定位。
通过第一磁吸件和第二磁吸件的磁吸连接,可以实现相邻的两个高放射性核废料容器300之间的定位。
在一个优选的实施例中,斜巷横井200的底端设有磁吸定位件(图中未显示),磁吸定位件设置在轨道210远离斜巷横井200的开口的一端。最靠近斜巷横井200的底端的高放射性核废料容器300的第一磁吸件与磁吸定位件磁吸连接,从而实现最靠近斜巷横井200的底端的高放射性核废料容器300的靶向定位。
具体来说,本实施方式的高放射性核废料深井填埋处置结构包括:大口径(Φ9m~Φ12m)垂直竖井100以及竖井100侧壁沿着竖井100径向、向六个方向延伸形成的多条斜巷横井200。
斜巷横井200内设有沿斜巷横井200延伸的轴向延伸轨道210,轨道长达200m。
多个高放射性核废料金属处置容器300通过轨道210依次滑入斜巷横井200内,并且多个高放射性核废料金属处置容器300沿着轨道210有序排列,各容器之间以钕铁硼磁吸件进行紧密相连。
相对于传统小口径竖直向下的深井,这种高放射性核废料深井填埋处置结构极大提高了竖井100口径(可达12m)并通过地表±1000m以下、300m深的有效布井空间、以斜巷横井200错层排列的超大容积来储存高放射性核废料,从而,在全世界范围内,从根本上彻底解决了高放射性核废料永久处置的技术瓶颈,以此突破了困扰世界的世纪性难题。
举例来说,该项超大口径、深度为1300m的高放射性核废料永久深埋处置井系统工程,以单个斜巷横井的有效容积率为471m³为例,200m深的斜巷横井一层可铺设6个,以有效使用空间面积为150m计算,纵深300m可布75层,总体有效容积空间将达到21万m³。
结合本实施方式中,防辐射填充物将高放射性核废料容器300整体包裹起来。这样的设置一方面可以避免高放射性核废料容器300内的核废料发出的射线泄露,另一方面防辐射填充物还可以起到缓冲的作用。
优选的,防辐射填充物的材料为骨架颗粒、干燥剂粉末和中子吸收剂粉末形成的混合物,骨架颗粒的粒径大于干燥剂粉末的粒径,并且骨架颗粒的粒径大于中子吸收剂粉末的粒径。
骨架颗粒的粒径大于干燥剂粉末的粒径,并且骨架颗粒的粒径大于中子吸收剂粉末的粒径,一方面使得包裹在高放射性核废料容器300外的防辐射填充物在受到挤压时通过不同粒径的骨架颗粒、干燥剂粉末和中子吸收剂粉末的组合使得防辐射填充物更容易发生形变,另一方面不同粒径的骨架颗粒、干燥剂粉末和中子吸收剂粉末的组合也使得防辐射填充物可以对高放射性核废料容器300形成较好的保护,避免高放射性核废料容器300破碎。
具体来说,骨架颗粒起到支撑骨架的作用,而干燥剂粉末和中子吸收剂粉末填充在骨架颗粒之间的缝隙内,起到类似润滑的作用。
干燥剂粉末还起到吸湿的作用,可以避免在万年处置期内的微量水蒸气渗入到高放射性核废料金属容器300内。这样一方面防止水分对容器造成腐蚀,另一方面,避免水分吸收辐射而膨胀成水蒸气在密闭空间下导致的容器膨胀或爆炸。
中子吸收剂粉末可以吸收从高放射性核废料容器300内泄露出来的少量的辐射,减少对岩石、地质和土壤的辐射污染,起到更好的防护作用。
优选的,骨架颗粒、干燥剂粉末和中子吸收剂粉末的体积比为4~12:1~9:11~35。
优选的,骨架颗粒的粒径为1mm~10mm,干燥剂粉末的粒径为23μm ~ 75 μm,中子吸收剂粉末的粒径为1μm ~ 100 μm。
骨架颗粒的粒径为1mm~10mm可以起到合理的支撑作用,干燥剂粉末的粒径为23μm ~ 75 μm,中子吸收剂粉末的粒径为1μm ~ 100 μm,从而使得两种粉末可以填充在骨架颗粒的缝隙内,从而可以起到类似润滑的作用。
更优选的,骨架颗粒的粒径为1mm~3mm。
优选的,骨架颗粒为陶粒和/或泡沫金属颗粒。
为了提高高放射性核废料容器300的密度,避免各组份因重力不同在传输过程中导致的分层现象,骨架颗粒优选为多孔颗粒,从而使得干燥剂粉末和中子吸收剂粉末可以填充于多孔颗粒的表面孔隙内,并且填充于多孔颗粒间的间隙,使填充更密实,支撑力更大,并且保证骨架颗粒在运输中仍能均匀分布,避免分层。
优选的,骨架颗粒为陶粒。具体来说,陶粒可以为稀土陶粒、凹凸棒土陶粒、高岭土陶粒、蒙脱石陶粒、蛭石陶粒、伊利石陶粒和水铝英石陶粒中的一种、两种或三种以上。
特别的,凹凸棒土陶粒具有独特的分散、耐高温、抗盐碱等良好的胶体性质等综合性能,且强度最高,其隔热性、吸水性、透气性和稳定性也最好。
优选的,中子吸收剂粉末选自铅粉、钢铁粉、二氧化硅粉、硼砂、碳化硼粉末、硼钢粉末、无定型碳粉末、碳纳米管、碳纳米笼和石墨粉中的一种、两种或三种以上。
优选的,干燥剂粉末为中性干燥剂粉末。中性干燥剂粉末可以避免干燥剂粉末吸收水分后产生酸性或碱性,从而对封装体或金属外壳造成腐蚀。
中性干燥剂粉末选自无水氯化钙粉末、分子筛粉末、硅胶粉末、凹凸棒土粉末、硫酸钙粉末、氧化铝粉末和硫酸钠粉末中的一种、两种或三种以上。
综合考虑成本、吸水能力、抗高温稳定性和抗辐射能力,中性干燥剂粉末以凹凸棒土粉为最优选。
在一个具体的实施例中,按照体积份数,高放射性核废料容器300的材料为:4份 ~ 12份的高岭土陶粒、1份 ~ 9份的凹凸棒土粉、6份 ~ 14份的铅粉、4份 ~ 12份的二氧化硅粉和1份 ~ 9份的石墨粉。
在一个特别优选的实施例中,按照体积份数,高放射性核废料容器300的材料为:7份 ~ 9份的高岭土陶粒、3份 ~ 7份的凹凸棒土粉、7份 ~ 9份的铅粉、6份 ~ 10份的二氧化硅粉和3份 ~ 7份的石墨粉。
本发明还公开了形成上述高放射性核废料深井填埋处置结构的高放射性核废料深井填埋处置方法,包括如下步骤:
S10、自地表±0始,垂直向下大口径(Φ9米-Φ12米)盾构钻掘形成超深(1000米以上)竖井。
S10采用德国原产大口径硬岩纵深旋铣竖井盾构机。
具体来说,用“2019中德联合研发”特种定制版大口径硬岩纵深旋铣竖井盾构机在挖掘施工中针对硬岩、超硬岩(岩石硬度在120MPa~411MPa区间的超级硬岩)进行纵深旋铣钻掘施工。
具体过程如下:从地表±0进行工作面整理,当至岩石层后,再往下纵向钻掘1300米。在掘进过程中,主设备会经历70MPa~360MPa岩石硬度的磨砺,其中,根据硬岩的硬度、会不断调整设备和更换与岩石硬度相应的钻头,以保障掘进顺利进行。竖井的主井工程在整个施工期中大约需要20~36个月的掘进施工过程。当这个1300米垂直竖井的主井工程完工后,移出大口径硬岩纵深旋铣竖井盾构机主机和配套设备,一期工程结束。
S20、在竖井100的侧壁沿着竖井100的径向向四周钻掘形成多个斜巷横井,斜巷横井200倾斜向下延伸,并且斜巷横井200的轴向与竖井100的轴向的夹角为30°~85°。
S20采用德国原产大口径横向硬岩顶管盾构机。
具体来说,斜巷横井200通过“中德定制版”大口径横向硬岩顶管盾构机钻掘形成。
具体过程如下:-1300米井底起始向上300米,采用从德国定制的第二套大口径横向硬岩顶管盾构机,自-1300至~-1000米(直经12米)这300米的垂直空间内、以4米的垂直间距,向水平六个方位做放射状斜角盾构,以3米的大口径掘进斜巷横井巷道,直至200米横向设计深度。此项施工过程中、设备会适应岩石硬度120MPa~411MPa超级硬岩施工。
S30、向斜巷横井200内填充防辐射填充物,接着在斜巷横井200内设置沿着斜巷横井200的轴向延伸的轨道,将多个高放射性核废料容器通过轨道210滑入斜巷横井200内,接着用防辐射填充物将斜巷横井200的整体封堵,从而使得防辐射填充物将高放射性核废料容器300整体包裹起来,用防辐射填充物将斜巷横井200的空间缝隙整体封堵,最终将竖井100进行永久性封闭。
S10和S20之后,可以使每个斜角水平巷道的有效容积达到470立方米~500立方米。
S30为在放射状斜角斜巷横井尾端2/3有效空间(150米)内做护壁轨道输送工程,设立高放射性核废料永久处置库体。在整个永久处置深井综合系统工程完工后,可永久贮藏安置高放射性玻璃固化体核废料达到21万立方米。
S50、将竖井100封堵。
将竖井100永久封库回填。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种高放射性核废料深井填埋处置结构,其特征在于,包括:竖井以及自所述竖井的侧壁沿着所述竖井的径向向四周延伸形成的多个斜巷横井,所述斜巷横井倾斜向下延伸,并且所述斜巷横井的轴向与所述竖井的轴向的夹角为30°~85°;
    所述斜巷横井内设有沿着所述斜巷横井的轴向延伸的轨道,多个高放射性核废料容器通过所述轨道滑入所述斜巷横井内,并且多个所述高放射性核废料容器沿着所述轨道依次排列,所述斜巷横井内的剩余空间填满防辐射填充物,从而使得所述防辐射填充物将所述高放射性核废料容器整体包裹起来。
  2. 根据权利要求1所述的高放射性核废料深井填埋处置结构,其特征在于,所述竖井的深度为1000m~2000m,每条所述斜巷横井的整体深度距离地面超过600m,所述斜巷横井沿着竖直方向分层设置,每层设置有3个~12个所述斜巷横井,相邻的两层所述斜巷横井在竖直方向上的距离为3m~8m。
  3. 根据权利要求2所述的高放射性核废料深井填埋处置结构,其特征在于,每层设置有6个所述斜巷横井且6个所述斜巷横井对称设置,相邻的两层所述斜巷横井在竖直方向上的距离为4m;
    相邻的两层所述斜巷横井在水平面上形成12个投影,12个所述投影放射性分布,并且相邻的两个投影之间夹角为30°。
  4. 根据权利要求1所述的高放射性核废料深井填埋处置结构,其特征在于,所述斜巷横井的轴向与所述竖井的轴向的夹角为60°~75°。
  5. 根据权利要求1所述的高放射性核废料深井填埋处置结构,其特征在于,所述高放射性核废料容器的外周设有与所述轨道匹配的导向结构。
  6. 根据权利要求1所述的高放射性核废料深井填埋处置结构,其特征在于,所述防辐射填充物的材料为骨架颗粒、干燥剂粉末和中子吸收剂粉末形成的混合物,所述骨架颗粒的粒径大于所述干燥剂粉末的粒径,并且所述骨架颗粒的粒径大于所述中子吸收剂粉末的粒径。
  7. 根据权利要求1~6中任意一项所述的高放射性核废料深井填埋处置结构,其特征在于,所述高放射性核废料容器上设有相对设置的第一磁吸件和第二磁吸件,每个所述斜巷横井内的相邻的两个所述高放射性核废料容器通过所述第一磁吸件和所述第二磁吸件磁吸连接并固定在一起。
  8. 根据权利要求7所述的高放射性核废料深井填埋处置结构,其特征在于,所述斜巷横井的底端设有磁吸定位件,所述磁吸定位件设置在所述轨道远离所述斜巷横井的开口的一端;最靠近所述斜巷横井的底端的所述高放射性核废料容器的第一磁吸件与所述磁吸定位件磁吸连接,从而实现最靠近所述斜巷横井的底端的所述高放射性核废料容器的靶向定位。
  9. 一种如权利要求1~8中任意一项所述的高放射性核废料深井填埋处置方法,其特征在于,包括如下步骤:
    在地表垂直向下盾构钻掘形成竖井;
    在所述竖井的侧壁沿着所述竖井的径向向四周钻掘形成多个斜巷横井,所述斜巷横井倾斜向下延伸,并且所述斜巷横井的轴向与所述竖井的轴向的夹角为30°~85°;
    向所述斜巷横井内填充防辐射填充物,接着在所述斜巷横井内设置沿着所述斜巷横井的轴向延伸的轨道;
    将多个高放射性核废料容器通过所述轨道滑入所述斜巷横井内,接着用所述防辐射填充物将所述斜巷横井的整体封堵,从而使得所述防辐射填充物将所述高放射性核废料容器整体包裹起来;以及
    用所述防辐射填充物将所述斜巷横井的空间缝隙整体封堵,最终将所述竖井进行永久性封闭。
  10. 根据权利要求9所述的高放射性核废料深井填埋处置方法,其特征在于,所述竖井通过硬岩纵深旋铣竖井盾构机钻掘形成,所述斜巷横井通过横向硬岩顶管盾构机钻掘形成。
PCT/CN2020/085159 2020-03-18 2020-04-16 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法 WO2021184474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010190635.8A CN111430058B (zh) 2020-03-18 2020-03-18 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法
CN202010190635.8 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021184474A1 true WO2021184474A1 (zh) 2021-09-23

Family

ID=71549554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085159 WO2021184474A1 (zh) 2020-03-18 2020-04-16 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法

Country Status (2)

Country Link
CN (1) CN111430058B (zh)
WO (1) WO2021184474A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105834A (zh) * 1985-08-01 1987-01-28 西屋电气公司 核废料封装设施
US5387741A (en) * 1993-07-30 1995-02-07 Shuttle; Anthony J. Method and apparatus for subterranean containment of hazardous waste material
JPH10332892A (ja) * 1997-05-30 1998-12-18 Kawasaki Heavy Ind Ltd 放射性物質の貯蔵施設
CN101562057A (zh) * 2004-03-18 2009-10-21 霍尔泰克国际股份有限公司 用于存储高放废物的系统和方法
CN103718249A (zh) * 2012-07-17 2014-04-09 山本基础工业股份有限公司 废弃物掩埋工法和废弃物收容器
CN204792013U (zh) * 2015-06-08 2015-11-18 中电投远达环保工程有限公司 处置聚乙烯高整体容器的方形井式处置库
US20190295735A1 (en) * 2018-03-26 2019-09-26 Henry Crichlow Capsule system for deep geologic disposal of nuclear waste
CN110867269A (zh) * 2019-11-27 2020-03-06 中广核工程有限公司 一种乏燃料干式贮存立式贮存模块

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961594A (ja) * 1995-08-28 1997-03-07 Ishikawajima Harima Heavy Ind Co Ltd 放射性廃棄物保管処分施設及び該施設を用いた放射性廃棄物の地層処分方法
SE528104C2 (sv) * 2004-11-24 2006-09-05 Oyster Internat Nv C O H B Man Kärnkraftanläggning och sätt att uppföra en sådan
JP2010066112A (ja) * 2008-09-10 2010-03-25 Japan Zaipetsukusu Kk Ri廃棄物の沿岸海底下処分方法と処分設備
CN202274792U (zh) * 2011-06-22 2012-06-13 栾龙 一种蓄热型沼气利用装置
CN102412000B (zh) * 2011-10-18 2013-08-07 清华大学 一种核电站乏燃料贮存竖井系统
CN207264796U (zh) * 2017-08-22 2018-04-20 中广核工程有限公司 核电站低中放废物岩洞处置隧洞
CN108342620A (zh) * 2018-01-26 2018-07-31 安徽省鸣新材料科技有限公司 一种用于屏蔽中子和电子的泡沫铝
CN110005453B (zh) * 2019-04-26 2020-04-28 中铁工程装备集团有限公司 大型地下乏燃料处置库机械化建造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105834A (zh) * 1985-08-01 1987-01-28 西屋电气公司 核废料封装设施
US5387741A (en) * 1993-07-30 1995-02-07 Shuttle; Anthony J. Method and apparatus for subterranean containment of hazardous waste material
JPH10332892A (ja) * 1997-05-30 1998-12-18 Kawasaki Heavy Ind Ltd 放射性物質の貯蔵施設
CN101562057A (zh) * 2004-03-18 2009-10-21 霍尔泰克国际股份有限公司 用于存储高放废物的系统和方法
CN103718249A (zh) * 2012-07-17 2014-04-09 山本基础工业股份有限公司 废弃物掩埋工法和废弃物收容器
CN204792013U (zh) * 2015-06-08 2015-11-18 中电投远达环保工程有限公司 处置聚乙烯高整体容器的方形井式处置库
US20190295735A1 (en) * 2018-03-26 2019-09-26 Henry Crichlow Capsule system for deep geologic disposal of nuclear waste
CN110867269A (zh) * 2019-11-27 2020-03-06 中广核工程有限公司 一种乏燃料干式贮存立式贮存模块

Also Published As

Publication number Publication date
CN111430058B (zh) 2021-06-08
CN111430058A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
Lee et al. Concept of a Korean reference disposal system for spent fuels
Pusch et al. The concept of highly radioactive waste (HLW) disposal in very deep boreholes in a new perspective
Kochkin et al. Problems and perspectives of borehole disposal of radioactive waste
WO2019184928A1 (zh) 用于地下中子能电站的防核素迁移屏障体及其施工方法
US11183313B2 (en) Systems and methods for nuclear waste disposal using grids
CN107052021B (zh) 一种高放废物地质处置库人工屏障缓冲材料的安置方法
WO2021184474A1 (zh) 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法
JP5740456B2 (ja) 放射性廃棄物の地下貯蔵施設およびその構築方法
Hardin et al. Alternative Concepts for Direct Disposal of Dual-Purpose Canisters.
CN202187735U (zh) 钻孔桩捞渣筒钻
WO2022177862A1 (en) Hazardous waste canister systems and methods
Matteo et al. Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF
EP1517337A1 (en) Method for disposing of power station facility directly below the original location
JP4253783B2 (ja) 地層処分施設とその施工法
CN110005453A (zh) 大型地下乏燃料处置库机械化建造方法
CN211906980U (zh) 高放射性核废料容器
Fries et al. The Swiss concept for the disposal of spent fuel and vitrified HLW
WO2023056052A2 (en) Radioactive waste canister systems and methods
US11508489B2 (en) Geologic disposal of uranium waste products
CN115853583B (zh) 一种废弃矿井巷道改造与利用方法
Sandstedt et al. Storage of nuclear waste in long boreholes
Kujundžić et al. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL.
Mei et al. Field Test Study of the Artificial Ground-Freezing Method Subsurface Excavation Construction of Watered Sandy Stratum in Collapsible Loess Area
Lee et al. Development of the Korean Reference vertical disposal system concept for spent fuels
Kočová et al. The Issue of Underground Depositing of High Radioactive Waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20926241

Country of ref document: EP

Kind code of ref document: A1