WO2021184371A1 - 一种接收装置、发射装置及信号处理方法 - Google Patents

一种接收装置、发射装置及信号处理方法 Download PDF

Info

Publication number
WO2021184371A1
WO2021184371A1 PCT/CN2020/080479 CN2020080479W WO2021184371A1 WO 2021184371 A1 WO2021184371 A1 WO 2021184371A1 CN 2020080479 W CN2020080479 W CN 2020080479W WO 2021184371 A1 WO2021184371 A1 WO 2021184371A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
signal processing
processing module
frequency signal
analog signal
Prior art date
Application number
PCT/CN2020/080479
Other languages
English (en)
French (fr)
Inventor
袁书田
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20925020.8A priority Critical patent/EP4117187A4/en
Priority to PCT/CN2020/080479 priority patent/WO2021184371A1/zh
Priority to CN202080004949.2A priority patent/CN112689961A/zh
Publication of WO2021184371A1 publication Critical patent/WO2021184371A1/zh
Priority to US17/948,330 priority patent/US20230045810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a receiving device, a transmitting device, and a signal processing method, and is particularly suitable for the communication field, such as the cockpit domain.
  • the commonly used radio frequency receiver structures mainly include superheterodyne receivers and zero-IF receivers.
  • the zero-IF receiver has been widely used due to its outstanding performance advantages (for example, simple structure, low power consumption, and low cost). Under normal circumstances, the zero-IF receiver can work in the wireless communication spectrum below 6GHz. However, when the communication frequency band of the zero-IF receiver is extended to the millimeter wave band (for example, 26GHz, 28GHz, 60GHz, etc.), since the communication frequency on the millimeter wave band is very high, when the zero-IF receiver performs frequency conversion processing to obtain the baseband signal At this time, it is easy to appear that the way the baseband processor performs filter processing cannot meet the requirements of anti-interference and noise suppression, which undoubtedly reduces the working performance of the zero-IF transceiver.
  • the millimeter wave band for example, 26GHz, 28GHz, 60GHz, etc.
  • the structure of the transceiver is often too complicated and the cost is too high. Therefore, how to propose a transceiver with a simple structure to ensure the working performance of multiple different frequency bands is an urgent technical problem to be solved.
  • the present application provides a receiving device, a transmitting device, and a signal processing method. Because the device adopts a multiplexed structure, the structure is simple and light, and can ensure the working performance of multiple different working frequency bands.
  • an embodiment of the present application provides a receiving device that includes at least two first radio frequency signal processing modules and a first analog signal processing module; the at least two first radio frequency signal processing modules pass through at least one first radio frequency signal processing module.
  • a switch circuit is connected to the first analog signal processing module; wherein, the first radio frequency signal processing module is used to obtain a radio frequency signal to obtain a first analog signal; the first analog signal processing module is used to obtain a first analog signal according to the The first analog signal is used to obtain the first baseband signal.
  • At least two first radio frequency signal processing modules can process radio frequency signals in different frequency ranges, which can reduce the complexity and cost of the receiving device. It is understandable that since the receiving device can receive radio frequency signals in different frequency ranges through at least two first radio frequency signal processing modules, the anti-interference performance of the receiving device can be improved. In addition, since the first analog signal processing module can be reused, the design difficulty in the analog/digital signal conversion process is reduced, and the development burden of the subsequent digital signal processing part is reduced.
  • the at least two first radio frequency signal processing modules include a second radio frequency signal processing module and a third radio frequency signal processing module, and the second radio frequency signal processing module is connected to the at least one first radio frequency signal processing module.
  • the first port of the switch circuit is connected, and the third radio frequency signal processing module is connected to the second port of the at least one first switch circuit; wherein, the second radio frequency signal processing module is used to obtain the first radio frequency signal, so The third radio frequency signal processing module is used to obtain a second radio frequency signal, and the first radio frequency signal and the second radio frequency signal belong to different frequency ranges.
  • the second radio frequency signal processing module and the third radio frequency signal processing module can process radio frequency signals in different frequency ranges under the switching of the first switch, which can reduce the receiving device Complexity and cost. It is understandable that since the receiving device can receive radio frequency signals in different frequency ranges through at least two first radio frequency signal processing modules, the anti-interference performance of the receiving device can be improved. In addition, since the first analog signal processing module can be reused, the design difficulty in the analog/digital signal conversion process is reduced, and the development burden of the subsequent digital signal processing part is reduced.
  • the first port of the at least one first switch circuit is in a connected state; the second radio frequency signal processing module is configured to obtain the first radio frequency signal and generate a first intermediate frequency analog signal Wherein, the first intermediate frequency analog signal is obtained by mixing the first radio frequency signal; the first analog signal processing module is configured to generate the first baseband signal according to the first intermediate frequency analog signal .
  • the second radio frequency signal processing module since the second radio frequency signal processing module is connected to the first port of at least one first switch circuit, the second radio frequency signal can be passed through when the first port of the at least one first switch circuit is in the connected state.
  • the processing module processes the first radio frequency signal, and generates the first baseband signal through the first analog signal processing module.
  • the receiving device can be made to work in the high-frequency communication frequency band.
  • the second port of the at least one first switch circuit is in a connected state; the third radio frequency signal processing module is configured to obtain the second radio frequency signal and generate a first amplified analog signal Wherein, the first amplified analog signal is obtained by amplifying the second radio frequency signal; the first analog signal processing module is configured to generate the first baseband signal according to the first amplified analog signal.
  • the third radio frequency signal processing module since the third radio frequency signal processing module is connected to the second port of the at least one first switch circuit, when the second port of the at least one first switch circuit is in a connected state, the third radio frequency The signal processing module processes the second radio frequency signal, and generates the first baseband signal through the first analog signal processing module. In this implementation manner, by switching the first switch, the receiving device can be made to work in the low-frequency communication frequency band.
  • the second radio frequency signal processing module includes a first low noise amplifier and a first down-conversion mixer; the third radio frequency signal processing module includes a second low noise amplifier; and the first An analog signal processing module includes a first amplifier and at least two first quadrature I/Q processing circuits; wherein the first I processing circuit includes a second down-conversion mixer, a first variable gain amplifier, a first low
  • the first Q-channel processing circuit includes a third down-conversion mixer, a second variable gain amplifier, a second low-pass filter and a third amplifier.
  • the device further includes at least one first antenna, and the at least one first antenna is connected to at least one of the second radio frequency signal processing module or the third radio frequency signal processing module .
  • an embodiment of the present application provides a signal processing method, which is applied to a receiving device, the device includes at least two first radio frequency signal processing modules and a first analog signal processing module; A radio frequency signal processing module is connected to the first analog signal processing module through at least one first switch circuit; the method includes: acquiring a radio frequency signal through the first radio frequency signal processing module to obtain a first analog signal; The first analog signal processing module obtains the first baseband signal according to the first analog signal.
  • At least two first radio frequency signal processing modules can process radio frequency signals in different frequency ranges, which can reduce the complexity and cost of the receiving device.
  • the at least two radio frequency signal processing modules include a second radio frequency signal processing module, and the second radio frequency signal processing module is connected to a first port of the at least one first switch circuit;
  • the first port of the at least one first switch circuit is in a connected state;
  • the obtaining a radio frequency signal through the first radio frequency signal processing module to obtain the first analog signal includes: acquiring the first analog signal through the second radio frequency signal processing module A first radio frequency signal and generating a first intermediate frequency analog signal; wherein, the first intermediate frequency analog signal is obtained by mixing the first radio frequency signal; the first analog signal processing module is used according to the first analog signal
  • An analog signal to obtain the first baseband signal includes: generating the first baseband signal according to the first intermediate frequency analog signal through the first analog signal processing module.
  • the second radio frequency signal processing module since the second radio frequency signal processing module is connected to the first port of at least one first switch circuit, the second radio frequency signal can be passed through when the first port of the at least one first switch circuit is in the connected state.
  • the processing module processes the first radio frequency signal, and generates the first baseband signal through the first analog signal processing module. In this implementation manner, by switching the first switch, the receiving device can realize the processing of high-frequency radio frequency signals.
  • the at least two radio frequency signal processing modules include a third radio frequency signal processing module, and the third radio frequency signal processing module is connected to the second port of the at least one first switch circuit;
  • the second port of the at least one first switch circuit is in a connected state;
  • the obtaining the radio frequency signal through the first radio frequency signal processing module to obtain the first analog signal includes: acquiring the radio frequency signal through the third radio frequency signal processing module
  • the second radio frequency signal and the first amplified analog signal are generated; wherein, the first amplified analog signal is obtained by amplifying the second radio frequency signal; the first analog signal processing module is used according to the first
  • the analog signal to obtain the first baseband signal includes: generating the first baseband signal according to the first amplified analog signal by the first analog signal processing module.
  • the third radio frequency signal processing module since the third radio frequency signal processing module is connected to the second port of the at least one first switch circuit, when the second port of the at least one first switch circuit is in a connected state, the third radio frequency The signal processing module processes the second radio frequency signal, and generates the first baseband signal through the first analog signal processing module. In this implementation manner, by switching the first switch, the receiving device can realize processing of low-frequency radio frequency signals.
  • an embodiment of the present application provides a transmitting device, which includes at least two fourth radio frequency signal processing modules and a second analog signal processing module; the at least two fourth radio frequency signal processing modules pass through at least one first
  • the second switch circuit is connected to the second analog signal processing module; wherein, the second analog signal processing module is used for obtaining a second analog signal according to the second baseband signal; the fourth radio frequency signal processing module is used for A radio frequency signal is obtained according to the second analog signal.
  • At least two fourth radio frequency signal processing modules can generate radio frequency signals in different frequency ranges when the transmitting device is switched by the first switch, which can reduce the complexity and cost of the transmitting device. It can be understood that since the transmitting device can transmit radio frequency signals in different frequency ranges through at least two fourth radio frequency signal processing modules, the anti-interference performance of the transmitting device can be improved. In addition, since the second analog signal processing module can be reused, the design difficulty in the analog/digital signal conversion process is reduced.
  • the at least two fourth radio frequency signal processing modules include a fifth radio frequency signal processing module and a sixth radio frequency signal processing module, and the fifth radio frequency signal processing module is connected to the at least one second radio frequency signal processing module.
  • the first port of the switch circuit is connected, and the sixth radio frequency signal processing module is connected to the second port of the at least one second switch circuit; wherein, the fifth radio frequency signal processing module is used to generate a third radio frequency signal, so The sixth radio frequency signal processing module is configured to generate a fourth radio frequency signal, and the third radio frequency signal and the fourth radio frequency signal belong to different frequency ranges.
  • the fifth radio frequency signal processing module and the sixth radio frequency signal processing module can generate radio frequency signals in different frequency ranges under the switching of the first switch, which can reduce the transmission device Complexity and cost. It can be understood that since the transmitting device can transmit radio frequency signals in different frequency ranges through at least two fourth radio frequency signal processing modules, the anti-interference performance of the transmitting device can be improved. In addition, since the second analog signal processing module can be reused, the design difficulty in the analog/digital signal conversion process is reduced.
  • the first port of the at least one second switch circuit is in a connected state; the second analog signal processing module is configured to generate a second intermediate frequency analog signal according to the second baseband signal; The fifth radio frequency signal processing module is configured to obtain the second intermediate frequency analog signal and generate the third radio frequency signal; wherein, the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal .
  • the fifth radio frequency signal processing module since the fifth radio frequency signal processing module is connected to the first port of the at least one second switch circuit, the fifth radio frequency signal can be passed through when the first port of the at least one second switch circuit is in the connected state.
  • the processing module generates a third radio frequency signal.
  • the transmitting device can transmit a high-frequency radio frequency signal.
  • the second port of the at least one second switch circuit is in a connected state; the second analog signal processing module is configured to generate a second intermediate frequency analog signal according to the second baseband signal; The sixth radio frequency signal processing module is configured to obtain the second intermediate frequency analog signal and generate the fourth radio frequency signal; wherein, the fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal of.
  • the sixth radio frequency signal processing module since the sixth radio frequency signal processing module is connected to the second port of the at least one second switch circuit, the sixth radio frequency signal can be passed through when the second port of the at least one second switch circuit is in the connected state.
  • the processing module generates a fourth radio frequency signal.
  • the transmitting device can be made to transmit a low-frequency radio frequency signal.
  • the second analog signal processing module includes at least two second quadrature I/Q processing circuits and a fourth amplifier; wherein the second I processing circuit includes a first up-conversion mixer Amplifier, a third variable gain amplifier, a third low-pass filter and a fifth amplifier; the second Q-channel processing circuit includes a second up-conversion mixer, a fourth variable gain amplifier, a fourth low-pass filter and a Six amplifiers; the fifth radio frequency signal processing module includes a first radio frequency power amplifier and a third up-conversion mixer; the sixth radio frequency signal processing module includes a second radio frequency power amplifier.
  • the device further includes at least one second antenna, and the at least one second antenna is connected to at least one of the fifth radio frequency signal processing module or the sixth radio frequency signal processing module .
  • an embodiment of the present application provides a signal processing method, which is applied to a transmitting device, and the device includes at least two fourth radio frequency signal processing modules and a second analog signal processing module;
  • the radio frequency signal processing module is connected to the second analog signal processing module through at least one second switch circuit; the method includes: obtaining a second analog signal according to the second baseband signal through the second analog signal processing module;
  • the fourth radio frequency signal processing module obtains a radio frequency signal according to the second analog signal.
  • At least two fourth radio frequency signal processing modules can generate radio frequency signals in different frequency ranges when the transmitting device is switched by the first switch, which can reduce the complexity and cost of the transmitting device.
  • the at least two fourth radio frequency signal processing modules include a fifth radio frequency signal processing module, and the fifth radio frequency signal processing module is connected to the first port of the at least one second switch circuit The first port of the at least one second switch circuit is in a connected state; the obtaining a second analog signal according to the second baseband signal by the second analog signal processing module includes: processing by the second analog signal The module generates a second intermediate frequency analog signal according to the second baseband signal; said obtaining a radio frequency signal according to the second analog signal by the fourth radio frequency signal processing module includes: obtaining a radio frequency signal by the fifth radio frequency signal processing module The second intermediate frequency analog signal and a third radio frequency signal are generated; wherein, the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal.
  • the fifth radio frequency signal processing module since the fifth radio frequency signal processing module is connected to the first port of the at least one second switch circuit, the fifth radio frequency signal can be passed through when the first port of the at least one second switch circuit is in the connected state.
  • the processing module generates a third radio frequency signal. In this implementation manner, by switching the first switch, the transmitting device can transmit a high-frequency radio frequency signal.
  • the at least two fourth radio frequency signal processing modules include a sixth radio frequency signal processing module, and the sixth radio frequency signal processing module is connected to a second port of the at least one second switch circuit The second port of the at least one second switch circuit is in a connected state; the obtaining a second analog signal according to the second baseband signal by the second analog signal processing module includes: processing by the second analog signal The module generates a second intermediate frequency analog signal according to the second baseband signal; said obtaining a radio frequency signal according to the second analog signal by the fourth radio frequency signal processing module includes: obtaining a radio frequency signal by the sixth radio frequency signal processing module The second intermediate frequency analog signal and a fourth radio frequency signal are generated; wherein, the fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal.
  • the sixth radio frequency signal processing module since the sixth radio frequency signal processing module is connected to the second port of the at least one second switch circuit, the sixth radio frequency signal can be passed through when the second port of the at least one second switch circuit is in the connected state.
  • the processing module generates a fourth radio frequency signal. In this implementation manner, by switching the first switch, the transmitting device can be made to transmit a low-frequency radio frequency signal.
  • an embodiment of the present application provides a transceiver device, which includes the receiving device according to any one of the above-mentioned first aspect and the transmitting device according to any one of the above-mentioned second aspect.
  • FIG. 1a is a schematic structural diagram of a receiving device provided by an embodiment of this application.
  • FIG. 1b is a schematic structural diagram of another receiving device provided by an embodiment of this application.
  • FIG. 1c is a schematic structural diagram of another receiving device provided by an embodiment of this application.
  • FIG. 1d is a schematic structural diagram of another receiving device according to an embodiment of the application.
  • FIG. 1e is a schematic structural diagram of another receiving device according to an embodiment of the application.
  • FIG. 1f is a schematic diagram of the hardware structure of a receiving device according to an embodiment of the application.
  • FIG. 1g is a schematic flowchart of a signal processing method provided by an embodiment of this application.
  • FIG. 2a is a schematic structural diagram of a transmitting device provided by an embodiment of this application.
  • FIG. 2b is a schematic structural diagram of another transmitting device provided by an embodiment of this application.
  • FIG. 2c is a schematic structural diagram of another transmitting device provided by an embodiment of this application.
  • FIG. 2d is a schematic structural diagram of another transmitting device provided by an embodiment of this application.
  • 2e is a schematic structural diagram of another transmitting device provided by an embodiment of the application.
  • 2f is a schematic diagram of the hardware structure of a transmitting device according to an embodiment of the application.
  • 2g is a schematic flowchart of another signal processing method provided by an embodiment of this application.
  • FIG. 3a is a schematic structural diagram of a transceiver device provided by an embodiment of this application.
  • FIG. 3b is a schematic diagram of the hardware structure of a transceiver device provided by an embodiment of the application.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • FIG. 1a is a schematic structural diagram of a receiving device 10 provided in an embodiment of this application.
  • the device 10 may include at least two first radio frequency signal processing modules 11, at least one first switch circuit 12, and a first analog signal processing module 13; at least two first radio frequency signal processing modules 11 pass at least A first switch circuit 12 is connected to the first analog signal processing module 13. in,
  • the first radio frequency signal processing module 11 is used to obtain radio frequency signals to obtain a first analog signal
  • the first analog signal processing module 13 is configured to obtain a first baseband signal according to the first analog signal.
  • the at least two first radio frequency signal processing modules 11 include a second radio frequency signal processing module 111 and a third radio frequency signal processing module 112.
  • the second radio frequency signal processing module 111 is connected to the first port of at least one first switch circuit 12, and the third radio frequency signal processing module 112 is connected to the second port of at least one first switch circuit 12;
  • the radio frequency signal processing module 111 is used to obtain a first radio frequency signal;
  • the third radio frequency signal processing module 112 is used to obtain a second radio frequency signal; here, the first radio frequency signal and the second radio frequency signal belong to different frequency ranges.
  • the first radio frequency signal belongs to the first range
  • the second radio frequency signal belongs to the second range.
  • the first range is greater than or equal to the first threshold
  • the second range is less than the first threshold.
  • the first range is greater than the first threshold, and the second range is less than or equal to the first threshold.
  • the first threshold may be a specific value set by the receiving device 10 described in this application when it leaves the factory; in an example, the first threshold may be between 2G (the Second Generation), 3G (the In the evolution process of 3rd Generation), 4G (the 4th Generation), and even 5G (the 5th Generation), those skilled in the art obtain experience values through continuous experiments (for example, the experience value may default to a standard value in the radio frequency field).
  • the first threshold may be 2.4 GHz.
  • the first threshold may be 5.8 GHz.
  • the first threshold value can be adjusted, and in different application scenarios, the value of the first threshold value can be different.
  • the at least two first radio frequency signal processing modules may include two first radio frequency signal processing modules (for example, the aforementioned second radio frequency signal processing module and the third radio frequency signal processing module). Module), may also include three first radio frequency signal processing modules, for example, the three first radio frequency signal processing modules include a second radio frequency signal processing module and a third radio frequency signal processing module, and also include in addition to the second radio frequency signal processing module and RF signal processing modules other than the third RF signal processing module.
  • radio frequency signal processing modules When at least two first radio frequency signal processing modules include 3 or more than 3 radio frequency signal processing modules, in one example, 3 or more radio frequency signal processing modules can receive 3 types and more than 3 different types RF signals in the frequency range; in one example, some (for example, 2) RF signal processing modules of 3 or more RF signal processing modules can receive RF signals belonging to the same frequency range, while others The radio frequency signal processing module can receive radio frequency signals belonging to another frequency range, etc., which is not limited here.
  • the receiving device 10 may include a second radio frequency signal processing module 111, at least one first switch circuit 12, and a first analog signal processing module 13.
  • the receiving device 10 can be used to obtain the first baseband signal according to the first radio frequency signal.
  • the first radio frequency signal belongs to the first range.
  • the second radio frequency signal processing module 111 is used to obtain the first radio frequency signal and generate a first intermediate frequency analog signal; wherein the first intermediate frequency analog signal is obtained by mixing the first radio frequency signal; the first analog signal
  • the processing module 13 is configured to generate a first baseband signal according to the first intermediate frequency analog signal.
  • the receiving device 10 may include a third radio frequency signal processing module 112, at least one first switch circuit 12, and a first analog signal processing module 13.
  • the receiving device 10 can be used to obtain the first baseband signal according to the second radio frequency signal.
  • the second radio frequency signal belongs to the second range.
  • the third radio frequency signal processing module 112 is used to obtain the second radio frequency signal and generate a first amplified analog signal; wherein the first amplified analog signal is obtained by amplifying the second radio frequency signal; and the first analog signal processing The module 13 is used to generate a first baseband signal according to the first amplified analog signal.
  • the receiving device 10 can work in different frequency ranges.
  • the "first analog signal processing module" can be reused. This implementation mode can reduce the complexity and cost of the receiving device.
  • the receiving device 10 may include at least two first radio frequency signal processing modules 11 (for example, the at least two first radio frequency signal processing modules may include a second radio frequency signal processing module 111 and a second radio frequency signal processing module 111). Three radio frequency signal processing modules 112), at least one first switch circuit 12 (the first switch circuit includes a first port and a second port), a first analog signal processing module 13, an analog-to-digital conversion module 14, a baseband processor 15, and at least One first antenna 16. Wherein, at least one first antenna is connected to at least one of the second radio frequency signal processing module 111 or the third radio frequency signal processing module 112.
  • the second radio frequency signal processing module 111 can be used to obtain the first radio frequency signal and generate the first radio frequency signal.
  • the first intermediate frequency analog signal is obtained by mixing the first radio frequency signal; at this time, the first analog signal processing module 13 can be used to generate the first baseband signal according to the first intermediate frequency analog signal;
  • the third radio frequency signal processing module 112 can be used to obtain the second radio frequency signal and generate the first amplified analog signal; wherein, the first amplified analog signal is the opposite The second radio frequency signal is amplified; at this time, the first analog signal processing module 13 can be used to generate the first baseband signal according to the first amplified analog signal.
  • the baseband processor 15 when the baseband processor 15 learns that the second radio frequency signal processing module has obtained the first radio frequency signal from the first antenna (for example, the first antenna is a receiving antenna), the baseband processor 15 will connect at least one first switch circuit to the The first port is set to the connected state.
  • the second radio frequency signal processing module 111 is used to obtain the first radio frequency signal from the first antenna and generate the first intermediate frequency analog signal; wherein, the first intermediate frequency analog signal is for the first The radio frequency signal is mixed; the first analog signal processing module 13 is used to generate the first baseband analog signal according to the first intermediate frequency analog signal; the analog-to-digital conversion module 14 is used to generate the first digital baseband signal; the baseband processor 15 , For processing according to the first digital baseband signal; the first local oscillator signal processing module 17 for generating the first local oscillator signal; the second local oscillator signal processing module 18 for generating the second local oscillator signal.
  • the baseband processor 15 when the baseband processor 15 learns that the third radio frequency signal processing module has obtained the second radio frequency signal from the first antenna (for example, the first antenna is a receiving antenna), the baseband processor 15 will connect at least one of the first switch circuit The second port is set to the connected state.
  • the third radio frequency signal processing module 112 is used to obtain the second radio frequency signal from the first antenna and generate the first amplified analog signal; where the first amplified analog signal is the opposite of the second The radio frequency signal is amplified; the first analog signal processing module 13 is used to generate the first analog baseband signal according to the first amplified analog signal; the analog-to-digital conversion module 14 is used to generate the first digital baseband signal; the baseband processor 15, It is used for processing according to the first digital baseband signal; the first local oscillator signal processing module 17 is used to generate the first local oscillator signal; the second local oscillator signal processing module 18 is used to generate the second local oscillator signal.
  • the specific structure of the receiving device 10 may be as shown in FIG. 1f, where:
  • the second radio frequency signal processing module 111 may include a first low noise amplifier (LNA) and a first down-conversion mixer. In practical applications, the second radio frequency signal processing module 111 may include a first bypass circuit in addition to the first low-noise amplifier and the first down-conversion mixer.
  • LNA low noise amplifier
  • first down-conversion mixer may include a first bypass circuit in addition to the first low-noise amplifier and the first down-conversion mixer.
  • the third radio frequency signal processing module 112 may include a second low noise amplifier. In practical applications, the third radio frequency signal processing module 112 may also include a second bypass circuit in addition to the second low-noise amplifier.
  • the bypass circuit is different from the main circuit circuit (for example, the main circuit is a circuit composed of a second low-noise amplifier), which means that it can be switched to another circuit when required by functions without affecting the RF signal processing module. Works normally.
  • the first analog signal processing module 13 may include a first amplifier (Amplifier) and at least two first quadrature I/Q processing circuits; wherein, the first I processing circuit includes a second down-conversion mixer, a first variable A gain amplifier, a first low-pass filter (LPF) and a second amplifier; the first Q-channel processing circuit includes a third down-conversion mixer, a second variable gain amplifier, a second low-pass filter and The third amplifier; in an example, the first amplifier and at least two first quadrature I/Q processing circuits can be independent structures; in an example, the first amplifier and at least two first quadrature I/Q The processing circuits can be packaged together, which is not specifically limited in this application.
  • the first I processing circuit includes a second down-conversion mixer, a first variable A gain amplifier, a first low-pass filter (LPF) and a second amplifier
  • the first Q-channel processing circuit includes a third down-conversion mixer, a second variable gain amplifier, a second low-pass filter and The third amplifier;
  • the analog-to-digital conversion module 14 may include at least two analog-to-digital converters.
  • the at least two analog-to-digital converters may include a first analog-to-digital converter and a second analog-to-digital converter. Connected with the first Q processing circuit.
  • the first local oscillator signal processing module 17 may include a first phase locked loop PLL1 (Phase Locked Loop, PLL) and a first high frequency oscillator.
  • PLL1 Phase Locked Loop
  • PLL Phase Locked Loop
  • the second local oscillator signal processing module 18 may include a second phase locked loop PLL2 and a second high frequency oscillator.
  • the main function of the phase-locked loop is to lock a high-frequency oscillator on a low-frequency, relatively stable low-frequency clock source, so that the stability of the high-frequency oscillation source is more stable than the low-frequency clock source.
  • the clock source stability tends to be consistent.
  • the working principle of the phase-locked loop is: the signal generated by the high-frequency oscillation source is divided to obtain a signal with the same frequency as the reference clock source, and the frequency/phase of the signal is compared with the reference clock signal, and the result of the comparison is used as an error control signal Then go to control the frequency/phase of the high-frequency oscillator. Through such feedback control, the oscillation of the high-frequency oscillator tends to be stable, and a stable high-frequency frequency signal is output.
  • the signal generated by the phase-locked loop is divided by 3 and 2 as the first-stage and second-stage local oscillators.
  • a low-noise amplifier refers to an amplifier with a very low noise figure. Specifically, the low-noise amplifier can be used to amplify the received radio frequency signal.
  • the first low noise amplifier and the second low noise amplifier may be amplifiers of the same structure and type, wherein the first low noise amplifier works in a first range, and the second low noise amplifier works in a second range.
  • the first range and the second range belong to different frequency ranges.
  • the second radio frequency signal processing module 111 may include a first down-conversion mixer; the third radio frequency signal processing module 112 may include a bypass circuit (for example, the bypass circuit is used to receive the second radio frequency signal);
  • the first analog signal processing module 13 may include a first amplifier (Amplifier) and at least two first quadrature I/Q processing circuits; wherein, the first I processing circuit includes a second down-conversion mixer, a first variable A gain amplifier, a first low-pass filter (LPF) and a second amplifier; the first Q-channel processing circuit includes a third down-conversion mixer, a second variable gain amplifier, a second low-pass filter and The third amplifier; the analog-to-digital conversion module 14 may include at least two analog-to-digital converters; the first local oscillator signal processing module 17 may include a first phase locked loop PLL1 (Phase Locked Loop, PLL) and a first high frequency oscillator ; The second local oscillator signal processing module 18 may include a second phase-locked
  • the receiving device 10 may be used to receive radio frequency signals whose signal-to-noise ratio meets a set threshold (for example, the radio frequency signal may be the first radio frequency signal or the second radio frequency signal).
  • the signal-to-noise ratio (signal-to-noise ratio) is a parameter describing the proportional relationship between the effective component and the noise component in the signal. Normally, the higher the signal-to-noise ratio, the lower the noise.
  • the set threshold can be 90dB. It can be understood that when the signal-to-noise ratio of the radio frequency signal input to the receiving device 10 is 95 dB, the receiving device 10 can complete the reception of the radio frequency signal.
  • the second radio frequency signal processing module 111 obtains the first radio frequency signal from the receiving antenna 16 (for example, the first radio frequency signal belongs to the first radio frequency signal). Range), after mixing the acquired first radio frequency signal and the first local oscillator signal, the first intermediate frequency analog signal is obtained; then, the first intermediate frequency analog signal is sent to the first analog signal processing module 13 and the second local oscillator.
  • the vibration signals are mixed orthogonally to generate two orthogonal first analog baseband signals; after that, the two orthogonal first analog baseband signals are sent to the analog-to-digital conversion module 14 to obtain two orthogonal first digital signals.
  • Baseband signals so that the baseband processor 15 can process two orthogonal first digital baseband signals.
  • “after mixing the acquired first radio frequency signal and the first local oscillator signal to obtain the first intermediate frequency analog signal” may refer to combining the acquired first radio frequency signal and the first local oscillator signal. The absolute value of the vibration signal is subtracted to obtain the first intermediate frequency analog signal.
  • “Sending the first intermediate frequency analog signal to the first analog signal processing module 13 and the second local oscillator signal for orthogonal mixing to generate two orthogonal first analog baseband signals” may mean that the first intermediate frequency analog signal After subtracting from the second local oscillator, the absolute value is taken, so that two orthogonal first analog baseband signals can be obtained.
  • the receiving device 10 can realize the reception of the first radio frequency signal through a "double conversion" (down-conversion process) structure.
  • the first radio frequency signal belongs to the first range.
  • the first radio frequency signal is a high frequency signal.
  • the third radio frequency signal processing module 112 obtains the second radio frequency signal from the receiving antenna 16 (for example, the second radio frequency signal belongs to the second radio frequency signal). Range), amplify the acquired second radio frequency signal to obtain the first amplified analog signal; then, send the first amplified analog signal to the first analog signal processing module 13 and the second local oscillator signal for quadrature mixing, Generate two orthogonal first analog baseband signals; then, send the two orthogonal first analog baseband signals to the analog-to-digital conversion module 14 to obtain two orthogonal first digital baseband signals, so that the baseband processor 15 It can process two orthogonal first digital baseband signals.
  • sending the first amplified analog signal to the first analog signal processing module 13 and the second local oscillator signal for orthogonal mixing to generate two orthogonal first analog baseband signals may mean , The first amplified analog signal and the second local oscillator are subtracted to obtain the absolute value, so that two orthogonal first analog baseband signals can be obtained. It is understandable that when the second port of at least one of the first switch circuits 12 is in the connected state, the receiving device 10 can implement the second radio frequency signal through a "one-time frequency conversion" structure (that is, a zero-IF structure). take over.
  • the second radio frequency signal processing module and the third radio frequency signal processing module can process radio frequency signals in different frequency ranges under the switching of the first switch, which can reduce the receiving device Complexity and cost.
  • this application provides a signal processing method that is applied to the receiving device.
  • the method may include but is not limited to the following steps:
  • Step S102 Obtain a radio frequency signal through the first radio frequency signal processing module to obtain a first analog signal.
  • Step S104 Obtain a first baseband signal according to the first analog signal through the first analog signal processing module.
  • At least two first radio frequency signal processing modules can process radio frequency signals in different frequency ranges, which can reduce the complexity and cost of the receiving device.
  • the at least two radio frequency signal processing modules include a second radio frequency signal processing module, and the second radio frequency signal processing module is connected to a first port of at least one first switch circuit; The first port is in the connected state.
  • the implementation process of the signal processing method may include: obtaining the first radio frequency signal through the second radio frequency signal processing module and generating the first intermediate frequency analog signal; wherein the first intermediate frequency analog signal is the opposite A radio frequency signal is obtained by mixing; then, the first baseband signal is generated by the first analog signal processing module according to the first intermediate frequency analog signal.
  • the second radio frequency signal processing module since the second radio frequency signal processing module is connected to the first port of at least one first switch circuit, the second radio frequency signal can be passed through when the first port of the at least one first switch circuit is in the connected state.
  • the processing module processes the first radio frequency signal, and generates the first baseband signal through the first analog signal processing module. In this implementation manner, by switching the first switch, the receiving device can realize the processing of high-frequency radio frequency signals.
  • the at least two radio frequency signal processing modules include a third radio frequency signal processing module, and the third radio frequency signal processing module is connected to the second port of the at least one first switching circuit;
  • the second port is in the connected state;
  • the implementation process of the signal processing method may include: obtaining the second radio frequency signal through the third radio frequency signal processing module and generating the first amplified analog signal; wherein, the first amplified analog signal is the opposite The second radio frequency signal is amplified; then, the first baseband signal is generated by the first analog signal processing module according to the first amplified analog signal.
  • the third radio frequency signal processing module since the third radio frequency signal processing module is connected to the second port of the at least one first switch circuit, when the second port of the at least one first switch circuit is in a connected state, the third radio frequency The signal processing module processes the second radio frequency signal, and generates the first baseband signal through the first analog signal processing module. In this implementation manner, by switching the first switch, the receiving device can realize processing of low-frequency radio frequency signals.
  • FIG. 2a is a schematic structural diagram of a transmitting device 20 according to an embodiment of this application.
  • the device 20 may include at least two fourth radio frequency signal processing modules 21, at least one second switch circuit 22, and a second analog signal processing module 23; at least two fourth radio frequency signal processing modules 21 pass at least A second switch circuit 22 is connected to the second analog signal processing module connection 23.
  • the second analog signal processing module 23 is configured to obtain a second analog signal according to the second baseband signal
  • the fourth radio frequency signal processing module 24 is used to obtain radio frequency signals according to the second analog signal.
  • the at least two fourth radio frequency signal processing modules 21 include a fifth radio frequency signal processing module and a sixth radio frequency signal processing module.
  • the fifth radio frequency signal processing module 211 is connected to the first port of the at least one second switch circuit 22, and the sixth radio frequency signal processing module 212 is connected to the second port of the at least one second switch circuit 22;
  • the radio frequency signal processing module 211 is used to generate a third radio frequency signal;
  • the sixth radio frequency signal processing module is used to generate a fourth radio frequency signal.
  • the third radio frequency signal and the fourth radio frequency signal belong to different frequency ranges.
  • the third radio frequency signal belongs to the first range
  • the fourth radio frequency signal belongs to the second range.
  • the first range is greater than or equal to the first threshold
  • the second range is less than the first threshold.
  • the first range is greater than the first threshold, and the second range is less than or equal to the first threshold.
  • the first threshold may be a specific value set by the transmitting device 20 described in this application at the factory; in an example, the first threshold may be between 2G (the Second Generation), 3G (the In the evolution process of 3rd Generation), 4G (the 4th Generation), and even 5G (the 5th Generation), those skilled in the art obtain experience values through continuous experiments (for example, the experience value may default to a standard value in the radio frequency field).
  • the first threshold may be 2.4 GHz.
  • the first threshold may be 5.8 GHz.
  • the first threshold value can be adjusted, and in different application scenarios, the value of the first threshold value can be different.
  • the at least two fourth radio frequency signal processing modules may include two fourth radio frequency signal processing modules (for example, the aforementioned fifth radio frequency signal processing module and the sixth radio frequency signal processing module). Module), can also include three fourth radio frequency signal processing modules, for example, the three fourth radio frequency signal processing modules include a fifth radio frequency signal processing module and a sixth radio frequency signal processing module, and can also include in addition to the fifth radio frequency signal processing module And other RF signal processing modules except the sixth RF signal processing module.
  • 3 or more RF signal processing modules can transmit 3 types and more than 3 different types RF signals in the frequency range; in one example, some (for example, 2) of the 3 or more RF signal processing modules can transmit RF signals belonging to the same frequency range, and the others
  • the radio frequency signal processing module can transmit radio frequency signals belonging to another frequency range, etc., which is not limited here.
  • the transmitting device 20 may include a second analog signal processing module 23, at least one second switch circuit 22, and a fifth radio frequency signal processing module 211.
  • the transmitting device 20 can be used to obtain a third radio frequency signal according to the second baseband signal.
  • the third radio frequency signal is in the first range.
  • the second analog signal processing module 23 is used to generate a second intermediate frequency analog signal according to the second baseband signal;
  • the fifth radio frequency signal processing module 211 is used to obtain a second intermediate frequency analog signal and generate a third RF signal; wherein ,
  • the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal.
  • the transmitting device 20 may include a second analog signal processing module 23, at least one second switch circuit 22, and a sixth radio frequency signal processing module 212.
  • the transmitting device 20 can be used to obtain a fourth radio frequency signal according to the second baseband signal.
  • the fourth radio frequency signal belongs to the second frequency range.
  • the second analog signal processing module 23 is used to generate a second intermediate frequency analog signal according to the second baseband signal;
  • the sixth radio frequency signal processing module is used to obtain a second intermediate frequency analog signal and generate a fourth radio frequency signal; wherein, The fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal.
  • the transmitting device 20 can transmit radio frequency signals in different frequency ranges.
  • the "second analog signal processing module" can be reused. This implementation mode can reduce the complexity and cost of the transmitting device.
  • the transmitting device 20 may include at least two fourth radio frequency signal processing modules 21 (for example, the at least two fourth radio frequency signal processing modules 21 may include a fifth radio frequency signal processing module 211 and The sixth radio frequency signal processing module 212), at least one second switch circuit 22 (the second switch circuit may include a first port and a second port), a second analog signal processing module 23, a digital-to-analog conversion module 24, and a baseband processor 25 And at least one second antenna 26.
  • at least one second antenna 26 is connected to at least one of the fifth radio frequency signal processing module 211 or the sixth radio frequency signal processing module 212.
  • the second analog signal processing module 23 can be used to generate a second intermediate frequency analog signal according to the second baseband signal.
  • the fifth radio frequency signal processing module 211 can be used to obtain the second intermediate frequency analog signal and generate a third radio frequency signal; wherein the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal; when at least When the second port of the second switch circuit is in the connected state, the second analog signal processing module 23 can be used to generate a second intermediate frequency analog signal according to the second baseband signal; at this time, the sixth radio frequency signal processing module can be used to obtain The second intermediate frequency analog signal and the fourth radio frequency signal are generated; wherein the fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal.
  • the baseband processor 25 when the baseband processor 25 controls the transmission of the third radio frequency signal, the baseband processor 25 sets the first port of the at least one second switch circuit to the connected state. At this time, the baseband processor 25 is used to generate The second digital baseband signal; the digital-to-analog conversion module 24, for generating the second analog baseband signal; the second analog signal processing module 23, for generating the second intermediate frequency analog signal according to the second analog baseband signal; the fifth radio frequency signal processing module 211.
  • the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal; first local oscillator signal processing The module 17 is used to generate the first local oscillator signal; the second local oscillator signal processing module 18 is used to generate the second local oscillator signal.
  • the baseband processor 25 when the baseband processor 25 controls the transmission of the third radio frequency signal, the baseband processor 25 puts the second port of at least one second switch circuit in a connected state. At this time, the baseband processor 25 is used to generate the Two digital baseband signals; a digital-to-analog conversion module 24 for generating a second analog baseband signal; a second analog signal processing module 23 for generating a second intermediate frequency analog signal according to the second analog baseband signal; a sixth radio frequency signal processing module 212 , Used to obtain the second intermediate frequency analog signal and generate the fourth radio frequency signal; wherein, the fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal; first local oscillator signal processing The module 17 is used to generate the first local oscillator signal; the second local oscillator signal processing module 18 is used to generate the second local oscillator signal.
  • the hardware structure of the transmitting device 20 may be as shown in FIG. 2f, where:
  • the second analog signal processing module 23 includes at least two second quadrature I/Q processing circuits and a fourth amplifier; wherein the second I processing circuit includes a first up-conversion mixer, a third variable gain amplifier, and a fourth amplifier. Three low-pass filters and a fifth amplifier; the second Q-channel processing circuit includes a second up-conversion mixer, a fourth variable gain amplifier, a fourth low-pass filter, and a sixth amplifier; in one example, the fourth The amplifier and the at least two second orthogonal I/Q processing circuits may be independent structures; in an example, the fourth amplifier and the at least two second orthogonal I/Q processing circuits may be packaged together, and this application will not make specific details. limited.
  • the fifth radio frequency signal processing module 211 includes a first radio frequency power amplifier (Power Amplifier, PA) and a third up-conversion mixer; in practical applications, the fifth radio frequency signal processing module 211 includes a first radio frequency power amplifier (Power Amplifier, PA). In addition to the PA) and the third up-conversion mixer, a third bypass circuit may also be included.
  • a first radio frequency power amplifier Power Amplifier, PA
  • a third bypass circuit may also be included.
  • the sixth radio frequency signal processing module 212 includes a second radio frequency power amplifier. In practical applications, the sixth radio frequency signal processing module 212 may include a fourth bypass circuit in addition to the second radio frequency power amplifier.
  • the bypass circuit is different from the main loop circuit (for example, the main loop is a circuit composed of a second RF power amplifier), which means that it can be switched to another loop without affecting the RF signal processing module due to functional needs. Works normally.
  • the digital-to-analog conversion module 24 may include at least two digital-to-analog converters.
  • the at least two digital-to-analog converters may include a first digital-to-analog converter and a second digital-to-analog converter, wherein the first digital-to-analog converter is connected to the second I-way processing circuit, and the second digital-to-analog converter Connected to the second Q-channel processing circuit.
  • first local oscillator signal processing module 17 and the second local oscillator signal processing module 18 please refer to the foregoing description, which will not be repeated here.
  • the first radio frequency power amplifier and the second radio frequency power amplifier may be amplifiers of the same structure and type, wherein the first radio frequency power amplifier works in a first range, and the second radio frequency power amplifier works in a second range.
  • the first range and the second range belong to different frequency ranges.
  • the second analog signal processing module 23 includes at least two second quadrature I/Q processing circuits and a fourth amplifier; the fifth radio frequency signal processing module 211 includes a third up-conversion mixer; and a sixth radio frequency signal
  • the processing module 212 includes a bypass circuit; the digital-to-analog conversion module 24 may include at least two digital-to-analog converters; the first local oscillator signal processing module 17 may include a first phase locked loop PLL1 (Phase Locked Loop, PLL) and a first High-frequency oscillator; the second local oscillator signal processing module 18 may include a second phase-locked loop PLL2 and a second high-frequency oscillator.
  • the transmitting device 20 can be used to transmit a radio frequency signal whose output power and/or efficiency meets a set threshold (for example, the radio frequency signal can be a third radio frequency signal or a fourth radio frequency signal).
  • the baseband processor 25 when the first port of the at least one second switch circuit is in the connected state, the baseband processor 25 generates the second digital baseband signal; then, sends the second digital baseband signal to the digital-to-analog conversion module 24, Obtain two orthogonal second analog baseband signals; then, the two orthogonal second analog baseband signals are processed by the second analog signal processing module 23 to obtain the second intermediate frequency analog signal; the fifth radio frequency signal processing module 211 The second intermediate frequency analog signal is obtained, and the second intermediate frequency analog signal and the first local oscillator signal are mixed to obtain a third radio frequency signal. After that, the third radio frequency signal is transmitted through a second antenna (for example, the second antenna may be a transmitting antenna).
  • a second antenna for example, the second antenna may be a transmitting antenna.
  • the two orthogonal second analog baseband signals are processed by the second analog signal processing module 23 to obtain the second intermediate frequency analog signal
  • the two orthogonal second analog baseband signals are processed by the second analog signal processing module 23 to obtain the second intermediate frequency analog signal
  • the signal and the second local oscillator signal are added to obtain the second intermediate frequency analog signal.
  • "After mixing the second intermediate frequency analog signal and the first local oscillator signal to obtain the third radio frequency signal” refers to adding the second intermediate frequency analog signal and the first local oscillator signal to obtain the third radio frequency signal.
  • the transmitting device 20 can implement the transmission of the third radio frequency signal through a "double conversion" (up-conversion process) structure.
  • the third radio frequency signal belongs to the first range.
  • the third radio frequency signal is a high frequency signal.
  • the baseband processor 25 when the second port of the at least one second switch circuit is in the connected state, the baseband processor 25 generates the second digital baseband signal; then, sends the second digital baseband signal to the digital-to-analog conversion module 24, Obtain two orthogonal second analog baseband signals; then, the two orthogonal second analog baseband signals are processed by the second analog signal processing module 23 to obtain the second intermediate frequency analog signal; the sixth radio frequency signal processing module 212 The second intermediate frequency analog signal is obtained, and after the second intermediate frequency analog signal is subjected to radio frequency power amplification, the fourth radio frequency signal is obtained. After that, the fourth radio frequency signal is transmitted through a second antenna (for example, the second antenna may be a transmitting antenna).
  • a second antenna for example, the second antenna may be a transmitting antenna
  • the transmitting device 20 can implement the transmission of the fourth radio frequency signal through a "one-time frequency conversion" structure (that is, a zero-IF structure).
  • At least two fourth radio frequency signal processing modules can generate radio frequency signals in different frequency ranges when the transmitting device is switched by the first switch, which can reduce the complexity and cost of the transmitting device.
  • this application provides a signal processing method that is applied to the transmitting device. As shown in FIG. 2g, the method may include but is not limited to the following steps:
  • Step S202 Obtain a second analog signal according to the second baseband signal through the second analog signal processing module.
  • Step S204 Obtain a radio frequency signal according to the second analog signal through the fourth radio frequency signal processing module.
  • At least two fourth radio frequency signal processing modules can generate radio frequency signals in different frequency ranges when the transmitting device is switched by the first switch, which can reduce the complexity and cost of the transmitting device.
  • the at least two fourth radio frequency signal processing modules include a fifth radio frequency signal processing module, and the fifth radio frequency signal processing module is connected to a first port of at least one second switch circuit; at least one second switch The first port of the circuit is in a connected state; at this time, the implementation process of the signal processing method may include: generating a second intermediate frequency analog signal according to the second baseband signal through a second analog signal processing module; afterwards, through a fifth radio frequency signal processing module Obtain the second intermediate frequency analog signal and generate a third radio frequency signal; wherein the third radio frequency signal is obtained by mixing the second intermediate frequency analog signal.
  • the fifth radio frequency signal processing module since the fifth radio frequency signal processing module is connected to the first port of the at least one second switch circuit, the fifth radio frequency signal can be passed through when the first port of the at least one second switch circuit is in the connected state.
  • the processing module generates a third radio frequency signal. In this implementation manner, by switching the first switch, the transmitting device can transmit a high-frequency radio frequency signal.
  • the at least two fourth radio frequency signal processing modules include a sixth radio frequency signal processing module, and the sixth radio frequency signal processing module is connected to the second port of the at least one second switch circuit; at least one second switch The second port of the circuit is in a connected state; at this time, the implementation process of the signal processing method may include: generating a second intermediate frequency analog signal according to the second baseband signal through a second analog signal processing module; afterwards, through a sixth radio frequency signal processing module Obtain the second intermediate frequency analog signal and generate a fourth radio frequency signal; wherein, the fourth radio frequency signal is obtained by performing radio frequency power amplification on the second intermediate frequency analog signal.
  • the sixth radio frequency signal processing module since the sixth radio frequency signal processing module is connected to the second port of the at least one second switch circuit, when the second port of the at least one second switch circuit is in the connected state, the sixth radio frequency signal can be passed through The processing module generates a fourth radio frequency signal. In this implementation manner, by switching the first switch, the transmitting device can transmit a low-frequency radio frequency signal.
  • FIG. 3a is a schematic structural diagram of a transceiver device provided in an embodiment of this application.
  • the transceiver device includes a receiving device 301 and a transmitting device 302.
  • the receiving device 301 please refer to the foregoing description of the receiving device 10
  • the transmitting device 302 please refer to the foregoing description of the transmitting device 20, which will not be repeated here.
  • the receiving device 301 and the transmitting device 302 may receive and transmit radio frequency signals through a wireless network, and the specific implementation manner may be any manner known to those skilled in the art.
  • the receiving device 301 and the transmitting device 302 can be integrated in the same radio frequency circuit.
  • the transceiver device 30 includes the receiving device 10 shown in FIG. 1f and the transmitting device 20 shown in FIG. 2f.
  • the specific implementation of the receiving device 10 and the transmitting device 20 please refer to the foregoing description, which will not be repeated here.
  • Scenario 1 Extended frequency support, the transceiver device 30 can support the 3GHz-5.8GHz communication frequency band.
  • the 4G transceiver e.g., transceiver
  • its working frequency is distributed in the communication frequency band below 3GHz (that is, it does not support the communication frequency band above 3GHz).
  • LAA Location Assisted Access
  • LAA Location Assisted Access
  • LAA is assisted by licensed carriers to assist unlicensed carrier access to supplement the data service bearer of the LTE network, that is: 5.8GHz unlicensed frequency band assist Existing 4G frequency band communication, expand the communication bandwidth.
  • the transceiver device (the receiving device 10 and the transmitting device 20) described in this application can support the 3GHz-5.8GHz communication frequency band.
  • the second radio frequency signal processing module receives The antenna obtains the first radio frequency signal with a communication frequency of 5.8 GHz, and mixes the first radio frequency signal and the first local oscillator signal to obtain the first intermediate frequency analog signal; then, the first intermediate frequency analog signal is sent to the first analog
  • the signal processing module and the second local oscillator signal are orthogonally mixed to generate two orthogonal first baseband signals (for example, the first analog baseband signal), so as to realize the reception of the first radio frequency signal with a communication frequency of 5.8 GHz.
  • the third radio frequency signal processing module starts from the first An antenna acquires a second radio frequency signal with a communication frequency of 3 GHz or less, and amplifies the acquired second radio frequency signal to obtain a first amplified analog signal; then, sends the first amplified analog signal to the first analog signal processing module It performs orthogonal mixing with the second local oscillator signal to generate two orthogonal first baseband signals (for example, the first analog baseband signal), so as to realize the reception of the second radio frequency signal whose communication frequency is less than or equal to 3 GHz.
  • the third radio frequency signal with a communication frequency of 5.8 GHz transmitted by the transmitting device 20 when the first port of at least one second switch circuit is in a connected state, two orthogonal second basebands
  • the signal (for example, the second analog baseband signal) is processed by the second analog signal processing module to obtain the second intermediate frequency analog signal; the fifth radio frequency signal processing module obtains the second intermediate frequency analog signal, and combines the second intermediate frequency analog signal with the first
  • a third radio frequency signal with a communication frequency of 5.8 GHz is obtained.
  • the third radio frequency signal is transmitted through the second antenna, so that the transmission of the third radio frequency signal with a communication frequency of 5.8 GHz can be realized.
  • the fourth radio frequency signal with a communication frequency of less than or equal to 3 GHz transmitted by the transmitting device 20 is taken as an example.
  • the two orthogonal second The baseband signal (for example, the second analog baseband signal) is processed by the second analog signal processing module to obtain the second intermediate frequency analog signal; the sixth radio frequency signal processing module obtains the second intermediate frequency analog signal, and performs radio frequency processing on the second intermediate frequency analog signal.
  • a fourth radio frequency signal with a communication frequency of less than or equal to 3 GHz is obtained.
  • the fourth radio frequency signal is transmitted through the second antenna, so that the fourth radio frequency signal whose communication frequency is less than or equal to 3 GHz can be transmitted.
  • Scenario 2 The millimeter wave band and the existing 4G communication frequency band are shared.
  • the transceiver device when the transceiver device works in a communication frequency band below 6 GHz, for example, when receiving a radio frequency signal with a communication frequency below 6 GHz, it passes through the first analog signal processing module (equivalent to the zero-IF reception in the prior art).
  • the first analog signal processing module for example, when a radio frequency signal with a communication frequency below 6 GHz is transmitted, it is implemented through a second analog signal processing module (equivalent to a zero-IF transmission architecture in the prior art).
  • the transceiver device When the transceiver device works in the millimeter wave band, for example, when receiving a radio frequency signal in the millimeter wave band, it passes through at least two first radio frequency signal processing modules and a first analog signal processing module (that is, a "secondary" down-conversion structure). Realization; for another example, when transmitting a millimeter-wave band radio frequency signal, it is realized by at least two fourth radio frequency signal processing modules and a second analog signal processing module (that is, a "secondary" up-conversion structure).
  • the transceiver device proposed in this application can reuse the 4G architecture in the communication frequency band below 6 GHz.
  • Scenario 3 Supports millimeter wave communication frequency bands, and supports 15GHz and 60GHz at the same time.
  • the first frequency is 15GHz
  • the second frequency is 60GHz. It is necessary to ensure that the frequency of the local oscillator signal is between 15GHz-60GHz.
  • the bandwidth is very large, which undoubtedly increases the design difficulty.
  • the transceiver device when the transceiver device works in the 15GHz communication frequency band, for example, when receiving a radio frequency signal with a communication frequency of 15GHz, it passes through the first analog signal processing module (equivalent to the zero-IF reception in the prior art).
  • the first analog signal processing module for example, when a radio frequency signal with a communication frequency of 15 GHz is transmitted, it is implemented through a second analog signal processing module (equivalent to a zero-IF transmission architecture in the prior art).
  • the transceiver device works in the communication frequency band of 60 GHz, for example, when the communication frequency is 60 GHz radio frequency signal, it passes through at least two first radio frequency signal processing modules and a first analog signal processing module (ie: "secondary" down-conversion
  • a radio frequency signal with a communication frequency of 60 GHz is transmitted, it is realized by at least two fourth radio frequency signal processing modules and a second analog signal processing module (that is, a "secondary" up-conversion structure).
  • the local oscillator signal can be provided through a narrow-band frequency source, which reduces the design difficulty.
  • the transceiver device provided by the present application adopts a multiplexing structure, and can realize the reception and transmission of radio frequency signals of different communication frequencies under the switching of the switch.
  • the embodiment of the present invention also provides a computer storage medium.
  • the computer-readable storage medium stores instructions that, when run on the baseband processor, cause the baseband processor to execute one of the methods described in any of the above embodiments. Or multiple steps. If each component module of the above device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer readable storage medium.
  • the technical solution of the present application is essentially or The part that contributes to the prior art or all or part of the technical solution may be embodied in the form of a software product, and the computer product is stored in a computer-readable storage medium.
  • the foregoing computer-readable storage medium may be an internal storage unit of the device described in the foregoing embodiment, such as a hard disk or a memory.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned device, such as an equipped plug-in hard disk, a smart memory card (Smart Media Card, SMC), a Secure Digital (SD) card, and a flash card (Flash Card). )Wait.
  • the aforementioned computer-readable storage medium may also include both an internal storage unit of the aforementioned device and an external storage device.
  • the aforementioned computer-readable storage medium is used to store the aforementioned computer program and other programs and data required by the aforementioned device.
  • the aforementioned computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • the computer program can be stored in a computer readable storage medium. At this time, it may include the procedures of the embodiments of the above-mentioned methods.
  • the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the modules in the device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.
  • the computer-readable medium may include a computer-readable storage medium, which corresponds to a tangible medium, such as a data storage medium, or a communication medium that includes any medium that facilitates the transfer of a computer program from one place to another (for example, according to a communication protocol) .
  • a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium, such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, codes, and/or data structures for implementing the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请提供了一种接收装置、发射装置及信号处理方法,可以应用于通信领域,例如座舱域。其中,接收装置包括:包括至少两个第一射频信号处理模块和第一模拟信号处理模块;至少两个第一射频信号处理模块通过至少一个第一开关电路与第一模拟信号处理模块连接;其中,第一射频信号处理模块,用于获取射频信号以得到第一模拟信号;第一模拟信号处理模块,用于根据第一模拟信号,得到第一基带信号。实施本申请,可以使得接收装置的结构简单、轻便。

Description

一种接收装置、发射装置及信号处理方法 技术领域
本申请涉及无线通讯技术领域,尤其涉及一种接收装置、发射装置及信号处理方法,尤其适用于通信领域,例如座舱域。
背景技术
在无线射频领域,收发信机的重要性不言而喻。目前,常用的射频接收机结构主要有超外差接收机和零中频接收机。
以零中频接收机为例,零中频接收机因其突出的性能优势(例如,结构简单、低功耗、低成本)得到了广泛地应用。一般情况下,零中频接收机可以工作在低于6GHz的无线通信频谱。然而,当零中频接收机的通信频段扩展到毫米波段(例如,26GHz、28GHz、60GHz等)时,由于毫米波段上的通信频率非常高,当通过零中频接收机将其进行变频处理得到基带信号时,容易出现基带处理器进行滤波处理的方式不能满足抗干扰和噪声抑制的要求,这无疑降低了零中频收发信机的工作性能。
为了实现收发信机可以兼顾多个不同通信频段的工作性能,收发信机的结构往往过于复杂,且成本过高。因此,如何提出一种结构简单的收发信机来保证多个不同频段的工作性能是急需解决的技术问题。
发明内容
本申请提供了一种接收装置、发射装置及信号处理方法,由于该装置采用了复用的结构,结构简单、轻便,可以保证多个不同工作频段的工作性能。
第一方面,本申请实施例提供了一种接收装置,该装置包括至少两个第一射频信号处理模块和第一模拟信号处理模块;所述至少两个第一射频信号处理模块通过至少一个第一开关电路与所述第一模拟信号处理模块连接;其中,所述第一射频信号处理模块,用于获取射频信号以得到第一模拟信号;所述第一模拟信号处理模块,用于根据所述第一模拟信号,得到第一基带信号。
实施本申请实施例,接收装置在第一开关的切换下,至少两个第一射频信号处理模块可以处理不同频率范围的射频信号,可以降低接收装置的复杂度和成本。可以理解的是,由于接收装置可以通过至少两个第一射频信号处理模块接收不同频率范围的射频信号,可以提高接收装置的抗干扰性能。此外,由于可以复用第一模拟信号处理模块,降低了模拟/数字信号转换过程中的设计难度,减轻了后续数字信号处理部分的开发负担。
在一种可能的实现方式中,所述至少两个第一射频信号处理模块包含第二射频信号处理模块和第三射频信号处理模块,所述第二射频信号处理模块与所述至少一个第一开关电路的第一端口连接,所述第三射频信号处理模块与所述至少一个第一开关电路的第二端口连接;其中,所述第二射频信号处理模块用于获取第一射频信号,所述第三射频信号处理模块用于获取第二射频信号,所述第一射频信号和所述第二射频信号属于不同的频率范围。 实施本申请实施例,由于接收装置采用了复用的结构,在第一开关的切换下,第二射频信号处理模块和第三射频信号处理模块可以处理不同频率范围的射频信号,可以降低接收装置的复杂度和成本。可以理解的是,由于接收装置可以通过至少两个第一射频信号处理模块接收不同频率范围的射频信号,可以提高接收装置的抗干扰性能。此外,由于可以复用第一模拟信号处理模块,降低了模拟/数字信号转换过程中的设计难度,减轻了后续数字信号处理部分的开发负担。
在一种可能的实现方式中,所述至少一个第一开关电路的第一端口处于连接状态;所述第二射频信号处理模块,用于获取所述第一射频信号以及生成第一中频模拟信号;其中,所述第一中频模拟信号为对所述第一射频信号进行混频得到的;所述第一模拟信号处理模块,用于根据所述第一中频模拟信号生成所述第一基带信号。实施本申请实施例,由于第二射频信号处理模块与至少一个第一开关电路的第一端口连接,在至少一个第一开关电路的第一端口处于连接状态的情况下,可以通过第二射频信号处理模块对第一射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置工作在高频通信频段。
在一种可能的实现方式中,所述至少一个第一开关电路的第二端口处于连接状态;所述第三射频信号处理模块,用于获取所述第二射频信号以及生成第一放大模拟信号;其中,所述第一放大模拟信号为对所述第二射频信号进行放大得到的;所述第一模拟信号处理模块,用于根据所述第一放大模拟信号生成所述第一基带信号。实施本申请实施例中,由于第三射频信号处理模块与至少一个第一开关电路的第二端口连接,在至少一个第一开关电路的第二端口处于连接状态的情况下,可以通过第三射频信号处理模块对第二射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置工作在低频通信频段。
在一种可能的实现方式中,所述第二射频信号处理模块包括第一低噪声放大器和第一下变频混频器;所述第三射频信号处理模块包括第二低噪声放大器;所述第一模拟信号处理模块包括第一放大器和至少两路第一正交I/Q处理电路;其中,第一I路处理电路包括第二下变频混频器、第一可变增益放大器、第一低通滤波器和第二放大器;第一Q路处理电路包括第三下变频混频器、第二可变增益放大器、第二低通滤波器和第三放大器。
在一种可能的实现方式中,所述装置还包括至少一个第一天线,所述至少一个第一天线与所述第二射频信号处理模块或所述第三射频信号处理模块中的至少一个连接。
第二方面,本申请实施例提供了一种信号处理方法,该方法应用于接收装置,所述装置包括至少两个第一射频信号处理模块和第一模拟信号处理模块;所述至少两个第一射频信号处理模块通过至少一个第一开关电路与所述第一模拟信号处理模块连接;所述方法包括:通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号;通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号。
实施本申请实施例,接收装置在第一开关的切换下,至少两个第一射频信号处理模块可以处理不同频率范围的射频信号,可以降低接收装置的复杂度和成本。
在一种可能的实现方式中,所述至少两个射频信号处理模块包含第二射频信号处理模 块,所述第二射频信号处理模块与所述至少一个第一开关电路的第一端口连接;所述至少一个第一开关电路的第一端口处于连接状态;所述通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号,包括:通过所述第二射频信号处理模块获取所述第一射频信号以及生成第一中频模拟信号;其中,所述第一中频模拟信号为对所述第一射频信号进行混频得到的;所述通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号,包括:通过所述第一模拟信号处理模块根据所述第一中频模拟信号生成所述第一基带信号。实施本申请实施例,由于第二射频信号处理模块与至少一个第一开关电路的第一端口连接,在至少一个第一开关电路的第一端口处于连接状态的情况下,可以通过第二射频信号处理模块对第一射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置实现高频射频信号的处理。
在一种可能的实现方式中,所述至少两个射频信号处理模块包含第三射频信号处理模块,所述第三射频信号处理模块与所述至少一个第一开关电路的第二端口连接;所述至少一个第一开关电路的第二端口处于连接状态;所述通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号,包括:通过所述第三射频信号处理模块获取所述第二射频信号以及生成第一放大模拟信号;其中,所述第一放大模拟信号为对所述第二射频信号进行放大得到的;所述通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号,包括:通过所述第一模拟信号处理模块根据所述第一放大模拟信号生成所述第一基带信号。实施本申请实施例中,由于第三射频信号处理模块与至少一个第一开关电路的第二端口连接,在至少一个第一开关电路的第二端口处于连接状态的情况下,可以通过第三射频信号处理模块对第二射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置实现低频射频信号的处理。
第三方面,本申请实施例提供了一种发射装置,该装置包括至少两个第四射频信号处理模块和第二模拟信号处理模块;所述至少两个第四射频信号处理模块通过至少一个第二开关电路与所述第二模拟信号处理模块连接;其中,所述第二模拟信号处理模块,用于根据第二基带信号,得到第二模拟信号;所述第四射频信号处理模块,用于根据所述第二模拟信号以得到射频信号。
实施本申请实施例,发射装置在第一开关的切换下,至少两个第四射频信号处理模块可以生成不同频率范围的射频信号,可以降低发射装置的复杂度和成本。可以理解的是,由于发射装置可以通过至少两个第四射频信号处理模块发射不同频率范围的射频信号,可以提高发射装置的抗干扰性能。此外,由于可以复用第二模拟信号处理模块,降低了模拟/数字信号转换过程中的设计难度。
在一种可能的实现方式中,所述至少两个第四射频信号处理模块包含第五射频信号处理模块和第六射频信号处理模块,所述第五射频信号处理模块与所述至少一个第二开关电路的第一端口连接,所述第六射频信号处理模块与所述至少一个第二开关电路的第二端口连接;其中,所述第五射频信号处理模块用于生成第三射频信号,所述第六射频信号处理模块用于生成第四射频信号,所述第三射频信号和所述第四射频信号属于不同的频率范围。 实施本申请实施例,由于发射装置采用了复用的结构,在第一开关的切换下,第五射频信号处理模块和第六射频信号处理模块可以生成不同频率范围的射频信号,可以降低发射装置的复杂度和成本。可以理解的是,由于发射装置可以通过至少两个第四射频信号处理模块发射不同频率范围的射频信号,可以提高发射装置的抗干扰性能。此外,由于可以复用第二模拟信号处理模块,降低了模拟/数字信号转换过程中的设计难度。
在一种可能的实现方式中,所述至少一个第二开关电路的第一端口处于连接状态;所述第二模拟信号处理模块,用于根据所述第二基带信号生成第二中频模拟信号;所述第五射频信号处理模块,用于获取所述第二中频模拟信号以及生成所述第三射频信号;其中,所述第三射频信号为对所述第二中频模拟信号进行混频得到的。实施本申请实施例,由于第五射频信号处理模块与至少一个第二开关电路的第一端口连接,在至少一个第二开关电路的第一端口处于连接状态的情况下,可以通过第五射频信号处理模块生成第三射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射高频射频信号。
在一种可能的实现方式中,所述至少一个第二开关电路的第二端口处于连接状态;所述第二模拟信号处理模块,用于根据所述第二基带信号生成第二中频模拟信号;所述第六射频信号处理模块,用于获取所述第二中频模拟信号以及生成所述第四射频信号;其中,所述第四射频信号为对所述第二中频模拟信号进行射频功率放大得到的。实施本申请实施例,由于第六射频信号处理模块与至少一个第二开关电路的第二端口连接,在至少一个第二开关电路的第二端口处于连接状态的情况下,可以通过第六射频信号处理模块生成第四射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射低频射频信号。
在一种可能的实现方式中,所述第二模拟信号处理模块包括至少两路第二正交I/Q处理电路和第四放大器;其中,第二I路处理电路包括第一上变频混频器、第三可变增益放大器、第三低通滤波器和第五放大器;第二Q路处理电路包括第二上变频混频器、第四可变增益放大器、第四低通滤波器和第六放大器;所述第五射频信号处理模块包括第一射频功率放大器和第三上变频混频器;所述第六射频信号处理模块包括第二射频功率放大器。
在一种可能的实现方式中,所述装置还包括至少一个第二天线,所述至少一个第二天线与所述第五射频信号处理模块或所述第六射频信号处理模块中的至少一个连接。
第四方面,本申请实施例提供了一种信号处理方法,该方法应用于发射装置,所述装置包括至少两个第四射频信号处理模块和第二模拟信号处理模块;所述至少两个第四射频信号处理模块通过至少一个第二开关电路与所述第二模拟信号处理模块连接;所述方法包括:通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号;通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号。
实施本申请实施例,发射装置在第一开关的切换下,至少两个第四射频信号处理模块可以生成不同频率范围的射频信号,可以降低发射装置的复杂度和成本。
在一种可能的实现方式中,所述至少两个第四射频信号处理模块包含第五射频信号处理模块,所述第五射频信号处理模块与所述至少一个第二开关电路的第一端口连接;所述至少一个第二开关电路的第一端口处于连接状态;所述通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号,包括:通过所述第二模拟信号处理模块根据所述第 二基带信号生成第二中频模拟信号;所述通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号,包括:通过所述第五射频信号处理模块获取所述第二中频模拟信号以及生成第三射频信号;其中,所述第三射频信号为对所述第二中频模拟信号进行混频得到的。实施本申请实施例,由于第五射频信号处理模块与至少一个第二开关电路的第一端口连接,在至少一个第二开关电路的第一端口处于连接状态的情况下,可以通过第五射频信号处理模块生成第三射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射高频射频信号。
在一种可能的实现方式中,所述至少两个第四射频信号处理模块包含第六射频信号处理模块,所述第六射频信号处理模块与所述至少一个第二开关电路的第二端口连接;所述至少一个第二开关电路的第二端口处于连接状态;所述通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号,包括:通过所述第二模拟信号处理模块根据所述第二基带信号生成第二中频模拟信号;所述通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号,包括:通过所述第六射频信号处理模块获取所述第二中频模拟信号以及生成第四射频信号;其中,所述第四射频信号为对所述第二中频模拟信号进行射频功率放大得到的。实施本申请实施例,由于第六射频信号处理模块与至少一个第二开关电路的第二端口连接,在至少一个第二开关电路的第二端口处于连接状态的情况下,可以通过第六射频信号处理模块生成第四射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射低频射频信号。
第五方面,本申请实施例提供了一种收发装置,该装置包括上述第一方面任一项所述的接收装置,以及,上述第二方面任一项所述的发射装置。
附图说明
图1a为本申请实施例提供的一种接收装置的结构示意图;
图1b为本申请实施例提供的另一种接收装置的结构示意图;
图1c为本申请实施例提供的另一种接收装置的结构示意图;
图1d为本申请实施例提供的另一种接收装置的结构示意图;
图1e为本申请实施例提供的另一种接收装置的结构示意图;
图1f为本申请实施例提供的一种接收装置的硬件结构示意图;
图1g为本申请实施例提供的一种信号处理方法的流程示意图;
图2a为本申请实施例提供的一种发射装置的结构示意图;
图2b为本申请实施例提供的另一种发射装置的结构示意图;
图2c为本申请实施例提供的另一种发射装置的结构示意图;
图2d为本申请实施例提供的另一种发射装置的结构示意图;
图2e为本申请实施例提供的另一种发射装置的结构示意图;
图2f为本申请实施例提供的一种发射装置的硬件结构示意图;
图2g为本申请实施例提供的另一种信号处理方法的流程示意图;
图3a为本申请实施例提供的一种收发装置的结构示意图;
图3b为本申请实施例提供的一种收发装置的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
为了便于更好的理解本申请所描述的技术方案,下面结合附图对本申请作详细说明。
请参见图1a,为本申请实施例提供的一种接收装置10的结构示意图。如图1a所示,该装置10可以包括至少两个第一射频信号处理模块11,至少一个第一开关电路12以及第一模拟信号处理模块13;至少两个第一射频信号处理模块11通过至少一个第一开关电路12与第一模拟信号处理模块13连接。其中,
第一射频信号处理模块11,用于获取射频信号以得到第一模拟信号;
第一模拟信号处理模块13,用于根据第一模拟信号,得到第一基带信号。
在一个示例中,如图1b所示,至少两个第一射频信号处理模块11包含第二射频信号处理模块111和第三射频信号处理模块112。具体来说,第二射频信号处理模块111与至少一个第一开关电路12的第一端口连接,第三射频信号处理模块112与至少一个第一开关电路12的第二端口连接;其中,第二射频信号处理模块111,用于获取第一射频信号;第三射频信号处理模块112,用于获取第二射频信号;这里,第一射频信号和第二射频信号属于不同的频率范围。示例性地,第一射频信号属于第一范围,第二射频信号属于第二范围。在一个示例中,大于或等于第一阈值的为第一范围,小于第一阈值的为第二范围。在一个示例中,大于第一阈值的为第一范围,小于等于第一阈值的为第二范围。
在一个示例中,第一阈值可以为本申请所描述的接收装置10在出厂时设置好的某个具体数值;在一个示例中,第一阈值可以为在2G(the Second Generation)、3G(the 3rdGeneration)、4G(the 4th Generation)乃至5G(the 5thGeneration)的演进过程中,本领域技术人员通过不断试验而获得的经验值(例如,该经验值可以默认为无线射频领域中的标准值)。例如,第一阈值可以为2.4GHz。又例如,第一阈值可以为5.8GHz。进一步地,在实际应用中,第一阈值是可以调整的,在不同的应用场景下,第一阈值的取值可以不同。
需要说明的是,在本申请实施例中,至少两个第一射频信号处理模块可以包括两个第一射频信号处理模块(例如,前述所涉及的第二射频信号处理模块和第三射频信号处理模块),还可以包括三个第一射频信号处理模块,例如,三个第一射频信号处理模块包含第二射频信号处理模块和第三射频信号处理模块,还包含除第二射频信号处理模块和第三射频信号处理模块之外的其他射频信号处理模块。当至少两个第一射频信号处理模块中包含3个以及3个以上的射频信号处理模块时,在一个示例中,3个以及3个以上的射频信号处理模块可以接收3种以及3种以上不同频率范围的射频信号;在一个示例中,3个以及3个以上的射频信号处理模块中的某几个(例如,2个)射频信号处理模块可以接收属于同一个频率范围的射频信号,而其他射频信号处理模块可以接收属于另一个频率范围的射频信号等等,此处不多加限定。
在一个示例中,如图1c所示,该接收装置10可以包括第二射频信号处理模块111、至少一个第一开关电路12以及第一模拟信号处理模块13。在至少一个第一开关电路12的第一端口处于连接状态的情况下,该接收装置10,可以用于根据第一射频信号以得到第一基带信号。示例性地,第一射频信号属于第一范围。具体来说,第二射频信号处理模块111,用于获取第一射频信号以及生成第一中频模拟信号;其中,第一中频模拟信号为对第一射频信号进行混频得到的;第一模拟信号处理模块13,用于根据第一中频模拟信号生成第一基带信号。
在一个示例中,如图1d所示,该接收装置10可以包括第三射频信号处理模块112、至少一个第一开关电路12以及第一模拟信号处理模块13。在至少一个第一开关电路12的第二端口处于连接状态的情况下,该接收装置10,可以用于根据第二射频信号以得到第一基带信号。示例性地,第二射频信号属于第二范围。具体来说,第三射频信号处理模块112,用于获取第二射频信号以及生成第一放大模拟信号;其中,第一放大模拟信号为对第二射频信号进行放大得到的;第一模拟信号处理模块13,用于根据第一放大模拟信号生成第一基带信号。
结合图1c和图1d可以知道的是,在至少一个第一开关电路的切换下,接收装置10可以工作在不同的频率范围。当接收装置10工作在不同的频率范围时,可以复用“第一模拟信号处理模块”,这一实现方式,可以降低接收装置的复杂度和成本。
在一个示例中,如图1e所示,该接收装置10可以包括至少两个第一射频信号处理模块11(例如,至少两个第一射频信号处理模块可以包括第二射频信号处理模块111和第三射频信号处理模块112)、至少一个第一开关电路12(第一开关电路包括第一端口和第二端口)、第一模拟信号处理模块13、模数转换模块14、基带处理器15以及至少一个第一天线16。其中,至少一个第一天线与第二射频信号处理模块111或第三射频信号处理模块112中的至少一个连接。
结合图1e所示的接收装置10的结构示意图,当至少一个第一开关电路12的第一端口 处于连接状态时,第二射频信号处理模块111,可以用于获取第一射频信号以及生成第一中频模拟信号;其中,第一中频模拟信号为对第一射频信号进行混频得到的;此时,第一模拟信号处理模块13,可以用于根据第一中频模拟信号生成第一基带信号;当至少一个第一开关电路12的第二端口处于连接状态时,第三射频信号处理模块112,可以用于获取第二射频信号以及生成第一放大模拟信号;其中,第一放大模拟信号为对第二射频信号进行放大得到的;此时,第一模拟信号处理模块13,可以用于根据第一放大模拟信号生成第一基带信号。
下面对接收装置10中第一开关电路处于不同连接状态时的具体工作过程进行展开说明:
在一个示例中,当基带处理器15获知第二射频信号处理模块从第一天线(例如,第一天线为接收天线)获取到第一射频信号,基带处理器15将至少一个第一开关电路的第一端口设置为连接状态,此时,第二射频信号处理模块111,用于从第一天线获取第一射频信号,以及生成第一中频模拟信号;其中,第一中频模拟信号为对第一射频信号进行混频得到的;第一模拟信号处理模块13,用于根据第一中频模拟信号生成第一基带模拟信号;模数转换模块14,用于生成第一数字基带信号;基带处理器15,用于根据第一数字基带信号进行处理;第一本振信号处理模块17,用于生成第一本振信号;第二本振信号处理模块18,用于生成第二本振信号。
在一个示例中,当基带处理器15获知第三射频信号处理模块从第一天线(例如,第一天线为接收天线)获取到第二射频信号,基带处理器15将至少一个第一开关电路的第二端口设置为连接状态,此时,第三射频信号处理模块112,用于从第一天线获取第二射频信号,以及生成第一放大模拟信号;其中,第一放大模拟信号为对第二射频信号进行放大得到的;第一模拟信号处理模块13,用于根据第一放大模拟信号生成第一模拟基带信号;模数转换模块14,用于生成第一数字基带信号;基带处理器15,用于根据第一数字基带信号进行处理;第一本振信号处理模块17,用于生成第一本振信号;第二本振信号处理模块18,用于生成第二本振信号。
在一个示例中,接收装置10的具体结构可以如图1f所示,其中,
第二射频信号处理模块111可以包括第一低噪声放大器(Low Noise Amplifier,LNA)和第一下变频混频器。在实际应用中,第二射频信号处理模块111除了包括第一低噪声放大器和第一下变频混频器之外,还可以包括第一旁路电路。
第三射频信号处理模块112可以包括第二低噪声放大器。在实际应用中,第三射频信号处理模块112除了包括第二低噪声放大器之外,还可以包括第二旁路电路。
具体来说,旁路电路区别于主回路电路(例如,主回路为第二低噪声放大器组成的电路),是指因功能需要时,可以切换到另一条回路上而不致于影响射频信号处理模块的正常工作。
第一模拟信号处理模块13可以包括第一放大器(Amplifier)和至少两路第一正交I/Q处理电路;其中,第一I路处理电路包括第二下变频混频器、第一可变增益放大器、第一低通滤波器(Low Pass Filte,LPF)和第二放大器;第一Q路处理电路包括第三下变频混频器、第二可变增益放大器、第二低通滤波器和第三放大器;在一个示例中,第一放大器 和至少两路第一正交I/Q处理电路可以为独立的结构;在一个示例中,第一放大器和至少两路第一正交I/Q处理电路可以封装在一起,本申请不作具体限定。
模数转换模块14可以包括至少两个模数转换器。示例性地,至少两个模数转换器可以包括第一模数转换器和第二模数转换器,其中,第一模数转换器与第一I路处理电路相连,第二模数转换器与第一Q路处理电路相连。
第一本振信号处理模块17可以包括第一锁相环路PLL1(Phase Locked Loop,PLL)和第一高频振荡器。
第二本振信号处理模块18可以包括第二锁相环路PLL2和第二高频振荡器。
在本申请实施例中,锁相环路的主要功能是让某一高频率的振荡器锁定在一个低频率的、比较稳定的低频时钟源上,使高频的振荡源的稳定性和低频的时钟源稳定性趋于一致。锁相环路的工作原理是:高频振荡源产生的信号经过分频得到和参考时钟源频率相同的信号,该信号和参考时钟信号的频率/相位进行比较,比较的结果作为一个误差控制信号再去控制高频振荡器的频率/相位。通过这样的反馈控制,使高频振荡器的振荡趋于稳定,输出稳定的高频频率信号。该锁相环路产生的信号分别3倍频和2分频后作为第一级和第二级本振。
在本申请实施中,低噪声放大器,是指噪声系数很低的放大器。具体来说,低噪声放大器可以用于对接收到的射频信号进行放大。
在本申请实施例中,第一低噪声放大器和第二低噪声放大器可以为结构和类型相同的放大器,其中,第一低噪声放大器工作在第一范围,第二低噪声放大器工作在第二范围。这里,第一范围和第二范围属于不同的频率范围。
在一个示例中,第二射频信号处理模块111可以包括第一下变频混频器;第三射频信号处理模块112可以包括旁路电路(例如,该旁路电路用于接收第二射频信号);第一模拟信号处理模块13可以包括第一放大器(Amplifier)和至少两路第一正交I/Q处理电路;其中,第一I路处理电路包括第二下变频混频器、第一可变增益放大器、第一低通滤波器(Low Pass Filte,LPF)和第二放大器;第一Q路处理电路包括第三下变频混频器、第二可变增益放大器、第二低通滤波器和第三放大器;模数转换模块14可以包括至少两个模数转换器;第一本振信号处理模块17可以包括第一锁相环路PLL1(Phase Locked Loop,PLL)和第一高频振荡器;第二本振信号处理模块18可以包括第二锁相环路PLL2和第二高频振荡器。在这一实现方式中,接收装置10可以用于接收信噪比满足设定好的阈值的射频信号(例如,射频信号可以为第一射频信号或第二射频信号)。这里,信噪比(signal-to-noise ratio)是描述信号中有效成分与噪声成分的比例关系参数。通常情况下,信噪比数值越高,噪音越小。例如,设定好的阈值可以为90dB。可以理解的是,当输入接收装置10的射频信号的信噪比为95dB时,接收装置10可以完成该射频信号的接收。
基于图1f所示的接收装置10的硬件结构示意图,下面具体阐述接收装置10是如何处理射频信号的。在一个示例中,在至少一个第一开关电路12的第一端口处于连接状态的情况下,第二射频信号处理模块111从接收天线16获取第一射频信号(例如,第一射频信号属于第一范围),将获取到的第一射频信号和第一本振信号进行混频后,得到第一中频模拟信号;然后,将第一中频模拟信号发送至第一模拟信号处理模块13和第二本振信号做正交 混频,生成两路正交的第一模拟基带信号;之后,将两路正交的第一模拟基带信号发送至模数转换模块14,得到两路正交的第一数字基带信号,从而基带处理器15可以对两路正交的第一数字基带信号进行处理。
具体来说,上述描述中“将获取到的第一射频信号和第一本振信号进行混频后,得到第一中频模拟信号”可以是指,将获取到的第一射频信号和第一本振信号相减后取绝对值,得到第一中频模拟信号。“将第一中频模拟信号发送至第一模拟信号处理模块13和第二本振信号做正交混频,生成两路正交的第一模拟基带信号”可以是指,将第一中频模拟信号和第二本振相减后取绝对值,从而可以得到两路正交的第一模拟基带信号。可以理解的是,在至少一个第一开关电路12的第一端口处于连接状态的情况下,接收装置10可以通过“二次变频”(下变频过程)的结构,实现第一射频信号的接收。这里,第一射频信号属于第一范围。例如,第一射频信号为高频信号。
在一个示例中,在至少一个第一开关电路12的第二端口处于连接状态的情况下,第三射频信号处理模块112从接收天线16获取第二射频信号(例如,第二射频信号属于第二范围),将获取到的第二射频信号进行放大,得到第一放大模拟信号;然后,将第一放大模拟信号发送至第一模拟信号处理模块13和第二本振信号做正交混频,生成两路正交的第一模拟基带信号;之后,将两路正交的第一模拟基带信号发送至模数转换模块14,得到两路正交的第一数字基带信号,从而基带处理器15可以对两路正交的第一数字基带信号进行处理。
具体来说,上述描述中“将第一放大模拟信号发送至第一模拟信号处理模块13和第二本振信号做正交混频,生成两路正交的第一模拟基带信号”可以是指,将第一放大模拟信号和第二本振相减后取绝对值,从而可以得到两路正交的第一模拟基带信号。可以理解的是,在至少一个第一开关电路12的第二端口处于连接状态的情况下,接收装置10可以通过“一次变频”的结构(也即:零中频结构),实现第二射频信号的接收。
实施本申请实施例,由于接收装置采用了复用的结构,在第一开关的切换下,第二射频信号处理模块和第三射频信号处理模块可以处理不同频率范围的射频信号,可以降低接收装置的复杂度和成本。
以图1a所示的接收装置为例,本申请提供了一种信号处理方法,该方法应用于该接收装置,如图1g所示,该方法可以包括但不限于如下步骤:
步骤S102、通过第一射频信号处理模块获取射频信号以得到第一模拟信号。
步骤S104、通过第一模拟信号处理模块根据第一模拟信号,得到第一基带信号。
实施本申请实施例,接收装置在第一开关的切换下,至少两个第一射频信号处理模块可以处理不同频率范围的射频信号,可以降低接收装置的复杂度和成本。
在一种可能的实现方式中,至少两个射频信号处理模块包含第二射频信号处理模块,第二射频信号处理模块与至少一个第一开关电路的第一端口连接;至少一个第一开关电路的第一端口处于连接状态,此时,该信号处理方法的实现过程可以包括:通过第二射频信号处理模块获取第一射频信号以及生成第一中频模拟信号;其中,第一中频模拟信号为对第一射频信号进行混频得到的;之后,通过第一模拟信号处理模块根据第一中频模拟信号生成第一基带信号。实施本申请实施例,由于第二射频信号处理模块与至少一个第一开关电路的第一端口连接,在至少一个第一开关电路的第一端口处于连接状态的情况下,可以 通过第二射频信号处理模块对第一射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置实现高频射频信号的处理。
在一种可能的实现方式中,至少两个射频信号处理模块包含第三射频信号处理模块,第三射频信号处理模块与至少一个第一开关电路的第二端口连接;至少一个第一开关电路的第二端口处于连接状态;此时,该信号处理方法的实现过程可以包括:通过第三射频信号处理模块获取第二射频信号以及生成第一放大模拟信号;其中,第一放大模拟信号为对第二射频信号进行放大得到的;之后,通过第一模拟信号处理模块根据第一放大模拟信号生成第一基带信号。实施本申请实施例中,由于第三射频信号处理模块与至少一个第一开关电路的第二端口连接,在至少一个第一开关电路的第二端口处于连接状态的情况下,可以通过第三射频信号处理模块对第二射频信号进行处理,并通过第一模拟信号处理模块生成第一基带信号。在这一实现方式中,通过切换第一开关,可以使得接收装置实现低频射频信号的处理。
请参见图2a,为本申请实施例提供的一种发射装置20的结构示意图。如图2a所示,该装置20可以包括至少两个第四射频信号处理模块21,至少一个第二开关电路22以及第二模拟信号处理模块23;至少两个第四射频信号处理模块21通过至少一个第二开关电路22与第二模拟信号处理模块连接23连接。其中,
第二模拟信号处理模块23,用于根据第二基带信号,得到第二模拟信号;
第四射频信号处理模块24,用于根据第二模拟信号以得到射频信号。
在一个示例中,如图2b所示,至少两个第四射频信号处理模块21包含第五射频信号处理模块和第六射频信号处理模块。具体来说,第五射频信号处理模块211与至少一个第二开关电路22的第一端口连接,第六射频信号处理模块212与至少一个第二开关电路22的第二端口连接;其中,第五射频信号处理模块211,用于生成第三射频信号;第六射频信号处理模块,用于生成第四射频信号。这里,第三射频信号和第四射频信号属于不同的频率范围。示例性地,第三射频信号属于第一范围,第四射频信号属于第二范围。在一个示例中,大于或等于第一阈值的为第一范围,小于第一阈值的为第二范围。在一个示例中,大于第一阈值的为第一范围,小于等于第一阈值的为第二范围。
在一个示例中,第一阈值可以为本申请所描述的发射装置20在出厂时设置好的某个具体数值;在一个示例中,第一阈值可以为在2G(the Second Generation)、3G(the 3rdGeneration)、4G(the 4th Generation)乃至5G(the 5thGeneration)的演进过程中,本领域技术人员通过不断试验而获得的经验值(例如,该经验值可以默认为无线射频领域中的标准值)。例如,第一阈值可以为2.4GHz。又例如,第一阈值可以为5.8GHz。进一步地,在实际应用中,第一阈值是可以调整的,在不同的应用场景下,第一阈值的取值可以不同。
需要说明的是,在本申请实施例中,至少两个第四射频信号处理模块可以包括两个第四射频信号处理模块(例如,前述所涉及的第五射频信号处理模块和第六射频信号处理模块),还可以包括三个第四射频信号处理模块,例如,三个第四射频信号处理模块包含第五射频信号处理模块和第六射频信号处理模块,还可以包含除第五射频信号处理模块和第六 射频信号处理模块之外的其他射频信号处理模块。当至少两个第四射频信号处理模块中包含3个以及3个以上的射频信号处理模块时,在一个示例中,3个以及3个以上的射频信号处理模块可以发射3种以及3种以上不同频率范围的射频信号;在一个示例中,3个以及3个以上的射频信号处理模块中的某几个(例如,2个)射频信号处理模块可以发射属于同一个频率范围的射频信号,而其他射频信号处理模块可以发射属于另一个频率范围的射频信号等等,此处不多加限定。
在一个示例中,如图2c所示,该发射装置20可以包括第二模拟信号处理模块23、至少一个第二开关电路22和第五射频信号处理模块211。在至少一个第二开关电路的第一端口处于连接状态的情况下,该发射装置20,可以用于根据第二基带信号以得到第三射频信号。示例性地,第三射频信号处于第一范围。具体来说,第二模拟信号处理模块23,用于根据第二基带信号生成第二中频模拟信号;第五射频信号处理模块211,用于获取第二中频模拟信号以及生成第三射频信号;其中,第三射频信号为对第二中频模拟信号进行混频得到的。
在一个示例中,如图2d所示,该发射装置20可以包括第二模拟信号处理模块23、至少一个第二开关电路22和第六射频信号处理模块212。在至少一个第二开关电路的第二端口处于连接状态的情况下,该发射装置20,可以用于根据第二基带信号以得到第四射频信号。示例性地,第四射频信号属于第二频率范围。具体来说,第二模拟信号处理模块23,用于根据第二基带信号生成第二中频模拟信号;第六射频信号处理模块,用于获取第二中频模拟信号以及生成第四射频信号;其中,第四射频信号为对第二中频模拟信号进行射频功率放大得到的。
结合图2c和图2d可以知道的是,在至少一个第一开关电路的切换下,发射装置20可以发射不同的频率范围的射频信号。当发射装置20发射不同的频率范围的射频信号时,可以复用“第二模拟信号处理模块”,这一实现方式,可以降低发射装置的复杂度和成本。
在一个示例中,如图2e所示,该发射装置20可以包括至少两个第四射频信号处理模块21(例如,至少两个第四射频信号处理模块21可以包括第五射频信号处理模块211和第六射频信号处理模块212)、至少一个第二开关电路22(第二开关电路可以包括第一端口和第二端口)、第二模拟信号处理模块23、数模转换模块24、基带处理器25以及至少一个第二天线26。其中,至少一个第二天线26与第五射频信号处理模块211或第六射频信号处理模块212中的至少一个连接。
结合图2e所示的发射装置20的结构示意图,当至少一个第二开关电路的第一端口处于连接状态时,第二模拟信号处理模块23,可以用于根据第二基带信号生成第二中频模拟信号;此时,第五射频信号处理模块211,可以用于获取第二中频模拟信号以及生成第三射频信号;其中,第三射频信号为对第二中频模拟信号进行混频得到的;当至少第二开关电路的第二端口处于连接状态时,第二模拟信号处理模块23,可以用于根据第二基带信号生成第二中频模拟信号;此时,第六射频信号处理模块,可以用于获取第二中频模拟信号以及生成第四射频信号;其中,第四射频信号为对第二中频模拟信号进行射频功率放大得到的。
下面对发射装置20中第二开关电路处于不同连接状态时的具体工作过程进行展开说 明:
在一个示例中,当基带处理器25控制第三射频信号的发射时,基带处理器25将至少一个第二开关电路的第一端口设置为连接状态,此时,基带处理器25,用于生成第二数字基带信号;数模转换模块24,用于生成第二模拟基带信号;第二模拟信号处理模块23,用于根据第二模拟基带信号生成第二中频模拟信号;第五射频信号处理模块211,用于获取所述第二中频模拟信号以及生成所述第三射频信号;其中,所述第三射频信号为对所述第二中频模拟信号进行混频得到的;第一本振信号处理模块17,用于生成第一本振信号;第二本振信号处理模块18,用于生成第二本振信号。
在一个示例中,当基带处理器25控制第三射频信号的发射时,基带处理器25将至少一个第二开关电路的第二端口处于连接状态,此时,基带处理器25,用于生成第二数字基带信号;数模转换模块24,用于生成第二模拟基带信号;第二模拟信号处理模块23,用于根据第二模拟基带信号生成第二中频模拟信号;第六射频信号处理模块212,用于获取所述第二中频模拟信号以及生成所述第四射频信号;其中,所述第四射频信号为对所述第二中频模拟信号进行射频功率放大得到的;第一本振信号处理模块17,用于生成第一本振信号;第二本振信号处理模块18,用于生成第二本振信号。
在一个示例中,发射装置20的硬件结构可以如图2f所示,其中,
第二模拟信号处理模块23包括至少两路第二正交I/Q处理电路和第四放大器;其中,第二I路处理电路包括第一上变频混频器、第三可变增益放大器、第三低通滤波器和第五放大器;第二Q路处理电路包括第二上变频混频器、第四可变增益放大器、第四低通滤波器和第六放大器;在一个示例中,第四放大器和至少两路第二正交I/Q处理电路可以为独立的结构;在一个示例中,第四放大器和至少两路第二正交I/Q处理电路可以封装在一起,本申请不作具体限定。
第五射频信号处理模块211包括第一射频功率放大器(Power Amplifier,PA)和第三上变频混频器;在实际应用中,第五射频信号处理模块211除了包括第一射频功率放大器(Power Amplifier,PA)和第三上变频混频器之外,还可以包括第三旁路电路。
第六射频信号处理模块212包括第二射频功率放大器。在实际应用中,第六射频信号处理模块212除了包括第二射频功率放大器之外,还可以包括第四旁路电路。
具体来说,旁路电路区别于主回路电路(例如,主回路为第二射频功率放大器组成的电路),是指因功能需要时,可以切换到另一条回路上而不致于影响射频信号处理模块的正常工作。
数模转换模块24可以包括至少两个数模转换器。示例性地,至少两个数模转换器可以包括第一数模转换器和第二数模转换器,其中,第一数模转换器与第二I路处理电路相连,第二数模转换器与第二Q路处理电路相连。
关于第一本振信号处理模块17和第二本振信号处理模块18的具体实现请参考前述描述,此处不多加赘述。
在本申请实施例中,第一射频功率放大器和第二射频功率放大器可以为结构和类型相同的放大器,其中,第一射频功率放大器工作在第一范围,第二射频功率放大器工作在第二范围。这里,第一范围和第二范围属于不同的频率范围。
在一个示例中,第二模拟信号处理模块23包括至少两路第二正交I/Q处理电路和第四放大器;第五射频信号处理模块211包括第三上变频混频器;第六射频信号处理模块212包括旁路电路;数模转换模块24可以包括至少两个数模转换器;第一本振信号处理模块17可以包括第一锁相环路PLL1(Phase Locked Loop,PLL)和第一高频振荡器;第二本振信号处理模块18可以包括第二锁相环路PLL2和第二高频振荡器。在这一实现方式中,发射装置20可以用于发射输出功率和/或效率满足设定好的阈值的射频信号(例如,射频信号可以为第三射频信号或第四射频信号)。
基于图2f所示的发射装置20的具体结构示意图,下面具体阐述发射装置20是如何发射射频信号的。在一个示例中,在至少一个第二开关电路的第一端口处于连接状态的情况下,基带处理器25生成第二数字基带信号;然后,将第二数字基带信号发送给数模转换模块24,得到两路正交的第二模拟基带信号;之后,两路正交的第二模拟基带信号在第二模拟信号处理模块23的处理下,得到第二中频模拟信号;第五射频信号处理模块211获取第二中频模拟信号,将第二中频模拟信号和第一本振信号进行混频之后,得到第三射频信号。之后,该第三射频信号通过第二天线(例如,第二天线可以为发射天线)发射出去。
具体来说,上述描述中“两路正交的第二模拟基带信号在第二模拟信号处理模块23的处理下,得到第二中频模拟信号”是指,将两路正交的第二模拟基带信号和第二本振信号相加,得到第二中频模拟信号。“将第二中频模拟信号和第一本振信号进行混频之后,得到第三射频信号”是指,将第二中频模拟信号和第一本振信号相加,得到第三射频信号。可以理解的是,在至少一个第二开关电路的第一端口处于连接状态的情况下,发射装置20可以通过“二次变频”(上变频过程)的结构,实现第三射频信号的发射。这里,第三射频信号属于第一范围。例如,第三射频信号为高频信号。
在一个示例中,在至少一个第二开关电路的第二端口处于连接状态的情况下,基带处理器25生成第二数字基带信号;然后,将第二数字基带信号发送给数模转换模块24,得到两路正交的第二模拟基带信号;之后,两路正交的第二模拟基带信号在第二模拟信号处理模块23的处理下,得到第二中频模拟信号;第六射频信号处理模块212获取第二中频模拟信号,将第二中频模拟信号进行射频功率放大之后,得到第四射频信号。之后,该第四射频信号通过第二天线(例如,第二天线可以为发射天线)发射出去。
具体来说,上述描述中“两路正交的第二模拟基带信号在第二模拟信号处理模块23的处理下,得到第二中频模拟信号”是指,将两路正交的第二模拟基带信号和第二本振信号相加,得到第二中频模拟信号。可以理解的是,发射装置20可以通过“一次变频”的结构(也即:零中频结构),实现第四射频信号的发射。
实施本申请实施例,发射装置在第一开关的切换下,至少两个第四射频信号处理模块可以生成不同频率范围的射频信号,可以降低发射装置的复杂度和成本。
以图2a所示的发射装置为例,本申请提供了一种信号处理方法,该方法应用于该发射装置,如图2g所示,该方法可以包括但不限于如下步骤:
步骤S202、通过第二模拟信号处理模块根据第二基带信号,得到第二模拟信号。
步骤S204、通过第四射频信号处理模块根据第二模拟信号以得到射频信号。
实施本申请实施例,发射装置在第一开关的切换下,至少两个第四射频信号处理模块 可以生成不同频率范围的射频信号,可以降低发射装置的复杂度和成本。
在一种可能的实现方式中,至少两个第四射频信号处理模块包含第五射频信号处理模块,第五射频信号处理模块与至少一个第二开关电路的第一端口连接;至少一个第二开关电路的第一端口处于连接状态;此时,该信号处理方法的实现过程可以包括:通过第二模拟信号处理模块根据第二基带信号生成第二中频模拟信号;之后,通过第五射频信号处理模块获取第二中频模拟信号以及生成第三射频信号;其中,第三射频信号为对第二中频模拟信号进行混频得到的。实施本申请实施例,由于第五射频信号处理模块与至少一个第二开关电路的第一端口连接,在至少一个第二开关电路的第一端口处于连接状态的情况下,可以通过第五射频信号处理模块生成第三射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射高频射频信号。
在一种可能的实现方式中,至少两个第四射频信号处理模块包含第六射频信号处理模块,第六射频信号处理模块与至少一个第二开关电路的第二端口连接;至少一个第二开关电路的第二端口处于连接状态;此时,该信号处理方法的实现过程可以包括:通过第二模拟信号处理模块根据第二基带信号生成第二中频模拟信号;之后,通过第六射频信号处理模块获取第二中频模拟信号以及生成第四射频信号;其中,第四射频信号为对第二中频模拟信号进行射频功率放大得到的。实施本申请实施例,由于第六射频信号处理模块与至少一个第二开关电路的第二端口连接,在至少一个第二开关电路的第二端口处于连接状态的情况下,可以通过第六射频信号处理模块生成第四射频信号。在这一实现方式中,通过切换第一开关,可以使得发射装置发射低频射频信号。
参见图3a,为本申请实施例提供的一种收发装置的结构示意图。如图3a所示,该收发装置包括接收装置301和发射装置302。其中,关于接收装置301的具体实现请参考前述接收装置10的描述,关于发射装置302的具体实现请参考前述发射装置20的描述,此处不多加赘述。
在本申请实施例中,接收装置301和发射装置302可以通过无线网络进行射频信号的接收和发射,具体实现方式可以是本领域技术人员所熟知的任意方式。
可以理解的是,接收装置301和发射装置302可以集成在同一个射频电路中。如图3b所示,该收发装置30包括如图1f所示的接收装置10和如图2f所示的发射装置20。关于接收装置10以及发射装置20的具体实现请参考前述描述,此处不多加赘述。
为了便于更好的理解本申请,下面介绍几个本申请所描述的技术方案可以适用的应用场景为:
场景一:扩展频率支持,收发装置30可以支持3GHz-5.8GHz通信频段。
现有技术中,以基站中的4G收发装置(例如,收发信机)产品为例,它的工作频率分布在3GHz以下的通信频段(也即:不支持3GHz以上的通信频段),后来引入了LAA(Licence Assisted Access)技术,以载波聚合或者双连接为基础,由授权载波辅助非授权载波接入,以实现LTE网络的数据业务承载的补充,即:采用5.8GHz非授权(unlicensed)频段辅助现有4G频段通信,扩展通信带宽。
本申请所描述的收发装置(接收装置10和发射装置20)可以支持3GHz-5.8GHz通信频段。在一个示例中,以接收装置10接收通信频率为5.8GHz的第一射频信号为例,在至少一个第一开关电路的第一端口处于连接状态的情况下,第二射频信号处理模块从第一天线处获取通信频率为5.8GHz的第一射频信号,将第一射频信号和第一本振信号进行混频后,得到第一中频模拟信号;然后,将第一中频模拟信号发送至第一模拟信号处理模块和第二本振信号做正交混频,生成两路正交的第一基带信号(例如,第一模拟基带信号),从而可以实现通信频率为5.8GHz第一射频信号的接收。
在一个示例中,以接收装置10接收通信频率为小于等于3GHz的第二射频信号为例,在至少一个第一开关电路的第二端口处于连接状态的情况下,第三射频信号处理模块从第一天线处获取通信频率为小于等于3GHz的第二射频信号,将获取到的第二射频信号进行放大,得到第一放大模拟信号;然后,将第一放大模拟信号发送至第一模拟信号处理模块和第二本振信号做正交混频,生成两路正交的第一基带信号(例如,第一模拟基带信号),从而可以实现通信频率为小于等于3GHz的第二射频信号的接收。
在一个示例中,以发射装置发射20发射通信频率为5.8GHz的第三射频信号为例,在至少一个第二开关电路的第一端口处于连接状态的情况下,两路正交的第二基带信号(例如,第二模拟基带信号)在第二模拟信号处理模块的处理下,得到第二中频模拟信号;第五射频信号处理模块获取第二中频模拟信号,将第二中频模拟信号和第一本振信号进行混频之后,得到通信频率为5.8GHz第三射频信号。之后,该第三射频信号通过第二天线发射出去,从而可以实现通信频率为5.8GHz第三射频信号的发射。
在一个示例中,以发射装置发射20发射通信频率为小于等于3GHz的第四射频信号为例,在至少一个第二开关电路的第二端口处于连接状态的情况下,两路正交的第二基带信号(例如,第二模拟基带信号)在第二模拟信号处理模块的处理下,得到第二中频模拟信号;第六射频信号处理模块获取第二中频模拟信号,将第二中频模拟信号进行射频功率放大之后,得到通信频率为小于等于3GHz的第四射频信号。之后,该第四射频信号通过第二天线发射出去,从而可以实现通信频率为小于等于3GHz的第四射频信号的发射。
场景二:毫米波段和现有4G通信频段共用。
在本申请实施例中,当收发装置工作在6GHz以下的通信频段时,例如,接收通信频率为6GHz以下的射频信号时,通过第一模拟信号处理模块(相当于现有技术中的零中频接收架构)来实现;又例如,发射通信频率为6GHz以下的射频信号时,通过第二模拟信号处理模块(相当于现有技术中的零中频发射架构)来实现。当收发装置工作在毫米波段时,例如,接收毫米波段的射频信号时,通过至少两个第一射频信号处理模块和第一模拟信号处理模块(也即:“二次”下变频的结构)来实现;又例如,发射毫米波段的射频信号时,通过至少两个第四射频信号处理模块和第二模拟信号处理模块(也即:“二次”上变频的结构)来实现。
可以理解的是,本申请所提出的收发装置可以让6GHz以下的通信频段重用4G的架构。
场景三:支持毫米波通信频段,同时支持15GHz和60GHz。
现有技术中,为了满足零中频收发架构或者二次变频的超外差收发装置能够同时支持第一频率和第二频率的通信频段,其中,第一频率和第二频率之间的差值大于设定好的目标阈值,例如,第一频率15GHz,第二频率为60GHz,需要保证本振信号的频率位于15GHz-60GHz之间,该带宽很大,这无疑增大了设计难度。
采用本申请所描述的收发装置,当收发装置工作在15GHz的通信频段时,例如,接收通信频率为15GHz的射频信号时,通过第一模拟信号处理模块(相当于现有技术中的零中频接收架构)来实现;又例如,发射通信频率为15GHz的射频信号时,通过第二模拟信号处理模块(相当于现有技术中的零中频发射架构)来实现。当收发装置工作在60GHz的通信频段时,例如,接收通信频率为60GHz射频信号时,通过至少两个第一射频信号处理模块和第一模拟信号处理模块(也即:“二次”下变频的结构)来实现;又例如,发射通信频率为60GHz射频信号时,通过至少两个第四射频信号处理模块和第二模拟信号处理模块(也即:“二次”上变频的结构)来实现。在整个实现过程中,可以通过窄带的频率源来提供本振信号,降低了设计难度。
总的来说,本申请提供的收发装置,因其采用了复用的结构,在开关的切换下,可以实现不同通信频率的射频信号的接收和发射。
本发明实施例还提供了一种计算机存储介质,该计算机可读存储介质中存储有指令,当其在基带处理器上运行时,使得基带处理器执行上述任一个实施例所述方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中,基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机产品存储在计算机可读存储介质中。
上述计算机可读存储介质可以是前述实施例所述的设备的内部存储单元,例如硬盘或内存。上述计算机可读存储介质也可以是上述设备的外部存储设备,例如配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,上述计算机可读存储介质还可以既包括上述设备的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述设备所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可通过计算机程序来指令相关的硬件来完成,该计算机的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
可以理解,本领域普通技术人员可以意识到,结合本申请各个实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是 这种实现不应认为超出本申请的范围。
本领域技术人员能够领会,结合本申请各个实施例中公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种接收装置,其特征在于,所述装置包括至少两个第一射频信号处理模块和第一模拟信号处理模块;所述至少两个第一射频信号处理模块通过至少一个第一开关电路与所述第一模拟信号处理模块连接;其中,
    所述第一射频信号处理模块,用于获取射频信号以得到第一模拟信号;
    所述第一模拟信号处理模块,用于根据所述第一模拟信号,得到第一基带信号。
  2. 如权利要求1所述的装置,其特征在于,所述至少两个第一射频信号处理模块包含第二射频信号处理模块和第三射频信号处理模块,所述第二射频信号处理模块与所述至少一个第一开关电路的第一端口连接,所述第三射频信号处理模块与所述至少一个第一开关电路的第二端口连接;
    其中,所述第二射频信号处理模块用于获取第一射频信号,所述第三射频信号处理模块用于获取第二射频信号,所述第一射频信号和所述第二射频信号属于不同的频率范围。
  3. 如权利要求1或2所述的装置,其特征在于,所述至少一个第一开关电路的第一端口处于连接状态;
    所述第二射频信号处理模块,用于获取所述第一射频信号以及生成第一中频模拟信号;其中,所述第一中频模拟信号为对所述第一射频信号进行混频得到的;
    所述第一模拟信号处理模块,用于根据所述第一中频模拟信号生成所述第一基带信号。
  4. 如权利要求1或2所述的装置,其特征在于,所述至少一个第一开关电路的第二端口处于连接状态;
    所述第三射频信号处理模块,用于获取所述第二射频信号以及生成第一放大模拟信号;其中,所述第一放大模拟信号为对所述第二射频信号进行放大得到的;
    所述第一模拟信号处理模块,用于根据所述第一放大模拟信号生成所述第一基带信号。
  5. 如权利要求1或2所述的装置,其特征在于,所述第二射频信号处理模块包括第一低噪声放大器和第一下变频混频器;
    所述第三射频信号处理模块包括第二低噪声放大器;
    所述第一模拟信号处理模块包括第一放大器和至少两路第一正交I/Q处理电路;其中,第一I路处理电路包括第二下变频混频器、第一可变增益放大器、第一低通滤波器和第二放大器;第一Q路处理电路包括第三下变频混频器、第二可变增益放大器、第二低通滤波器和第三放大器。
  6. 如权利要求1-5任一项所述的装置,其特征在于,所述装置还包括至少一个第一天线,所述至少一个第一天线与所述第二射频信号处理模块或所述第三射频信号处理模块中的至少一个连接。
  7. 一种信号处理方法,其特征在于,所述方法应用于接收装置,所述装置包括至少两个第一射频信号处理模块和第一模拟信号处理模块;所述至少两个第一射频信号处理模块通过至少一个第一开关电路与所述第一模拟信号处理模块连接;所述方法包括:
    通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号;
    通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号。
  8. 如权利要求7所述的方法,其特征在于,所述至少两个射频信号处理模块包含第二射频信号处理模块,所述第二射频信号处理模块与所述至少一个第一开关电路的第一端口连接;所述至少一个第一开关电路的第一端口处于连接状态;所述通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号,包括:
    通过所述第二射频信号处理模块获取所述第一射频信号以及生成第一中频模拟信号;其中,所述第一中频模拟信号为对所述第一射频信号进行混频得到的;
    所述通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号,包括:
    通过所述第一模拟信号处理模块根据所述第一中频模拟信号生成所述第一基带信号。
  9. 如权利要求7所述的方法,其特征在于,所述至少两个射频信号处理模块包含第三射频信号处理模块,所述第三射频信号处理模块与所述至少一个第一开关电路的第二端口连接;所述至少一个第一开关电路的第二端口处于连接状态;
    所述通过所述第一射频信号处理模块获取射频信号以得到第一模拟信号,包括:
    通过所述第三射频信号处理模块获取所述第二射频信号以及生成第一放大模拟信号;其中,所述第一放大模拟信号为对所述第二射频信号进行放大得到的;
    所述通过所述第一模拟信号处理模块根据所述第一模拟信号,得到第一基带信号,包括:
    通过所述第一模拟信号处理模块根据所述第一放大模拟信号生成所述第一基带信号。
  10. 一种发射装置,其特征在于,所述装置包括至少两个第四射频信号处理模块和第二模拟信号处理模块;所述至少两个第四射频信号处理模块通过至少一个第二开关电路与所述第二模拟信号处理模块连接;其中,
    所述第二模拟信号处理模块,用于根据第二基带信号,得到第二模拟信号;
    所述第四射频信号处理模块,用于根据所述第二模拟信号以得到射频信号。
  11. 如权利要求10所述的装置,其特征在于,所述至少两个第四射频信号处理模块包含第五射频信号处理模块和第六射频信号处理模块,所述第五射频信号处理模块与所述至少一个第二开关电路的第一端口连接,所述第六射频信号处理模块与所述至少一个第二开关电路的第二端口连接;
    其中,所述第五射频信号处理模块用于生成第三射频信号,所述第六射频信号处理模块用于生成第四射频信号,所述第三射频信号和所述第四射频信号属于不同的频率范围。
  12. 如权利要求10或11所述的装置,其特征在于,所述至少一个第二开关电路的第一端口处于连接状态;
    所述第二模拟信号处理模块,用于根据所述第二基带信号生成第二中频模拟信号;
    所述第五射频信号处理模块,用于获取所述第二中频模拟信号以及生成所述第三射频信号;其中,所述第三射频信号为对所述第二中频模拟信号进行混频得到的。
  13. 如权利要求10或11所述的装置,其特征在于,所述至少一个第二开关电路的第二端口处于连接状态;
    所述第二模拟信号处理模块,用于根据所述第二基带信号生成第二中频模拟信号;
    所述第六射频信号处理模块,用于获取所述第二中频模拟信号以及生成所述第四射频信号;其中,所述第四射频信号为对所述第二中频模拟信号进行射频功率放大得到的。
  14. 如权利要求10或11所述的装置,其特征在于,所述第二模拟信号处理模块包括至少两路第二正交I/Q处理电路和第四放大器;其中,第二I路处理电路包括第一上变频混频器、第三可变增益放大器、第三低通滤波器和第五放大器;第二Q路处理电路包括第二上变频混频器、第四可变增益放大器、第四低通滤波器和第六放大器;
    所述第五射频信号处理模块包括第一射频功率放大器和第三上变频混频器;
    所述第六射频信号处理模块包括第二射频功率放大器。
  15. 如权利要求10-14任一项所述的装置,其特征在于,所述装置还包括至少一个第二天线,所述至少一个第二天线与所述第五射频信号处理模块或所述第六射频信号处理模块中的至少一个连接。
  16. 一种信号处理方法,其特征在于,所述方法应用于发射装置,所述装置包括至少两个第四射频信号处理模块和第二模拟信号处理模块;所述至少两个第四射频信号处理模块通过至少一个第二开关电路与所述第二模拟信号处理模块连接;所述方法包括:
    通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号;
    通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号。
  17. 如权利要求16所述的方法,其特征在于,所述至少两个第四射频信号处理模块包含第五射频信号处理模块,所述第五射频信号处理模块与所述至少一个第二开关电路的第一端口连接;所述至少一个第二开关电路的第一端口处于连接状态;所述通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号,包括:
    通过所述第二模拟信号处理模块根据所述第二基带信号生成第二中频模拟信号;
    所述通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号,包括:
    通过所述第五射频信号处理模块获取所述第二中频模拟信号以及生成第三射频信号;其中,所述第三射频信号为对所述第二中频模拟信号进行混频得到的。
  18. 如权利要求16所述的方法,其特征在于,所述至少两个第四射频信号处理模块包含第六射频信号处理模块,所述第六射频信号处理模块与所述至少一个第二开关电路的第二端口连接;所述至少一个第二开关电路的第二端口处于连接状态;所述通过所述第二模拟信号处理模块根据第二基带信号,得到第二模拟信号,包括:
    通过所述第二模拟信号处理模块根据所述第二基带信号生成第二中频模拟信号;
    所述通过所述第四射频信号处理模块根据所述第二模拟信号以得到射频信号,包括:
    通过所述第六射频信号处理模块获取所述第二中频模拟信号以及生成第四射频信号;其中,所述第四射频信号为对所述第二中频模拟信号进行射频功率放大得到的。
  19. 一种收发装置,其特征在于,包括:
    如权利要求1-6任一项所述的接收装置,以及,如权利要求10-15任一项所述的发射装置。
PCT/CN2020/080479 2020-03-20 2020-03-20 一种接收装置、发射装置及信号处理方法 WO2021184371A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20925020.8A EP4117187A4 (en) 2020-03-20 2020-03-20 RECEIVING APPARATUS, TRANSMITTING APPARATUS, AND SIGNAL PROCESSING METHOD
PCT/CN2020/080479 WO2021184371A1 (zh) 2020-03-20 2020-03-20 一种接收装置、发射装置及信号处理方法
CN202080004949.2A CN112689961A (zh) 2020-03-20 2020-03-20 一种接收装置、发射装置及信号处理方法
US17/948,330 US20230045810A1 (en) 2020-03-20 2022-09-20 Receiving Apparatus, Transmitting Apparatus, and Signal Processing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080479 WO2021184371A1 (zh) 2020-03-20 2020-03-20 一种接收装置、发射装置及信号处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,330 Continuation US20230045810A1 (en) 2020-03-20 2022-09-20 Receiving Apparatus, Transmitting Apparatus, and Signal Processing Method

Publications (1)

Publication Number Publication Date
WO2021184371A1 true WO2021184371A1 (zh) 2021-09-23

Family

ID=75457719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080479 WO2021184371A1 (zh) 2020-03-20 2020-03-20 一种接收装置、发射装置及信号处理方法

Country Status (4)

Country Link
US (1) US20230045810A1 (zh)
EP (1) EP4117187A4 (zh)
CN (1) CN112689961A (zh)
WO (1) WO2021184371A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133945B (zh) * 2022-05-11 2024-04-12 东莞有方物联网科技有限公司 信号处理装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091988A1 (en) * 2005-10-26 2007-04-26 Sadri Ali S Systems for communicating using multiple frequency bands in a wireless network
CN103051352A (zh) * 2012-12-14 2013-04-17 上海集成电路研发中心有限公司 一种多模多频收发机
CN104378136A (zh) * 2014-11-14 2015-02-25 中国科学院微电子研究所 无线收发机
CN106533518A (zh) * 2016-10-31 2017-03-22 东南大学 一种复用模拟基带单元的多通道无线电接收机和发射机
WO2019240961A1 (en) * 2018-06-11 2019-12-19 Speedlink Technology Inc. Wideband millimeter-wave frontend integrated circuit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275358A (ja) * 1996-04-08 1997-10-21 Matsushita Electric Ind Co Ltd 複数帯域移動無線装置
CN100340068C (zh) * 2002-04-22 2007-09-26 Ipr许可公司 多输入多输出无线通信方法及具有无线前端部件的收发机
US9065537B2 (en) * 2002-09-03 2015-06-23 Broadcom Corporation Method and system for calibrating a multi-mode, multi-standard transmitter and receiver
US7106816B2 (en) * 2002-12-18 2006-09-12 Qualcomm Incorporated Supporting multiple wireless protocols in a wireless device
CN102104390A (zh) * 2009-12-16 2011-06-22 中国科学院微电子研究所 用于6至9GHz的双载波正交频分复用超宽带收发机
KR101736876B1 (ko) * 2014-01-06 2017-05-17 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 위한 송수신 방법 및 장치
EP3197057B1 (en) * 2014-07-29 2019-06-19 Huawei Technologies Co. Ltd. Transceiver
CN106788511B (zh) * 2016-12-30 2019-07-23 北京时代民芯科技有限公司 一种宽带射频接收机
US10637518B2 (en) * 2018-01-30 2020-04-28 Mediatek Inc. Wireless communication device with frequency planning for spur avoidance under coexistence of multiple wireless communication systems
US11265055B2 (en) * 2020-02-21 2022-03-01 Qualcomm Incorporated Flexible beamforming using frequency-division multiplexing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091988A1 (en) * 2005-10-26 2007-04-26 Sadri Ali S Systems for communicating using multiple frequency bands in a wireless network
CN103051352A (zh) * 2012-12-14 2013-04-17 上海集成电路研发中心有限公司 一种多模多频收发机
CN104378136A (zh) * 2014-11-14 2015-02-25 中国科学院微电子研究所 无线收发机
CN106533518A (zh) * 2016-10-31 2017-03-22 东南大学 一种复用模拟基带单元的多通道无线电接收机和发射机
WO2019240961A1 (en) * 2018-06-11 2019-12-19 Speedlink Technology Inc. Wideband millimeter-wave frontend integrated circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117187A4 *

Also Published As

Publication number Publication date
US20230045810A1 (en) 2023-02-16
CN112689961A (zh) 2021-04-20
EP4117187A4 (en) 2023-05-24
EP4117187A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
CN107078693B (zh) 为混频器提供谐波响应抑制的电路
JP3564480B2 (ja) 複数の無線通信端末間で通信を行う無線通信方法及びシステム
US9425835B2 (en) Transmitter with reduced counter-intermodulation
WO2017219954A1 (zh) 通信收发机
US7890078B2 (en) Dual band WLAN communication frequency synthesizer technique
JP2003520487A (ja) 多段逓減フィルタリング・アーキテクチャを有するrfフロントエンド
WO2000019621A1 (fr) Recepteur a conversion directe d'harmonique paire, et emetteur-recepteur comprenant ce recepteur
CN108847866B (zh) 射频前端邻道干扰抑制电路和wlan接入设备
WO2020118627A1 (zh) 一种射频拓扑系统及通信装置
KR100714699B1 (ko) 복수의 통신/방송 서비스를 지원하는 무선 송수신기
WO2021184371A1 (zh) 一种接收装置、发射装置及信号处理方法
JP2006191409A (ja) 送受信回路、送信回路及び受信回路
TWI707551B (zh) 無線區域網路收發器及其方法
CN108540149B (zh) 无线射频发射机
US8180313B2 (en) Mixer and transceiver having the mixer
CN106941365B (zh) 一种多标准全双工直接变频式收发机
CN100411312C (zh) 射频接收器及射频接收方法
WO2023097508A1 (zh) 一种锁相环、射频收发机及通信设备
WO2017096937A1 (zh) 第五代微波基站收、发信机及其实现方法
CN103001757B (zh) 基于单频率合成器的频分双工收发器
WO2021128109A1 (zh) 无线通信装置及信号处理方法
US20140286458A1 (en) Receiving apparatus and receiving method
KR101573828B1 (ko) 이중대역 송수신기
US8160509B2 (en) Apparatus for coupling a wireless communication device to a physical device
CN217985068U (zh) 一种基于Sub-GHz频段的蓝牙装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020925020

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE