WO2017096937A1 - 第五代微波基站收、发信机及其实现方法 - Google Patents

第五代微波基站收、发信机及其实现方法 Download PDF

Info

Publication number
WO2017096937A1
WO2017096937A1 PCT/CN2016/094652 CN2016094652W WO2017096937A1 WO 2017096937 A1 WO2017096937 A1 WO 2017096937A1 CN 2016094652 W CN2016094652 W CN 2016094652W WO 2017096937 A1 WO2017096937 A1 WO 2017096937A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
microwave
radio frequency
unit
frequency
Prior art date
Application number
PCT/CN2016/094652
Other languages
English (en)
French (fr)
Inventor
段亚娟
雷梦毕
李香玲
张国俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017096937A1 publication Critical patent/WO2017096937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication

Definitions

  • the present application relates to, but is not limited to, the field of communication technologies, and in particular, to a fifth generation 5G communication system base transceiver station and an implementation method thereof.
  • the transceiver used for microwave point-to-point uses a secondary frequency conversion scheme to transmit the microwave signal to the intermediate frequency signal for reception, and uses the secondary frequency conversion scheme to transmit the intermediate frequency signal to the microwave signal for transmission, as shown in FIG.
  • this scheme is not applicable to the base station, because the microwave point-to-point system does not require out-of-band spurious and interference performance, the base station has high requirements for transmitting spurs and receiving blocking, and the multiple frequency combination components brought by the secondary frequency conversion scheme, The filter requirements for the link are increased.
  • the embodiment of the invention provides a fifth generation microwave base transceiver station and an implementation method thereof, which solves the problem that the base station cannot implement microwave transceiver in 5G communication.
  • a method for implementing a fifth generation microwave base station receiving comprising:
  • the received uplink microwave signal is amplified and filtered.
  • the RF signal is obtained by performing a frequency conversion on the filtered uplink microwave signal.
  • the processed radio frequency signal is subjected to radio frequency sampling and converted into a baseband digital signal.
  • Digital signal processing is performed on the baseband data signal obtained after the conversion.
  • performing the frequency conversion on the filtered microwave signal to obtain the radio frequency signal includes:
  • the processed microwave signal is frequency-converted to obtain a radio frequency signal by using a mixer method or an IQ demodulator method.
  • the method further includes: after performing the frequency conversion on the processed microwave signal to obtain the radio frequency signal, filtering the combined frequency spur introduced by the frequency conversion.
  • a method for implementing a fifth generation microwave base station signaling comprising:
  • the baseband digital signal to be transmitted is subjected to radio frequency sampling to be converted into a radio frequency signal; and the converted radio frequency signal is filtered.
  • the frequency-converted RF signal is subjected to a frequency conversion to obtain a microwave signal.
  • the frequency-converted microwave signal is subjected to signal amplification and filtering processing and then transmitted.
  • performing the frequency conversion on the filtered RF signal to obtain the microwave signal includes:
  • the processed RF signal is frequency-converted to obtain a microwave signal by using a mixer method or an IQ demodulator method.
  • the method further includes: after performing the frequency conversion on the processed microwave signal to obtain the radio frequency signal, filtering the combined frequency spur introduced by the frequency conversion.
  • a fifth generation microwave base station receiver includes: a first unit, a first frequency conversion unit, a second unit, and a digital processing unit.
  • the first unit is configured to perform signal amplification and filtering processing on the received uplink microwave signal when receiving the uplink microwave signal sent by the mobile station.
  • the first frequency conversion unit is configured to perform frequency conversion on the uplink microwave signal processed by the first unit to obtain a radio frequency signal.
  • the second unit is configured to perform signal amplification and filtering processing on the RF signal converted by the first frequency conversion unit, and perform RF sampling on the processed RF signal to convert to a baseband digital signal.
  • a digital processing unit is configured to perform digital signal processing on the baseband data signal obtained after the conversion.
  • the first unit comprises: a low noise amplifier and a microwave filter.
  • a low noise amplifier for amplifying the received upstream microwave signal.
  • a microwave filter is used to filter the amplified microwave signal.
  • the first frequency conversion unit performs frequency conversion on the filtered microwave signal to obtain the radio frequency signal, and comprises: converting the processed microwave signal by using a mixer or an IQ demodulator to obtain a radio frequency signal.
  • the second unit includes: a radio frequency adjustable amplification gain module, a radio frequency filter, and an RF sampling analog to digital conversion module.
  • the RF adjustable amplification gain module is configured to amplify the frequency-converted RF signal.
  • the RF filter is configured to filter the RF signal amplified by the signal.
  • the RF sampling analog-to-digital conversion module is configured to perform RF sampling on the filtered RF signal and convert it into a baseband digital signal.
  • the receiver further includes: a first filtering unit.
  • the first filtering unit is configured to perform a frequency conversion on the processed microwave signal to obtain a radio frequency signal, and then filter the combined frequency spurs introduced by the frequency conversion.
  • a fifth generation microwave base station transmitter includes: a third unit, a second frequency conversion unit, and a fourth unit.
  • the third unit is configured to convert the baseband digital signal to be transmitted into a radio frequency signal when the base station is to send the downlink signal, and perform filtering processing on the converted radio frequency signal.
  • the second frequency conversion unit is configured to perform frequency conversion on the radio frequency signal processed by the third unit to obtain a microwave signal.
  • the fourth unit is configured to perform signal amplification and power amplification on the microwave signal converted by the second frequency conversion unit, and then send out.
  • the third unit includes: a radio frequency sampling digital to analog module and a radio frequency filter.
  • the RF sampling digital-to-analog module is configured to convert the baseband digital signal to be transmitted into a radio frequency signal by radio frequency sampling.
  • the RF filter is configured to filter the converted RF signal.
  • the second frequency conversion unit performs frequency conversion on the filtered RF signal to obtain the microwave signal, and comprises: converting the processed RF signal by using a mixer or an IQ demodulator to obtain a microwave signal.
  • the fourth unit comprises: a microwave adjustable gain amplification module and a microwave power amplifier module.
  • the microwave adjustable gain amplification module is configured to amplify the frequency-converted microwave signal.
  • the microwave power amplifier module is configured to perform power amplification on the amplified microwave signal.
  • the transmitter further includes: a second filtering unit.
  • the second filtering unit is configured to perform a frequency conversion on the processed microwave signal to obtain a radio frequency signal, and then filter the combined frequency spurs introduced by the frequency conversion.
  • a computer readable storage medium storing computer executable instructions, the implementation method of implementing the fifth generation microwave base station receiving when the computer executable instructions are executed by the processor, and the fifth generation microwave base station The implementation of the letter.
  • the technical solution of the present application realizes the transmission from the baseband digital signal to the microwave signal and from the microwave signal to the baseband digital signal by the RF sampling technology and the primary frequency conversion, thereby reducing the pressure of the filter on the link and making the link scheme more simple.
  • Figure 1 is a related microwave point-to-point link scheme
  • FIG. 2 is a schematic diagram of a radio frequency link structure of a microwave base station of a fifth generation communication system according to an embodiment of the present invention
  • FIG. 3 is a signal processing flow of a microwave base station of a fifth generation communication system according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a multi-channel receiver according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a multi-channel transmitter according to an embodiment of the present invention.
  • the baseband signal can be converted into a radio frequency by using a radio frequency sampling digital-to-analog converter DAC, and then the radio frequency signal is converted into a microwave frequency signal by one frequency conversion, and then the microwave signal is once converted into a radio frequency signal, and then the radio frequency sampling is performed.
  • the analog-to-digital converter ADC converts the RF signal to a baseband signal and sends it to the digital processing module.
  • This embodiment provides a 5G microwave transceiver implementation method, which solves how to implement mutual conversion between microwave and baseband signals by using a simplified link.
  • the method includes steps 100-102:
  • Step 100 When receiving the uplink microwave signal sent by the mobile station, the received uplink microwave signal is amplified and filtered.
  • Step 101 Perform a frequency conversion on the filtered uplink microwave signal to obtain a radio frequency signal.
  • the processed microwave signal may be frequency-converted to obtain a radio frequency signal by using a mixer method or an in-phase quadrature IQ demodulator method.
  • Step 102 After performing signal amplification and filtering on the RF signal obtained after the frequency conversion, the processed RF signal is subjected to RF sampling and converted into a baseband digital signal, and then the converted baseband data signal is subjected to digital signal processing.
  • the frequency-converted radio frequency signal after the frequency-converted radio frequency signal is subjected to signal amplification and filtering processing, it can also be filtered by spurs.
  • Step 200 When the base station is to send a downlink signal, the baseband digital signal to be transmitted is subjected to radio frequency sampling to be converted into a radio frequency signal.
  • Step 201 Perform filtering processing on the converted radio frequency signal.
  • Step 202 Perform a frequency conversion on the filtered RF signal to obtain a microwave signal.
  • the processed RF signal can be converted into a microwave signal by using a mixer method or an IQ demodulator method.
  • step 203 the frequency-converted microwave signal is subjected to signal amplification and filtering processing, and then transmitted.
  • the combined frequency spurs introduced by the frequency conversion can also be filtered out.
  • the embodiment provides a fifth generation microwave base station receiver and a transmitter, wherein the receiver part mainly comprises a first unit, a first frequency conversion unit, a second unit and a digital processing unit.
  • the first unit is configured to: when receiving the uplink microwave signal sent by the mobile station, perform signal amplification and filtering processing on the received uplink microwave signal.
  • the first frequency conversion unit is configured to perform frequency conversion on the uplink microwave signal processed by the first unit to obtain a radio frequency signal.
  • the second unit is configured to perform signal amplification and filtering processing on the RF signal converted by the first frequency conversion unit, and perform RF sampling on the processed RF signal to convert to a baseband digital signal.
  • the digital processing unit is configured to perform digital signal processing on the baseband data signal obtained after the conversion.
  • the transmitter portion mainly includes a third unit, a second frequency conversion unit, and a fourth unit.
  • the third unit is configured to convert the baseband digital signal to be transmitted into a radio frequency signal when the base station is to send the downlink signal, and perform filtering processing on the converted radio frequency signal.
  • the second frequency conversion unit is configured to perform frequency conversion on the radio frequency signal processed by the third unit to obtain a microwave signal.
  • the fourth unit is configured to perform signal amplification and power amplification on the microwave signal converted by the second frequency conversion unit, and then send the signal.
  • FIG. 2 is a structural diagram of a preferred fifth generation communication system microwave base station receiver proposed by the invention, wherein the receiver part comprises: a low noise amplifier module and a microwave filter module.
  • a low noise amplifier module configured to perform low noise amplification of the received microwave signal.
  • the microwave filter module is configured to filter out other unwanted interference signals received, and if the interference signal is not available, the filter module can be removed.
  • the low noise amplifier module and the microwave filter module described above can be integrated into the first unit of the collector.
  • the down-conversion module down-converts the received microwave signal to the RF frequency signal.
  • the down-conversion process can be implemented in two ways, such as a mixer mode and an IQ demodulator mode.
  • the above down conversion module is the first frequency conversion unit.
  • the local oscillator module is set to provide a variable frequency local oscillator signal to the frequency conversion module.
  • the RF gain adjustable amplifier module is configured to perform appropriate gain amplification or attenuation on the frequency-converted RF signal; the RF filter module is configured to filter the combined frequency spurs introduced by the variable frequency.
  • the RF sampling ADC module is configured to directly convert the RF signal into a baseband digital signal. Digital signal processing is then performed.
  • the RF gain adjustable amplifier module, the RF filter module and the RF sampling ADC module can be integrated into the second unit of the receiver.
  • the transmitter part includes: an RF sampling DAC module and an RF filter module.
  • the RF sampling DAC module is configured to directly sample the digitally processed baseband signal into a radio frequency signal.
  • the RF filter module is configured to filter out spurs such as the clock and image frequency brought by the DAC.
  • the above RF sampling DAC module and RF filter module can be integrated into the third unit of the transmitter.
  • the up-conversion module converts the filtered RF signal into a microwave signal at one time, and the up-conversion process can also have two implementation modes, such as a mixer mode and an IQ modulator mode.
  • the above up-conversion module is the second frequency conversion unit.
  • the local oscillator module is set to provide the local oscillator signal of the inverter module.
  • the microwave adjustable gain amplification module is configured to perform gain amplification on the up-converted microwave signal.
  • the microwave power amplifier module is configured to amplify the microwave signal to a power required by the system.
  • microwave adjustable gain amplification module and the microwave power amplifier module described above can be integrated into the fourth unit of the transmitter.
  • the transmitter further includes: a second filtering unit.
  • the second filtering unit is configured to perform a frequency conversion on the processed microwave signal to obtain a radio frequency signal, and then filter the combined frequency spurs introduced by the frequency conversion.
  • FIG. 3 is a flow chart of processing a transceiving signal of a 5G microwave signal according to the solution of the present invention, wherein FIG. 3(a) is a partial signal processing flow of the base station receiver, and FIG. 3(b) is a base station transmitting part signal processing flow.
  • the antenna 301-a is a fifth-generation communication system microwave antenna.
  • the antenna may be in the form of a multi-channel array antenna or the like, or simultaneously or time-divisionally transmitting a base station signal or receiving a signal of a mobile device.
  • the duplexer can be full-duplex or half-duplex, including the receive filter and the transmit filter. This part refers to the receive filter and receives the antenna. The signal is filtered and sent to the receiver.
  • 303-a processes the received microwave signal, generally for amplification and filtering, and the amplification module needs to adjust the gain, and then selects a suitable filter according to the spur requirements of the system.
  • the 304-a passes the processed microwave signal through the inverter, and converts it to an RF frequency signal after one frequency conversion.
  • the 305-a performs signal processing on the frequency-converted RF signal, generally for amplification and filtering, and the amplification module needs to be adjustable in gain, and the filtering module filters the frequency-generated spurious dispersion.
  • the 306-a performs RF sampling of the filtered clean RF frequency signal into a baseband digital signal, and then performs digital signal processing.
  • the 301-b converts the transmitted baseband RF signal into a radio frequency signal after being radio frequency sampled.
  • the RF signal processing transmitted by 302-b is generally filtered to filter out other spurs such as image spurious emissions from the RF sampling output.
  • the 303-b transmits the RF signal once and converts the RF signal into a microwave signal.
  • the 304-b amplifies the converted microwave signal, and the amplified portion includes a small signal amplifier and a power amplifier.
  • the 305-b sends the amplified microwave signal to the duplexer and filters it through the transmission filter to filter out various spurs generated inside the transmitter.
  • Massive MIMO which is a multi-channel input and output.
  • Figure 4 is an example of the structure of a multi-channel receiver, which includes the following elements:
  • Array antenna set to multi-antenna reception.
  • a duplexer including a receive filter and a transmit filter, herein refers to a receive filter of a duplexer that is configured to filter out the out-of-band signal received by the antenna.
  • a low noise amplifier configured to perform low noise amplification of multiple microwave signals received by the antenna.
  • a microwave filter is provided to filter out received spatial spurious signals.
  • the above low noise amplifier and microwave filter can be integrated into the first unit.
  • the down converter converts the received microwave signal into a radio frequency signal at a time.
  • the above down converter is the first frequency conversion unit.
  • the phase-locked loop is set to provide the variable frequency signal of the downconverter.
  • the RF adjustable gain amplifier is set to adjust the gain of the link to achieve small signal amplification and large signal attenuation.
  • the RF filter is set to filter out the frequency combination of the frequency conversion.
  • the RF sampling ADC is configured to directly convert the RF signal into a baseband digital signal.
  • the above RF adjustable gain amplifier, RF filter and RF sampling ADC can be integrated into the second unit.
  • Figure 5 is a diagram showing an example of a multi-channel transmitter structure, including:
  • the RF sampling DAC is set to directly sample the variable frequency RF frequency signal with a baseband digital signal.
  • the RF filter is set to filter out the spurs such as the image frequency and clock caused by the RF sampling DAC.
  • the above RF sampling DAC and RF filter can be integrated into the third unit of the transmitter.
  • the up-converter is set to convert the RF signal to a microwave frequency signal at a time.
  • the above up-converter is the second frequency conversion unit of the transmitter.
  • the microwave frequency band adjustable gain amplifier is set to amplify the small microwave signal after frequency conversion, and also includes a function of gain adjustment.
  • the power amplifier is set to perform high power amplification of the microwave signal;
  • the duplexer includes a receiving filter and a transmitting filter, and here is a transmitting filter of the duplexer, which is set to filter out the spurious generated inside the transmitter.
  • microwave band adjustable gain amplifier, power amplifier and duplexer can be integrated into the fourth unit of the transmitter.
  • the array antenna is set to implement multi-channel transmission.
  • the phase adjustment between multiple channels can be processed in the digital signal section.
  • the technical solution of the present application can implement the transmission and reception of microwave signals, and This application uses new technology RF sampling to simplify the link architecture and reduce the difficulty of implementing filters on the link.
  • the technical solution of the present application adopts a frequency conversion method, which reduces the frequency of the frequency conversion and shortens the link length compared with the implementation of the microwave point-to-point.
  • a computer readable storage medium storing computer executable instructions, the implementation method of implementing the fifth generation microwave base station receiving when the computer executable instructions are executed by the processor, and the fifth generation microwave base station The implementation of the letter.
  • the technical solution of the present application realizes the transmission from the baseband digital signal to the microwave signal and from the microwave signal to the baseband digital signal by the RF sampling technology and the primary frequency conversion, thereby reducing the pressure of the filter on the link and making the link scheme more simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种第五代微波基站收、发信机及其实现方法,本发明实施例的第五代微波基站收信的实现方法包括:接收移动台发送的上行微波信号,将收到的上行微波信号进行放大以及滤波处理;对滤波处理后的上行微波信号进行一次变频得到射频信号;将变频后的射频信号进行信号放大和滤波处理,将处理后的射频信号进行射频采样后转换为基带数字信号;对转换后获得的基带数据信号进行数字信号处理。

Description

第五代微波基站收、发信机及其实现方法 技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种第五代5G通信系统基站收发信机及其实现方法。
背景技术
5G通信要在未来的无线网络业务能力上有很大提升,需要挖掘新的频谱资源向6GHz频率以上的微波频谱扩展。微波点对点所用的收发信机是采用二次变频方案将微波信号转到中频信号实现接收,采用二次变频方案将中频信号转到微波信号实现发送,如图1所示。但是该方案对基站并不适用,因为微波点对点系统对带外的杂散和干扰性能没有要求,基站对发射杂散和接收阻塞要求较高,二次变频方案带来的多种频率组合成分,对链路的滤波器要求增加。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种第五代微波基站收发信机及其实现方法,解决了5G通信中基站无法实现微波收发信的问题。
一种第五代微波基站收信的实现方法,该方法包括:
接收到移动台发送的上行微波信号时,将收到的上行微波信号进行放大以及滤波处理。
对滤波处理后的上行微波信号进行一次变频得到射频信号。
将变频后的射频信号进行信号放大和滤波处理后,将处理后的射频信号进行射频采样后转换为基带数字信号。
对转换后获得的基带数据信号进行数字信号处理。
可选地,所述对滤波处理后的微波信号进行一次变频得到射频信号包括:
采用混频器方式或IQ解调器方式对处理后的微波信号进行变频得到射频信号。
可选地,所述方法还包括:对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
一种第五代微波基站发信的实现方法,该方法包括:
在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号;并对转换后的射频信号进行滤波处理。
对滤波处理后的射频信号进行一次变频得到微波信号。
将变频后的微波信号进行信号放大和滤波处理后发送出去。
可选地,所述对滤波处理后的射频信号进行一次变频得到微波信号包括:
采用混频器方式或IQ解调器方式对处理后的射频信号进行变频得到微波信号。
可选地,所述方法还包括:对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
一种第五代微波基站收信机,包括:第一单元、第一变频单元、第二单元和数字处理单元。
第一单元,用于接收到移动台发送的上行微波信号时,将收到的上行微波信号进行信号放大以及滤波处理。
第一变频单元,用于对所述第一单元处理后的上行微波信号进行一次变频得到射频信号。
第二单元,用于将所述第一变频单元变频后的射频信号进行信号放大和滤波处理,将处理后的射频信号进行射频采样后转换为基带数字信号。
数字处理单元,用于对转换后获得的基带数据信号进行数字信号处理。
可选地,所述第一单元包括:低噪声放大器和微波滤波器。
低噪声放大器,用于将收到的上行微波信号进行信号放大。
微波滤波器,用于将信号放大后的微波信号进行滤波。
可选地,所述第一变频单元对滤波处理后的微波信号进行一次变频得到射频信号包括:采用混频器或IQ解调器对处理后的微波信号进行变频得到射频信号。
可选地,所述第二单元包括:射频可调放大增益模块、射频滤波器和射频采样模数转模块。
射频可调放大增益模块,设置为将变频后的射频信号进行信号放大。
射频滤波器,设置为将信号放大后的射频信号进行滤波处理。
射频采样模数转模块,设置为将滤波处理后的射频信号进行射频采样后转换为基带数字信号。
可选地,所述收信机还包括:第一滤除单元。
所述第一滤除单元,设置为对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
一种第五代微波基站发信机,包括:第三单元、第二变频单元和第四单元。
第三单元,设置为在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号,并对转换后的射频信号进行滤波处理。
第二变频单元,设置为对所述第三单元处理后的射频信号进行一次变频得到微波信号。
第四单元,设置为将所述第二变频单元变频后的微波信号进行信号放大和功率放大后发送出去。
可选地,所述第三单元包括:射频采样数模转模块和射频滤波器。
射频采样数模转模块,设置为将待发射的基带数字信号进行射频采样转换为射频信号。
射频滤波器,设置为对转换后的射频信号进行滤波处理。
可选地,所述第二变频单元对滤波处理后的射频信号进行一次变频得到微波信号包括:采用混频器或IQ解调器对处理后的射频信号进行变频得到微波信号。
可选地,所述第四单元包括:微波可调增益放大模块和微波功放模块。
微波可调增益放大模块,设置为将变频后的微波信号进行信号放大。
微波功放模块,设置为将放大后的微波信号进行功率放大。
可选地,所述发信机还包括:第二滤除单元。
所述第二滤除单元,设置为对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的第五代微波基站收信的实现方法以及所述的第五代微波基站发信的实现方法。
本申请技术方案通过射频采样技术和一次变频实现从基带数字信号到微波信号以及从微波信号变换到基带数字信号的收、发信机,减轻了链路上滤波器的压力,使链路方案更加简单。
附图概述
图1为相关微波点对点链路方案;
图2为本发明实施例提出的第五代通信系统微波基站射频链路架构;
图3为本发明实施例提出的第五代通信系统微波基站的信号处理流程;
图4为本发明实施例提出的多路接收机结构图;
图5为本发明实施例提出的多路发射机结构图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
本申请发明人提出,可以用射频采样数字模拟转换器DAC将基带信号变频为射频频率,然后经一次变频将射频信号转为微波频率信号,再将微波信号一次变频为射频信号,然后用射频采样模拟数字转换器ADC将射频信号转为基带信号后送到数字处理模块。
本实施例提供一种5G微波收发信机实现方法,解决了如何用简化的链路实现微波和基带信号之间的互相转换。首先从接收机的处理来描述,此方法包括步骤100-102:
步骤100,接收到移动台发送的上行微波信号时,将收到的上行微波信号进行放大以及滤波处理。
步骤101,对滤波处理后的上行微波信号进行一次变频得到射频信号。
该步骤中,可以采用混频器方式或同相正交IQ解调器方式对处理后的微波信号进行变频得到射频信号。
步骤102,将变频后获得的射频信号进行信号放大和滤波处理后,将处理后的射频信号进行射频采样转换为基带数字信号,再对转换后的基带数据信号进行数字信号处理。
其中,将变频后的射频信号进行信号放大和滤波处理后还可以杂散进行滤除。
下面从发送机处理流程来描述,上述方法包括步骤200-202:
步骤200,在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号。
步骤201,对转换后的射频信号进行滤波处理。
步骤202,对滤波处理后的射频信号进行一次变频得到微波信号。
该步骤可以采用混频器方式或IQ解调器方式对处理后的射频信号进行变频得到微波信号。
步骤203,将变频后的微波信号进行信号放大和滤波处理后发送出去。
可选地,还可以对变频引入的组合频率杂散进行滤除。
实施例2
本实施例提供一种第五代微波基站收信机以及发信机,其中,收信机部分主要包括第一单元、第一变频单元、第二单元和数字处理单元。
第一单元,设置为接收到移动台发送的上行微波信号时,将收到的上行微波信号进行信号放大以及滤波处理。
第一变频单元,设置为对第一单元处理后的上行微波信号进行一次变频得到射频信号。
第二单元,设置为将第一变频单元变频后的射频信号进行信号放大和滤波处理,将处理后的射频信号进行射频采样后转换为基带数字信号。
数字处理单元,设置为对转换后获得的基带数据信号进行数字信号处理。
发送机部分主要包括第三单元、第二变频单元和第四单元。
第三单元,设置为在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号,并对转换后的射频信号进行滤波处理。
第二变频单元,设置为对第三单元处理后的射频信号进行一次变频得到微波信号。
第四单元,设置为将上述第二变频单元变频后的微波信号进行信号放大和功率放大后发送出去。
下面结合附图说明上述基站收发信机的可选实施方式。
图2为该发明提出的一种优选的第五代通信系统微波基站收信机结构图,其中接收机部分包括:低噪声放大器模块和微波滤波器模块。
低噪声放大器模块,设置为将接收到的微波信号进行低噪声放大。
微波滤波器模块,设置为将接收到的其他无用干扰信号滤除,如果无干扰信号可以去掉该滤波器模块。
上述低噪声放大器模块和微波滤波器模块可集成为收集机的第一单元。
下变频模块,将接收到的微波信号一次下变频到射频频率信号,可选地,下变频过程可以有两种实现方式,例如混频器方式和IQ解调器方式。
上述下变频模块即为第一变频单元。
本振模块,设置为给变频模块提供变频的本振信号。
射频增益可调放大器模块,设置为将变频后的射频信号进行适当的增益放大或者衰减;射频滤波器模块,设置为将变频引入的组合频率杂散滤除。
射频采样ADC模块,设置为将射频信号直接采样转为基带数字信号, 之后进行数字信号处理。
其中,上述射频增益可调放大器模块、射频滤波器模块和射频采样ADC模块可集成为收信机的第二单元。
其中发信机部分包括:射频采样DAC模块和射频滤波器模块。
射频采样DAC模块,设置为将经数字处理后的基带信号直接采样转为射频信号。
射频滤波器模块,设置为滤除DAC带来的时钟和镜频等杂散。
上述射频采样DAC模块和射频滤波器模块可集成为发信机的第三单元。
上变频模块,将经滤波后的射频信号一次上变频转为微波信号,上变频过程也可以有两种实现方式,例如混频器方式和IQ调制器方式。
上述上变频模块即为第二变频单元。
本振模块,设置为提供变频模块的本振信号。
微波可调增益放大模块,设置为将上变频后的微波信号进行增益放大。
微波功放模块,设置为将微波信号进行大功率放大到系统需要的功率。
上述微波可调增益放大模块和微波功放模块可集成为发信机的第四单元。
可选地,所述发信机还包括:第二滤除单元。
所述第二滤除单元,设置为对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
下面结合附图说明上述基站收、发信机的工作过程。
图3为本发明方案的5G微波信号的收发信号处理流程图,其中图3(a)为基站接收机部分信号处理流程,图3(b)为基站发射部分信号处理流程。
301-a为第五代通信系统微波天线,天线的形式可以是多通道阵列天线或者其他,同时或者分时将基站信号发射或将移动设备的信号接收。
302-a为第五代通信系统微波双工器,双工器可以是全双工或者半双工,包括接收滤波器和发射滤波器,该部分是指接收滤波器,将天线接收到 的信号滤波后送到接收机。
303-a将接收到的微波信号进行处理,一般是进行放大和滤波,放大模块需要增益可调,然后根据系统的杂散要求选择合适的滤波器。
304-a将处理后的微波信号通过变频器,一次变频后转为射频频率信号。
305-a将变频后的射频信号进行信号处理,一般是进行放大和滤波,放大模块需要增益可调,滤波模块将变频产生频率组合杂散滤除。
306-a对经滤波后的干净的射频频率信号进行射频采样转为基带数字信号,之后进行数字信号处理。
301-b将发射的基带射频信号进行射频采样后转为射频信号。
302-b发射的射频信号处理,一般是滤波,将射频采样输出的其他杂散比如镜频杂散滤除。
303-b发射射频信号一次变频,将射频信号上变频为微波信号。
304-b将变频后的微波信号进行放大处理,放大部分包括小信号放大器和功放。
305-b将放大后的微波信号后送到双工器通过发射滤波器进行滤波,将发射机内部产生的各种杂散进行滤除。
306-b将经滤波后的微波信号送至天线发射。
还要说明的是,第五代通信系统的关键技术是大规模分布式天线Massive MIMO,收发通道是多路输入输出,图4即为多路接收机的结构示例图,其包括如下单元:
阵列天线,设置为多天线接收。
双工器,包括接收滤波器和发射滤波器,此处是指双工器的接收滤波器,设置为将天线接收到的带外信号滤除。
低噪声放大器,设置为将天线接收到的多路微波信号进行低噪声放大。
微波滤波器,设置为将接收到的空间杂散信号滤除。
上述低噪声放大器和微波滤波器可集成为第一单元。
下变频器,将接收到的微波信号一次变频为射频信号。
上述下变频器即为第一变频单元。
锁相环,设置为提供下变频器的变频信号。
射频可调增益放大器,设置为调整链路的增益,实现对小信号放大和对大信号衰减的功能。
射频滤波器,设置为将变频带来的频率组合杂散滤除。
射频采样ADC,设置为将射频信号直接采样变为基带数字信号。
上述射频可调增益放大器、射频滤波器和射频采样ADC可集成为第二单元。
图5是多通道发射机结构示例图,包括:
射频采样DAC,设置为基带数字信号直接采样变频射频频率信号。
射频滤波器,设置为滤除射频采样DAC带来的镜频和时钟等杂散。
上述射频采样DAC和射频滤波器可集成为发信机的第三单元。
上变频器,设置为将射频信号一次变频为微波频率信号。
上述上变频器即为发信机的第二变频单元。
微波频段可调增益放大器,设置为将变频后的微波小信号放大,还包括增益调整的功能。
功放,设置为将微波信号进行大功率放大;双工器,包括接收滤波器和发射滤波器,此处是指双工器的发射滤波器,设置为将发射机内部产生的杂散滤除。
上述微波频段可调增益放大器、功放和双工器可集成为发信机的第四单元。
阵列天线,设置为实现多路发射。
其中多通道的接收机和发射机,多通道之间的相位调整可以在数字信号部分进行处理。
从上述实施例可以看出,本申请技术方案可以实现微波信号的收发,且 本申请采用了新技术射频采样,简化链路架构并降低链路上滤波器实现难度。同时,本申请技术方案采用一次变频的方式,与微波点对点的实现方式相比减少的变频的次数,缩短链路长度。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的第五代微波基站收信的实现方法以及所述的第五代微波基站发信的实现方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。上述实施例中的每个模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请不限制于任何特定形式的硬件和软件的结合。
以上所述,仅为本发明可选实例而已,并非用于限定本发明实施例的保护范围。凡在本发明实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。
工业实用性
本申请技术方案通过射频采样技术和一次变频实现从基带数字信号到微波信号以及从微波信号变换到基带数字信号的收、发信机,减轻了链路上滤波器的压力,使链路方案更加简单。

Claims (13)

  1. 一种第五代微波基站收信的实现方法,该方法包括:
    接收移动台发送的上行微波信号,将收到的上行微波信号进行放大以及滤波处理;
    对滤波处理后的上行微波信号进行一次变频得到射频信号;
    将变频后的射频信号进行信号放大和滤波处理,将处理后的射频信号进行射频采样后转换为基带数字信号;
    对转换后获得的基带数据信号进行数字信号处理。
  2. 如权利要求1所述的第五代微波基站收信的实现方法,其中,所述对滤波处理后的微波信号进行一次变频得到射频信号包括:
    采用混频器方式或同相正交IQ解调器方式对滤波处理后的微波信号进行变频得到射频信号。
  3. 如权利要求1或2所述的第五代微波基站收信的实现方法,所述方法还包括:对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
  4. 一种第五代微波基站发信的实现方法,包括:
    在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号;并对转换后的射频信号进行滤波处理;
    对滤波处理后的射频信号进行一次变频得到微波信号;
    将变频后的微波信号进行信号放大和滤波处理后发送出去。
  5. 如权利要求4所述的第五代微波基站发信的实现方法,其中,所述对滤波处理后的射频信号进行一次变频得到微波信号包括:
    采用混频器方式或同相正交IQ解调器方式对处理后的射频信号进行变频得到微波信号。
  6. 如权利要求4或5所述的第五代微波基站发信的实现方法,所述方法还包括:对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
  7. 一种第五代微波基站收信机,包括:第一单元、第一变频单元、第二单元和数字处理单元;
    所述第一单元,设置为接收到移动台发送的上行微波信号时,将收到的上行微波信号进行信号放大以及滤波处理;
    所述第一变频单元,设置为对所述第一单元处理后的上行微波信号进行一次变频得到射频信号;
    所述第二单元,设置为将所述变频单元变频后的射频信号进行信号放大和滤波处理,将处理后的射频信号进行射频采样后转换为基带数字信号;
    所述数字处理单元,设置为对转换后获得的基带数据信号进行数字信号处理。
  8. 如权利要求7所述的基站收信机,其中,所述第一变频单元对滤波处理后的微波信号进行一次变频得到射频信号包括:采用混频器或同相正交IQ解调器对处理后的微波信号进行一次变频得到射频信号。
  9. 如权利要求7或8所述的第五代微波基站收信机,所述收信机还包括:第一滤除单元;
    所述第一滤除单元,设置为对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
  10. 一种第五代微波基站发信机,包括:第三单元、第二变频单元和第四单元;
    所述第三单元,设置为在基站要发送下行信号时,将待发射的基带数字信号进行射频采样转换为射频信号,并对转换后的射频信号进行滤波处理;
    所述第二变频单元,设置为对所述第三单元处理后的射频信号进行一次变频得到微波信号;
    所述第四单元,设置为将所述第二变频单元变频后的微波信号进行信号放大和功率放大后发送出去。
  11. 如权利要求10所述的基站发信机,其中,所述第二变频单元对滤波处理后的射频信号进行一次变频得到微波信号包括:采用混频器或IQ解调器对处理后的射频信号进行变频得到微波信号。
  12. 如权利要求10或11所述的基站发信机,所述发信机还包括:第二滤除单元;
    所述第二滤除单元,设置为对处理后的微波信号进行一次变频得到射频信号后,对变频引入的组合频率杂散进行滤除。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1-3任意一项所述的第五代微波基站收信的实现方法以及如权利要求4-6任意一项所述的第五代微波基站发信的实现方法。
PCT/CN2016/094652 2015-12-11 2016-08-11 第五代微波基站收、发信机及其实现方法 WO2017096937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510920281.7 2015-12-11
CN201510920281.7A CN106888033A (zh) 2015-12-11 2015-12-11 第五代微波基站收、发信机及其实现方法

Publications (1)

Publication Number Publication Date
WO2017096937A1 true WO2017096937A1 (zh) 2017-06-15

Family

ID=59012643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094652 WO2017096937A1 (zh) 2015-12-11 2016-08-11 第五代微波基站收、发信机及其实现方法

Country Status (2)

Country Link
CN (1) CN106888033A (zh)
WO (1) WO2017096937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583500A (zh) * 2020-12-14 2021-03-30 波达通信设备(广州)有限公司 基于微波射频环回的故障检测系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286944B (zh) * 2017-07-21 2020-10-02 南京中兴新软件有限责任公司 一种高频5g基站和高频5g基站信号处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678974A2 (en) * 1994-04-21 1995-10-25 Nokia Mobile Phones Ltd. A transmitter and/or receiver
CN104823382A (zh) * 2012-11-30 2015-08-05 高通股份有限公司 滑动if收发机架构
CN105049076A (zh) * 2015-08-25 2015-11-11 四川九洲电器集团有限责任公司 软件无线电通信方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678974A2 (en) * 1994-04-21 1995-10-25 Nokia Mobile Phones Ltd. A transmitter and/or receiver
CN104823382A (zh) * 2012-11-30 2015-08-05 高通股份有限公司 滑动if收发机架构
CN105049076A (zh) * 2015-08-25 2015-11-11 四川九洲电器集团有限责任公司 软件无线电通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, NA ET AL.: "Application of Radio Frequency Sampling Technique", CHINA NEW TELECOMMUNICATIONS, 5 October 2015 (2015-10-05), pages 31 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583500A (zh) * 2020-12-14 2021-03-30 波达通信设备(广州)有限公司 基于微波射频环回的故障检测系统及方法

Also Published As

Publication number Publication date
CN106888033A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
US10601378B2 (en) Distributed antenna system architectures
US10727896B2 (en) Tower top device and passive intermodulation cancellation method
US20160211927A1 (en) Self-interference signal cancellation device and method
JP2016511959A (ja) 無線ベースバンドデータを伝送する方法、装置および無線遠隔ユニット
EP3065310B1 (en) Donor unit, remote unit, and mobile communication base station system having same
CN105471490B (zh) 一种直放站及其信号处理方法
EP2775681B1 (en) Method, device and base station system for transceiving and processing radio frequency signal
US10560132B2 (en) Reconfigurable transmitter and receiver, and methods for reconfiguring
WO2020048277A1 (zh) 一种射频电路及通信设备
US9432063B2 (en) Radio frequency signal transceiving and processing method, device, and base station system
WO2017096937A1 (zh) 第五代微波基站收、发信机及其实现方法
WO2020113946A1 (en) I/q imbalance compensation
WO2018143043A1 (ja) 無線機及び無線通信方法
CN105830352A (zh) 发射器和接收器的公共观察接收器的方法和设备
WO2017080256A1 (zh) 微波数字预失真处理反馈电路、闭环电路,及收、发信机
JP2015220524A (ja) 分散型無線通信基地局システムおよび通信方法
US20210175858A1 (en) Radio transceiver arrangement and method
CN103001757B (zh) 基于单频率合成器的频分双工收发器
WO2021184371A1 (zh) 一种接收装置、发射装置及信号处理方法
CN107810606B (zh) 用于电信系统的非双工器体系结构
CN215420247U (zh) 数字化多通道信号远端变频装置
WO2023208025A1 (zh) 通信方法及通信装置
WO2024065713A1 (zh) 一种射频系统及装置
KR20010088076A (ko) 통신 시스템의 송수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872134

Country of ref document: EP

Kind code of ref document: A1