WO2018143043A1 - 無線機及び無線通信方法 - Google Patents

無線機及び無線通信方法 Download PDF

Info

Publication number
WO2018143043A1
WO2018143043A1 PCT/JP2018/002243 JP2018002243W WO2018143043A1 WO 2018143043 A1 WO2018143043 A1 WO 2018143043A1 JP 2018002243 W JP2018002243 W JP 2018002243W WO 2018143043 A1 WO2018143043 A1 WO 2018143043A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
filter
signal
band
reception
Prior art date
Application number
PCT/JP2018/002243
Other languages
English (en)
French (fr)
Inventor
光史 長野
秀晃 清水
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to US16/480,587 priority Critical patent/US10637525B2/en
Priority to JP2018565487A priority patent/JP6705918B2/ja
Publication of WO2018143043A1 publication Critical patent/WO2018143043A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a wireless communication system using a TDD (Time Division Duplex) method and an FDD (Frequency Division Duplex) method.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • an FDD wireless system that performs FDD wireless communication using different frequencies for transmission and reception and a TDD wireless system that performs TDD wireless communication using the same frequency for transmission and reception have been put into practical use.
  • TDD radio systems and FDD radio systems are used in close frequency bands in the quasi-millimeter wave and higher frequency bands, but they are compatible with TDD radio systems and FDD radio systems that support TDD radio systems.
  • the coexistence with the FDD radio was difficult to achieve with the prior art due to the difference in the filter configuration between the antenna and the radio.
  • the TDD radio has the same pass characteristics of the filter for transmission and reception, whereas the FDD radio has a duplex characteristic that separates the frequencies because the pass characteristics of the filter are different for transmission and reception.
  • the configuration uses a kusa.
  • the RF line handling becomes complicated or the RF switch is used frequently to avoid the duplexer, resulting in an increase in power consumption or reception characteristics.
  • it is difficult to support both the FDD radio system and the TDD radio system with a single radio and even though the baseband part can be shared, the radio part is mounted on each system. As a result, the radios have become larger and more expensive. For this reason, separate radio devices have been used in practice for the TDD radio system and the FDD radio system.
  • the present invention has been made in view of the above-described conventional circumstances, and it is possible to realize a wireless device capable of supporting a single TDD wireless communication and an FDD wireless communication with a simple configuration. Goal.
  • the wireless device is compatible with FDD wireless communication that transmits at the first frequency while receiving at the second frequency and TDD wireless communication that transmits and receives at the first frequency.
  • a transmission circuit unit that performs transmission processing on the first frequency signal, a first reception circuit unit that performs reception processing on the first frequency signal, and a second reception circuit unit that performs reception processing on the second frequency signal.
  • a demultiplexer having a first filter having a pass characteristic in the band of the first frequency and a second filter having a pass characteristic in the band of the second frequency, connected to the antenna, and from the transmission circuit unit
  • a path switching unit for branching a signal and outputting the signal to the demultiplexing unit and the first receiving circuit unit, and outputting a received signal from the demultiplexing unit to the first receiving circuit unit, On the first filter side.
  • a path switching unit is connected, and the second receiving circuit unit is connected to the second filter side.
  • the first receiving circuit unit is connected to FDD and TDD transmission feedback, and TDD reception. It is used for.
  • the wireless device according to the present invention is configured so that the FDD and TDD transmission feedback and the TDD reception can be processed by a common circuit unit. Therefore, it is possible to realize a wireless device that can cope with T DD wireless communication and FDD wireless communication with a single unit with a simple configuration.
  • the first receiving circuit unit includes a first pre-stage amplifier, a first pre-stage filter having a pass characteristic in the band of the first frequency, and a first pre-filter having a pass characteristic in a band for distortion compensation.
  • a second post-stage filter having a pass characteristic and a second post-stage amplifier are provided, and a signal obtained by branching a signal from the transmission circuit unit to the first reception circuit unit is processed by the first pre-filter.
  • the first post-stage filter and the first post-stage amplifier later process the signal received at the first frequency after the first pre-stage amplifier and the first pre-stage filter, and then the second post-stage filter and the second post-filter.
  • Processed by a later stage amplifier, before The signal received by the second frequency may be treated with the second pre-amplifier and the second second-stage filter and the second second-stage amplifier after treatment with the second pre-filter.
  • the radio apparatus according to the present invention is generally transmitted to extract a transmission DPD feedback signal in the configuration of a radio apparatus with transmission DPD (Digital Pre-Distortion) distortion compensation corresponding to the FDD radio system.
  • a circulator is provided between the output and the duplexer.
  • the nonlinear distortion generated by the transmission amplifier is caused by performing DPD signal processing and signal processing that suppresses the peak voltage of the signal in order to greatly degrade the communication quality of multi-level QAM (Quadrature Amplitu de Modulation).
  • a technique for canceling nonlinear distortion is generally used in radio base stations.
  • FIG. 1 shows a configuration example of a radio device according to the first embodiment of the present invention.
  • the radio of the first embodiment includes a digital signal processing unit (including DPD) 1, a transmission system having a DA converter 2 and a transmission unit 5, and a first reception system having an AD converter 3 and a DPD reception unit 6.
  • a second receiving system including the AD converter 4 and the receiving unit 7, a circulator 8, a duplexer 9, and an antenna 10.
  • This radio is compatible with both TDD and FDD radio communication systems, and can be selected to operate in TDD or FDD mode according to the previous mode setting. Note that it may be possible for the user to appropriately select whether to operate in the TDD system or the FDD system by a switch operation or the like.
  • the frequency f1 is used for transmission while the frequency f2 is used for reception
  • the frequency f1 is used for transmission and reception.
  • the circulator 8 has a first port connected to the transmitter 5, a second port connected to the duplexer 9, and a third port connected to the DPD receiver 6.
  • a transmission signal input from the transmission unit 5 to the first port is output from the second port to the duplexer 9.
  • the reception signal input from the duplexer 9 to the second port is output from the third port to the DPD receiving unit 6.
  • not all of the transmission signals input to the first port are output from the second port, but a part of them leaks to the third port side. That is, a part of the transmission signal input to the first port is attenuated through the third port, which is an isolation port, and is also output to the DPD receiver 6 as a feedback signal.
  • the duplexer 9 has a first filter and a second filter having frequency characteristics with different passbands and stopbands, and can be provided between the circulator 8 and the receiver 7 and the antenna 10.
  • the first filter has a pass characteristic in the frequency f1 band, and has a blocking characteristic in the frequency f2 band, and is connected to the circulator 8 side.
  • the second filter has a pass characteristic in the frequency f2 band and a blocking characteristic in the frequency f1 band, and is connected to the reception saddle unit 7 side.
  • the transmission signal (frequency f 1) input from the transmission unit 5 through the circulator 8 passes through the first filter and is output to the antenna 10.
  • the reception signal input from the antenna 10 passes through the first filter and is output to the DPD receiving unit 6 through the circulator 8 because the frequency is f1.
  • the frequency is f2, so that it passes through the second filter and is output to the receiving unit 7.
  • the transmission modulation signal generated by the digital signal processing unit 1 is converted into an analog signal by the DA converter 2, up-converted to a required frequency (frequency f 1) by the transmission unit 5, and then amplified to necessary power.
  • a part of the output signal of the transmission unit 5 is attenuated through the third port (isolation port) of the circulator 8 and is output to the DPD reception unit 6 as a feedback signal.
  • the feedback signal input to the DPD receiving unit 6 is amplified after frequency down-conversion, converted to a digital signal by a post-AD converter 3, and fed back to the digital signal processing unit 1.
  • the digital signal processing unit 1 is an internal DPD unit that performs AM / AM (amplitude vs amplitude) characteristics and AM / PM (amplitude vs phase).
  • a transmission modulation signal having a characteristic opposite to that of the characteristic is generated.
  • a transmission modulation signal in which nonlinear distortion generated by power amplification in the transmission unit 5 is canceled is generated, and is transmitted by radio from the antenna 10 through the circulator 8 and the duplexer 9.
  • the reception signal input from the antenna 10 since the reception signal input from the antenna 10 has a frequency f2 different from the transmission frequency, it is demultiplexed to the side different from the transmission signal through the duplexer 9 and output to the reception unit 7.
  • the received signal input to the receiving unit 7 is amplified, frequency down-converted, amplified, converted into a digital signal by a post AD converter 4, and output to the digital signal processing unit 1.
  • the digital signal processing unit 1 processes each received signal input via the receiving unit 7.
  • the transmission of the DPD receiving unit 6 can be performed when the transmission is low output or if the communication quality is maintained without operating the DPD with the low output transmitter.
  • the power consumption can be reduced by turning off the power.
  • the time-division transmission modulation signal generated by the digital signal processing unit 1 is converted into an analog signal by the DA converter 2, and after being up-converted to a required frequency (frequency f1) by the transmission unit 5, it is amplified to necessary power.
  • a part of the output signal of the transmission unit 5 is attenuated through the third port (isolation port) of the circulator 8 and is output to the DPD reception unit 6 as a feedback signal.
  • the feedback signal input to the DPD receiving unit 6 is amplified after frequency down-conversion, converted to a digital signal by a post-AD converter 3, and fed back to the digital signal processing unit 1.
  • the digital signal processing unit 1 Based on the feedback signal fed back via the DPD receiving unit 6, the digital signal processing unit 1 generates a transmission modulation signal having AM / AM characteristics and inverse characteristics of AM / PM characteristics in the internal DPD section. Let As a result, a transmission modulation signal in which nonlinear distortion generated by power amplification in the transmission unit 5 is canceled is generated, and is transmitted by radio from the antenna 10 through the circulator 8 and the duplexer 9.
  • the time division reception signal input from the antenna 10 since the time division reception signal input from the antenna 10 has the same frequency f1 as the transmission frequency, it is demultiplexed to the same side as the transmission signal through the duplexer 9 and output to the DPD receiving unit 6 through the circulator 8.
  • the received signal input to the DPD receiving unit 6 is amplified, frequency down-converted, amplified, converted to a digital signal by the post AD converter 3, and output to the digital signal processing unit 1.
  • the digital signal processing unit 1 processes each received signal input via the DPD receiving unit 6. Note that when the wireless device is operated in the TDD system, the receiving unit 7 is not used, and thus power consumption can be reduced by turning off the power of the receiving unit 7.
  • the wireless device performs FDD wireless communication that transmits at the frequency f1 while transmitting at the frequency f1, and TDD wireless communication that transmits and receives at the frequency f1. It corresponds to.
  • the wireless device includes a transmission unit 5 that performs transmission processing on a signal having a frequency f1, a DPD reception unit 6 that performs reception processing on a signal having a frequency f1, a reception unit 7 that performs reception processing on a signal having a second frequency, and an antenna. 10 and a duplexer 9 having a first filter having a pass characteristic in the frequency f1 band and a second filter having a pass characteristic in the frequency f2 band.
  • a circulator 8 path switching unit that branches the signal and outputs the signal to the duplexer 9 and the DPD receiving unit 6 and outputs a reception signal from the duplexer 9 to the DPD receiving unit 6 is provided.
  • the duplexer 9 has a circulator 8 connected to the first filter side and a receiving unit 7 connected to the second filter side.
  • the DPD receiving unit 6 is connected to FDD and TDD transmission feedback.
  • the TDD system is used for reception.
  • FIGS. 2 to 3 show configuration examples of a radio apparatus according to the second embodiment of the present invention.
  • the radio of the second embodiment includes a digital signal processing unit (including DPD) 1, a DA converter 2 and a transmission system 29 having a transmission circuit unit (13, 16, 19, 25), an AD converter 3,
  • the first receiving system 30 having the receiving circuit section (26, 23, 22, 20, 17, 14, 27, 11), the AD converter 4 and the second receiving circuit section (24, 21, 18, 15, 28, 12).
  • the transmission circuit unit includes a low-pass filter 13, a mixer (transmission upconverter) 16, a band-pass filter 19, and a transmission amplifier 25, and corresponds to the transmission unit 5 of the first embodiment.
  • the first receiving circuit unit includes an RF switch 26, a low-band out-of-band noise amplifier 23, an RF switch 22, a bandpass filter 20, a mixer (down converter for DPD) 17, an RF switch 14, and a DPD band.
  • a band-pass filter 27 and an IF amplifier 11 are provided and correspond to the DPD receiver 6 of the first embodiment.
  • the second receiving circuit unit includes an out-of-band noise amplifier 24, a band-pass filter 21, a mixer (reception down converter) 18, an RF switch 15, a reception band-pass filter 28, an IF amplifier 12, and the like. Corresponding to the receiving unit 7 of the first embodiment.
  • the RF switch 14 switches between connecting the mixer 17 and the DPD band-pass filter 27 or connecting the mixer 17 and the reception band-pass filter 28.
  • the RF switch 15 switches between connecting the mixer 17 and the reception band-pass filter 28 or connecting the mixer 18 and the reception band-band filter 28.
  • the RF switches 22 and 26 switch whether to amplify the signal input to the second receiving circuit unit by the low-band out-of-band noise amplifier 23.
  • the transmission modulation signal generated by the digital signal processing unit 1 is converted into an analog signal by the DA converter 2 and passed through a low-pass filter 15 that reduces spurious and out-of-band noise generated in the DA converter 2. Thereafter, the signal is up-converted to a required frequency (frequency f1) by the post-mixer 16 and passed through a band-pass filter 19 that attenuates spurious and out-of-band noise generated by the mixer 16 to obtain necessary power by the transmission amplifier 25. Amplified.
  • a part of the output signal of the transmission circuit unit is attenuated through the third port (isolation port) of the circulator 8 and is output as a feedback signal to the first reception circuit unit.
  • the RF switches 22 and 2-6 are always set so as not to pass through the low-band out-of-band noise amplifier 23. After passing through the band-pass filter 20 that attenuates the generated spurious and out-of-band noise, the frequency is down-converted by the mixer 17.
  • the RF switch 14 is always set so as to connect the mixer PD 17 and the DPD band-pass filter 27, and passes through the DPD band-pass filter 27 to allow spurious and out of DPD bands. Noise is reduced, amplified by the IF amplifier 11, converted to a digital signal by the post-AD converter 3, and fed back to the digital signal processing unit 1.
  • the digital signal processing unit 1 Based on the feedback signal fed back via the first receiving circuit unit, the digital signal processing unit 1 generates a transmission modulation signal having an AM / AM characteristic and an inverse characteristic of the AM / PM characteristic in the internal DPD unit. . As a result, a transmission modulation signal in which nonlinear distortion generated by power amplification in the transmission amplifier 25 is canceled is generated, and is wirelessly transmitted from the antenna 10 through the circulator 8 and the duplexer 9.
  • the reception signal input from the antenna 10 since the reception signal input from the antenna 10 has a frequency f2 different from the transmission frequency, it is demultiplexed to the side different from the transmission signal through the duplexer 9 and output to the second reception circuit unit.
  • the received signal input to the second receiving circuit section is amplified by the low out-of-band noise amplifier 24, and after passing through a band-pass filter 21 that attenuates spurious and out-of-band noise generated in the rear mixer 18, The frequency is down-converted by the mixer 18.
  • the RF switch 15 At the time of FDD transmission / reception, the RF switch 15 is set so that the mixer 18 and the reception bandpass filter 28 are always connected.
  • the RF switch 15 passes through the reception bandpass filter 28 and is spurious outside the reception band. Noise is reduced, amplified by the IF amplifier 12, converted into a digital signal by the post-AD converter 4, and output to the digital signal processing unit 1.
  • the digital signal processing unit 1 processes each received signal input via the second receiving circuit unit.
  • the time-division transmission modulation signal generated by the digital signal processing unit 1 is converted into an analog signal by the DA converter 2 and passed through a low-pass filter 15 that reduces spurious and out-of-band noise generated in the DA converter 2. Thereafter, the signal is up-converted to a required frequency (frequency f1) by a post-mixer 16 and passed through a band-pass filter 19 that attenuates spurious and out-of-band noise generated by the mixer 16, and is amplified to necessary power by a transmission amplifier 25. Is done. When there is no transmission data, it is possible to reduce the deterioration of the reception characteristics by turning off the power of the transmission amplifier 25.
  • a part of the output signal of the transmission circuit unit is attenuated through the third port (isolation port) of the circulator 8 and is output as a feedback signal to the first reception circuit unit.
  • the RF switches 22 and 26 are set so as not to pass through the low-band out-of-band noise amplifier 23 for a certain period of time. After passing through a band pass filter 20 that attenuates spurious and out-of-band noise generated in the mixer 17, the mixer 17 down-converts the frequency.
  • the RF switch 14 is set so as to connect the mixer 17 and the DPD band-pass filter 27 during a period of time when the transmission data is present. External spurious and noise are reduced, amplified by the IF amplifier 11, converted into a digital signal by the post AD converter 3, and fed back to the digital signal processing unit 1.
  • the digital signal processing unit 1 Based on the feedback signal fed back via the first receiving circuit unit, the digital signal processing unit 1 generates a transmission modulation signal having an AM / AM characteristic and an inverse characteristic of the AM / PM characteristic in the internal DPD unit. . As a result, a transmission modulation signal in which nonlinear distortion generated by power amplification in the transmission amplifier 25 is canceled is generated, and is wirelessly transmitted from the antenna 10 through the circulator 8 and the duplexer 9.
  • the time division reception signal input from the antenna 10 has the same frequency f1 as the transmission frequency, it is demultiplexed to the same side as the transmission signal through the duplexer 9 and output to the first reception circuit section through the circulator 8. Is done.
  • the RF switches 22 and 26 are set so as to pass through the low out-of-band noise amplifier 23. After passing through a band-pass filter 20 for attenuating spurious and out-of-band noise generated in the mixer 17, the mixer 17 down-converts the frequency.
  • the RF switches 14 and 15 are set so as to connect the mixer 17 and the reception bandpass filter 28 when there is no transmission data.
  • spurious and noise outside the reception band are reduced, amplified by the IF amplifier 12, converted into a digital signal by the post AD converter 4, and output to the digital signal processing unit 1.
  • the digital signal processing unit 1 processes individual received signals input through the first half of the first receiving circuit unit and the second half of the second receiving circuit unit. Note that when the radio is operated in the TDD system, the low out-of-band noise amplifier 24 and the mixer 18 are not used. Therefore, by turning off the low-out-of-band noise amplifier 24 and the mixer 18, the power consumption can be reduced. Can be achieved.
  • the wireless device performs FDD wireless communication that transmits at frequency f1 while transmitting at frequency f1, and TDD wireless communication that transmits and receives at frequency f1. It corresponds to.
  • the wireless device includes a transmission circuit unit that performs transmission processing on a signal at frequency f1, a first reception circuit unit that performs reception processing on a signal at frequency f1, a second reception circuit unit that performs reception processing on a signal at second frequency, and an antenna.
  • duplexer 9 demultiplexing unit
  • the duplexer 9 has a circulator 8 connected to the first filter side and a second receiving circuit unit connected to the second filter side.
  • the first receiving circuit unit is connected to the FDD and TDD transmission feedback. And a TDD receiver.
  • the first receiving circuit unit includes a low out-of-band noise amplifier 23, a bandpass filter 20, a DPD bandpass filter 27, and an IF amplifier 11, and the second receiving circuit unit includes A low-band noise amplifier 24, a band-pass filter 21, a reception-band band pass filter 28, and an IF amplifier 12, and a signal obtained by branching a signal from the transmission circuit unit to the first reception-side circuit unit side Is processed by the band-pass filter 20 and then by the DPD band-pass filter 27 and the IF amplifier 11, and the received signal of the frequency f 1 is processed by the low-band outside noise amplifier 23 and the band-pass filter 20.
  • the signal is processed by the pass filter 2 8 and the IF amplifier 12, and the received signal having the frequency f 2 is converted into the low-band noise amplifier 24 and the band pass filter. After processing by the filter 21, processing is performed by the reception bandpass filter 28 and the IF amplifier 12.
  • TDD / FDD shared radio that can handle TDD wireless communication and FDD wireless communication with a single unit.
  • the configurations of the system and the device according to the present invention are not necessarily limited to those described above, and various configurations may be used.
  • the duplexer 9 is used as the demultiplexing unit according to the present invention, but the first filter having a pass characteristic in the frequency f1 band and the second filter having the pass characteristic in the frequency f2 band.
  • Other circuit elements having the above may be used.
  • the circulator 8 is used as the path switching unit according to the present invention.
  • the signal from the transmission circuit unit is branched and output to the duplexer 9 and the first reception circuit unit.
  • Other circuit elements that output the received signal from 9 to the first receiving circuit unit may be used.
  • the present invention can also be provided as, for example, a method or method for executing the processing according to the present invention, a program for realizing such a method or a trap method, or a storage medium for storing the program. .
  • the present invention is applied to various low-frequency to high-power radio devices such as a radio base station (for example, a mobile phone base station), a radio entrance, and various FDD radio systems and T-DD radio systems from low frequencies to millimeter wave bands. Can be applied.
  • a radio base station for example, a mobile phone base station
  • a radio entrance for example, a radio entrance
  • various FDD radio systems and T-DD radio systems from low frequencies to millimeter wave bands can be applied.
  • 1 digital signal processing unit (including DPD), 2: DA converter, 3, 4: AD converter, 5: transmitting unit, 6: receiving unit for DPD, 7: receiving unit, 8: circulator, 9: Duplexer, 10: Antenna, 11, 12: IF amplifier, 13: Low-pass filter, 14, 15, 22, 26: RF switch, 16: Mixer (transmission up-converter), 17: Mixer (down converter for DPD) ), 18: Mixer (down converter for reception), 19, 20, 21: Band pass filter, 23, 24: Low band outside noise amplifier, 25: Transmit amplifier, 27: DPD band band pass filter, 28: Reception band Band-pass filter, 29: Transmission system, 30: First reception system, 31: Second reception system

Abstract

TDD方式の無線通信とFDD方式の無線通信に1台で対応できる無線機を簡易な構成で実現する。周波数f1の信号を送信処理する送信部5と、周波数f1の信号を受信処理するDPD用受信部6と、第2周波数の信号を受信処理する受信部7と、周波数f1の帯域に通過特性を持つ第1フィルタ及び周波数f2の帯域に通過特性を持つ第2フィルタを有するデュプレクサー9と、送信部5からの信号を分岐してデュプレクサー9及びDPD用受信部6へ出力すると共に、デュプレクサー9からの受信信号をDPD用受信部6へ出力するサーキュレータ8とを備える。デュプレクサー9は、第1フィルタ側にサーキュレータ8が接続されると共に、第2フィルタ側に受信部7が接続されており、DPD用受信部6を、FDD方式及びTDD方式の送信フィードバックと、TDD方式の受信とに用いる。

Description

無線機及び無線通信方法
 本発明は、TDD(Time Division Duplex;時分割複信)方式及びFDD(Frequency  Division Duplex;周波数分割複信)方式の無線通信システムに関する。
 従来、送信と受信で異なる周波数を用いるFDD方式の無線通信を行うFDD無線シス テムと、送信と受信で同じ周波数を用いるTDD方式の無線通信を行うTDD無線システ ムが実用に供されている。
 周波数の有効利用の観点から、準ミリ波以上の周波数帯では近接する周波数帯でTDD 無線システムとFDD無線システムが利用されているが、TDD無線システムに対応した TDD無線機とFDD無線システムに対応したFDD無線機との共存は、アンテナと無線 機間のフィルタ構成の違いにより、従来技術では実現が非常に難しかった。
 これは、TDD無線機では、フィルタの通過特性が送信と受信で周波数が同じであるの に対し、FDD無線機では、フィルタの通過特性が送信と受信で周波数が異なるので互い の周波数を分けるデュプレクサーを用いる構成であるためである。仮にTDD/FDD共 用無線機を実現しようとしても、デュプレクサーを回避するために、RFラインの取り回 しが複雑化したり、RFスイッチを多用することとなり、消費電力の増大もしくは受信特 性の低下など、いずれかの無線システムを犠牲にする必要があった。このように、1台の 無線機でFDD無線システムとTDD無線システムの両方に対応することは困難であり、 ベースバンド部は共通にできても無線部は個々のシステム毎に搭載する構成であったため 、無線機が大型化・高コスト化していた。
 このため、実際には、TDD無線システムとFDD無線システムとで別々の無線機が用 いられてきた。
 なお、FDD方式とTDD方式での共用に関する発明としては、例えば、FDD方式及 びTDD方式のいずれの通信方式にも適用でき、有効データ区間を精度よく反映した遅延 調整を実現する歪補償装置の発明などが提案されている(特許文献1参照)。
特開2013-58910号公報
 本発明は、上記のような従来の事情に鑑みて為されたものであり、TDD方式の無線通 信とFDD方式の無線通信に1台で対応できる無線機を簡易な構成で実現することを目的 とする。
 本発明は、上記の目的を達成するために、無線機を以下のように構成した。
 すなわち、第1周波数で送信を行う一方で第2周波数で受信を行うFDD方式の無線通 信と、前記第1周波数で送信及び受信を行うTDD方式の無線通信とに対応した無線機で あって、前記第1周波数の信号を送信処理する送信回路部と、前記第1周波数の信号を受 信処理する第1受信回路部と、前記第2周波数の信号を受信処理する第2受信回路部と、 アンテナに接続されると共に、前記第1周波数の帯域に通過特性を持つ第1フィルタ及び 前記第2周波数の帯域に通過特性を持つ第2フィルタを有する分波部と、前記送信回路部 からの信号を分岐して前記分波部及び前記第1受信回路部へ出力すると共に、前記分波部 からの受信信号を前記第1受信回路部へ出力する経路切替部とを備え、前記分波部は、前 記第1フィルタ側に前記経路切替部が接続されると共に、前記第2フィルタ側に前記第2 受信回路部が接続されており、前記第1受信回路部を、FDD方式及びTDD方式の送信 フィードバックと、TDD方式の受信とに用いることを特徴とする。
 このように、本発明に係る無線機では、FDD方式及びTDD方式の送信フィードバッ クと、TDD方式の受信とを、共通の回路部で処理できるよう構成してある。従って、T DD方式の無線通信とFDD方式の無線通信に1台で対応できる無線機を簡易な構成で実 現することができる。
 ここで、一構成例として、前記第1受信回路部は、第1前段増幅器と、前記第1周波数 の帯域に通過特性を持つ第1前段フィルタと、歪補償用の帯域に通過特性を持つ第1後段 フィルタと、第1後段増幅器とを有し、前記第2受信回路部は、第2前段増幅器と、前記 第2周波数の帯域に通過特性を持つ第2前段フィルタと、受信用の帯域に通過特性を持つ 第2後段フィルタと、第2後段増幅器とを有しており、前記送信回路部からの信号を前記 第1受信回路部側に分岐した信号を、前記第1前段フィルタで処理した後に前記第1後段 フィルタ及び前記第1後段増幅器で処理し、前記第1周波数で受信した信号を、前記第1 前段増幅器及び前記第1前段フィルタで処理した後に前記第2後段フィルタ及び前記第2 後段増幅器で処理し、前記第2周波数で受信した信号を、前記第2前段増幅器及び前記第 2前段フィルタで処理した後に前記第2後段フィルタ及び前記第2後段増幅器で処理する ようにしてもよい。
 これにより、TDD方式の無線通信でもFDD方式の無線通信でも無線特性の劣化を抑 えることができ、無線機の小型化及び高効率化を実現することができる。
 本発明によれば、TDD方式の無線通信とFDD方式の無線通信に1台で対応できる無 線機を簡易な構成で実現することができる。
本発明の第1実施例に係る無線機の構成例を示す図である。 本発明の第2実施例に係る無線機におけるFDD方式の送受信動作及びTD D方式の送信動作について説明する図である。 本発明の第2実施例に係る無線機におけるTDD方式の受信動作について説 明する図である。
 本発明に係る無線機について、図面を参照して説明する。
 本発明に係る無線機は、概略として、FDD無線システムに対応した送信DPD(Digi tal Pre-Distortion;デジタルプリディストーション)歪補償付き無線機の構成に、送信 DPD用フィードバック信号を抽出するために送信出力とデュプレクサー間にサーキュレ ータを設けてある。送信増幅器が発生する非線形歪は、多値QAM(Quadrature Amplitu de Modulation;直角位相振幅変調)の通信品質を大きく劣化させるため、DPD信号処 理と信号のピーク電圧を抑圧する信号処理を行うことによって非線形歪を打ち消す手法が 、無線基地局で一般に用いられている。
 図1には、本発明の第1実施例に係る無線機の構成例を示してある。
 第1実施例の無線機は、デジタル信号処理部(DPD含む)1と、DAコンバータ2及 び送信部5を有する送信系と、ADコンバータ3及びDPD用受信部6を有する第1受信 系と、ADコンバータ4及び受信部7を有する第2受信系と、サーキュレータ8と、デュ プレクサー9と、アンテナ10とを備える。
 本無線機は、TDD方式及びFDD方式の無線通信システムの両方に対応しており、事 前のモード設定によりTDD方式又はFDD方式のいずれで動作させるかを選択できる。 なお、TDD方式又はFDD方式のいずれで動作させるかをスイッチ操作等によりユーザ が適宜選択できるようにしてもよい。
 ここで、FDD方式の無線通信では、送信に周波数f1を用いる一方で受信に周波数f 2を用い、TDD方式の無線通信では、送信及び受信に周波数f1を用いることとする。
 サーキュレータ8は、送信部5に接続された第1ポートと、デュプレクサー9に接続さ れた第2ポートと、DPD用受信部6に接続された第3ポートとを有する。
 送信部5から第1ポートに入力される送信信号は、第2ポートからデュプレクサー9に 出力される。また、デュプレクサー9から第2ポートに入力される受信信号は、第3ポー トからDPD用受信部6に出力される。また、第1ポートに入力された送信信号は、全て が第2ポートから出力されるのではなく、その一部が第3ポート側に漏れる。すなわち、 第1ポートに入力された送信信号の一部が、アイソレーションポートである第3ポートを 通じて減衰されて、帰還信号としてDPD用受信部6にも出力される。
 デュプレクサー9は、通過域及び阻止域が異なる周波数特性を持つ第1フィルタ及び第 2フィルタを有しており、サーキュレータ8及び受信部7とアンテナ10との間に設けら れる。第1フィルタは、周波数f1の帯域に通過特性を持つ一方で周波数f2の帯域に阻 止特性を持ち、サーキュレータ8側に接続される。第2フィルタは、第1フィルタとは逆 に、周波数f2の帯域に通過特性を持つ一方で周波数f1の帯域に阻止特性を持ち、受信 部7側に接続される。
 すなわち、送信部5からサーキュレータ8を通じて入力される送信信号(周波数f1) は、第1フィルタを通過してアンテナ10へ出力される。また、アンテナ10から入力さ れる受信信号は、TDD方式の受信信号の場合には、周波数f1なので第1フィルタを通 過して、サーキュレータ8を通じてDPD用受信部6へ出力される。一方、FDD方式の 受信信号の場合には、周波数f2なので第2フィルタを通過して受信部7へ出力される。
 まず、本例の無線機によるFDD方式の送受信動作について説明する。
 デジタル信号処理部1で生成された送信変調信号は、DAコンバータ2でアナログ信号 に変換され、送信部5で所要の周波数(周波数f1)にアップコンバート後、必要な電力 に増幅される。
 送信部5の出力信号の一部は、サーキュレータ8の第3ポート(アイソレーションポー ト)を通じて減衰され、帰還信号としてDPD用受信部6へ出力される。DPD用受信部 6に入力された帰還信号は、周波数のダウンコンバート後、増幅されて、後置のADコン バータ3でデジタル信号に変換され、デジタル信号処理部1にフィードバックされる。
 デジタル信号処理部1は、DPD用受信部6を経由してフィードバックされた帰還信号 に基づいて、内部のDPD部で、AM/AM(振幅対振幅)特性、AM/PM(振幅対位 相)特性の逆特性の送信変調信号を発生させる。
 これにより、結果的に、送信部5での電力増幅により発生する非線形歪がキャンセルさ れた送信変調信号が生成され、サーキュレータ8とデュプレクサー9を通過してアンテナ 10より無線送信される。
 一方、アンテナ10から入力される受信信号は、送信周波数とは違う周波数f2である ため、デュプレクサー9を通じて送信信号とは異なる側に分波されて、受信部7へ出力さ れる。受信部7に入力された受信信号は、増幅され、周波数のダウンコンバート後、増幅 されて、後置のADコンバータ4でデジタル信号に変換され、デジタル信号処理部1へ出 力される。
 デジタル信号処理部1は、受信部7を経由して入力された個々の受信信号を処理する。
 なお、無線機をFDD方式で動作させる場合には、送信が低出力のときや、低出力送信 機でDPDを動作させなくても通信品質が保たれるのであれば、DPD用受信部6の電源 をOFFにすることで低消費電力化を図ることができる。
 次に、本例の無線機によるTDD方式の送受信動作について説明する。
 デジタル信号処理部1で生成された時間分割送信変調信号は、DAコンバータ2でアナ ログ信号に変換され、送信部5で所要の周波数(周波数f1)にアップコンバート後、必 要な電力に増幅される。なお、送信データが無い時間は、電力増幅に用いる増幅器の電源 をOFFにすることで受信特性の劣化を低減することができる。
 送信部5の出力信号の一部は、サーキュレータ8の第3ポート(アイソレーションポー ト)を通じて減衰され、帰還信号としてDPD用受信部6へ出力される。DPD用受信部 6に入力された帰還信号は、周波数のダウンコンバート後、増幅されて、後置のADコン バータ3でデジタル信号に変換され、デジタル信号処理部1にフィードバックされる。
 デジタル信号処理部1は、DPD用受信部6を経由してフィードバックされた帰還信号 に基づいて、内部のDPD部で、AM/AM特性、AM/PM特性の逆特性の送信変調信 号を発生させる。
 これにより、結果的に、送信部5での電力増幅により発生する非線形歪がキャンセルさ れた送信変調信号が生成され、サーキュレータ8とデュプレクサー9を通過してアンテナ 10より無線送信される。
 一方、アンテナ10から入力される時間分割受信信号は、送信周波数と同じ周波数f1 であるため、デュプレクサー9を通じて送信信号と同じ側に分波されて、サーキュレータ 8を通じてDPD用受信部6へ出力される。DPD用受信部6に入力された受信信号は、 増幅され、周波数のダウンコンバート後、増幅されて、後置のADコンバータ3でデジタ ル信号に変換され、デジタル信号処理部1へ出力される。
 デジタル信号処理部1は、DPD用受信部6を経由して入力された個々の受信信号を処 理する。
 なお、無線機をTDD方式で動作させる場合には、受信部7は使用しないので、受信部 7の電源をOFFにすることで低消費電力化を図ることができる。
 以上のように、第1実施例に係る無線機は、周波数f1で送信を行う一方で周波数f2 で受信を行うFDD方式の無線通信と、周波数f1で送信及び受信を行うTDD方式の無 線通信とに対応している。本無線機は、周波数f1の信号を送信処理する送信部5と、周 波数f1の信号を受信処理するDPD用受信部6と、第2周波数の信号を受信処理する受 信部7と、アンテナ10に接続されると共に、周波数f1の帯域に通過特性を持つ第1フ ィルタ及び周波数f2の帯域に通過特性を持つ第2フィルタを有するデュプレクサー9( 分波部)と、送信部5からの信号を分岐してデュプレクサー9及びDPD用受信部6へ出 力すると共に、デュプレクサー9からの受信信号をDPD用受信部6へ出力するサーキュ レータ8(経路切替部)とを備える。デュプレクサー9は、第1フィルタ側にサーキュレ ータ8が接続されると共に、第2フィルタ側に受信部7が接続されており、DPD用受信 部6を、FDD方式及びTDD方式の送信フィードバックと、TDD方式の受信とに用い るように構成されている。
 このような構成により、多値QAMにおいて低消費電力で送信するためのプリディスト ーションを動作させながら、TDD方式及びFDD方式での送受信が可能である。従って 、TDD方式の無線通信とFDD方式の無線通信に1台で対応できるTDD/FDD共用 無線機を提供することができる。また、RFラインの取り回しが複雑化したり、RFスイ ッチを多用することもなく、簡易な構成でTDD/FDD共用無線機を実現することがで きる。
 次に、TDD、FDDの特性を向上させる応用例について説明する。
 図2~3には、本発明の第2実施例に係る無線機の構成例を示してある。
 第2実施例の無線機は、デジタル信号処理部(DPD含む)1と、DAコンバータ2及 び送信回路部(13,16,19,25)を有する送信系29と、ADコンバータ3及び 第1受信回路部(26,23,22,20,17,14,27,11)を有する第1受信 系30と、ADコンバータ4及び第2受信回路部(24,21,18,15,28,12 )を有する第2受信系31と、サーキュレータ8と、デュプレクサー9と、アンテナ10 とを備える。
 送信回路部は、ローパスフィルタ13と、ミキサ(送信アップコンバータ)16と、バ ンドパスフィルタ19と、送信増幅器25とを有しており、第1実施例の送信部5に対応 する。
 第1受信回路部は、RFスイッチ26と、ロー帯域外ノイズ増幅器23と、RFスイッ チ22と、バンドパスフィルタ20と、ミキサ(DPD用ダウンコンバータ)17と、R Fスイッチ14と、DPD帯域バンドパスフィルタ27と、IF増幅器11とを有してお り、第1実施例のDPD用受信部6に対応する。
 第2受信回路部は、ロー帯域外ノイズ増幅器24と、バンドパスフィルタ21と、ミキ サ(受信用ダウンコンバータ)18と、RFスイッチ15と、受信帯域バンドパスフィル タ28と、IF増幅器12とを有しており、第1実施例の受信部7に対応する。
 RFスイッチ14は、ミキサ17とDPD帯域バンドパスフィルタ27とを接続するか 、ミキサ17と受信帯域バンドパスフィルタ28とを接続するかを切り替える。
 RFスイッチ15は、ミキサ17と受信帯域バンドパスフィルタ28とを接続するか、 ミキサ18と受信帯域バンドパスフィルタ28とを接続するかを切り替える。
 RFスイッチ22,26は、第2受信回路部に入力された信号をロー帯域外ノイズ増幅 器23で増幅するか否かを切り替える。
 まず、本例の無線機によるFDD方式の送受信動作について図2を参照して説明する。
 デジタル信号処理部1で生成された送信変調信号は、DAコンバータ2でアナログ信号 に変換され、DAコンバータ2で発生するスプリアスと帯域外ノイズを低減するローパス フィルタ15を通過させる。その後、後置のミキサ16で所要の周波数(周波数f1)に アップコンバートされ、ミキサ16で発生するスプリアスと帯域外ノイズを減衰させるバ ンドパスフィルタ19を通過させ、送信増幅器25で必要な電力に増幅される。
 送信回路部の出力信号の一部は、サーキュレータ8の第3ポート(アイソレーションポ ート)を通じて減衰され、帰還信号として第1受信回路部へ出力される。FDD方式の送 受信時は、常時、ロー帯域外ノイズ増幅器23を経由しないようにRFスイッチ22,2 6が設定されており、帯域外ノイズ増幅器23をスルーパスして、後置のミキサ17で発 生するスプリアスと帯域外ノイズを減衰させるバンドパスフィルタ20を通過させた後に 、ミキサ17で周波数をダウンコンバートする。FDD方式の送受信時は、常時、ミキサ 17とDPD帯域バンドパスフィルタ27とを接続するようにRFスイッチ14が設定さ れており、DPD帯域バンドパスフィルタ27を通過させてDPD帯域外のスプリアスや ノイズが低減され、IF増幅器11で増幅されて、後置のADコンバータ3でデジタル信 号に変換され、デジタル信号処理部1にフィードバックされる。
 デジタル信号処理部1は、第1受信回路部を経由してフィードバックされた帰還信号に 基づいて、内部のDPD部で、AM/AM特性、AM/PM特性の逆特性の送信変調信号 を発生させる。
 これにより、結果的に、送信増幅器25での電力増幅により発生する非線形歪がキャン セルされた送信変調信号が生成され、サーキュレータ8とデュプレクサー9を通過してア ンテナ10より無線送信される。
 一方、アンテナ10から入力される受信信号は、送信周波数とは違う周波数f2である ため、デュプレクサー9を通じて送信信号とは異なる側に分波されて、第2受信回路部へ 出力される。第2受信回路部に入力された受信信号は、ロー帯域外ノイズ増幅器24で増 幅され、後置のミキサ18で発生するスプリアスと帯域外ノイズを減衰させるバンドパス フィルタ21を通過させた後に、ミキサ18で周波数をダウンコンバートする。FDD方 式の送受信時は、常時、ミキサ18と受信帯域バンドパスフィルタ28とを接続するよう にRFスイッチ15が設定されており、受信帯域バンドパスフィルタ28を通過させて受 信帯域外のスプリアスやノイズが低減され、IF増幅器12で増幅されて、後置のADコ ンバータ4でデジタル信号に変換され、デジタル信号処理部1へ出力される。
 デジタル信号処理部1は、第2受信回路部を経由して入力された個々の受信信号を処理 する。
 次に、本例の無線機によるTDD方式の送信動作について図2を参照して説明する。
 デジタル信号処理部1で生成された時間分割送信変調信号は、DAコンバータ2でアナ ログ信号に変換され、DAコンバータ2で発生するスプリアスと帯域外ノイズを低減する ローパスフィルタ15を通過させる。その後、後置のミキサ16で所要の周波数(周波数 f1)にアップコンバートされ、ミキサ16で発生するスプリアスと帯域外ノイズを減衰 させるバンドパスフィルタ19を通過させ、送信増幅器25で必要な電力に増幅される。 なお、送信データが無い時間は、送信増幅器25の電源をOFFにすることで受信特性の 劣化を低減することができる。
 送信回路部の出力信号の一部は、サーキュレータ8の第3ポート(アイソレーションポ ート)を通じて減衰され、帰還信号として第1受信回路部へ出力される。FDD方式の送 受信時は、送信データがある時間においては、ロー帯域外ノイズ増幅器23を経由しない ようにRFスイッチ22,26が設定されており、帯域外ノイズ増幅器23をスルーパス して、後置のミキサ17で発生するスプリアスと帯域外ノイズを減衰させるバンドパスフ ィルタ20を通過させた後に、ミキサ17で周波数をダウンコンバートする。FDD方式 の送受信時は、送信データがある時間においては、ミキサ17とDPD帯域バンドパスフ ィルタ27とを接続するようにRFスイッチ14が設定されており、DPD帯域バンドパ スフィルタ27を通過させてDPD帯域外のスプリアスやノイズが低減され、IF増幅器 11で増幅されて、後置のADコンバータ3でデジタル信号に変換され、デジタル信号処 理部1にフィードバックされる。
 デジタル信号処理部1は、第1受信回路部を経由してフィードバックされた帰還信号に 基づいて、内部のDPD部で、AM/AM特性、AM/PM特性の逆特性の送信変調信号 を発生させる。
 これにより、結果的に、送信増幅器25での電力増幅により発生する非線形歪がキャン セルされた送信変調信号が生成され、サーキュレータ8とデュプレクサー9を通過してア ンテナ10より無線送信される。
 次に、本例の無線機によるTDD方式の受信動作について図3を参照して説明する。
 アンテナ10から入力される時間分割受信信号は、送信周波数と同じ周波数f1である ため、デュプレクサー9を通じて送信信号と同じ側に分波されて、サーキュレータ8を通 じて第1受信回路部へ出力される。TDD方式の送受信時は、送信データが無い時間にお いては、ロー帯域外ノイズ増幅器23を経由するようにRFスイッチ22,26が設定さ れており、帯域外ノイズ増幅器23で増幅させ、後置のミキサ17で発生するスプリアス と帯域外ノイズを減衰させるバンドパスフィルタ20を通過させた後に、ミキサ17で周 波数をダウンコンバートする。TDD方式の送受信時は、送信データが無い時間において は、ミキサ17と受信帯域バンドパスフィルタ28とを接続するようにRFスイッチ14 ,15が設定されており、受信帯域バンドパスフィルタ28を通過させて受信帯域外のス プリアスやノイズが低減され、IF増幅器12で増幅されて、後置のADコンバータ4で デジタル信号に変換され、デジタル信号処理部1へ出力される。
 デジタル信号処理部1は、第1受信回路部の前半部分と第2受信回路部の後半部分を経 由して入力された個々の受信信号を処理する。
 なお、無線機をTDD方式で動作させる場合には、ロー帯域外ノイズ増幅器24とミキ サ18は使用しないので、ロー帯域外ノイズ増幅器24とミキサ18の電源をOFFにす ることで低消費電力化を図ることができる。
 以上のように、第2実施例に係る無線機は、周波数f1で送信を行う一方で周波数f2 で受信を行うFDD方式の無線通信と、周波数f1で送信及び受信を行うTDD方式の無 線通信とに対応している。本無線機は、周波数f1の信号を送信処理する送信回路部と、 周波数f1の信号を受信処理する第1受信回路部と、第2周波数の信号を受信処理する第 2受信回路部と、アンテナ10に接続されると共に、周波数f1の帯域に通過特性を持つ 第1フィルタ及び周波数f2の帯域に通過特性を持つ第2フィルタを有するデュプレクサ ー9(分波部)と、送信回路部からの信号を分岐してデュプレクサー9及び第1受信回路 部へ出力すると共に、デュプレクサー9からの受信信号を第1受信回路部へ出力するサー キュレータ8(経路切替部)とを備える。デュプレクサー9は、第1フィルタ側にサーキ ュレータ8が接続されると共に、第2フィルタ側に第2受信回路部が接続されており、第 1受信回路部を、FDD方式及びTDD方式の送信フィードバックと、TDD方式の受信 とに用いるように構成されている。
 より具体的には、第1受信回路部は、ロー帯域外ノイズ増幅器23と、バンドパスフィ ルタ20と、DPD帯域バンドパスフィルタ27と、IF増幅器11とを有し、第2受信 回路部は、ロー帯域外ノイズ増幅器24と、バンドパスフィルタ21と、受信帯域バンド パスフィルタ28と、IF増幅器12とを有しており、送信回路部からの信号を第1受信 回路部側に分岐した信号を、バンドパスフィルタ20で処理した後にDPD帯域バンドパ スフィルタ27及びIF増幅器11で処理し、周波数f1の受信信号を、ロー帯域外ノイ ズ増幅器23及びバンドパスフィルタ20で処理した後に受信帯域バンドパスフィルタ2 8及びIF増幅器12で処理し、周波数f2の受信信号を、ロー帯域外ノイズ増幅器24 及びバンドパスフィルタ21で処理した後に受信帯域バンドパスフィルタ28及びIF増 幅器12で処理するように構成されている。
 このような構成により、TDD方式の無線通信とFDD方式の無線通信に1台で対応で きるTDD/FDD共用無線機を提供することができる。また、TDD方式の無線通信で もFDD方式の無線通信でも無線特性の劣化を抑えることができ、小型、高効率のTDD /FDD共用無線機を実現することができる。
 ここで、本発明に係るシステムや装置などの構成としては、必ずしも以上に示したもの に限られず、種々な構成が用いられてもよい。
 例えば、上記実施例では、本発明に係る分波部として、デュプレクサー9を用いている が、周波数f1の帯域に通過特性を持つ第1フィルタ及び周波数f2の帯域に通過特性を 持つ第2フィルタを有する他の回路素子を用いても構わない。
 また、上記実施例では、本発明に係る経路切替部として、サーキュレータ8を用いてい るが、送信回路部からの信号を分岐してデュプレクサー9及び第1受信回路部へ出力する と共に、デュプレクサー9からの受信信号を第1受信回路部へ出力する他の回路素子を用 いても構わない。
 また、本発明は、例えば、本発明に係る処理を実行する方法や方式、このような方法や 方式を実現するためのプログラムや当該プログラムを記憶する記憶媒体などとして提供す ることも可能である。
 本発明は、端末機器から無線基地局(例えば携帯電話基地局)、無線エントランス等の 低出力から高出力の無線機、低周波からミリ波帯までの種々のFDD無線システム及びT DD無線システムに適用することができる。
 1:デジタル信号処理部(DPD含む)、 2:DAコンバータ、 3,4:ADコン バータ、 5:送信部、 6:DPD用受信部、 7:受信部、 8:サーキュレータ、
 9:デュプレクサー、 10:アンテナ、 11,12:IF増幅器、 13:ローパ スフィルタ、 14,15,22,26:RFスイッチ、 16:ミキサ(送信アップコ ンバータ)、 17:ミキサ(DPD用ダウンコンバータ)、 18:ミキサ(受信用ダ ウンコンバータ)、 19,20,21:バンドパスフィルタ、 23,24:ロー帯域 外ノイズ増幅器、 25:送信増幅器、 27:DPD帯域バンドパスフィルタ、 28 :受信帯域バンドパスフィルタ、 29:送信系、 30:第1受信系、 31:第2受 信系
 

Claims (4)

  1.  第1周波数で送信を行う一方で第2周波数で受信を行うFDD方式の無線通信と、前記 第1周波数で送信及び受信を行うTDD方式の無線通信とに対応した無線機であって、
     前記第1周波数の信号を送信処理する送信回路部と、
     前記第1周波数の信号を受信処理する第1受信回路部と、
     前記第2周波数の信号を受信処理する第2受信回路部と、
     アンテナに接続されると共に、前記第1周波数の帯域に通過特性を持つ第1フィルタ及 び前記第2周波数の帯域に通過特性を持つ第2フィルタを有する分波部と、
     前記送信回路部からの信号を分岐して前記分波部及び前記第1受信回路部へ出力すると 共に、前記分波部からの受信信号を前記第1受信回路部へ出力する経路切替部とを備え、
     前記分波部は、前記第1フィルタ側に前記経路切替部が接続されると共に、前記第2フ ィルタ側に前記第2受信回路部が接続されており、
     前記第1受信回路部を、FDD方式及びTDD方式の送信フィードバックと、TDD方 式の受信とに用いることを特徴とする無線機。
  2.  請求項1に記載の無線機において、
     前記第1受信回路部は、第1前段増幅器と、前記第1周波数の帯域に通過特性を持つ第 1前段フィルタと、歪補償用の帯域に通過特性を持つ第1後段フィルタと、第1後段増幅 器とを有し、
     前記第2受信回路部は、第2前段増幅器と、前記第2周波数の帯域に通過特性を持つ第 2前段フィルタと、受信用の帯域に通過特性を持つ第2後段フィルタと、第2後段増幅器 とを有しており、
     前記送信回路部からの信号を前記第1受信回路部側に分岐した信号を、前記第1前段フ ィルタで処理した後に前記第1後段フィルタ及び前記第1後段増幅器で処理し、
     前記第1周波数で受信した信号を、前記第1前段増幅器及び前記第1前段フィルタで処 理した後に前記第2後段フィルタ及び前記第2後段増幅器で処理し、
     前記第2周波数で受信した信号を、前記第2前段増幅器及び前記第2前段フィルタで処 理した後に前記第2後段フィルタ及び前記第2後段増幅器で処理することを特徴とする無 線機。
  3.  第1周波数で送信を行う一方で第2周波数で受信を行うFDD方式の無線通信と、前記 第1周波数で送信及び受信を行うTDD方式の無線通信とに対応した無線機による無線通 信方法であって、
     前記無線機は、
     前記第1周波数の信号を送信処理する送信回路部と、
     前記第1周波数の信号を受信処理する第1受信回路部と、
     前記第2周波数の信号を受信処理する第2受信回路部と、
     アンテナに接続されると共に、前記第1周波数の帯域に通過特性を持つ第1フィルタ及 び前記第2周波数の帯域に通過特性を持つ第2フィルタを有する分波部と、
     前記送信回路部からの信号を分岐して前記分波部及び前記第1受信回路部へ出力すると 共に、前記分波部からの受信信号を前記第1受信回路部へ出力する経路切替部とを備え、
     前記分波部は、前記第1フィルタ側に前記経路切替部が接続されると共に、前記第2フ ィルタ側に前記第2受信回路部が接続されており、
     前記第1受信回路部を、FDD方式及びTDD方式の送信フィードバックと、TDD方 式の受信とに用いることを特徴とする無線通信方法。
  4.  請求項3に記載の無線通信方法において、
     前記第1受信回路部は、第1前段増幅器と、前記第1周波数の帯域に通過特性を持つ第 1前段フィルタと、歪補償用の帯域に通過特性を持つ第1後段フィルタと、第1後段増幅 器とを有し、
     前記第2受信回路部は、第2前段増幅器と、前記第2周波数の帯域に通過特性を持つ第 2前段フィルタと、受信用の帯域に通過特性を持つ第2後段フィルタと、第2後段増幅器 とを有しており、
     前記送信回路部からの信号を前記第1受信回路部側に分岐した信号を、前記第1前段フ ィルタで処理した後に前記第1後段フィルタ及び前記第1後段増幅器で処理し、
     前記第1周波数で受信した信号を、前記第1前段増幅器及び前記第1前段フィルタで処 理した後に前記第2後段フィルタ及び前記第2後段増幅器で処理し、
     前記第2周波数で受信した信号を、前記第2前段増幅器及び前記第2前段フィルタで処 理した後に前記第2後段フィルタ及び前記第2後段増幅器で処理することを特徴とする無 線通信方法。
     
PCT/JP2018/002243 2017-02-06 2018-01-25 無線機及び無線通信方法 WO2018143043A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/480,587 US10637525B2 (en) 2017-02-06 2018-01-25 Wireless device and wireless communication method
JP2018565487A JP6705918B2 (ja) 2017-02-06 2018-01-25 無線機及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019375 2017-02-06
JP2017019375 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143043A1 true WO2018143043A1 (ja) 2018-08-09

Family

ID=63039719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002243 WO2018143043A1 (ja) 2017-02-06 2018-01-25 無線機及び無線通信方法

Country Status (3)

Country Link
US (1) US10637525B2 (ja)
JP (1) JP6705918B2 (ja)
WO (1) WO2018143043A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210126967A (ko) * 2020-04-13 2021-10-21 삼성전기주식회사 프론트-엔드 모듈
US20230370022A1 (en) * 2020-09-17 2023-11-16 Nokia Technologies Oy Energy efficient amplification for an apparatus
US11196138B1 (en) * 2020-09-30 2021-12-07 Nxp Usa, Inc. Circulator with integrated directional coupler, and communication systems including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152079A (ja) * 2000-11-14 2002-05-24 Sony Corp 無線装置
JP2002171194A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 無線装置、並びにそれを備える携帯情報端末および無線基地局、並びにそれらを含む無線通信システム
JP2002185356A (ja) * 2000-10-26 2002-06-28 Epcos Ag 通信端末装置用のフロントエンド回路
JP2008306370A (ja) * 2007-06-06 2008-12-18 Hitachi Kokusai Electric Inc Tdd方式の無線送受信装置における送信電力廻り込み防止方式
JP2012175708A (ja) * 2011-02-18 2012-09-10 Fujitsu Ltd プリディストーション装置
JP2013058910A (ja) * 2011-09-08 2013-03-28 Hitachi Kokusai Electric Inc 歪補償装置
WO2015190085A1 (ja) * 2014-06-11 2015-12-17 日本電気株式会社 送受信装置及び送受信方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013278A (ja) * 1998-06-25 2000-01-14 Matsushita Electric Ind Co Ltd 無線装置及びそれを備える無線携帯機及び無線基地局並びにそれらを含む無線通信システム
US8862081B2 (en) * 2007-01-19 2014-10-14 Wi-Lan, Inc. Transceiver with receive path performance diversity and combiner with jammer detect feedback
US8805298B2 (en) * 2007-01-30 2014-08-12 Crestcom, Inc. Transceiver with compensation for transmit signal leakage and method therefor
CN102948081B (zh) * 2009-12-21 2016-06-01 大力系统有限公司 具有宽带功率放大器的远程射频头单元及方法
US9748906B2 (en) * 2011-06-13 2017-08-29 Commscope Technologies Llc Distributed antenna system architectures
CN105409178B (zh) * 2013-12-23 2019-03-05 华为技术有限公司 一种无线收发信机
SG11201609160YA (en) * 2014-06-16 2016-12-29 Ericsson Telefon Ab L M Method and entity in tdd radio communications
US10298349B2 (en) * 2014-12-22 2019-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Receive supervision method and radio unit
US10044375B2 (en) * 2015-01-30 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Multiband transmitter circuit with integrated circulators and filters
WO2016167145A1 (ja) * 2015-04-13 2016-10-20 三菱電機株式会社 フェーズドアレイアンテナ装置
JP2016213603A (ja) * 2015-05-01 2016-12-15 富士通株式会社 無線通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185356A (ja) * 2000-10-26 2002-06-28 Epcos Ag 通信端末装置用のフロントエンド回路
JP2002152079A (ja) * 2000-11-14 2002-05-24 Sony Corp 無線装置
JP2002171194A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 無線装置、並びにそれを備える携帯情報端末および無線基地局、並びにそれらを含む無線通信システム
JP2008306370A (ja) * 2007-06-06 2008-12-18 Hitachi Kokusai Electric Inc Tdd方式の無線送受信装置における送信電力廻り込み防止方式
JP2012175708A (ja) * 2011-02-18 2012-09-10 Fujitsu Ltd プリディストーション装置
JP2013058910A (ja) * 2011-09-08 2013-03-28 Hitachi Kokusai Electric Inc 歪補償装置
WO2015190085A1 (ja) * 2014-06-11 2015-12-17 日本電気株式会社 送受信装置及び送受信方法

Also Published As

Publication number Publication date
JP6705918B2 (ja) 2020-06-03
JPWO2018143043A1 (ja) 2019-11-07
US20190393922A1 (en) 2019-12-26
US10637525B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
US10601378B2 (en) Distributed antenna system architectures
US10153789B2 (en) Remote radio head unit system with wideband power amplifier
US8730786B2 (en) Remote radio head unit system with wideband power amplifier and method
KR102081620B1 (ko) 트랜시버 및 트랜시버의 자체-간섭을 감소시키기 위한 방법
US8644198B2 (en) Split-band power amplifiers and duplexers for LTE-advanced front end for improved IMD
EP3531565B1 (en) Tower top device and passive intermodulation cancellation method
CN110999234B (zh) 用于数字预失真的方法和装置
US9294135B2 (en) Digital radio frequency (RF) receiver
KR20130103732A (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
EP2768148A2 (en) A Suppression Circuit for Suppressing Unwanted Transmitter Output
US10499352B2 (en) Power amplification module for multiple bands and multiple standards
WO2018143043A1 (ja) 無線機及び無線通信方法
CN101272155B (zh) 时分双工模式数字预失真功放装置
WO2008098478A1 (fr) Sous-système if/rf, émetteur récepteur à largeur de bande flexible et filtre flexible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748723

Country of ref document: EP

Kind code of ref document: A1