WO2024065713A1 - 一种射频系统及装置 - Google Patents

一种射频系统及装置 Download PDF

Info

Publication number
WO2024065713A1
WO2024065713A1 PCT/CN2022/123359 CN2022123359W WO2024065713A1 WO 2024065713 A1 WO2024065713 A1 WO 2024065713A1 CN 2022123359 W CN2022123359 W CN 2022123359W WO 2024065713 A1 WO2024065713 A1 WO 2024065713A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
tdd
circulator
fdd
radio frequency
Prior art date
Application number
PCT/CN2022/123359
Other languages
English (en)
French (fr)
Inventor
荆涛
唐海正
魏宏亮
孙鹏
王光伟
李刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/123359 priority Critical patent/WO2024065713A1/zh
Publication of WO2024065713A1 publication Critical patent/WO2024065713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a radio frequency system and device.
  • TDD time division duplex
  • FDD frequency division duplex
  • TDD mode the reception and transmission of signals are on the same spectrum resource, but the reception and transmission operations of signals are implemented in different time slots.
  • FDD mode the reception and transmission of signals are on different spectrum resources, but the reception and transmission operations of signals can be implemented in the same time slot.
  • the network device When a network device supports both TDD mode and FDD mode, the network device includes a radio frequency module and antenna and other modules corresponding to the TDD mode, and also includes a radio frequency module and antenna and other modules corresponding to the FDD mode, which results in a complex structure of the network device and increased power consumption.
  • the purpose of the embodiments of the present application is to provide a radio frequency system and device to reduce the complexity of the radio frequency system of a network device.
  • an embodiment of the present application provides a radio frequency system, including: a transmitting front end, a TDD signal receiving front end, an FDD signal receiving front end, an interference signal receiving front end, and a digital processing module;
  • the output end of the transmitting front end is connected to the first port of the multiplexer; the second port of the multiplexer is connected to the antenna module, the third port of the multiplexer is connected to the FDD signal receiving front end, and the fourth port of the multiplexer is connected to the first port of the derotation circulator; the second port of the derotation circulator is selectively connected to the interference signal receiving front end through the first switch module, and the third port of the derotation circulator is connected to the antenna module and the TDD signal receiving front end; the output ends of the TDD signal receiving front end, the FDD signal receiving front end and the interference signal receiving front end are all connected to the digital processing module; when the TDD signal receiving front end is used to receive the first TDD signal, the first switch module In the on state, the antenna module is used to output the first TDD signal to the TDD signal receiving front end; the derotation circulator is used to output the interference signal from the transmitting front end to the TDD signal receiving front end, and to the interference signal receiving front end; the TDD
  • the intermodulation interference signal generated by the FDD signal in the transmitting front end is extracted through the derotating circulator and the first switch module in the radio frequency system, so that the digital processing module can cancel the interference signal in the received TDD signal.
  • the transmitting front end can send TDD signals and FDD signals at the same time, and the TDD signal and FDD signal share one transmitting front end, which reduces the number of physical devices required to transmit signals in the radio frequency system and reduces the complexity of the radio frequency system.
  • the first switch module when the transmitting front end transmits the second TDD signal, the first switch module is in an open circuit state, and the multiplexer is used to filter the signal from the transmitting front end to obtain the second TDD signal and output the second TDD signal to the antenna module.
  • the first switch module is in an open circuit state, thereby preventing the second TDD signal transmitted by the transmitting front end from being transmitted to the interference signal receiving front end, thereby avoiding the influence caused by the transmission of the second TDD signal.
  • the multiplexer is used to filter the signal from the antenna module to obtain the first FDD signal, and output the first FDD signal to the FDD signal receiving front end.
  • the multiplexer when the transmitting front end transmits the second FDD signal, the multiplexer is used to filter the signal from the transmitting front end to obtain the second FDD signal, and output the second FDD signal to the antenna module.
  • the radio frequency system also includes a forward-rotating circulator; the third port of the reverse-rotating circulator is connected to the first port of the forward-rotating circulator, the second port of the forward-rotating circulator is selectively connected to the TDD signal receiving front end through the second switch module, and the third port of the forward-rotating circulator is connected to the antenna module; when the transmitting front end transmits a second TDD signal, the second switch module is in an open-circuit state, the reverse-rotating circulator is used to output the second TDD signal from the multiplexer to the forward-rotating circulator, and the forward-rotating circulator outputs the second TDD signal to the antenna module; if the second switch module is in an on state, the forward-rotating circulator is used to output the first TDD signal from the antenna module to the TDD signal receiving front end.
  • the RF system also includes a TDD signal filter, which is connected to the third port of the forward-rotating circulator and the antenna module; when the transmitting front end transmits a second TDD signal, the second TDD signal output by the forward-rotating circulator is filtered by the TDD signal filter and then output to the antenna module; if the second switch module is in an on state, the first TDD signal output by the antenna module is filtered by the TDD signal filter and then output to the forward-rotating circulator.
  • a TDD signal filter which is connected to the third port of the forward-rotating circulator and the antenna module
  • the first interference signal and the second interference signal are intermodulation interference signals generated when the transmitting front end transmits the FDD signal.
  • the first TDD signal and the second TDD signal are located in the same frequency range.
  • a first FDD signal received by the FDD signal receiving front end and a second FDD signal transmitted by the transmitting front end are located in different frequency ranges.
  • an embodiment of the present application provides a radio remote unit, comprising the radio frequency system described in the first aspect and any possible implementation manner of the first aspect.
  • an embodiment of the present application provides an access network device, including the radio frequency system described in the first aspect and any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication system, comprising a baseband processing unit; a radio frequency remote unit connected to the baseband processing unit, the radio frequency remote unit comprising the radio frequency system described in the first aspect and any possible implementation manner of the first aspect; and an antenna module connected to the radio frequency remote unit.
  • FIG1 is a schematic diagram of a circulator structure provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a network architecture provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of an access network device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of an RRU structure provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of an RRU structure provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of an RRU structure provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an RRU structure provided in an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, which can comply with the wireless communication standards of the third generation partnership project (3GPP) or other wireless communication standards, such as the wireless communication standards of the 802 series (such as 802.11, 802.15, or 802.20) of the Institute of Electrical and Electronics Engineers (IEEE).
  • 3GPP third generation partnership project
  • 802 series such as 802.11, 802.15, or 802.20
  • IEEE Institute of Electrical and Electronics Engineers
  • the technical solution of the embodiment of the present application can be applied to FDD long term evolution (LTE) system, TDD LTE system, fifth generation (5G) system, or next generation mobile communication system, etc., without limitation.
  • LTE long term evolution
  • TDD LTE system TDD LTE system
  • 5G fifth generation mobile communication system
  • the 5G system can also be called a new radio (NR) system.
  • the multiplexer includes a group of non-overlapping filters, which are not loaded on each other in combination and whose outputs are highly isolated, so that signals of multiple different frequency bands input to the multiplexer can be output from the multiplexer without interfering with each other.
  • the multiplexer can output signals of the TDD frequency band and signals of the FDD frequency band respectively.
  • the signal entering any port of the circulator is transmitted to the next port or multiple ports of the circulator in a preset direction.
  • the circulator includes a reverse rotation circulator and a forward rotation circulator.
  • the circulator includes three ports, namely a first port, a second port and a third port.
  • the transmission direction of the signal in the circulator is counterclockwise, that is, if the signal is input from the first port of the circulator, then the signal will be output from the third port of the circulator; if the circulator is a forward rotation circulator, the transmission direction of the signal in the circulator is clockwise, that is, if the signal is input from the first port of the circulator, then the signal will be output from the second port of the circulator.
  • devices can be divided into devices that provide wireless network services and devices that use wireless network services.
  • FIG2 exemplarily shows a scenario diagram applicable to an embodiment of the present application, where the device that provides wireless network services is an access network device and the device that uses wireless network services is a terminal.
  • the terminal can establish a connection with the access network device and provide wireless communication services to the user based on the services of the access network device.
  • the terminal is sometimes also referred to as user equipment (UE) or terminal equipment.
  • UE user equipment
  • MS mobile stations
  • some network devices, such as relay nodes (RN) or wireless routers, etc., are sometimes also considered as terminals because they have UE identities or belong to users.
  • the terminal can be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, a smart bracelet, a smart helmet, smart glasses), and other devices with wireless access capabilities, such as smart cars, various Internet of Things (IOT) devices, including various smart home devices (such as smart meters and smart appliances) and smart city devices (such as security or monitoring equipment, smart road traffic facilities), etc.
  • IOT Internet of Things
  • the equipment that provides wireless network services refers to those devices that constitute the wireless communication network, which can be referred to as network equipment (network equipment) or network element.
  • Network equipment usually belongs to operators or infrastructure providers, and these manufacturers are responsible for operation or maintenance.
  • Network equipment can be further divided into radio access network (RAN) equipment and core network (CN) equipment.
  • radio access network equipment is referred to as access network equipment.
  • the access network equipment may be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in a 5G system, an access network equipment in an open radio access network (O-RAN), a next generation base station in a sixth generation (6G) mobile communication system, etc.; or the access network equipment may be a module or unit that completes part of the functions of a base station, for example, a central unit (CU), a distributed unit (DU), a CU control plane (CU-CP) module, or a CU user plane (CU-UP) module; for another example, the access network equipment may be a radio remote unit (RRU) or a baseband unit (BBU).
  • the access network equipment may be a macro base station, a micro base station or an indoor station, a relay node or a donor node, etc.
  • the present disclosure does not limit the specific technology and specific device form adopted by the access network device.
  • the access network device in the present application may include a BBU and at least one RRU, and the figure takes one RRU as an example for description.
  • the access network device may also include other modules, such as an antenna module, etc., which are not illustrated one by one here.
  • the RRU of the access network device can support FDD technology and TDD technology, that is, the RRU of the access network device can send and receive signals using TDD in the same frequency band, and the RRU of the access network device can also send and receive signals using FDD in different frequency bands.
  • the signal transmitted by the RRU of the access network device in TDD mode may be one or more of the following frequency bands:
  • the signal transmitted by the RRU of the access network equipment in FDD mode can be one or more of the following frequency bands:
  • the RRU of the access network device includes a radio frequency system.
  • the radio frequency system of the RRU may include modules such as a digital processing unit, a radio frequency transmitter, and a radio frequency receiver. Among them, the input end of the radio frequency transmitter is connected to the digital processing unit, and the output end of the radio frequency transmitter is connected to the antenna module; the output end of the radio frequency receiver is connected to the digital processing unit, and the input end of the radio frequency receiver is connected to the antenna module.
  • the present application does not limit the modules included in the RRU, and the RRU may also include other modules. These modules can be coupled through various interconnection buses or other electrical connection methods, and the specific coupling method is not limited.
  • the RF receiver can receive the RF signal through the antenna module, process the RF signal (such as amplification, filtering and down-conversion) to obtain the baseband signal, and output the baseband signal to the digital processing unit; the digital processing unit performs denoising and other processing on the baseband signal, and then outputs the processed baseband signal to the baseband subsystem.
  • the RF transmitter can receive the baseband signal from the digital processing unit, perform RF processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the RF signal, and finally radiate the RF signal into space through the antenna module.
  • the baseband subsystem can extract information or data bits from the baseband signal, or convert the information or data bits into the baseband signal to be sent. These information or data bits can be data representing user data or control information such as voice, text, video, etc.
  • the functions of the baseband subsystem can be implemented by a baseband chip, which can also be called a modem chip.
  • the digital processing unit can be an independent dedicated digital chip or a part of the baseband chip.
  • the digital processing unit can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips, and the present application does not limit this.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • the digital processing unit may include but is not limited to the following functions: rate conversion and filtering of baseband signals; combining and splitting of carrier signals; calibrating and denoising baseband signals.
  • the functions of the digital processing unit may also be adjusted, for example, integrating part of the functions of the digital processing unit into the baseband chip, or integrating part of the functions of the baseband chip into the digital processing unit.
  • the baseband subsystem and the digital processing unit may be further integrated into a system on chip (SoC) chip, and manufactured and sold in units of SoC chips.
  • SoC system on chip
  • the software components corresponding to the baseband subsystem and the digital processing unit may be built into the hardware components of the chip before the chip leaves the factory, or may be imported from other non-volatile memories into the hardware components of the chip after the chip leaves the factory, or these software components may be downloaded and updated online through the network.
  • the RF transmitter includes a transmitting front end and a multiplexer and other modules; the RF receiver includes a TDD signal receiving front end, an FDD signal receiving front end, an interference signal receiving front end, and a derotating circulator and other modules.
  • the output end of the transmitting front end is connected to the first port of the multiplexer; the second port of the multiplexer is connected to the antenna module, the third port of the multiplexer is connected to the FDD signal receiving front end, and the fourth port of the multiplexer is connected to the first port of the derotating circulator; the second port of the derotating circulator is selectively connected to the interference signal receiving front end through the first switch module, and the third port of the derotating circulator is connected to the antenna module and the TDD signal receiving front end; the output ends of the TDD signal receiving front end, the FDD signal receiving front end and the interference signal receiving front end are all connected to the digital processing module.
  • the three ports of the derotating circulator are the first port, the second port, and the third port in counterclockwise order.
  • the transmitting front end can send TDD signals and FDD signals, that is, the TDD signals and FDD signals share the same transmitting front end.
  • the TDD signal receiving front end is used to receive TDD signals
  • the FDD signal receiving front end is used to receive FDD signals.
  • the transmitting front end is capable of sending TDD signals and FDD signals
  • the signal transmitted by the transmitting front end will generate an interference signal, which will interfere with the received signal.
  • the TDD signal is transmitted in time division, the intermodulation interference signal generated by the TDD signal transmitted by the transmitting front end will not affect the received TDD signal.
  • the FDD signal received by the radio frequency system passes through the multiplexer first, the intermodulation interference signal generated by the TDD signal will not affect the received FDD signal.
  • the transmitting front end supports the transmission of FDD signals
  • the receiving end of the radio frequency system may receive the TDD signal, so the intermodulation interference signal generated by the FDD signal in the transmitting front end will interfere with the TDD signal received by the radio frequency system. Therefore, in the present application, the interference signal generated by the transmitting front end may refer to the intermodulation interference signal generated by the FDD signal transmitted by the transmitting front end.
  • the interference signal from the transmitting front end is extracted separately through the interference signal receiving front end by the derotating circulator and output to the digital processing module, so that the digital processing module can eliminate the interference signal in the TDD signal.
  • the radio frequency system provided by the present application sends and receives TDD signals and how to send and receive FDD signals.
  • the first switch module When the radio frequency system receives a TDD signal, the first switch module is in a conducting state, the link between the derotation circulator and the interference signal receiving front end is connected, and the derotation circulator can output the interference signal from the transmitting front end to the TDD signal receiving front end, and output it to the interference signal receiving front end.
  • the antenna module can output the first TDD signal to the TDD signal receiving front end.
  • the first port of the derotation circulator receives the interference signal from the transmitting front end, it is output to the interference signal receiving front end through the second port of the derotation circulator.
  • the interference signal can be output through the second port of the derotation circulator, there are still some interference signals that will be output through the third port of the derotation circulator, that is, the TDD signal receiving front end can obtain the interference signal from the third port of the derotation circulator.
  • the interference signal obtained by the interference signal receiving front end is called the second interference signal
  • the interference signal obtained by the TDD signal receiving front end is called the first interference signal.
  • the first interference signal and the second interference signal are output from different ports of the derotation circulator, but come from the same interference source.
  • the TDD signal receiving front end can be used to output the first TDD signal and the first interference signal from the derotation circulator to the digital processing module, and the interference signal receiving front end is used to output the second interference signal from the derotation circulator to the digital processing module.
  • the digital processing module is used to cancel the first interference signal according to the second interference signal, thereby eliminating the first interference signal in the first TDD signal.
  • the application does not limit how the digital processing module specifically eliminates the first interference signal in the first TDD signal.
  • the interference signal from the transmitting front end is extracted by a derotating circulator, so that the digital processing module can eliminate the interference signal in the first TDD signal according to the interference signal, so that the TDD signal and the FDD signal can multiplex one transmitting front end, thereby realizing the use of the same transmitting front end to transmit the TDD signal and the FDD signal, thereby reducing the complexity of the radio frequency system supporting both TDD and FDD duplex modes, and can effectively solve the problem of site co-construction of access network equipment that supports both TDD and FDD duplex modes.
  • the first switch module When the RF system transmits a TDD signal, the first switch module is in an open circuit state, and the link between the derotation circulator and the interference signal receiving front end is disconnected, so the TDD signal output by the RF system does not pass through the derotation circulator.
  • the transmitting front end outputs the second TDD signal to the multiplexer, and at this time the transmitting front end may also output other signals to the multiplexer at the same time, such as FDD signals; the multiplexer is used to filter the signal from the transmitting front end, obtain the second TDD signal, and output the second TDD signal to the antenna module, so that the antenna module radiates the second TDD signal into space.
  • the first TDD signal and the second TDD signal are located in the same frequency range.
  • the frequency range of the first TDD signal and the second TDD signal is 1900-1920MHz; or, the frequency range of the first TDD signal and the second TDD signal is 2010-2025MHz; or, the frequency range of the first TDD signal and the second TDD signal is 1850-1910MHz; or, the frequency range of the first TDD signal and the second TDD signal is 1930-1990MHz.
  • the first TDD signal and the second TDD signal can also be located in other frequency ranges, and other situations will not be described one by one.
  • the antenna module When the RF system receives an FDD signal, the antenna module outputs the received signal to the multiplexer, and the multiplexer is used to filter the signal from the antenna module to obtain a first FDD signal, and output the first FDD signal to the FDD signal receiving front end, and the FDD signal receiving front end then outputs the first FDD signal to the digital processing module.
  • the transmitting front end When the RF system transmits an FDD signal, the transmitting front end outputs the second FDD signal to the multiplexer, the multiplexer is used to filter the signal from the transmitting front end, obtain the second FDD signal, and output the second FDD signal to the antenna module, so that the antenna module radiates the second FDD signal into space.
  • the multiplexer may specifically include one or more filters for filtering the transmitted signal or the received signal.
  • one or more filters may be provided in the multiplexer; or a multiplexer provided with some filters may be further connected to other filters to jointly implement filtering of the transmitted and received signals.
  • the first FDD signal and the second FDD signal are located in different frequency ranges.
  • the frequency range of the first FDD signal is 1920-1980MHz, and the frequency range of the second FDD signal is 2110-2170MHz; or, the frequency range of the first FDD signal is 1850-1910MHz, and the frequency range of the second FDD signal is 1930-1990MHz; or, the frequency range of the first FDD signal is 1710-1785MHz, and the frequency range of the second FDD signal is 1805-1880MHz; or, the frequency range of the first FDD signal is 1745-1765MHz, and the frequency range of the second FDD signal is 1840-1860MHz; or, the frequency range of the first FDD signal is 1955-1980MHz, and the frequency range of the second FDD signal is 2145-2170MHz.
  • the first FDD signal and the second FDD signal can also be located in other frequency ranges, and other situations will not be explained one by one.
  • the radio frequency system may also include other modules, for example, at least one of a TDD filter and a forward-rotating circulator.
  • the TDD filter may be a bandpass filter for filtering the signal from the antenna module to obtain a TDD signal; the three ports of the forward-rotating circulator are respectively the first port, the second port, and the third port in counterclockwise order.
  • the TDD filter can be located in the multiplexer or can be an independent module.
  • the RF system also includes a TDD filter and a forward circulator
  • the third port of the reverse circulator is connected to the first port of the forward circulator, and the second port of the forward circulator is selectively connected to the TDD signal receiving front end through the second switch module;
  • the third port of the forward circulator is connected to the antenna module;
  • the TDD filter is included and the TDD filter is an independent module, the third port of the forward circulator is connected to the TDD signal filter, and the TDD signal filter is connected to the third port of the forward circulator and the antenna module.
  • the first switch module and the second switch module are in an open circuit state.
  • the reverse circulator can output the second TDD signal to the forward circulator, and the forward circulator outputs the second TDD signal to the TDD signal filter.
  • the second TDD signal is filtered by the TDD signal filter, it is output to the antenna module.
  • the link between the forward-rotating circulator and the TDD signal receiving front end is connected, and the first TDD signal output by the antenna module is filtered by the TDD signal filter and then output to the forward-rotating circulator; the forward-rotating circulator is used to output the first TDD signal from the antenna module to the TDD signal receiving front end.
  • the TDD signal receiving front end then outputs the first TDD signal to the digital processing unit for processing.
  • the transmitting front end can send TDD signals and FDD signals at the same time, and the TDD signal and FDD signal share one transmitting front end, which reduces the number of physical devices required to transmit signals in the radio frequency system and reduces the complexity of the radio frequency system.
  • the transmitting front end may include at least one of the following: a digital to analog converter (DAC); a mixer; a filter; a power amplifier (PA); and an isolator.
  • DAC digital to analog converter
  • PA power amplifier
  • the transmitting front end may also include other modules, which are not limited in this application.
  • the TDD signal receiving front end may include at least one of the following: an analog to digital converter (ADC); a mixer; a filter; and a low noise amplifier (LNA).
  • the transmitting front end may also include other modules, which are not limited in this application.
  • the FDD signal receiving front end may include at least one of the following: an ADC; a mixer; a filter; and an LNA.
  • the transmitting front end may also include other modules, which are not limited in this application.
  • the interference signal receiving front end may include at least one of the following: an ADC; and a filter.
  • the TDD signal receiving front end, the FDD signal receiving front end and the interference signal receiving front end may share some modules, such as a shared ADC, that is, one ADC may be used to perform analog-to-digital conversion on the TDD signal, the FDD signal and the interference signal, respectively.
  • a shared ADC that is, one ADC may be used to perform analog-to-digital conversion on the TDD signal, the FDD signal and the interference signal, respectively.
  • FIG7 a schematic diagram of an RRU framework structure provided by the present application is provided.
  • the input end of the DAC included in the transmitting front end is connected to the digital processing unit
  • the output end of the DAC is connected to the mixer
  • the output end of the mixer is connected to the input end of the filter
  • the output end of the filter is connected to the input end of the PA
  • the output end of the PA is connected to the input end of the isolator
  • the output end of the isolator is connected to the first port of the multiplexer.
  • the DAC is used to convert the digital signal into an analog signal; the filter is used to filter the analog signal; the PA is used to amplify the signal; the isolator isolates the input signal and the output signal, and can cut off the noise coupling channel.
  • the figure takes the TDD signal receiving front end, the FDD signal receiving front end and the interference signal receiving front end sharing the ADC as an example for description.
  • the input end of the filter included in the TDD signal receiving front end is selectively connected to the second switch module, the output end of the filter is connected to the input end of the LNA, the output end of the LNA is connected to the input end of the mixer, the output end of the mixer is connected to the input end of the ADC, and the output end of the ADC is connected to the input end of the digital processing module.
  • the input end of the filter included in the FDD signal receiving front end is connected to the antenna module, the output end of the filter is connected to the input end of the LNA, the output end of the LNA is connected to the input end of the mixer, the output end of the mixer is connected to the input end of the ADC, and the output end of the ADC is connected to the input end of the digital processing module.
  • the input end of the filter included in the interference signal receiving front end is connected to the antenna module, the output end of the filter is connected to the input end of the ADC, and the output end of the ADC is connected to the input end of the digital processing module.
  • an embodiment of the present application provides an access network device, which may include any radio frequency system in the embodiments shown in Figures 4 to 7.
  • an embodiment of the present application provides a communication system, including a baseband processing unit; a radio frequency remote unit connected to the baseband processing unit, and the radio frequency remote unit may include any one of the radio frequency systems in the embodiments shown in Figures 4 to 7; and an antenna module connected to the radio frequency remote unit.
  • the antenna module may be composed of two independent sub-antenna modules, for example, the antenna module includes an FDD antenna module and a TDD antenna module, the FDD antenna module is used to receive and send FDD signals, and the TDD antenna module is used to receive and send TDD signals.
  • the FDD antenna module and the TDD antenna module are integrated on an antenna panel to form an antenna module, which can be used to receive and send FDD signals, as well as to receive and send TDD signals.
  • connection involved in the present application can represent two types of connection relationships, for example, A and B are connected, which can represent: A is directly connected to B, and A is connected to B through C.
  • words such as “first” and “second” are only used to distinguish the purpose of description, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • system structure and business scenarios provided in the embodiments of the present application are mainly to explain some possible implementation methods of the technical solution of the present application, and should not be interpreted as a unique limitation on the technical solution of the present application. Those of ordinary skill in the art can know that with the evolution of the system and the emergence of newer business scenarios, the technical solution provided in the present application can still be applicable to the same or similar technical problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频系统及装置,包括:发射前端、TDD信号接收前端、FDD信号接收前端、干扰信号接收前端以及数字处理模块;TDD信号接收前端用于接收第一TDD信号的情况下,第一开关模块处于导通状态,天线模块用于将所述第一TDD信号输出至所述TDD信号接收前端;反旋环形器用于将来自所述发射前端的干扰信号输出至TDD信号接收前端,以及输出至干扰信号接收前端;TDD信号接收前端用于将第一TDD信号和第一干扰信号输出至数字处理模块,干扰信号接收前端用于将第二干扰信号输出至数字处理模块;数字处理模块用于根据第二干扰信号将第一干扰信号进行对消处理。

Description

一种射频系统及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种射频系统及装置。
背景技术
在无线通信系统中,可以分为时分双工(time division duplex,TDD)模式和频分双工(frequency division duplex,FDD)模式。TDD模式中,信号的接收和发送都在同一段频谱资源上,但是信号的接收和发送操作分别在不同的时隙来实现。FDD模式中,信号的接收和发送在不同段频谱资源上,但是信号的接收和发送操作可以在同一个时隙来实现。随着越来越多的运营商同时拥有TDD模式的频谱和FDD模式的频谱,因此运营商建设的网络设备也需要同时支持TDD模式和FDD模式。
网络设备同时支持TDD模式和FDD模式时,网络设备包括TDD模式对应的射频模块以及天线等模块,还包括FDD模式对应的射频模块以及天线等模块,导致网络设备的结构复杂,功耗增加。
发明内容
本申请实施方式的目的在于提供一种射频系统及装置,用以降低网络设备射频系统的复杂度。
第一方面,本申请实施例提供一种射频系统,包括:发射前端、TDD信号接收前端、FDD信号接收前端、干扰信号接收前端以及数字处理模块;
发射前端的输出端与多工器的第一端口连接;多工器的第二端口与天线模块连接,多工器的第三端口与FDD信号接收前端连接,多工器的第四端口与反旋环形器的第一端口连接;反旋环形器的第二端口通过第一开关模块选择性与干扰信号接收前端连接,反旋环形器的第三端口与天线模块以及TDD信号接收前端连接;TDD信号接收前端、FDD信号接收前端以及干扰信号接收前端的输出端均与数字处理模块连接;TDD信号接收前端用于接收第一TDD信号的情况下,第一开关模块处于导通状态,天线模块用于将第一TDD信号输出至TDD信号接收前端;反旋环形器用于将来自发射前端的干扰信号输出至TDD信号接收前端,以及输出至干扰信号接收前端;TDD信号接收前端用于将第一TDD信号和来自反旋环形器的第一干扰信号输出至数字处理模块,干扰信号接收前端用于将来自反旋环形器的第二干扰信号输出至数字处理模块,第一干扰信号和第二干扰信号由发射前端中的发射信号生成;数字处理模块用于根据第二干扰信号将第一干扰信号进行对消处理。
通过本申请提供的射频系统,通过射频系统中的反旋环形器、第一开关模块,实现提取发射前端中FDD信号产生的互调干扰信号,从而使得数字处理模块能够将接收到的TDD信号中的干扰信号对消。这样就能实现发射前端同时发送TDD信号和FDD信号,实现TDD信号和FDD信号共享一个发射前端,减少了射频系统中发射信号所需的物理器件的数量,降低了射频系统的复杂度。
一种实现方式中,在发射前端发射第二TDD信号的情况下,第一开关模块处于断路状态,多工器用于对来自发射前端的信号进行滤波,获得第二TDD信号,并将第二TDD 信号输出至天线模块。
通过该实现方式,第一开关模块处于断路状态,从而可以避免发射前端发射的第二TDD信号被传输至干扰信号接收前端,从而避免第二TDD信号的发射造成影响。
一种实现方式中,多工器用于对来自天线模块的信号进行滤波,获得第一FDD信号,并将第一FDD信号输出至FDD信号接收前端。
一种实现方式中,在发射前端发射第二FDD信号的情况下,多工器用于对来自发射前端的信号进行滤波,获得第二FDD信号,并将第二FDD信号输出至天线模块。
一种实现方式中,射频系统还包括正旋环形器;反旋环形器的第三端口与正旋环形器的第一端口连接,正旋环形器的第二端口通过第二开关模块选择性与TDD信号接收前端连接,正旋环形器的第三端口与天线模块连接;在发射前端发射第二TDD信号的情况下,第二开关模块处于断路状态,反旋环形器用于将来自多工器的第二TDD信号输出至正旋环形器,正旋环形器将第二TDD信号输出至天线模块;如果第二开关模块处于导通状态,正旋环形器用于将来自天线模块的第一TDD信号输出至TDD信号接收前端。
一种实现方式中,射频系统还包括TDD信号滤波器,TDD信号滤波器与正旋环形器的第三端口以及天线模块连接;在发射前端发射第二TDD信号的情况下,正旋环形器输出的第二TDD信号经过TDD信号滤波器进行滤波后,输出至天线模块;如果第二开关模块处于导通状态,天线模块输出的第一TDD信号经过TDD信号滤波器进行滤波后,输出至正旋环形器。
一种实现方式中,第一干扰信号和第二干扰信号为发射前端发射FDD信号时产生的互调干扰信号。
一种实现方式中,第一TDD信号与第二TDD信号位于相同的频率范围。
一种实现方式中,FDD信号接收前端接收的第一FDD信号与发射前端发射的第二FDD信号位于不同的频率范围。
第二方面,本申请实施例提供一种射频拉远单元,包括第一方面和第一方面中任一种可能的实施方式中所描述的射频系统。
第三方面,本申请实施例提供一种接入网设备,包括第一方面和第一方面中任一种可能的实施方式中所描述的射频系统。
第四方面,本申请实施例提供一种通信系统,包括基带处理单元;与基带处理单元连接的射频拉远单元,该射频拉远单元包括第一方面和第一方面中任一种可能的实施方式中所描述的射频系统;与该射频拉远单元连接的天线模块。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种环形器结构示意图;
图2为本申请实施例提供的一种网络架构示意图;
图3为本申请实施例提供的一种接入网设备结构示意图;
图4为本申请实施例提供的一种RRU结构示意图;
图5为本申请实施例提供的一种RRU结构示意图;
图6为本申请实施例提供的一种RRU结构示意图;
图7为本申请实施例提供的一种RRU结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,该通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。例如:本申请实施例的技术方案可以应用于FDD长期演进(long term evolution,LTE)系统、TDD LTE系统、第五代(5th Generation,5G)系统、或下一代移动通信系统等,在此不做限制。其中,5G系统还可以称为新无线(new radio,NR)系统。
下面先对本申请涉及到的技术术语进行简单介绍,这些术语的介绍内容只作为参考,并不是本申请对这些术语的任何限定。
多工器,包括一组非叠加的滤波器,这些滤波器在组合方式上不相互加载,并且输出之间高度隔离,这样可以使得输入多工器的多个不同频段的信号互不干扰地从多工器输出。举例来说,输入多工器的信号包括TDD频段的信号和FDD频段的信号时,多工器可以分别输出TDD频段的信号和FDD频段的信号。
环形器,进入环行器任一端口的信号,按照预设方向顺序传入该环行器的下一个端口或多个端口。按照信号传输方向的不同,环形器包括反旋环形器和正旋环形器。如图1所示,该环形器包括三个端口,分别为第一端口、第二端口和第三端口。如果该环形器为反旋环形器,那么信号在该环形器内的传输方向为逆时针方向,即如果信号从该环形器的第一端口输入,那么该信号将从该环形器的第三端口输出;如果该环形器为正旋环形器,那么信号在该环形器内的传输方向为顺时针方向,即如果信号从该环形器的第一端口输入,那么该信号将从该环形器的第二端口输出。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。图2示例性示出了本申请实施例适用的一种场景示意图,图2中示例性的以提供无线网络服务的设备为接入网设备,以使用无线网络服务的设备为终端为例进行示意。
本申请中,终端能够与接入网设备建立连接,并基于接入网设备的服务为用户提供无线通信业务。应理解,终端,有时也被称为用户设备(user equipment,UE)或终端设备。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。例如,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
本申请中,提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商或基础设施提供商,并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network,CN)设备。本申请中,将无线接入网设备简称为接入网设备。
接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G系统中的下一代基站(next generation NodeB,gNB)、开放无线接入网(open radio access network,O-RAN)中的接入网设备、第六代(6th generation,6G)移动通信系统中的下一代基站等;或者接入网设备可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU)、分布式单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)模块、或集中单元用户面(CU user plane,CU-UP)模块;再例如,接入网设备可以是射频拉远单元(radio remote unit,RRU)或者基带处理单元(baseband unit,BBU)。接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本公开中对接入网设备所采用的具体技术和具体设备形态不做限定。
一种可能的实现方式中,如图3所示,本申请中的接入网设备可以包括一个BBU和至少一个RRU,图中以1个RRU为例进行描述。接入网设备还可以包括其他模块,例如天线模块等,在此不再逐一举例示出。
本申请中,接入网设备的RRU可以支持FDD技术和TDD技术,即接入网设备的RRU可以在相同的频段中采用TDD方式发送信号和接收信号,接入网设备的RRU还可以在不同的频段中采用FDD方式发送信号和接收信号。
举例来说,接入网设备的RRU采用TDD方式传输的信号可以为以下一个或多个频段:
1880-1900MHz;2320-2370MHz;2575-2635MHz。
接入网设备的RRU采用FDD方式传输的信号可以为以下一个或多个频段:
1955-1980MHz;2145-2170MHz;1755-1785MHz;1850-1880MHz。
一种实现方式中,接入网设备的RRU包括射频系统。例如,如图4所示,为本申请实施例提供的一种RRU结构示意图。该RRU的射频系统可以包括数字处理单元、射频发射机以及射频接收机等模块。其中,射频发射机的输入端和数字处理单元连接,射频发射机的输出端和天线模块连接;射频接收机的输出端和数字处理单元连接,射频接收机的输入端和天线模块连接。本申请对RRU中包括的模块并不限定,RRU中还可能包括其他模块,这些模块可以通过各种互联总线或其他电连接方式耦合,具体耦合方式并不限定。
本申请中,射频接收机可以通过天线模块接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并将基带信号输出至数字处理单元;数字处理单元将基带信号进行去噪等处理,再将处理后的基带信号输出至基带子系统。射频发射机可接收来自数字处理单元的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线模块将该射频信号辐射到空间中。基带子系统可以从基带信号中提取信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。
本申请中,基带子系统的功能可以由基带芯片实现,基带芯片也可被称调制解调器(modem)芯片。数字处理单元可以是独立的专用数字芯片,也可以是基带芯片的一部分。数字处理单元是专用数字芯片时,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制 器(programmable logic device,PLD)或其他集成芯片,本申请对此并不限定。
本申请中,数字处理单元可以包括但不限于以下功能:对基带信号进行速率变换、滤波;对载波信号进行合路、分路;对基带信号进行校准、去噪。此外,随着技术的演进,数字处理单元的功能也可能有所调整,例如,将数字处理单元部分的功能集成到基带芯片中,或者将部分基带芯片的功能集成到数字处理单元中。或者,基带子系统和数字处理单元也可以进一步集成在一个片上系统(system on chip,SoC)芯片中,以SoC芯片为单位来制造和销售。基带子系统以及数字处理单元对应的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
一种实现方式中,如图5所示,射频发射机包括发射前端以及多工器等模块;射频接收机包括TDD信号接收前端、FDD信号接收前端、干扰信号接收前端以及反旋环形器等模块。
其中,发射前端的输出端与多工器的第一端口连接;多工器的第二端口与天线模块连接,多工器的第三端口与FDD信号接收前端连接,多工器的第四端口与反旋环形器的第一端口连接;反旋环形器的第二端口通过第一开关模块选择性与干扰信号接收前端连接,反旋环形器的第三端口与天线模块以及TDD信号接收前端连接;TDD信号接收前端、FDD信号接收前端以及干扰信号接收前端的输出端均与数字处理模块连接。其中,反旋环形器的三个端口按照逆时针顺序分别为第一端口、第二端口、第三端口。
本申请中,发射前端能够发送TDD信号和FDD信号,即TDD信号和FDD信号共享同一个发射前端。TDD信号接收前端用于接收TDD信号,FDD信号接收前端用于接收FDD信号。
在发射前端能够发送TDD信号和FDD信号的情况下,由于发射前端中的模拟器件,如滤波器或混频器等器件的非线性因素,导致通过发射前端发射的信号会产生干扰信号,该干扰信号会对接收到的信号造成干扰。由于TDD信号是采用分时发射的,因此发射前端发射的TDD信号产生的互调干扰信号不会对接收到的TDD信号造成影响,另外由于射频系统接收到的FDD信号先通过多工器,因此TDD信号产生的互调干扰信号也不会对接收到的FDD信号造成影响。然而,在发射前端支持发射FDD信号的情况下,发射前端在发射FDD信号时,射频系统的接收端可能会接收到TDD信号,因此发射前端中的FDD信号产生的互调干扰信号,会对射频系统接收的TDD信号造成干扰。因此,本申请中,发射前端产生的干扰信号可以是指发射前端发射的FDD信号产生的互调干扰信号。
本申请中,通过反旋环形器将来自发射前端的干扰信号通过干扰信号接收前端单独提取出来,并输出至数字处理模块,从而可以使得数字处理模块能够消除TDD信号中的干扰信号。下面将分别描述本申请提供的射频系统如何发送和接收TDD信号,以及如何发送和接收FDD信号。
当射频系统接收TDD信号时,第一开关模块处于导通状态,反旋环形器与干扰信号接收前端之间的链路连通,反旋环形器可以将来自发射前端的干扰信号输出至TDD信号接收前端,以及输出至干扰信号接收前端。天线模块可以将第一TDD信号输出至TDD信号接收前端。
一种实现方式中,反旋环形器的第一端口接收到来自发射前端的干扰信号之后,通过反旋环形器的第二端口输出至干扰信号接收前端。虽然干扰信号可以通过反旋环形器的第 二端口输出,但是还是存在部分干扰信号会通过反旋环形器的第三端口输出,即TDD信号接收前端能够从反旋环形器的第三端口获得干扰信号。本申请中,干扰信号接收前端获取的干扰信号称为第二干扰信号,TDD信号接收前端获取的干扰信号称为第一干扰信号,第一干扰信号与第二干扰信号是从反旋环形器的不同端口输出的,但是来自相同的干扰源。
TDD信号接收前端可以用于将第一TDD信号和来自反旋环形器的第一干扰信号输出至数字处理模块,干扰信号接收前端用于将来自反旋环形器的第二干扰信号输出至数字处理模块。数字处理模块用于根据第二干扰信号将第一干扰信号进行对消处理,从而消除第一TDD信号中的第一干扰信号,数字处理模块具体如何消除第一TDD信号中的第一干扰信号,本申请对此并不限定。
本申请中,通过反旋环形器将来自发射前端的干扰信号提取出来,使得数字处理模块能够根据该干扰信号将第一TDD信号中的干扰信号消除,从而使得TDD信号和FDD信号能够复用一个发射前端,这样实现采用同一个发射前端发射TDD信号和FDD信号,从而能够降低支持TDD和FDD两种双工方式的射频系统的复杂度,可以有效解决同时支持TDD和FDD两种双工方式的接入网设备的站点共建的问题。
当射频系统发射TDD信号时,第一开关模块处于断路状态,反旋环形器与干扰信号接收前端之间的链路不连通,因此射频系统输出的TDD信号不会经过反旋环形器。发射前端将第二TDD信号输出至多工器,此时发射前端还可能将其他信号同时输出至多工器,例如FDD信号;多工器用于对来自发射前端的信号进行滤波,获得第二TDD信号,并将第二TDD信号输出至天线模块,天线模块从而将第二TDD信号辐射到空间中。
本申请中,第一TDD信号与第二TDD信号位于相同的频率范围。举例来说,第一TDD信号与第二TDD信号的频率范围为1900-1920MHz;或者,第一TDD信号与第二TDD信号的频率范围为2010-2025MHz;或者,第一TDD信号与第二TDD信号的频率范围为1850-1910MHz;或者,第一TDD信号与第二TDD信号的频率范围为1930-1990MHz。以上只是示例,第一TDD信号与第二TDD信号还可以位于其它频率范围,其它情况不再逐一举例说明。
当射频系统接收FDD信号时,天线模块将接收到的信号输出至多工器,多工器用于对来自天线模块的信号进行滤波,获得第一FDD信号,并将第一FDD信号输出至FDD信号接收前端,FDD信号接收前端再将第一FDD信号输出至数字处理模块。
当射频系统发射FDD信号时,发射前端将第二FDD信号输出至多工器,多工器用于对来自发射前端的信号进行滤波,获得第二FDD信号,并将第二FDD信号输出至所述天线模块,天线模块从而将第二FDD信号辐射到空间中。
可以理解的是,上述多工器具体可以包括一个或多个滤波器,用于对发射信号或者接收信号进行滤波。在实际部署中,可能是多工器内设置有一个或多个滤波器;也可能是设置有部分滤波器的多工器进一步与其他滤波器相连,以共同实现收发信号的滤波。
本申请中,第一FDD信号与第二FDD信号位于不同的频率范围。举例来说,第一FDD信号的频率范围为1920-1980MHz,第二FDD信号的频率范围为2110-2170MHz;或者,第一FDD信号的频率范围为1850-1910MHz,第二FDD信号的频率范围为1930-1990MHz;或者,第一FDD信号的频率范围为1710-1785MHz,第二FDD信号的频率范围为1805-1880MHz;或者,第一FDD信号的频率范围为1745-1765MHz,第二FDD信号的频率范围为1840-1860MHz;或者,第一FDD信号的频率范围为1955–1980MHz,第二FDD信号的 频率范围为2145–2170MHz。以上只是示例,第一FDD信号与第二FDD信号还可以位于其它频率范围,其它情况不再逐一举例说明。
本申请中,射频系统还可以包括其他模块,例如还可以包括TDD滤波器以及正旋环形器中的至少一项。其中,TDD滤波器可以为带通滤波器,用于对来自天线模块的信号进行过滤,获得TDD信号;正旋环形器的三个端口按照逆时针顺序分别为第一端口、第二端口、第三端口。
本申请中,TDD滤波器可以位于多工器中,也可以是一个独立的模块。如图6所示,当射频系统还包括TDD滤波器以及正旋环形器时,反旋环形器的第三端口与正旋环形器的第一端口连接,正旋环形器的第二端口通过第二开关模块选择性与TDD信号接收前端连接;在不包括TDD滤波器,或者TDD滤波器位于双工器中的情况下,正旋环形器的第三端口与天线模块连接;在包括TDD滤波器,且TDD滤波器为独立的模块的情况下,正旋环形器的第三端口与TDD信号滤波器连接,TDD信号滤波器与正旋环形器的第三端口以及天线模块连接。
结合上面的图6,在发射前端发射第二TDD信号的情况下,第一开关模块和第二开关模块处于断路状态。反旋环形器从多工器获取来自发射前端的第二TDD信号后,反旋环形器可以将第二TDD信号输出至正旋环形器,正旋环形器将第二TDD信号输出至TDD信号滤波器。第二TDD信号经过TDD信号滤波器进行滤波后,输出至天线模块。
结合上面的图6,在射频系统接收第一TDD信号的情况下,第一开关模块和第二开关模块处于导通状态,正旋环形器与TDD信号接收前端之间的链路连通,天线模块输出的第一TDD信号经过TDD信号滤波器进行滤波后,输出至正旋环形器;正旋环形器用于将来自天线模块的第一TDD信号输出至TDD信号接收前端。TDD信号接收前端再将第一TDD信号输出至数字处理单元进行处理。
通过本申请提供的射频系统,通过在射频系统中增加反旋环形器、第一开关模块、正旋环形器以及第二开关模块,从而实现提取发射前端中FDD信号产生的互调干扰信号,从而使得数字处理模块能够将接收到的TDD信号中的干扰信号对消。这样就能实现发射前端同时发送TDD信号和FDD信号,实现TDD信号和FDD信号共享一个发射前端,减少了射频系统中发射信号所需的物理器件的数量,降低了射频系统的复杂度。
本申请中,发射前端、TDD信号接收前端、FDD信号接收前端以及干扰信号接收前端的具体结构,本申请并不限定。举例来说,发射前端可以包括以下至少一项:数模转换器(digital to analog converter,DAC);混频器;滤波器;功率放大器(power amplifier,PA);隔离器。发射前端还可以包括其他模块,本申请对此并不限定。
TDD信号接收前端可以包括以下至少一项:模数转换器(analog to digital converter,ADC);混频器;滤波器;低噪声放大器(low noise amplifier,LNA)。发射前端还可以包括其他模块,本申请对此并不限定。FDD信号接收前端可以包括以下至少一项:ADC;混频器;滤波器;LNA。发射前端还可以包括其他模块,本申请对此并不限定。干扰信号接收前端可以包括以下至少一项:ADC;滤波器。
一种实现方式中,TDD信号接收前端、FDD信号接收前端以及干扰信号接收前端可以共享部分模块,例如共享ADC,即一个ADC可以用于对TDD信号、FDD信号以及干扰信号分别进行模数转换。
举例来说,如图7所示,为本申请提供的一种RRU框架结构示意图。其中,发射前 端包括的DAC的输入端与数字处理单元连接,DAC的输出端与混频器连接,混频器的输出端与滤波器的输入端连接,滤波器的输出端与PA的输入端连接,PA的输出端与隔离器的输入端连接,隔离器的输出端与多工器的第一端口连接。其中,DAC用于将数字信号转换为模拟信号;滤波器用于对模拟信号进行滤波;PA用于对信号进行放大;隔离器把输入信号和输出信号隔离开来,可以切断噪声耦合通道。
图中以TDD信号接收前端、FDD信号接收前端以及干扰信号接收前端共享ADC为例进行描述。TDD信号接收前端包括的滤波器的输入端与第二开关模块选择性连接,滤波器的输出端与LNA的输入端连接,LNA的输出端与混频器的输入端连接,混频器的输出端与ADC的输入端连接,ADC的输出端与数字处理模块的输入端连接。
FDD信号接收前端包括的滤波器的输入端与天线模块连接,滤波器的输出端与LNA的输入端连接,LNA的输出端与混频器的输入端连接,混频器的输出端与ADC的输入端连接,ADC的输出端与数字处理模块的输入端连接。
干扰信号接收前端包括的滤波器的输入端与天线模块连接,滤波器的输出端与ADC的输入端连接,ADC的输出端与数字处理模块的输入端连接。
根据前面描述的内容,本申请实施例提供一种接入网设备,该接入网设备可以包括图4至图7所示的实施例中的任一个射频系统。
根据前面描述的内容,本申请实施例提供一种通信系统,包括基带处理单元;与基带处理单元连接的射频拉远单元,该射频拉远单元可以包括图4至图7所示的实施例中的任一个射频系统;与射频拉远单元连接的天线模块。
另外,本申请中,天线模块可以由两个独立的子天线模块构成,例如天线模块包括FDD天线模块和TDD天线模块,FDD天线模块用于接收和发送FDD信号,TDD天线模块用于接收和发送TDD信号。另一种实现方式中,FDD天线模块和TDD天线模块集成在一个天线面板上,形成一个天线模块,该天线模块能够用于接收和发送FDD信号,以及用于接收和发送TDD信号。
需要说明的是,本申请中所涉及的连接,描述两个对象的连接关系,可以表示两种连接关系,例如,A和B连接,可以表示:A与B直接连接,A通过C和B连接这两种情况。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的保护范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种射频系统,其特征在于,包括:
    发射前端、时分双工TDD信号接收前端、频分双工FDD信号接收前端、干扰信号接收前端以及数字处理模块;
    所述发射前端的输出端与多工器的第一端口连接;
    所述多工器的第二端口与天线模块连接,所述多工器的第三端口与所述FDD信号接收前端连接,所述多工器的第四端口与反旋环形器的第一端口连接;
    所述反旋环形器的第二端口通过第一开关模块选择性与所述干扰信号接收前端连接,所述反旋环形器的第三端口与所述天线模块以及所述TDD信号接收前端连接;所述TDD信号接收前端、所述FDD信号接收前端以及所述干扰信号接收前端的输出端均与所述数字处理模块连接;
    当所述第一开关模块处于导通状态,所述TDD信号接收前端用于接收来自天线模块的第一TDD信号,所述反旋环形器用于将来自所述发射前端的干扰信号输出至所述TDD信号接收前端,以及输出至所述干扰信号接收前端;所述TDD信号接收前端用于将所述第一TDD信号和来自所述反旋环形器的第一干扰信号输出至所述数字处理模块,所述干扰信号接收前端用于将来自所述反旋环形器的第二干扰信号输出至所述数字处理模块,所述第一干扰信号和所述第二干扰信号由所述发射前端中的发射信号生成;
    所述数字处理模块用于根据所述第二干扰信号将所述第一干扰信号进行对消处理。
  2. 根据权利要求1所述的射频系统,其特征在于,当所述第一开关模块处于断路状态,所述发射前端用于发射第二TDD信号,所述多工器用于对来自所述发射前端的信号进行滤波,获得第二TDD信号,并将所述第二TDD信号输出至所述天线模块。
  3. 根据权利要求1或2所述的射频系统,其特征在于,所述多工器用于对来自所述天线模块的信号进行滤波,获得第一FDD信号,并将所述第一FDD信号输出至所述FDD信号接收前端。
  4. 根据权利要求1至3任一所述的射频系统,其特征在于,在所述发射前端发射所述第二FDD信号的情况下,所述多工器用于对来自所述发射前端的信号进行滤波,获得所述第二FDD信号,并将所述第二FDD信号输出至所述天线模块。
  5. 根据权利要求1至4任一所述的射频系统,其特征在于,所述射频系统还包括正旋环形器;
    所述反旋环形器的第三端口与正旋环形器的第一端口连接,所述正旋环形器的第二端口通过第二开关模块选择性与所述TDD信号接收前端连接,所述正旋环形器的第三端口与所述天线模块连接;
    当所述第二开关模块处于断路状态,所述发射前端用于发射第二TDD信号,所述反旋环形器用于将来自所述多工器的所述第二TDD信号输出至所述正旋环形器,所述正旋环形器将所述第二TDD信号输出至所述天线模块;
    当所述第二开关模块处于导通状态,所述正旋环形器用于将来自所述天线模块的所述第一TDD信号输出至所述TDD信号接收前端。
  6. 根据权利要求5所述的射频系统,其特征在于,所述射频系统还包括TDD信号滤波器,所述TDD信号滤波器与所述正旋环形器的第三端口以及所述天线模块连接;
    当所述第二开关模块处于断路状态,所述正旋环形器输出的所述第二TDD信号经过所述TDD信号滤波器进行滤波后,输出至所述天线模块;
    当所述第二开关模块处于导通状态,所述天线模块输出的第一TDD信号经过所述TDD信号滤波器进行滤波后,输出至所述正旋环形器。
  7. 根据权利要求1至6任一所述的射频系统,其特征在于,所述第一干扰信号和所述第二干扰信号为所述发射前端发射FDD信号时产生的互调干扰信号。
  8. 根据权利要求1至7任一所述的射频系统,其特征在于,所述第一TDD信号与所述第二TDD信号位于相同的频率范围。
  9. 根据权利要求1至8任一所述的射频系统,其特征在于,所述FDD信号接收前端接收的第一FDD信号与所述发射前端发射的第二FDD信号位于不同的频率范围。
  10. 一种射频拉远单元,其特征在于,包括权利要求1至9任一所述的射频系统。
  11. 一种接入网设备,其特征在于,包括权利要求1至9任一所述的射频系统。
  12. 一种通信系统,其特征在于,包括:
    基带处理单元;与所述基带处理单元连接的射频拉远单元,所述射频拉远单元包括权利要求1至9任一所述的射频系统;与所述射频拉远单元连接的天线模块。
PCT/CN2022/123359 2022-09-30 2022-09-30 一种射频系统及装置 WO2024065713A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123359 WO2024065713A1 (zh) 2022-09-30 2022-09-30 一种射频系统及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123359 WO2024065713A1 (zh) 2022-09-30 2022-09-30 一种射频系统及装置

Publications (1)

Publication Number Publication Date
WO2024065713A1 true WO2024065713A1 (zh) 2024-04-04

Family

ID=90475680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123359 WO2024065713A1 (zh) 2022-09-30 2022-09-30 一种射频系统及装置

Country Status (1)

Country Link
WO (1) WO2024065713A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031129A (zh) * 2006-03-01 2007-09-05 中兴通讯股份有限公司 一种抑制无线系统间干扰的装置和方法
CN102457992A (zh) * 2010-10-19 2012-05-16 中国移动通信集团公司 一种基站设备
CN104883202A (zh) * 2014-02-27 2015-09-02 华为技术有限公司 一种减少邻频干扰的方法及中继设备
WO2017096700A1 (zh) * 2015-12-10 2017-06-15 南方科技大学 通信方法及通信系统
US20170366247A1 (en) * 2014-12-30 2017-12-21 Solid, Inc. Interference cancellation repeater
CN107872241A (zh) * 2016-09-23 2018-04-03 北京大学(天津滨海)新代信息技术研究院 单天线同频同时全双工系统自干扰抑制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031129A (zh) * 2006-03-01 2007-09-05 中兴通讯股份有限公司 一种抑制无线系统间干扰的装置和方法
CN102457992A (zh) * 2010-10-19 2012-05-16 中国移动通信集团公司 一种基站设备
CN104883202A (zh) * 2014-02-27 2015-09-02 华为技术有限公司 一种减少邻频干扰的方法及中继设备
US20170366247A1 (en) * 2014-12-30 2017-12-21 Solid, Inc. Interference cancellation repeater
WO2017096700A1 (zh) * 2015-12-10 2017-06-15 南方科技大学 通信方法及通信系统
CN107872241A (zh) * 2016-09-23 2018-04-03 北京大学(天津滨海)新代信息技术研究院 单天线同频同时全双工系统自干扰抑制系统

Similar Documents

Publication Publication Date Title
EP2443754B1 (en) Apparatus and method for multiple wireless service coexistence
JP6183939B2 (ja) 全二重中継装置
US10056962B2 (en) Method for reducing adjacent-channel interference and relay device
KR101803342B1 (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
US10230482B2 (en) Radio transceiver
EP3065310B1 (en) Donor unit, remote unit, and mobile communication base station system having same
CN116707734A (zh) 一种探测参考信号的发送方法及相关装置
CN111726138A (zh) 射频电路和电子设备
US20100208627A1 (en) Wireless internet access repeater
CN112438039A (zh) 在远离至少一个基带控制器的无线电单元中具有多个虚拟无线电单元的系统
CN110224704B (zh) 射频系统和基站设备
WO2024065713A1 (zh) 一种射频系统及装置
CN110289879B (zh) 射频单元和终端设备
WO2022067609A1 (zh) 多频段相控阵和电子设备
JP2010258596A (ja) 無線通信装置、無線中継装置及び無線通信システム
WO2022104762A1 (zh) 多频段低噪声放大器、相控阵和电子设备
US10164689B2 (en) Distributed antenna system to transport first cellular RF band concurrently with Ethernet or second cellular RF band
CN106605445B (zh) 射频拉远单元、接收机和基站
CN115734262A (zh) 一种测量信道信息的方法、网络设备、中继设备及终端
CN113891339A (zh) 一种通信系统及近端机
JP5095561B2 (ja) 送受共用回路
CN114340049B (zh) Poi设备和无线覆盖系统
US12003267B2 (en) High linearity modes in wireless receivers
WO2022110230A1 (zh) 一种射频电路、信号反馈电路和通信系统
US20230097399A1 (en) High linearity modes in wireless receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960332

Country of ref document: EP

Kind code of ref document: A1