WO2021182928A1 - 신규 이중 특이성 단백질 및 그의 용도 - Google Patents

신규 이중 특이성 단백질 및 그의 용도 Download PDF

Info

Publication number
WO2021182928A1
WO2021182928A1 PCT/KR2021/003128 KR2021003128W WO2021182928A1 WO 2021182928 A1 WO2021182928 A1 WO 2021182928A1 KR 2021003128 W KR2021003128 W KR 2021003128W WO 2021182928 A1 WO2021182928 A1 WO 2021182928A1
Authority
WO
WIPO (PCT)
Prior art keywords
glp
fusion protein
seq
amino acid
dual specificity
Prior art date
Application number
PCT/KR2021/003128
Other languages
English (en)
French (fr)
Inventor
양상인
안인복
Original Assignee
주식회사 에스엘메타젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엘메타젠 filed Critical 주식회사 에스엘메타젠
Priority to EP21767580.0A priority Critical patent/EP4119571A4/en
Priority to CN202180034304.8A priority patent/CN115485292A/zh
Priority to BR112022018134A priority patent/BR112022018134A2/pt
Publication of WO2021182928A1 publication Critical patent/WO2021182928A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to novel bispecific proteins and uses thereof, and more particularly to bispecific proteins comprising GLP-1 analogues and GLP-2 analogues and uses thereof.
  • GLP-1 and GLP-2 are peptide hormones that are expressed as a precursor called proglucacon and are produced through a series of tissue-specific protein cleavage processes.
  • GLP-1 is produced and secreted by enteroendocrine L-cells in the small intestine and specific neurons in the solitary tract nucleus of the brain stem when food is ingested. (1-37) is readily amidated and is converted by cleavage to a truncated form with two equivalent biological activities (GLP-1(7-36) amide and GLP-1(7-37)), and active GLP- 1 because it acts to lower the blood sugar level in a glucose-dependent manner, it has been developed and used as a treatment for type 2 diabetes.
  • GLP-2 like GLP-1, is a 33 amino acid long peptide produced by a special post-translational cleavage process of proglucagon. It is secreted together with GLP-1 in the small intestine. In the case of GLP-2, when administered, it improves small intestine growth and function, reduces bone destruction, and is known to have neuroprotective action.
  • GLP-1 was originally noted for its beneficial effects on glucose homeostasis in the treatment of type 2 diabetes mellitus (Gutniak et al ., N. Engl. J. Med. 326: 1316-1322, 1992). Similar to GLP-2, this also reduces gastrointestinal secretion and motility, suggesting a role in the treatment of short bowel syndrome (Kunkel et al ., Neurogastroenterol. Motil . 23: 739-e328, 2011). In addition, it has been reported that the growth of the intestine and the fusion of crypt cells are promoted by activation of the GLP1R signaling system by GLP-1 (Koehler et al ., Cell Metabol.
  • nonalcoholic fatty liver disease is not a single disease, but includes various types of liver diseases ranging from simple fatty liver without inflammation to chronic hepatitis and cirrhosis. known to be closely related.
  • Nonalcoholic fatty liver disease is a disease that ranges from mild fatty liver with only fat and no hepatocellular damage, to severe and persistent steatohepatitis with severe hepatocellular damage, and even to liver fibrosis or cirrhosis (liver cirrhosis) accompanied by ascites or jaundice. It is a disease that is known to progress to liver cancer if it progresses further, and is a western-type disease that is rapidly increasing due to the prevalence of western eating habits.
  • nonalcoholic fatty liver disease is a mild disease, but if left untreated, one in four patients with severe fatty liver slowly progresses to cirrhosis (or liver fibrosis), a serious liver disease, which cannot be ignored. It can be said that there are no symptoms.
  • the prevalence of nonalcoholic fatty liver disease varies according to the characteristics of the population, and it is reported to be 10 ⁇ 24% of the general public and 58 ⁇ 74% of obese people.
  • there is no drug approved as a therapeutic agent for nonalcoholic fatty liver disease or nonalcoholic steatohepatitis so far, and the development of a therapeutic agent for nonalcoholic fatty liver disease is considered a very urgent task.
  • a therapeutic agent for metabolic syndrome such as nonalcoholic steatohepatitis using a dual agonist of GLP-1R and GLP-2R, which exhibits superior effects compared to a single agonist of GLP-1R, has not yet been developed.
  • the present invention is intended to solve various problems including the above-mentioned problems, and while maintaining the functions of GLP-1 and GLP-2, the disadvantages of existing GLP-2 analogues and GLP-1 analogues can be improved, and non-alcoholic
  • An object of the present invention is to provide a novel bispecific protein effective in the treatment of metabolic syndrome such as fatty liver.
  • the protection scope of the present invention is not limited to the above purpose.
  • a dual specificity fusion protein in which a GLP-1 analog and a GLP-2 analog are fused.
  • a first fusion protein in which the GLP-1 analogue is linked to an antibody Fc region and a second fusion protein in which the GLP-2 analogue is linked to an antibody Fc region, the first fusion protein and the second A dual specificity fusion protein produced by dimerization of the fusion protein is provided.
  • a pharmaceutical composition comprising the bispecific fusion protein.
  • a pharmaceutical composition for the treatment of non-alcoholic steatohepatitis comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating metabolic syndrome comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating obesity comprising one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for the treatment of type 2 diabetes comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating liver fibrosis comprising one or more of the above dual specificity fusion proteins as an active ingredient.
  • a disease or condition requiring intestinal proliferation of an individual comprising administering a therapeutically effective amount of the dual specificity fusion protein to an individual suffering from a disease requiring intestinal proliferation. treatment methods are provided.
  • a method for treating metabolic syndrome in an individual comprising administering to the individual suffering from the metabolic syndrome a therapeutically effective amount of the bispecific fusion protein.
  • a method for treating obesity in an obese subject comprising administering to the obese subject a therapeutically effective amount of the bispecific fusion protein.
  • a method for treating type 2 diabetes in a subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from type 2 diabetes.
  • non-alcoholic fatty liver disease or non-alcoholic non-alcoholic fatty liver disease of the subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from non-alcoholic fatty liver disease or non-alcoholic steatohepatitis
  • a method of treating steatohepatitis is provided.
  • a method for treating liver fibrosis in a subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from liver fibrosis.
  • the bispecific fusion protein of the present invention significantly increases intestinal proliferation when administered in vivo, such as a disease requiring intestinal proliferation, such as a disease or metabolic syndrome, obesity, type 2 diabetes, non-alcoholic fatty liver disease, liver fibrosis It can be used very effectively in the treatment of metabolic diseases such as
  • FIG. 1 is a schematic diagram showing the schematic structure of a dual specificity fusion protein according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the interaction relationship between various GLP-1 and/or GLP-2 analogs and GLP-1 receptors, GLP-2 receptors and other glucagon receptors.
  • 3A is a series of gel pictures showing the results of SDS-PAGE analysis under non-reducing (NR) and reducing (R) conditions after purifying various bispecific fusion proteins according to an embodiment of the present invention:
  • Figure 3b shows the GLP-2 homodimer (GLP-2-Fc homodimer, left) and MG12-5 (right) containing the Knobs-into-Holes structure after purification under non-reducing (NR) and reducing (R) conditions.
  • NR non-reducing
  • R reducing
  • Figure 3c is a series of gel pictures (left) showing the results of SDS-PAGE analysis of MG12-6 in reducing and non-reducing conditions according to an embodiment of the present invention and a chromatogram (right) showing the HPLC results for the purified protein )am:
  • Figure 3d is a series of gel photographs (left) showing the results of SDS-PAGE analysis of MG12-7 and MG12-8 in reducing and non-reducing conditions according to an embodiment of the present invention (left) and HPLC results for purified proteins
  • chromatogram (right):
  • 3e is a gel photograph (upper) showing the results of SDS-PAGE analysis of MG12-9 under reduced and non-reducing conditions according to an embodiment of the present invention, and a chromatogram (lower) showing the HPLC results for purified protein. .
  • the upper part of the chromatogram shows the size markers:
  • Figure 4a is a graph showing the results of analyzing the biological activity of the GLP-1-Fc homodimeric protein and GLP-1 peptide according to an embodiment of the present invention by a luciferase reporter assay.
  • Figure 4b is a graph showing the results of measuring the biological activity of MG12-1 according to an embodiment of the present invention compared to the GLP-1 peptide.
  • Figure 4c is a graph showing the results of measuring the biological activity of MG12-3 in comparison with the GLP-1 peptide according to an embodiment of the present invention.
  • 4d is a graph showing the results of measuring the biological activity of MG12-4 according to an embodiment of the present invention compared to the GLP-1 peptide.
  • Figure 4e is a graph showing the results of measuring the biological activity of MG12-5 according to an embodiment of the present invention compared to the GLP-1 peptide.
  • 5A is a graph showing the results of fluorescence analysis of the GLP-2 activity of the GLP-2-Fc homodimer protein according to an embodiment of the present invention compared to the GLP-2 peptide.
  • 5B is a graph showing the results of fluorescence analysis of the GLP-2 activity of the MG12-1 protein according to an embodiment of the present invention compared to the GLP-2 peptide.
  • FIG. 5c is a graph showing the results of fluorescence analysis comparing the GLP-2 activity of the MG12-3 protein with the GLP-2 peptide according to an embodiment of the present invention.
  • 5D is a graph showing the results of fluorescence analysis of the GLP-2 activity of the MG12-4 protein according to an embodiment of the present invention compared to the GLP-2 peptide.
  • 5e is a graph showing the results of fluorescence analysis of the GLP-2 activity of the MG12-5 protein according to an embodiment of the present invention compared to the GLP-2 peptide.
  • 6A is a graph showing the results of analyzing the GLP-1 activity of the GLP-1-Fc homodimer according to an embodiment of the present invention by a luciferase reporter assay.
  • 6B is a graph showing the result of analyzing the GLP-2 activity of the GLP-2-Fc homodimer according to an embodiment of the present invention by fluorescence analysis.
  • Figure 6c is a graph showing the results of analyzing the GLP-1 activity of the MG12-2 protein according to an embodiment of the present invention by a luciferase reporter assay.
  • Figure 6d is a graph showing the results of analyzing the GLP-2 activity of the MG12-2 protein according to an embodiment of the present invention by fluorescence analysis.
  • FIG. 7a is a graph showing the results of analyzing the pharmacokinetics (PK) profile of various bispecific fusion proteins according to an embodiment of the present invention to animals (rat) by ELISA analysis using GLP-1-Fc. .
  • FIG. 7B is a graph showing the results of analyzing the pharmacokinetics (PK) profile of various dual specificity fusion proteins according to an embodiment of the present invention to animals (rat) by ELISA analysis using GLP-2-Fc. .
  • 8a is a graph showing the results of measuring the weight of the intestine when various dimer proteins (GLP-2-2G, GLP-2-Fc homodimer, and MG12-5) are administered to a model animal according to an embodiment of the present invention; am.
  • Figure 8b shows the change in body weight for 12 days when various dimer proteins (GLP-2-2G, GLP-2-Fc homodimer and MG12-5) are administered to a model animal according to an embodiment of the present invention. This is a graph showing the results.
  • Figure 8c shows the results of measuring the energy absorption ratio before administration of various dimer proteins (GLP-2-2G, GLP-2-Fc homodimer, and MG12-5) to a model animal according to an embodiment of the present invention; It is a graph.
  • Figure 8d is a measurement of the energy absorption rate at one week after administration of various dimer proteins (GLP-2-2G, GLP-2-Fc homodimer and MG12-5) to a model animal according to an embodiment of the present invention; This is a graph showing the result.
  • Figure 8d is a measurement of the energy absorption rate 2 weeks after administration of various dimer proteins (GLP-2-2G, GLP-2-Fc homodimer and MG12-5) according to an embodiment of the present invention to a model animal This is a graph showing the result.
  • Figure 9a shows various dual specificity fusion proteins (MG12-1 and MG12-4) and controls (GLP-1-Fc homodimer and GLP-2-Fc homodimer) according to an embodiment of the present invention to model animals. It is a graph showing the result of measuring the change in the weight of the small intestine when 13 days have elapsed after administration.
  • FIG. 9B shows various dual specificity fusion proteins (MG12-1 and MG12-4) and controls (GLP-1-Fc homodimer and GLP-2-Fc homodimer) according to an embodiment of the present invention to model animals. It is a graph showing the result of measuring the change in body weight when 13 days have elapsed after administration.
  • FIG. 10 is a view showing the brain, small intestine and large intestine after administration of various dual specificity fusion proteins (MG12-1 and MG12-4) and control (GLP-1-Fc homodimer) to a model animal according to an embodiment of the present invention; It is a graph showing the result of measuring the fluorescence intensity.
  • FIG. 11 shows various heterologous specificity fusion proteins (MG12-1, MG12-4 and MG12-5) and controls (Fc only, GLP-1-Fc homodimer and GLP-2-Fc) according to an embodiment of the present invention. It is a series of graphs showing the results of PET-MRI analysis to confirm the distribution in the liver, small intestine and large intestine after administration of homodimer) to a model animal.
  • 12A is a view showing various heterologous specificity fusion proteins (MG12-1, MG12-3, MG12-4 and MG12-5), and Exendin 4 (Ex-4), GLP-2-2G, and It is a graph showing the results of measuring the weight of the small intestine when the combination of Exendin 4 and GLP-2-2G (Ex-4 + GLP-2-2G) was administered to an experimental animal for 12 days.
  • Figure 12b shows various heterologous specificity fusion proteins (MG12-1, MG12-3, MG12-4 and MG12-5), and Exendin 4 (Ex-4), GLP-2-2G, and It is a graph showing the results of measuring the weight gain compared to feed intake when the combination of Exendin 4 and GLP-2-2G (Ex-4 + GLP-2-2G) was administered to experimental animals for 12 days.
  • 12c shows various heterologous specificity fusion proteins (MG12-1, MG12-3, MG12-4 and MG12-5), and Exendin 4 (Ex-4), GLP-2-2G, and After administering the combination of Exendin 4 and GLP-2-2G (Ex-4 + GLP-2-2G) to the experimental animals for 12 days, the duodenum was extracted from the experimental animals to achieve mucosal depth and height of villi It is a graph showing the result of measuring (villi height).
  • 12D shows various heterologous specificity fusion proteins (MG12-1, MG12-3, MG12-4 and MG12-5), and Exendin 4 (Ex-4), GLP-2-2G, and After administering the combination of Exendin 4 and GLP-2-2G (Ex-4 + GLP-2-2G) to the experimental animals for 12 days, the jejunum was extracted from the experimental animals to achieve mucosal depth and height of villi It is a graph showing the result of measuring (villi height).
  • FIG. 13A is a schematic diagram schematically illustrating an administration schedule of MG12 according to an embodiment of the present invention to a metabolic syndrome model animal following a choline-deficient high-fat diet of the present invention.
  • 13B is a graph showing changes in body weight over time in an animal experiment performed according to the experimental schedule shown in FIG. 13A.
  • 13C is a graph showing in more detail the relative change in body weight over time after drug administration in an animal experiment performed according to the experimental schedule shown in FIG. 13A.
  • 13D is a graph showing the results of measuring the amount of feed consumed in an animal experiment performed according to the experimental schedule shown in FIG. 13A.
  • 14A is a graph showing the results of intraperitoneal glucose analysis performed for each experimental group used in the animal test performed according to the experimental schedule shown in FIG. 13A. After 12 hours of feed restriction, glucose at a dose of 2 g/kg. After intraperitoneal administration, blood glucose levels measured for a total of 3 hours per hour were recorded.
  • FIG. 14B is a graph showing the result of measuring the experimental result of FIG. 14A as an area under the blood glucose change curve (AUC).
  • FIG. 15A is a photograph of liver tissue extracted from the experimental animals of each experimental group sacrificed after the animal experiment performed according to the experimental schedule shown in FIG. 13A was completed.
  • 15B is a graph showing the result of measuring the weight of liver tissue for each experimental group of the experimental animal of FIG. 15A.
  • FIG. 15c is a graph showing the results of measuring blood AST levels for each experimental group of the experimental animals of FIG. 15a.
  • Figure 16a shows the manufacturing process of an animal model inducing severe NASH and MG-12, a negative control group (vehicle) and an animal experiment in which obeticholic acid (OCA) is administered as a positive control group according to an embodiment of the present invention
  • 16B is a graph showing the results of measuring changes in body weight over time for each experimental group from the 8th week of an animal experiment performed according to the experimental schedule shown in FIG. 16A.
  • FIG. 16c is a graph showing the results of measuring the weight of liver tissue extracted from the experimental animals sacrificed for each experimental group after the animal experiment performed according to the experimental schedule shown in FIG. 16a was terminated.
  • 16D is a series of graphs showing the results of measuring blood AST (left) and ALT (right) levels for each experimental group in an animal experiment performed according to the experimental schedule shown in FIG. 16A.
  • 16E is a graph showing the results of measuring the NAFLD activity index for each experimental group in an animal experiment performed according to the experimental schedule shown in FIG. 16A.
  • GLP-1 is an abbreviation of “glucagon-like peptide-1” and is 30 or 31 amino acids in length derived by tissue-specific post-translational processing of proglucagon peptides. is a peptide hormone of GLP-1 is produced and secreted by specific neurons in the enteroendocrine L-cells of the small intestine and the solitary tract nucleus of the brain stem upon ingestion of food.
  • the initial product, GLP-1(1-37) is readily amidated and cleaved with two equivalent biological activities by cleavage (GLP-1(7-36) amide and GLP-1(7-37)).
  • Active GLP-1 contains two alpha-helical regions at amino acid positions 13-20 and 24-35 and a linker region connecting the two alpha-helical regions. Since GLP-1 acts to lower blood sugar levels in a glucose-dependent manner, it has been developed and used as a treatment for type 2 diabetes. However, since GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) in vivo, its in vivo half-life is only 2 minutes, so its effect is extremely limited as a natural peptide.
  • DPP-4 dipeptidyl peptidase-4
  • GLP-2 is a 33 amino acid long peptide produced by the post-translational cleavage process of proglucagon like GLP-1. do. GLP-2 is secreted together with GLP-1 when food is ingested. In the case of GLP-2, when administered, it improves small intestine growth and function, reduces bone destruction, and is known to have neuroprotective action.
  • GLP-1 analog refers to a protein that biologically performs the function of GLP-1 and is capable of mediating downstream signaling by binding to the GLP-1/Exendin-4 receptor, " Also referred to as "GLP-1 receptor agonists”.
  • GLP-2 analog refers to a protein that biologically performs the function of GLP-2 and is capable of mediating downstream signaling by binding to the GLP-2 receptor, "GLP-2 receptor” Also referred to as “agent”.
  • fusion protein refers to a recombinant protein in which two or more proteins or domains responsible for a specific function in the protein are linked so that each protein or domain takes on its original function.
  • half-life increasing moiety refers to a functional group that is linked to a recombinant protein to improve the half-life of the recombinant protein in the body.
  • Such “half-life increasing moieties” include antibody Fc regions (Capon et al ., Nature. 337: 525-531, 1989), PEG (Caliceti and Veronese, Adv. Drug Delivery Rev. 55: 1261-1277, 2003), XTEN (Schellenberger et al ., Nat. Biotechnol . 27: 1186-1190, 2009), PAS (Pro-Ala-Ser, Schlapschy et al ., Protein Eng. Des. Sel.
  • ELP elastine-like peptide
  • glycine-rich HAP homo-amino-acid polymer
  • GLK glycol-like protein
  • Huang et al . Eur. J. Pharm. Biopharm. 74(3): 435-441, 2010
  • serum albumin Sheffield et al ., Cell Physiol.
  • Biochem ., 45(2): 772-782, 2018 may be used, and the "half-life increasing moiety" added to such a protein is well known through review papers and the like (Strohl, WR, BioDrugs , 29). (4): 215-239, 2015). Accordingly, the preceding papers on the individual factors and the review papers are incorporated into this document by reference.
  • antibody Fc region refers to a crystallized fragment among fragments generated when an antibody is cleaved with papain, and a cell surface receptor called Fc receptor and some of the complement system. interacts with proteins.
  • the Fc region represents a homodimeric structure in which fragments comprising the second and third constant regions (CH2 and CH3) of the heavy chain are linked by intermolecular disulfide bonds at the hinge region.
  • the Fc region of IgG has a number of N-glycan attachment sites, which are known to play an important role in Fc receptor-mediated action.
  • hybrid Fc region refers to an Fc region peptide produced by a combination of parts of various subtypes of an Ig Fc region, and the binding ability to Fc receptors and complement by the combination of parts of the Fc region. may represent a difference from the wild-type Fc region.
  • Exendin is a peptide consisting of 39 amino acids isolated from the venom of the lizard Heloderma suspectum.
  • Exendin 4 is 50% identical in amino acid sequence to GLP-1, is a member of the glucagon peptide family, and is known to perform an equivalent role to GLP-1 as an agonist of the GLP-1 receptor.
  • Exendin-4 is also called recent and "extenatide”.
  • Exendin 3 is a mutant in which the second and third amino acids in Exendin 4 are substituted with serine and aspartic acid, respectively.
  • Lutisenatide is one of the GLP-1 receptor agonists, manufactured by Sanofi, under the trade name Lyxumia in Europe, and Adlyxin under the trade name in the United States as a daily injection for the treatment of type 2 diabetes. It is a drug that is sold.
  • Albiglutide used in this document is one of the GLP-1 receptor agonists sold by GSK under the trade name of Eperzan in Europe and Tanzeum in the United States as a treatment for type 2 diabetes.
  • Liraglutide is a subcutaneously injectable GLP-1 receptor agonist marketed by Novo Nordisk under the trade name “Victoza” for the treatment of type 2 diabetes and obesity.
  • Taspoglutide is a GLP-1 receptor agonist co-developed by Ipsen and Roche for the treatment of type 2 diabetes.
  • Alanine which is the 8th and 35th amino acids of the GLP-1(7-36) peptide This is a GLP-1 derivative that is methylated and the last amino acid is amidated.
  • the C-terminus is not amidated and may be a general carboxyl group.
  • XTEN as used in this document is an unstructured low immunogenic peptide containing 6 amino acids added to improve the in vivo half-life of a protein drug developed by Amunix, usually 144 aa units. and is composed of amino acids of multiples thereof (US20100239554A1).
  • Teduglutide as used in this document is a mutant in which alanine (A), the second amino acid of GLP-2, is substituted with glycine (G). It is a commercially available GLP-2 analogue.
  • Glepaglutide used in this document is a GLP-2 analogue with improved half-life, developed as a treatment for short bowel syndrome and is currently undergoing phase 3 clinical trials for short bowel syndrome.
  • GLP-2 analogue 10 is one of the GLP-2 analogues, and is an intramolecular crosslinking agent lipidated through the thiol groups of the two substituted cysteines by substituting cysteines for the 11th and 18th amino acids of GLP-2. It has a stabilized structure by linking, and is characterized by adding 9 amino acids at the C-terminus of Exendin 4 to the C-terminus (Yang et al ., J. Med. Chem . 61: 3218-3223, 2018). ).
  • linker peptide is an unstructured peptide used to prepare a fusion protein by linking two or more proteins or peptides having different biological activities.
  • malabsorption refers to a disease caused by partial or complete non-absorption of nutrients in the intestinal tract, particularly the small intestine.
  • inflammatory bowel disease is a disease in which abnormal chronic inflammation in the intestinal tract repeats improvement and recurrence. Ulcerative colitis and Crohn's disease are often representative. have. Diagnosis of inflammatory bowel disease is made by synthesizing clinical symptoms, endoscopy and histopathological findings, blood test findings, and radiology findings. The purpose of treatment is to control symptoms, prevent complications, and improve quality of life rather than cure.
  • the term "ulcerative colitis” is one of inflammatory bowel diseases along with Crohn's disease and Behcet's disease, and is a disease in which inflammation or ulceration of unknown cause is chronically generated in the large intestine. The exact cause is still unknown. In most cases, symptoms worsen and improve repeatedly, and it is an incurable disease that is difficult to cure with modern medicine.
  • Bechete's disease is an autoimmune disease in which the mucous membranes in the body, especially the mucous membranes of the gastrointestinal tract, are broken down by autoimmunity. It is an intractable disease that can develop fatally when it appears in areas such as the nervous system, gastrointestinal system, ocular system, and vascular system, and there is no fundamental treatment until now.
  • short bowel syndrome is a malabsorption disorder, which can be caused by surgical removal of a part of the small intestine or dysfunction of a segment of the intestine.
  • SBS short bowel syndrome
  • Crohn's disease inflammatory disorders of the digestive tract, volvulus, spontaneous twisting of the small intestine resulting in tissue death due to an interruption of blood supply, tumors of the small intestine, small intestine
  • Most disorders are caused by surgery related to wounds or traumas, necrotizing enterocolitis, bypass surgery to treat obesity, disease of the small intestine, and surgery to remove the damaged area. Also, some infants are born with short intestines.
  • the term "metabolic syndrome” is a disease presumed to be caused by insulin resistance, and refers to a symptom in which two or more of cholesterol, blood pressure, and blood sugar levels are abnormal.
  • the phenomenon in which the risk factors of various cardiovascular diseases and type 2 diabetes cluster with each other was conceptualized as one disease group. It is a useful concept that can comprehensively explain insulin resistance (IR) and its related complex and various metabolic abnormalities and clinical features. If the metabolic syndrome is left unattended, it is known that the risk of developing cardiovascular diseases such as arteriosclerosis, myocardial infarction, and stroke or type 2 diabetes increases.
  • a dual specificity fusion protein in which a GLP-1 analog and a GLP-2 analog are fused.
  • the dual specificity fusion protein may have a half-life increasing moiety added thereto, and the half-life increasing moiety is inserted between the GLP-1 analogue and the GLP-2 analogue, or at the N-terminus or C-terminus of the entire fusion protein.
  • GLP-1 and GLP-2 which are naturally expressed in the body, are not proglucagon or an analog thereof linked by an intervention peptide, but a GLP-1 analog and a GLP-2 analog are directly linked.
  • it may be a fusion protein in which the two peptides are linked by a linker peptide other than the intermediate peptide.
  • a first fusion protein in which the GLP-1 analogue is linked to an antibody Fc region and a second fusion protein in which the GLP-2 analogue is linked to an antibody Fc region, the first fusion protein and the second fusion protein Bispecific fusion proteins produced by dimerization of proteins are provided.
  • the GLP-1 analogue is GLP-1, Exendin 3 (Exendin 3), Exendin 4 (Exendin 4), GLP-1/Exendin 4 hybrid peptide, GLP-1-XTEN, Exendin 4-XTEN, Lixisenatide, Albiglutide, Liraglutide, or Taspoglutide.
  • the GLP-1 analog may be a GLP-1 continuous repeat in which two GLP-1s are linked by a linker peptide.
  • the dual specificity fusion protein at least one of the GLP-1 analogue and the GLP-2 analogue is a tandem repeat, and the number of repetitions of the GLP-1 analogue and the GLP-2 analogue is each other. may be different.
  • the structure as described above is introduced for the asymmetry of the dual specificity fusion protein. As such, if the size of the unit fusion protein forming a heterodimer is changed, it is easy to monitor the degree of homodimer generation, so the quality control (quality control) control) is possible, and it has the advantage of reducing production costs because it can simplify the manufacturing process compared to PEGylation, which is well known for its half-life increasing technology.
  • the number of repeating units of the GLP-1 analog and the GLP-2 analog can be adjusted according to the required binding affinity for GLP-1R and GLP-2R.
  • the GLP-1 may include the amino acid sequence shown in SEQ ID NO: 1 or 2.
  • Exendin 3 may include the amino acid sequence shown in SEQ ID NO: 3.
  • Exendin 4 may be composed of the amino acid sequence shown in SEQ ID NO: 4.
  • the GLP-1/Exendin 4 hybrid may include the amino acid sequence shown in SEQ ID NO: 5.
  • the Lixisenatide may include the amino acid sequence shown in SEQ ID NO: 6.
  • the Exendin 4-XTEN may include the amino acid sequence shown in SEQ ID NO: 7.
  • the Albiglutide may include the amino acid sequence shown in SEQ ID NO: 8.
  • the Liraglutide may include the amino acid sequence shown in SEQ ID NO: 9.
  • the Taspoglutide may include the amino acid sequence shown in SEQ ID NO: 10.
  • the GLP-1 continuous repeat may include the amino acid sequence shown in SEQ ID NO: 11.
  • the antibody Fc region may be a hybrid antibody Fc region, and the hybrid antibody Fc region may consist of an amino acid sequence selected from the group consisting of SEQ ID NOs: 12 to 16.
  • the hybrid antibody Fc region may be additionally mutated so as not to cause unwanted side effects when administered in vivo, such as antibody-dependent cell cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC).
  • ADCC antibody-dependent cell cytotoxicity
  • CDC complement-dependent cytotoxicity
  • Threonine (T) which is the 18th amino acid of the hybrid Fc region variant shown in SEQ ID NO: 14 or the amino acid sequence shown in SEQ ID NO: 12 in which methionine (M) at the 196th amino acid is substituted with leucine (L)
  • the GLP-2 analogue may be GLP-2, Glepaglutide, or GLP-2 analogue 10.
  • the GLP-2 may include an amino acid sequence described in any one of SEQ ID NOs: 17 to 20.
  • the peptide consisting of the amino acid sequence shown in SEQ ID NO: 18 is a human GLP-2 wild-type peptide
  • the human GLP-2 mutant composed of the amino acid sequence shown in SEQ ID NO: 17 is a product in which alanine, the second amino acid, is substituted with glycine, and Teduglutide also called
  • the GLP-2 variant consisting of the amino acid sequence shown in SEQ ID NO: 19 alanine (A), the second amino acid, is mutated to glycine (G), and asparagine (N), the 16th amino acid, is converted to glycine (G).
  • GLP-2 A2G, N16G, L17Q GLP-2 A2G, N16G, L17Q
  • L leucine
  • Q glutamine
  • GLP-2 wild-type peptide alanine, the 2nd amino acid, is substituted with glycine, and the 17th amino acid, leucine, is substituted with glutamine (A2G, L17Q, SEQ ID NO: 20) is also composed of the amino acid sequence shown in SEQ ID NO: 19 Since it can exert an equivalent function to that of a GLP-2 analogue, it is possible to use it as a GLP-2 analogue in the present invention.
  • the Glepaglutide may include the amino acid sequence shown in SEQ ID NO: 21.
  • the GLP-2 analogue 10 may include the amino acid sequence shown in SEQ ID NO: 22.
  • the first fusion protein may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 23 to 30.
  • the second fusion protein may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 31 to 36.
  • the bispecific fusion protein in the first fusion protein, serine, the 10th amino acid of the CH3 domain in the hybrid Fc region, is substituted with cysteine (C), and threonine (T), the 22nd amino acid, is substituted with tryptophan (W) (Knob structure), in the second fusion protein, tyrosine (Y), the 5th amino acid of the CH3 domain in the Fc region, is cysteine (C), the 22nd amino acid, threonine, is serine (S), and the 24th
  • the amino acid leucine (L) may be substituted with alanine (A), and tyrosine (Y), the 63rd amino acid, may be substituted with valine (V) (Hole structure).
  • the first fusion protein has a CH3 domain in the Fc region.
  • Tyrosine (Y), the 5th amino acid of ) may be substituted with valine (V) (Hole structure)
  • V valine
  • serine the 10th amino acid of the CH3 domain in the hybrid Fc region
  • C cysteine
  • T tryptophan
  • threonine (T) which is the 22nd amino acid of the CH3 domain in the hybrid Fc region
  • the second fusion protein is the 63rd amino acid of the CH3 domain in the hybrid Fc region.
  • Tyrosine (Y) is substituted with threonine (T)
  • tyrosine (Y) which is the 63rd amino acid of the CH3 domain in the hybrid Fc region
  • T threonine
  • T threonine
  • the mutation of the 63rd amino acid is not based on the amino acid sequence of the CH3 domain of human IgG1 described in SEQ ID NO: 69, but according to the numbering rule of the International ImMunoGeneTics information system (IMGT) (Lefranc et al ., Dev. Comp. Immunol . , 27: 55-77, 2003), may be denoted as Y86T.
  • IMGT International ImMunoGeneTics information system
  • one or more linker peptides may be inserted between fusion partners of the fusion protein, that is, between peptides or domains. That is, in the case of a bispecific fusion protein in which the GLP-1 analogue and the GLP-2 analogue are fused, a linker peptide may be inserted between the GLP-1 analogue and the GLP-2 analogue, and the first fusion protein and the second fusion protein. In the case of a bispecific fusion protein produced by dimerization of a protein, a linker peptide may be inserted between the GLP-1 analog and the antibody Fc region in the first fusion protein, and similarly, the GLP-2 analog and the GLP-2 analog in the second fusion protein.
  • a linker peptide may be inserted between the antibody Fc regions.
  • the linker peptide may or may not include an N-glycan attachment site, and more preferably, the first fusion protein does not include an N-glycan attachment site in the linker peptide and the second fusion protein does not include an N-glycan attachment site.
  • the fusion protein may include an N-glycan attachment site to the linker peptide.
  • both the first fusion protein and the second fusion protein may not include an N-glycan attachment site, and the first fusion protein does not include an N-glycan attachment site in the linker peptide and the second fusion protein does not include an N-glycan attachment site.
  • the two-fusion protein may include an N-glycan attachment site to the linker peptide.
  • the linker peptide is EPKSSDKTHTCPPCP (SEQ ID NO: 37), EPKSCDKTHTCPPCP (SEQ ID NO: 38), GGGGSGGGGSGGGGSEPKSSDKTHTCPPCP (SEQ ID NO: 39), GGGGSGGGGSGGGGSEPKSCDKTHTCPPCP (SEQ ID NO: 40), AKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECP (SEQ ID NO: 41), GGGGSGGGGSGGGGSEKEKEEQEERTHTCPPCP (SEQ ID NO: 42), GGGGSGGGGSGGGGSAKNTTAPATTRNTTRGGEEKKKEKEKEEQEERTHTCPPCP (SEQ ID NO: 43), AAGSGGGGGSGGGGSGGGGS (SEQ ID NO: 44), GGGGSGGGGSGGGGS (SEQ ID NO: 45), GGSGG (SEQ ID NO: 46), GGSGGSGGS (SEQ ID NO: 47), GGGSGG (SEQ ID NO: 48), SEQ ID NO:
  • n is an integer from 1 to 10
  • (GGS) n is an integer from 1 to 10
  • (GS) n is an integer from 1 to 10
  • (GSSGGS) n unit: SEQ ID NO: 50
  • n is an integer from 1 to 10
  • KESGSVSSEQLAQFRSLD SEQ ID NO: 51
  • EGKSSGSGSESKST SEQ ID NO: 52
  • GSAGSAAGSGEF SEQ ID NO: 53
  • EAAAK n (unit: SEQ ID NO: 54, n is an integer from 1 to 10)
  • CRRRRRREAEAC SEQ ID NO: 55
  • a (EAAAK) 4 ALEA EAAAK) 4 A
  • PAPAP SEQ ID NO: 59) 60
  • (Ala-Pro)n (Ala-
  • a pharmaceutical composition comprising the bispecific fusion protein.
  • the pharmaceutical composition may be used to treat a disease or condition requiring intestinal growth.
  • the disease or condition requiring the growth of the intestine may be malabsorption, inflammatory bowel disease, or short bowel syndrome.
  • the inflammatory bowel disease may be ulcerative enteritis, Behcet's disease or Crohn's disease.
  • the dual specificity fusion protein according to an embodiment of the present invention has the effect of not only extending the length of the intestine, especially the small intestine, but also remarkably improving the length of the villi and the depth of the crypt in the small intestine when administered in vivo, As such, it can be effectively used for the treatment of diseases that require improvement in the proliferation and function of the small intestine.
  • a pharmaceutical composition for the treatment of non-alcoholic steatohepatitis comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating metabolic syndrome comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating obesity comprising one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for the treatment of type 2 diabetes comprising any one or more of the above dual specificity fusion proteins as an active ingredient.
  • a pharmaceutical composition for treating liver fibrosis comprising one or more of the above dual specificity fusion proteins as an active ingredient.
  • Exendin-4 one of the GLP-1 receptor agonists, has already been proven effective in glycemic control and weight control in type 2 diabetes patients in clinical trials (DeFronzo et al ., Diabetes Care 28: 1092-1100, 2005).
  • the dual specificity fusion protein according to an embodiment of the present invention can be used for the treatment of obesity-related diseases such as obesity, type 2 diabetes, as well as metabolic syndrome.
  • composition may include an pharmaceutically acceptable carrier, and may further include a pharmaceutically acceptable adjuvant, excipient or diluent in addition to the carrier.
  • the term “pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness, or similar reactions when administered to humans.
  • examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • compositions according to an embodiment of the present invention may be formulated using a method known in the art to enable rapid, sustained or delayed release of the active ingredient when administered to a mammal.
  • Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
  • composition according to an embodiment of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intrathecal administration may be administered, and may also be administered using an implantable device for sustained release or continuous or repeated release.
  • the number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
  • composition according to an embodiment of the present invention may be formulated in a suitable form together with a commonly used pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier includes, for example, a carrier for parenteral administration such as water, a suitable oil, saline, aqueous glucose and glycol, and may further include a stabilizer and a preservative.
  • Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid.
  • Suitable preservatives are benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • composition according to the present invention can be used as a suspending agent, solubilizing agent, stabilizer, isotonic agent, preservative, adsorption inhibitor, surfactant, diluent, excipient, pH adjuster, analgesic agent, buffer, Antioxidants and the like may be included as appropriate.
  • solubilizing agent stabilizer
  • isotonic agent preservative
  • adsorption inhibitor surfactant
  • diluent diluent
  • excipient pH adjuster
  • analgesic agent buffer
  • Antioxidants and the like may be included as appropriate.
  • Pharmaceutically acceptable carriers and agents suitable for the present invention including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
  • the dosage of the composition to a patient will depend on many factors, including the patient's height, body surface area, age, the particular compound being administered, sex, time and route of administration, general health, and other drugs being administered concurrently.
  • the pharmaceutically active protein may be administered in an amount of 100 ng/body weight (kg) - 10 mg/body weight (kg), more preferably 1 to 500 ⁇ g/kg (body weight), and most Preferably, it may be administered at 5 to 50 ⁇ g/kg (body weight), and the dosage may be adjusted in consideration of the above factors.
  • a disease or condition requiring intestinal proliferation of an individual comprising administering a therapeutically effective amount of the dual specificity fusion protein to an individual suffering from a disease requiring intestinal proliferation. treatment methods are provided.
  • the disease or condition requiring intestinal growth may be malabsorption, inflammatory bowel disease, or short bowel syndrome, preferably short bowel syndrome.
  • a method for treating metabolic syndrome in an individual comprising administering to the individual suffering from the metabolic syndrome a therapeutically effective amount of the bispecific fusion protein.
  • a method for treating obesity in an obese subject comprising administering to the obese subject a therapeutically effective amount of the bispecific fusion protein.
  • a method for treating type 2 diabetes in a subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from type 2 diabetes.
  • non-alcoholic fatty liver disease or non-alcoholic non-alcoholic fatty liver disease of the subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from non-alcoholic fatty liver disease or non-alcoholic steatohepatitis
  • a method of treating steatohepatitis is provided.
  • a method for treating liver fibrosis in a subject comprising administering a therapeutically effective amount of the bispecific fusion protein to the subject suffering from liver fibrosis.
  • the liver fibrosis may be liver fibrosis caused by chronic nonalcoholic steatohepatitis.
  • the term "therapeutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level depends on the type and severity of the subject; Age, sex, drug activity, sensitivity to drug, administration time, administration route and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field.
  • the therapeutically effective amount of the composition of the present invention may be 0.1 mg/kg to 1 g/kg, more preferably 1 mg/kg to 500 mg/kg, but the effective dosage may vary depending on the age, sex and condition of the patient. can be appropriately adjusted.
  • a linker peptide having a generally flexible structure may be inserted between the two or more proteins or domains.
  • the linker peptide is EPKSSDKTHTCPPCP (SEQ ID NO: 37), EPKSCDKTHTCPPCP (SEQ ID NO: 38), GGGGSGGGGSGGGGSEPKSSDKTHTCPPCP (SEQ ID NO: 39), GGGGSGGGGSGGGGSEPKSCDKTHTCPPCP (SEQ ID NO: 40), AKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECP (SEQ ID NO: 41), GGGGSGGGGSGGGGSEKEKEEQEERTHTCPPCP (SEQ ID NO: 42), GGGGSGGGGSGGGGSAKNTTAPATTRNTTRGGEEKKKEKEKEEQEERTHTCPPCP (SEQ ID NO: 43), AAGSGGGGGSGGGGSGGGGS (SEQ ID NO: 44), GGGGSGGGGSGGGGS (SEQ ID NO: 45), GGSGG (SEQ ID NO: 46), GGS
  • n is an integer from 1 to 10
  • (GGS) n is an integer from 1 to 10
  • (GS) n is an integer from 1 to 10
  • (GSSGGS) n unit: SEQ ID NO: 50
  • n is an integer from 1 to 10
  • KESGSVSSEQLAQFRSLD SEQ ID NO: 51
  • EGKSSGSGSESKST SEQ ID NO: 52
  • GSAGSAAGSGEF SEQ ID NO: 53
  • EAAAK n (unit: SEQ ID NO: 54, n is an integer from 1 to 10)
  • CRRRRRREAEAC SEQ ID NO: 55
  • a (EAAAK) 4 ALEA EAAAK) 4 A
  • PAPAP SEQ ID NO: 59) 60
  • (Ala-Pro)n (Ala-
  • the dual specificity fusion protein comprises a first gene construct comprising a polynucleotide encoding the first fusion protein and a second gene construct comprising a polynucleotide encoding the second fusion protein.
  • Production is possible by transducing a recombinant expression vector containing a gene construct into a host cell and then expressing it in a recombinant manner.
  • the first gene construct and the second gene construct may be expressed by being inserted into one expression vector or inserted into two separate expression vectors for expression.
  • a vector is designed so that each gene construct is operably linked to two separate control sequences, or two gene constructs are operably linked to one control sequence, and both gene constructs are operably linked to one control sequence.
  • a method in which an internal ribosome entry site (IRES) connects may be used.
  • operably linked to refers to the regulation of a nucleic acid sequence of interest (eg, in an in vitro transcription/translation system or in a host cell) in such a way that its expression can be achieved. It means that it is connected to the sequence.
  • regulatory sequence is meant to include promoters, enhancers and other regulatory elements (eg, polyadenylation signals). Regulatory sequences include instructing that a target nucleic acid can be constitutively expressed in many host cells, instructing the expression of a target nucleic acid only in specific tissue cells (eg, tissue-specific regulatory sequences), and This includes directing expression to be induced by a specific signal (eg, an inducible regulatory sequence). It can be understood by those skilled in the art that the design of the expression vector may vary depending on factors such as the selection of the host cell to be transformed and the level of desired protein expression.
  • the expression vector of the present invention can be introduced into a host cell to express the fusion protein.
  • Regulatory sequences enabling expression in eukaryotic and prokaryotic cells are well known to those skilled in the art. As described above, they usually contain regulatory sequences responsible for initiation of transcription and, optionally, poly-A signals responsible for termination and stabilization of transcripts. Additional regulatory sequences may include, in addition to transcriptional regulators, translation enhancers and/or natively-combined or heterologous promoter regions.
  • Possible regulatory sequences enabling expression in, for example, mammalian host cells are the CMV-HSV thymidine kinase promoter, SV40, RSV-promoter (Rous sarcoma virus), human kidney element 1 ⁇ -promoter, glucocorticoid-inducible MMTV- promoters (Moloni mouse tumor virus), metallothionein-inducible or tetracycline-inducible promoters, or amplifying agents such as CMV amplifiers or SV40-amplifiers.
  • neurofilament-promoter For expression in neurons, it is contemplated that neurofilament-promoter, PGDF-promoter, NSE-promoter, PrP-promoter or thy-1-promoter may be used.
  • Such promoters are known in the art and are described in Charron, J. Biol. Chem. 270: 25739-25745, 1995.
  • a number of promoters have been disclosed, including the lac-promoter, the tac-promoter or the trp promoter.
  • the regulatory sequences include transcription termination signals such as SV40-poly-A site or TK-poly-A site downstream of the polynucleotide according to an embodiment of the present invention.
  • suitable expression vectors are known in the art, examples of which are Okayama-Berg cDNA expression vectors pcDV1 (Parmacia), pRc/CMV, pcDNA1, pcDNA3 (Invitrogene), pSPORT1 (GIBCO BRL), pGX-27 (Patent No.
  • the vector may further comprise a polynucleotide encoding a secretion signal.
  • the secretion signals are well known to those skilled in the art.
  • a leader sequence capable of guiding the fusion protein to the cell compartment is combined with the coding sequence of the polynucleotide according to an embodiment of the present invention, preferably the translated protein or its It is a leader sequence capable of directly secreting a protein into the periplasmic or extracellular medium.
  • the vector of the present invention can be prepared by, for example, standard recombinant DNA techniques, which include, for example, blunt-end and adherent-end ligation, treatment with restriction enzymes to provide appropriate ends, and inappropriate In order to prevent binding, phosphate group removal by alkaline phosphatase treatment and enzymatic linkage by T4 DNA ligase are included.
  • the vector of the present invention can be prepared by recombination of a DNA encoding a signal peptide obtained by chemical synthesis or genetic recombination technology and a DNA encoding a dual specificity fusion protein of the present invention into a vector containing an appropriate regulatory sequence.
  • the vector containing the control sequence can be purchased or prepared commercially, and in an embodiment of the present invention, pBispecific backbone vector (Genexine, Inc., Korea) or pAD15 vector was used as a backbone vector.
  • the expression vector may further include a polynucleotide encoding a secretion signal sequence, wherein the secretion signal sequence induces secretion of the recombinant protein expressed in the cell out of the cell, and a tissue plasminogen activator (tPA) signal sequence; It may be an HSV gDs (herpes simplex virus glycoprotein Ds) signal sequence or a growth hormone signal sequence.
  • tPA tissue plasminogen activator
  • the expression vector according to an embodiment of the present invention may be an expression vector capable of expressing the protein in a host cell, and the expression vector is a plasmid vector, a viral vector, a cosmid vector, a phagemid vector, an artificial human chromosome. It is free to show any form, etc.
  • the present inventors designed various dual specificity fusion proteins including both GLP-1 analogues and GLP-2 analogues as shown in FIG. 1 and Table 1 below.
  • the GLP-1 receptor GLP-1R
  • GLP-1R GLP-1 receptor
  • Exendin 4 Exendin 4
  • OXM oxyntomodulin
  • a dual specificity fusion in which a glycan linker is included in the second fusion protein including GLP-2 and, conversely, an unmodified linker that does not include a glycan attachment site is included in the first fusion protein including a GLP-1 analog A protein (MG12-6) was also designed.
  • the present inventors devised dual specificity fusion proteins MG12-7 and MG12-8 using a GLP-2 analog in which the 17th alanine of GLP-2 was further substituted with glutamine.
  • MG12-7 uses the A2G variant described in SEQ ID NO: 1 as GLP-1
  • MG12-8 and MG12-9 have the two A2G variants (G 4 S)
  • tandem repeats connected by 6 linkers are used.
  • GLP-1(1) 2.
  • GLP-2(17) Glycan Linker (43) Undeformed(42) knob hole First fusion protein (24)
  • Second fusion protein (32) 2 MG12-2 1.
  • GLP-2(17) 2.
  • GLP-1(1) Glycan Linker (43) Undeformed(42) knob hole Second fusion protein (33) First fusion protein (25) 3 MG12-3 1.
  • Second fusion protein (32) 4 MG12-4 1.
  • GLP-1/Exendin 4 hybrid(5) 2.
  • GLP-1(11) 2. GLP-2(19) Undeformed(39) Undeformed(39) knob hole First fusion protein (30) Second fusion protein (36) 9 MG12-9 1. GLP-1(11) 2. GLP-2(17) Undeformed(39) Undeformed(42) knob hole First fusion protein (30) Second fusion protein (34)
  • Knobs-into-holes technology was applied in order to preferentially generate a heterodimer. That is, in the first fusion protein, in the hybrid Fc region, serine (S), the 10th amino acid of the CH3 domain, is substituted with cysteine (C), and threonine (T), the 22nd amino acid, is substituted with tryptophan (W) (Knob) ), in the second fusion protein, tyrosine (Y), the 5th amino acid of the CH3 domain in the Fc region, is cysteine (C), the 22nd amino acid, threonine (T), is serine (S), and the 24th amino acid is Leucine (L) may be substituted with alanine (A), and tyrosine (Y), the 63rd amino acid, may be substituted with valine (V) (Hole).
  • the position of the amino acid at which the mutation has occurred is based on the reference sequence (the amino acid sequence of the human IgG1 CH3 domain of SEQ ID NO: 69). Even if additional mutations such as addition, deletion or substitution of amino acids occur at a site unrelated to the Knobs-into-Holes structure on the CH3 domain, the amino acid corresponding to the corresponding position is mutated based on the reference sequence. Do it.
  • the Knobs-into-Holes structure can be introduced through other amino acid mutations well known in the art. Such mutations are described in the prior literature (Wei et al ., Oncotarget 2017, 8(31): 51037-51049; Ridgway et al ., Protein Eng .
  • Such selective mutations include, for example, a combination of a Knob structure in which threonine, the 22nd amino acid of the CH3 domain of the first fusion protein, is substituted with tyrosine, and a Hole structure in which tyrosine, the 63rd amino acid, of the CH3 domain of the second fusion protein is substituted with threonine.
  • a dual specificity dimer fusion protein can be generated.
  • the Knobs-into-Holes structure may be formed by introducing a hole structure to the first fusion protein and introducing a Knob structure to the second fusion protein.
  • Dual specificity of Examples 1 to 5 designed as described above After synthesizing the gene constructs encoding the first and second fusion proteins of the fusion protein by amplifying them using PCR and site-directed mutagenesis primers, they were respectively synthesized in the pAD15 vector (Genexine, Inc., Korea). By inserting, an expression vector was prepared.
  • Transient expression of the vector constructs prepared as described above was performed using Thermo Fisher's ExpiCHO kit. Specifically, after mixing the vector construct prepared as above and the ExpiFectamine reagent included in the kit in ExpiCHO-S cell, incubate for 1 day in an incubator with 8% CO2 and 37°C conditions, the temperature was lowered to 32°C. Culture was continued until the 7th day.
  • the fusion proteins of Examples 1 to 5 purified through Protein A column and secondary column were appropriately diluted with 4X LDS sample buffer and water for injection to prepare a final 3-10 ⁇ g/20 ⁇ L.
  • 4X LDS sample buffer, 10X reducing agent, and water for injection were appropriately diluted to make a final 3-10 ⁇ g/20 ⁇ L, and heated in a heating block at 70° C. for 10 minutes. 20 ⁇ L of the prepared sample was loaded into each well of the gel fixed in the pre-installed electrophoresis equipment.
  • 3-5 ⁇ L/well were loaded. After setting the power supply to 120 V, 90 minutes, electrophoresis was performed. After the electrophoresis was completed, the gel was separated and stained using a staining solution and a de-staining solution, and the results were analyzed.
  • GLP-2-Fc homodimer SEQ ID NO: 25
  • Fc Knobs-into-Holes
  • MG12 containing the Knobs-to-Holes structure SDS-PAGE analysis was performed for -5 under the same reducing/non-reducing conditions, respectively.
  • the present inventors synthesized polynucleotides encoding MG12-6 to MG12-9, and then transfected HEK293F cells using the N293F vector system (YBiologics) for temporary expression in animal cells.
  • N293F vector system YBiologics
  • 25 ⁇ g of plasmid DNA was added to 3 ml of medium and mixed, and then 25 ⁇ g of 2 mg/ml PEI (Polyethylenimine, PolyPlus, USA) was added and mixed.
  • the reaction solution was left at room temperature for 15 minutes, and then put into 80-1000 ml of culture solution cultured at 1x10 6 cells/ml and incubated for 24 hours under conditions of 120 rpm, 37°C and 8% CO 2 .
  • a nutrient supplement medium component (Soytone, BD, USA) was added to a final concentration of 10 g/L. After culturing for 7 days, the cell culture medium was centrifuged at 5000 rpm for 10 minutes to recover the supernatant. Then, Protein A resin was filled in a column and prepared by washing with 1x DPBS, and the recovered supernatant was combined with a resin at 4° C. at a rate of 0.5 ml/min, and protein with 0.1 M Glycine. was eluted.
  • Soytone Soytone, BD, USA
  • the eluted solution was put into a dialysis tube (GeBAflex tube, Geba, Israel) and dialyzed with 1x DPBS at 4° C., and the obtained material was formulated in PBS (pH 7.4) buffer.
  • the obtained MG12-6 to MG12-9 were also subjected to SDS gel electrophoresis under reducing and non-reducing conditions as described above. As a result, as shown in FIGS. 3c to 3e , it was confirmed that the heterodimeric fusion proteins according to an embodiment of the present invention were normally expressed.
  • the present inventors investigated the GLP-1 in vitro activity of the dual specificity fusion protein prepared in the above Example by cAMP assay. Specifically, in order to evaluate the degree of cAMP induction by the GLP-1 specific reaction, a transformed cell line (GLP1R_cAMP/luc) was used to express the GLP-1 receptor together with the cAMP-specific luciferin-expressing cell line. produced. After the cells were thawed and properly maintained, 0.05% TE (Trypsin EDTA) was added to dissociate the cells from the flask, and the number of viable cells was counted.
  • GLP1R_cAMP/luc a transformed cell line
  • 0.05% TE Trpsin EDTA
  • the number of cells required for activity evaluation was recovered, washed, diluted with 0.5% FBS, DMEM/high glucose medium, and seeded at 2x10 4 cells/80 ⁇ L/well. After culturing the cells in a 37°C, 5% CO 2 incubator for about 16 hours, 20 ⁇ L/well of various concentrations to be evaluated were treated and reacted in a 37°C, 5% CO 2 incubator for 5 hours.
  • the reaction plate was treated with Bright-Glo TM assay reagent at 100 ⁇ L/well, and then reacted at room temperature for 2 minutes. After the reaction was completed, the plate was inserted into a luminometer and the degree of bioluminescence was measured.
  • the GLP-1-Fc homodimer exhibited an activity of about 72% compared to the native GLP-1 peptide, and Examples 1, 3, and 4 of the present invention
  • the dual specificity fusion proteins according to and 5 (MG12-1, 3, 4 and 5, respectively) exhibited relative activities of 9%, 118%, 39%, and 35%, respectively.
  • An N-terminal mutation was introduced to prevent cleavage by the DPP-4 enzyme, and in the case of MG12-1 including a sugar chain in the hinge conjugated with GLP-1, the activity was reduced by about 11 times due to glycosylation.
  • MG12-3 in which Exendin 4 was introduced instead of GLP-1 in MG12-1, showed approximately 13-fold increased activity than MG12-1.
  • MG12-4 and MG12-5 introduced with a GLP-1/Exendin 4 hybrid containing GLP-1 and Exendin 4 instead of GLP-1 were similar at about 35-39% regardless of the presence or absence of glycosylation of the hinge. showed relative activity.
  • a transformed cell line in which the GLP-2 receptor was expressed in a cell line expressing a cAMP-specifically opened CNG channel (Human GLP2R ACTOne TM ) was secured. After thawing and properly maintaining the cells, the cells were separated from the flask under the same conditions as for the GLP-1 in vitro activity assay, and the number of cells required for activity evaluation was recovered and washed.
  • the washed cells were diluted with cell culture medium (DMEM/high glucose medium, 10% FBS, 5% G418, 0.01% puromycin) and seeded at 3 ⁇ 5x10 4 cells/100 ⁇ L/well, 37°C for 20 hours, 5 Cells were cultured in a % CO 2 incubator. CO 2 After removing the plate from the incubator, the cells were observed under a microscope, and when the cell saturation reached 80% or more, 1X dye loading solution (Elite TM fluorescent membrane potential dye kit, eEnzyme) was added at 100 ⁇ L/well. After blocking the light at room temperature, the reaction was carried out for 2 to 2.5 hours, and the fluorescence baseline (F 0 ) was measured using ELISA before adding the test solution.
  • cell culture medium DMEM/high glucose medium, 10% FBS, 5% G418, 0.01% puromycin
  • test solutions of various concentrations to be evaluated were treated at 50 ⁇ L/well, reacted for 0.5 hours, and then the fluorescence value (F t ) was measured using ELISA. The reactivity of each test solution was evaluated using the F t /F 0 ratio.
  • the GLP-2-Fc homodimer exhibited an activity of about 132% compared to that of the native GLP-2 peptide, and Examples 1, 3, 4 and 5 of the present invention
  • the dual specificity fusion proteins (MG12-1, 3, 4, and 5, respectively) according to Since all MG12 variants have an N-terminal mutation introduced to prevent cleavage by the DPP-4 enzyme, and unlike GLP-1, since GLP-2 does not contain a sugar chain in the conjugated hinge, all variants are almost similar. It was confirmed to exhibit GLP-2 activity.
  • the dual specificity fusion protein (MG12-2) of Example 2 of the present invention is the GLP-1-Fc isoform for GLP-1 and GLP-2 activity, respectively. It was confirmed to exhibit an activity of about 11.2% compared to the dimer and about 17.5% compared to the GLP-2-Fc homodimer. This indicates that the GLP-1 activity was at a level similar to that of MG12-1, but the GLP-2 activity was about 4-5 times lower than that of other MG12-2 mutants.
  • GLP-1 activity GLP-2 activity
  • GLP-1-Fc homodimer MG12-2 GLP-2-Fc homodimer MG12-2 EC 50 44.9 pM 402.3 pM 7.7 nM 44 nM Relative activity (%) 100 11.2 100 17.5
  • each protein was administered subcutaneously (SC) at a content of 1 mg/kg to 3 male SD (Sprague Dawley) rats per group. Blood was obtained before injection and after 0.5, 1, 5, 10, 24, 48, 72, 120, and 168 hours after injection, and stored at room temperature for 30 minutes for agglutination. After centrifuging the aggregated blood at 3,000 rpm for 10 minutes, serum of each sample was obtained and stored in a cryogenic freezer. An assay designed to specifically detect the GLP-1 site and Fc in the administered protein (GLP-1-Fc ELISA) and an assay designed to specifically detect the GLP-2 site and Fc in the administered protein (GLP-2- Fc ELISA).
  • a method of loading a biological sample on a plate coated with an antibody that binds to mouse-derived human immunoglobulin G4 (IgG4), and detecting the target protein using a biotinylated anti-GLP-1 antibody (GLP-1- Fc ELISA) and GLP-2-specific monoclonal antibody-coated plate is loaded with a biological sample, and the target protein is detected using a secondary antibody that is HRP-conjugated to mouse-derived human immunoglobulin G4 (IgG4).
  • GLP-2-Fc ELISA was used.
  • the obtained and prepared serum samples were loaded with appropriate dilutions to be analyzed on the straight line of the standard curve.
  • MG12-1, 3, 4, and 5 were generally similar to each other in the results analyzed by GLP-1-Fc ELISA and GLP-2-Fc ELISA. showed a PK profile.
  • C max MG12-5 showed the highest value in both methods, whereas MG12-3 showed the lowest value. This trend was almost similar in AUC last.
  • terminal half-life both methods showed the longest half-life in MG12-3, MG12-4 in GLP-1-Fc ELISA and MG12-5 in GLP-2-Fc ELISA showed the lowest half-life.
  • the ingested feed was also subjected to calorimetry through the same analysis.
  • the energy absorption rate was defined as the value excluding the calorific value of feces from the caloric value of the ingested feed.
  • the experimental animals were sacrificed and the weight of the small intestine (Pylorus ileum) was measured.
  • the body weight showed a tendency to increase in the drug administration group containing GLP-2, and it was confirmed that MG12-5 significantly increased compared to the negative control group (carrier administration group).
  • the energy absorption rate was similarly confirmed in all groups before administration, and in the 1st week after the 2nd administration, there was a tendency to increase in the drug administration group containing GLP-2, but only MG12-5 showed a statistically significant increase compared to the carrier administration group (vehicle). , and showed a significant increase compared to GLP-2-Fc homo at 2 weeks after 4 administrations.
  • the present inventors in order to check whether the dual specificity fusion proteins (MG12-1 and MG12-4) designed in other forms other than MG12-5 also increase the small intestine weight and energy absorption rate of the experimental animals, only the administration material is different to the above.
  • the same experiment was performed. Specifically, PBS, 10 nmol/kg GLP-1-Fc homodimer, 10 nmol/kg GLP-2-Fc homodimer, 20 nmol/kg MG12-1, and 20 nmol/kg MG12-4 were administered subcutaneously, respectively. did. The drug was administered twice a week for a total of 4 times for 2 weeks.
  • the weight was measured before autopsy, and the small intestine was removed after the autopsy to measure the weight.
  • the entire gastrointestinal tract of the mouse was separated to remove the mesentery and pancreas, and the area where the ileum and cecum met was cut to separate the small intestine and large intestine.
  • the separated small intestine was perfused-washed with 10% neutral formalin to remove the contents, and the weight was measured after removing the neutral formalin with an absorbent towel.
  • the small intestine weight increased in the GLP-1-Fc homodimer and GLP-2-Fc homodimer administration group compared to the negative control group, and the GLP-2-Fc homodimer In the body administration group, there was a statistically significant increase.
  • the MG12-1 and MG12-4 administration groups showed a greater increase in small intestine weight than the GLP-2-Fc homodimer administration group, and both groups showed a statistically significant increase in small intestine weight compared to the negative control group.
  • Cy5.5 was used as a fluorophore for tracking the distribution after administration of each material. Buffer exchange was performed for each substance to be administered, MG12-1, MG12-4, and GLP-1Fc homodimers with boric acid buffer (pH 8.5), and refer to the protocol of the Cy5.5 labeling kit (GE, #PA15605). It was reacted with an appropriate amount of Cy5.5 under refrigeration conditions overnight. Unreacted Cy5.5 in the reaction-completed material was removed through the PBS substitution process, and it was confirmed whether Cy5.5 reacted well through the final SDS-PAGE.
  • Each administered substance was diluted with 10% DMSO/PBS to have the same fluorescence intensity using an ELISA plate reader capable of measuring fluorescence intensity and then administered.
  • an autopsy and perfusion were performed 24 hours after T max , and the distribution of each administered drug in the brain, small intestine, and large intestine was comparatively evaluated.
  • Zr 89 was used as a radioactive marker for tracking the distribution after administration of each substance.
  • Each substance to be administered was labeled with Zr 89 with a chelator and reaction conditions selected through a preliminary test.
  • the labeled Zr 89 -protein was purified using a PD-10 column, and Zr 89 labeling efficiency and purity were confirmed using Radio TLC and SEC-HPLC.
  • Zr 89 -protein labeling efficiency was 90% or more and the purity was 80% or more, it was judged to be appropriate, and the labeled protein was administered subcutaneously at 0.2 mCi/0.2 cc.
  • the present inventors tried to compare the effects of the simple co-administration of GLP-1 and GLP-2 with the dual specificity fusion protein according to an embodiment of the present invention.
  • Ex-4 GLP-2-2G, and Ex-4 + GLP-2-2G
  • the drug was administered twice a day for a total of 24 times for 12 days, and for the remaining groups, twice a week, for a total of 4 times for 12 days.
  • feed intake was measured and expressed as cumulative feed intake
  • body weight was measured before autopsy to calculate weight versus feed intake.
  • the weight of the small intestine, the mucosal depth of the duodenum and the jejunum, and the height of the villus (Villus heigh) were measured.
  • the entire gastrointestinal tract of the mouse was separated, the mesentery and the pancreas were removed, and the area where the ileum and the cecum met was cut to separate the small intestine and the large intestine.
  • the separated small intestine was perfused with 10% neutral formalin to remove the contents, and the neutral formalin was removed with an absorbent towel and weighed.
  • the weighed small intestine was appropriately cut and 10% It was fixed with neutral formalin solution and used for histopathological examination.
  • Ex-4 and GLP-2-2G administration groups showed a tendency to increase the small intestine weight, and all experimental groups except Ex-4 showed a statistically significant increase in small intestine weight compared to the control group (FIG. 12a).
  • the small intestine weight increased numerically larger than when each substance was administered, and in the case of MG12 according to an embodiment of the present invention, numerically larger than that of the combination administration group. showed a tendency to increase in small intestine weight.
  • MG12-5 showed a statistically significant increase in the small intestine compared to the combined administration group.
  • the present inventors tried to determine whether MG12 according to an embodiment of the present invention has a therapeutic effect on various metabolic syndromes other than short bowel syndrome.
  • the present inventors used 8-week-old C57BL/6J male mice on a choline-deficient high-fat diet ( CD-HFD) was treated for 12 weeks, and 20 nmol/kg of MG12-5, MG12-8, and 10 nmol/kg of GLP-1 and GLP-2 combination (combo) were administered simultaneously with the CD-HFD diet for 4 weeks. It was administered subcutaneously twice a week, and various serological indicators and histological examinations of experimental animals were performed.
  • CD-HFD choline-deficient high-fat diet
  • the present inventors recorded changes in body weight and food intake of experimental animals during the experiment period. As a result, as shown in FIGS. 13b and 13c , the body weight of the experimental animals was significantly reduced when the MG12 of the present invention was administered.
  • the normal diet group (NCD + PBS) and the relative weight loss effect was greater than that of the GLP-1 and GLP-2 combination administration group, and the food intake was also lower than that of the normal diet group or the combination administration group (combo), as shown in FIG. 13d . was able to confirm This suggests that the heterodimeric fusion protein according to an embodiment of the present invention exhibits a superior effect than simple co-administration of GLP-1 and GLP-2.
  • the present inventors investigated the blood glucose lowering effect in addition to the weight loss effect of MG-12 according to an embodiment of the present invention.
  • mice treated with drugs (MG12-5, MG12-8, GLP-1 and GLP-2 combined) twice a week for 4 weeks were fed for 12 hours.
  • glucose was intraperitoneally administered at a dose of 2 g/kg, and changes in blood glucose were measured for a total of 3 hours by time.
  • FIG. 14a a higher blood glucose increase was confirmed in the CD-HFD-fed group compared to the normal-fed group.
  • a statistically significant decrease in blood glucose was confirmed in the MG12-5 and MG12-8 administration groups according to an embodiment of the present invention compared to the negative control group (CD-HFD + PBS) administered only with the carrier.
  • 14B is a graph showing the area under the curve related to the blood glucose change, wherein the area under the curve of the blood glucose change increased by CD-HFD is decreased to a normal range by administration of GLP-1 and GLP-2, in particular It can be seen that MG12-5 and MG12-8 decrease more than twofold.
  • the present inventors sacrificed a mouse that had completed the drug administration experiment as described above and excised liver tissue, and observed changes in the size and color of the liver tissue by photographing it, and measuring the weight of the extracted liver tissue, Blood levels of ALT, an indicator of hepatotoxicity, were measured.
  • the present inventors conducted a study to determine whether MG12 according to an embodiment of the present invention has a therapeutic effect on severe non-alcoholic steatohepatitis (NASH), which is more developed in fatty liver. Animal experiments using NASH-induced animal models were performed.
  • NASH severe non-alcoholic steatohepatitis
  • streptozotocin (STZ) was administered intraperitoneally once to 2-day-old C57BL/6 mice as shown in FIG. After feeding for 4 weeks, a 60% high-fat diet and PBS (vehicle) as a negative control group, and the MG12-8 drug according to an embodiment of the present invention were administered at a dose of 10, 30, and 90 nmol/kg for 3 weeks. It was administered 3 times subcutaneously (sc). At week 11, mice were sacrificed to obtain liver and blood, and analysis was performed. As a positive control, OCA (obeticholic acid) was administered orally every day from the 8th week at a concentration of 30 mg/kg for 3 weeks.
  • STZ streptozotocin
  • MG12-8 according to an embodiment of the present invention was confirmed to statistically significantly reduce both the levels of AST and ALT in the blood regardless of the concentration. This is a result of proving that MG12 according to an embodiment of the present invention is a substance having a therapeutic effect on severe NASH.
  • the present inventors tried to analyze the therapeutic effect of MG12 on nonalcoholic fatty liver disease (NAFLD) according to an embodiment of the present invention through the NAFLD activity index.
  • the NAFLD activity index was expressed by comprehensively analyzing liver fat accumulation, inflammatory response, and changes in the shape of hepatocytes. Fat accumulation was indicated in yellow green, inflammatory response in gray, and ballooning in hepatocytes in pink.
  • FIG. 16e compared with the negative control group, the positive control group, although the fat accumulation in the liver was somewhat reduced, failed to suppress the inflammatory response, and thus the overall index was equal to that of the negative control group.
  • MG12-8 according to an embodiment of the present invention lowered the NAFLD activity index in a dose-dependent manner, in particular, in the 30 nmol/kg and 90 nmol/kg administration groups, 0.5 points or less, 1/8 or less compared to the negative control group showed a remarkable effect of lowering This is a result of proving that MG12 according to an embodiment of the present invention is a very effective therapeutic agent candidate for nonalcoholic fatty liver disease.
  • MG12 can reduce metabolic diseases such as short bowel syndrome, obesity, type 2 diabetes, and nonalcoholic steatohepatitis, compared to the simple combination administration of GLP-1 and GLP-2. It can be seen that it is a very effective treatment candidate in treatment. Therefore, the heterodimeric fusion protein according to an embodiment of the present invention can be very usefully used as a therapeutic agent for various diseases that have been previously treated with GLP-1 and/or GLP-2, such as short bowel syndrome and metabolic diseases. .
  • composition according to an embodiment of the present invention can be used as a therapeutic agent for metabolic diseases such as obesity, type 2 diabetes, obesity, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and liver fibrosis.
  • metabolic diseases such as obesity, type 2 diabetes, obesity, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and liver fibrosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 신규 이중 특이성 융합단백질 및 그의 용도에 관한 것으로서, 보다 구체적으로는 GLP-1 유사체 및 GLP-2 유사체가 융합된 이중 특이성 융합단백질 또는 GLP-1 유사체가 항체 Fc 영역에 연결된 제1융합단백질 및 GLP-2 유사체가 항체 Fc 영역에 연결된 제2융합단백질을 포함하며, 상기 제1융합단백질 및 제2융합단백질의 이량체화에 의해 생성되는 이중 특이성 융합단백질 및 그를 유효성분으로 포함하는 장의 증식을 필요로 하는 질환 또는 증상 또는 비만, 제2형 당뇨병 및 비알코올성 지방간염과 같은 대사성 질환의 치료용 약학적 조성물에 관한 것이다.

Description

신규 이중 특이성 단백질 및 그의 용도
본 발명은 신규 이중 특이성 단백질 및 그의 용도에 관한 것으로서, 구체적으로는 GLP-1 유사체 및 GLP-2 유사체를 포함하는 이중 특이성 단백질 및 그의 용도에 관한 것이다.
GLP-1 및 GLP-2는 모두 프로글루카콘이라는 전구체로 발현되어 일련의 조직특이적 단백질 절단 과정을 거쳐서 생성이 되는 펩타이드 호르몬이다. 이 중, GLP-1은 음식 섭취 시 소장의 장내분비(enteroendocrine) L-세포 및 뇌간(brain stem)의 고립 속(solitary tract) 핵 내의 특정 신경세포에서 생산되어 분비되는데, 최초 산물인 GLP-1(1-37)은 쉽게 아마이드화되며 절단에 의해 두 가지의 동등한 생물학적 활성을 가진 절단된 형태(GLP-1(7-36) 아마이드 및 GLP-1(7-37))로 전환되며 활성 GLP-1은 포도당-의존적으로 혈당 수준을 낮추는 역할을 수행하기 때문에, 제2형 당뇨병 치료제로 개발되어 사용되고 있다. 아울러, GLP-2는 GLP-1과 마찬가지로 프로글루카곤의 특별한 번역 후 절단 공정에 의해 생성되는 33 아미노산 길이의 펩타이드로서 소장의 장내분비 L 세포와 중추신경계의 다양한 신경세포에서 생산이 되며, 음식 섭취 시 소장에서 GLP-1과 함께 분비가 된다. GLP-2의 경우 투여 시 소장 성장 및 기능을 향상시키고, 뼈의 파괴를 감소시키며 신경보호작용을 하는 것으로 알려지고 있어, 현재 단장증후군이나 크론병, 골다공증과 같은 질환의 치료제로 개발되고 있다.
GLP-1은 상술한 바와 같이 원래 제2형 당뇨병 환자의 치료에서 포도당 항상성에 대한 유익한 효과로 주목을 받았으나(Gutniak et al., N. Engl. J. Med. 326: 1316-1322, 1992), 이 역시 GLP-2와 유사하게 위장 분비와 운동성을 감소시킨다는 연구결과를 통해 단장증후군의 치료에서의 역할이 암시된 바 있다(Kunkel et al., Neurogastroenterol. Motil. 23: 739-e328, 2011). 아울러, GLP-1에 의한 GLP1R 신호전달 체계의 활성화에 의해 장의 성장 및 소장샘 세포(crypt cell)의 융합이 촉진되는 것이 보고된 바 있다(Koehler et al., Cell Metabol. 21(3): 379-391, 2015). 이러한 기전을 바탕으로, Naia 사에서는 GLP-1에 반감기 연장 펩타이드인 XTEN이 연결된 GLP-1-XTEN을 이용하여 단장증후군에 대한 임상 1상 시험을 진행 중에 있다. 더 나아가, GLP-1과 GLP-2의 병용 투여 시 각각의 펩타이드 단독 투여 시에 비해 소장 흡수에 있어서 상가적인 효과가 나타났다고 보고된 바 있다(Madsen et al., Regul. Pept. 184: 30-39, 2013).
한편, 비알코올성 지방간질환(nonalcoholic fatty liver disease, NAFLD)은 한 가지 병이라기보다 염증을 동반하지 않는 단순 지방간에서부터 만성 간염, 간경변증에 이르는 다양한 형태의 간질환을 포함하며, 비만 및 그에 따른 인슐린 저항성과 밀접하게 관련되어 있는 것으로 알려져 있다. 비알코올성 지방간질환은 단순히 지방만 끼어 있고 간세포 손상은 없는 가벼운 지방간으로부터, 간세포 손상이 심하고 지속되는 지방간염, 심지어는 복수나 황달 등을 동반하는 간섬유화 또는 간경변증(간경화)이 생기는 경우까지 병의 정도가 매우 다양할 수 있으며, 더 진행되면 간암으로까지 진행되는 것으로 알려져 있을 뿐 아니라, 서구적인 식습관의 만연에 따른 서구형 질환으로 발생 빈도가 급격하게 증가하고 있는 질환이다. 대부분의 비알코올성 지방간질환은 가벼운 병이지만, 심한 지방간 환자 4명 중에 한 명은 치료를 하지 않고 방치되었을 경우 서서히 시간이 지남에 따라 심각한 간질환인 간경변증(또는 간섬유증)으로 진행하는 바, 결코 무시할 수 있는 증상이 아니라고 할 수 있다. 비알코올성 지방간질환의 유병률은 인구집단의 특성에 따라 다양하게 보고되는데 일반인의 10~24%, 비만인의 58~74%까지 보고되고 있다. 그러나, 현재까지 비알코올성 지방간질환 또는 비알코올성 지방간염의 치료제로 승인된 약물은 아직까지 없는 상황으로, 비알코올성 지방간질환의 치료제의 개발은 매우 시급한 과제로 간주되고 있다.
아울러, GLP-1R 단독 작용제와 비교하여 더 우수한 효과를 나타내는 GLP-1R 및 GLP-2R 이중 작용제를 이용한 비알코올성 지방간염 등의 대사증후군 치료제는 아직까지 개발된 바 없다.
본 발명은 상술한 문제점을 포함하여 여러 가지 문제점을 해결하기 위한 것으로서, GLP-1 및 GLP-2의 기능을 유지하면서도 기존 GLP-2 유사체 및 GLP-1 유사체의 단점을 개선할 수 있으며, 비알코올성 지방간과 같은 대사증후군의 치료에 있어서 효과적인 새로운 이중 특이성 단백질을 제공하는 것을 목적으로 한다. 그러나, 본 발명의 보호범위가 상기 목적으로 제한되는 것은 아니다.
본 발명의 일 관점에 따르면, GLP-1 유사체 및 GLP-2 유사체가 융합된 이중 특이성 융합단백질이 제공된다.
본 발명의 다른 일 관점에 따르면, GLP-1 유사체가 항체 Fc 영역에 연결된 제1융합단백질 및 GLP-2 유사체가 항체 Fc 영역에 연결된 제2융합단백질을 포함하며, 상기 제1융합단백질 및 제2융합단백질의 이량체화에 의해 생성되는 이중 특이성 융합단백질이 제공된다.
본 발명의 일 관점에 따르면, 상기 이중 특이성 융합단백질을 포함하는 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비알코올성 지방간염의 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 대사증후군 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비만 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 제2형 당뇨병 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 간 섬유증 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 장의 증식을 필요로 하는 질환에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 장의 증식을 필요로 하는 질환 또는 증상의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 대사증후군에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 대사증후군의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 비만 개체에게 투여하는 단계를 포함하는 상기 개체의 비만 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 제2형 당뇨병에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 제2형 당뇨병의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 비알코올성 지방간질환 또는 비알코올성 지방간염에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 비알코올성 지방간질환 또는 비알코올성 지방간염의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 간 섬유증에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 간 섬유증의 치료방법이 제공된다.
본 발명의 이중 특이성 융합단백질은 생체 내 투여 시 장 증식을 유의하게 증가시켜 장 증식을 필요로 하는 질환 예컨대 단장증과 같은 질환 또는 대사증후군, 비만, 제2형 당뇨병, 비알코올성 지방간질환, 간 섬유증과 같은 대사성 질환의 치료에 매우 효율적으로 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 이중 특이성 융합단백질의 개략적인 구조를 나타내는 개요도이다.
도 2는 다양한 GLP-1 및/또는 GLP-2 유사체와 GLP-1 수용체, GLP-2 수용체 및 다른 글루카곤 수용체 사이의 상호작용 관계를 나타내는 개요도이다.
도 3a는 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합 단백질을 정제한 후 비환원(NR) 및 환원(R) 조건에서 SDS-PAGE 분석한 결과를 나타내는 일련의 겔 사진이다:
M: size marker;
1: MG12-1(5 ㎍);
2: MG12-2(5 ㎍);
3: MG12-3(5 ㎍);
4: MG12-4(5 ㎍); 및
5: MG12-5(5 ㎍).
도 3b는 GLP-2 동형 이량체(GLP-2-Fc homodimer, 좌측)와 Knobs-into-Holes 구조를 포함한 MG12-5(우측)을 정제한 후 비환원(NR) 및 환원(R) 조건에서 SDS-PAGE 분석한 결과를 나타내는 일련의 겔 사진이다:
M: size marker;
1 & 2: GLP-2-Fc homo(10 ㎍); 및
3 & 4: MG12-5(10 ㎍).
도 3c는 본 발명의 일 실시예에 따른 MG12-6을 환원 및 비환원 조건에서 SDS-PAGE 분석한 결과를 나타내는 일련의 겔 사진(좌측) 및 정제된 단백질에 대한 HPLC 결과를 나타내는 크로마토그램(우측)이다:
M: size marker;
1: MG12-6; 및
C: Ctrl (3 μg)-Herceptin.
도 3d는 본 발명의 일 실시예에 따른 MG12-7 및 MG12-8을 환원 및 비환원 조건에서 SDS-PAGE 분석한 결과를 나타내는 일련의 겔 사진(좌측) 및 정제된 단백질에 대한 HPLC 결과를 나타내는 크로마토그램(우측)이다:
M: size marker;
1: MG12-7;
2: MG12-8; 및
3: Ctrl (3 μg)-Herceptin.
도 3e는 본 발명의 일 실시예에 따른 MG12-9를 환원 및 비환원 조건에서 SDS-PAGE 분석한 결과를 나타내는 겔 사진(상단) 및 정제된 단백질에 대한 HPLC 결과를 나타내는 크로마토그램(하단)이다. 상기 크로마토그램 위쪽은 사이즈 마커를 나타낸다:
1: Reducing MG12-9;
2: Non-reducing MG12-9; 및
3: Ctrl (3 μg)-BSA.
도 4a는 본 발명의 일 실시예에 따른 GLP-1-Fc 동형 이량체 단백질과 GLP-1 펩타이드의 생물학적 활성을 루시퍼레이즈 리포터 어세이로 분석한 결과를 나타내는 그래프이다.
도 4b는 본 발명의 일 실시예에 따른 MG12-1의 생물학적 활성을 GLP-1 펩타이드와 비교하여 측정한 결과를 나타내는 그래프이다.
도 4c는 본 발명의 일 실시예에 따른 MG12-3의 생물학적 활성을 GLP-1 펩타이드와 비교하여 측정한 결과를 나타내는 그래프이다.
도 4d는 본 발명의 일 실시예에 따른 MG12-4의 생물학적 활성을 GLP-1 펩타이드와 비교하여 측정한 결과를 나타내는 그래프이다.
도 4e는 본 발명의 일 실시예에 따른 MG12-5의 생물학적 활성을 GLP-1 펩타이드와 비교하여 측정한 결과를 나타내는 그래프이다.
도 5a는 본 발명의 일 실시예에 따른 GLP-2-Fc 동형 이량체 단백질의 GLP-2 활성을 GLP-2 펩타이드와 비교하여 형광분석한 결과를 나타내는 그래프이다.
도 5b는 본 발명의 일 실시예에 따른 MG12-1 단백질의 GLP-2 활성을 GLP-2 펩타이드와 비교하여 형광분석한 결과를 나타내는 그래프이다.
도 5c는 본 발명의 일 실시예에 따른 MG12-3 단백질의 GLP-2 활성을 GLP-2 펩타이드와 비교하여 형광분석한 결과를 나타내는 그래프이다.
도 5d는 본 발명의 일 실시예에 따른 MG12-4 단백질의 GLP-2 활성을 GLP-2 펩타이드와 비교하여 형광분석한 결과를 나타내는 그래프이다.
도 5e는 본 발명의 일 실시예에 따른 MG12-5 단백질의 GLP-2 활성을 GLP-2 펩타이드와 비교하여 형광분석한 결과를 나타내는 그래프이다.
도 6a는 본 발명의 일 실시예에 따른 GLP-1-Fc 동형 이량체의 GLP-1 활성을 루시퍼레이즈 리포터 분석으로 분석한 결과를 나타낸 그래프이다.
도 6b는 본 발명의 일 실시예에 따른 GLP-2-Fc 동형 이량체의 GLP-2 활성을 형광분석으로 분석한 결과를 나타내는 그래프이다.
도 6c는 본 발명의 일 실시예에 따른 MG12-2 단백질의 GLP-1 활성을 루시퍼레이즈 리포터 분석으로 분석한 결과를 나타낸 그래프이다.
도 6d는 본 발명의 일 실시예에 따른 MG12-2 단백질의 GLP-2 활성을 형광분석으로 분석한 결과를 나타내는 그래프이다.
도 7a는 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합단백질을 동물(랫트) 투여 시 약물동태학(pharmacokinetics, PK) 프로파일을 GLP-1-Fc를 이용한 ELISA 분석으로 분석한 결과를 나타내는 그래프이다.
도 7b는 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합단백질을 동물(랫트) 투여 시 약물동태학(pharmacokinetics, PK) 프로파일을 GLP-2-Fc를 이용한 ELISA 분석으로 분석한 결과를 나타내는 그래프이다.
도 8a는 본 발명의 일 실시예에 따른 다양한 이량체 단백질(GLP-2-2G, GLP-2-Fc 동형 이량체 및 MG12-5)을 모델 동물에 투여 시 장의 무게를 측정한 결과를 나타내는 그래프이다.
도 8b는 본 발명의 일 실시예에 따른 다양한 이량체 단백질(GLP-2-2G, GLP-2-Fc 동형 이량체 및 MG12-5)을 모델 동물에 투여 시 12일간의 체중의 변화를 측정한 결과를 나타내는 그래프이다.
도 8c는 본 발명의 일 실시예에 따른 다양한 이량체 단백질(GLP-2-2G, GLP-2-Fc 동형 이량체 및 MG12-5)을 모델 동물에 투여 전 에너지 흡수 비율을 측정한 결과를 나타내는 그래프이다.
도 8d는 본 발명의 일 실시예에 따른 다양한 이량체 단백질(GLP-2-2G, GLP-2-Fc 동형 이량체 및 MG12-5)을 모델 동물에 투여 후 1주 경과 시 에너지 흡수 비율을 측정한 결과를 나타내는 그래프이다.
도 8d는 본 발명의 일 실시예에 따른 다양한 이량체 단백질(GLP-2-2G, GLP-2-Fc 동형 이량체 및 MG12-5)을 모델 동물에 투여 후 2주 경과 시 에너지 흡수 비율을 측정한 결과를 나타내는 그래프이다.
도 9a는 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합단백질(MG12-1 및 MG12-4) 및 대조군(GLP-1-Fc 동형 이량체 및 GLP-2-Fc 동형 이량체)을 모델 동물에 투여 후 13일 경과 시 소장의 무게의 변화를 측정한 결과를 나타내는 그래프이다.
도 9b는 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합단백질(MG12-1 및 MG12-4) 및 대조군(GLP-1-Fc 동형 이량체 및 GLP-2-Fc 동형 이량체)을 모델 동물에 투여 후 13일 경과 시 체중의 변화를 측정한 결과를 나타내는 그래프이다.
도 10은 본 발명의 일 실시예에 따른 다양한 이중 특이성 융합단백질(MG12-1 및 MG12-4) 및 대조군(GLP-1-Fc 동형 이량체)을 모델 동물에 투여 후 뇌, 소장 및 대장에서의 형광강도를 측정한 결과를 나타내는 그래프이다.
도 11은 본 발명의 일 실시예에 따른 다양한 이종 특이성 융합단백질(MG12-1, MG12-4 및 MG12-5) 및 대조군들(Fc only, GLP-1-Fc 동형 이량체 및 GLP-2-Fc 동형 이량체)을 모델 동물에 투여 후 간, 소장 및 대장에서의 분포를 확인하기 위해 PET-MRI 분석을 수행한 결과를 나타내는 일련의 그래프이다.
도 12a는 본 발명의 일 실시예에 따른 다양한 이종 특이성 융합단백질(MG12-1, MG12-3, MG12-4 및 MG12-5), 그리고 Exendin 4(Ex-4), GLP-2-2G, 및 Exendin 4와 GLP-2-2G의 조합(Ex-4 + GLP-2-2G)을 실험동물에 12일간 투여 시, 소장의 무게를 측정한 결과를 나타내는 그래프이다.
도 12b는 본 발명의 일 실시예에 따른 다양한 이종 특이성 융합단백질(MG12-1, MG12-3, MG12-4 및 MG12-5), 그리고 Exendin 4(Ex-4), GLP-2-2G, 및 Exendin 4와 GLP-2-2G의 조합(Ex-4 + GLP-2-2G)을 실험동물에 12일간 투여 시, 사료 섭취 대비 체중증가율을 측정한 결과를 나타내는 그래프이다.
도 12c는 본 발명의 일 실시예에 따른 다양한 이종 특이성 융합단백질(MG12-1, MG12-3, MG12-4 및 MG12-5), 그리고 Exendin 4(Ex-4), GLP-2-2G, 및 Exendin 4와 GLP-2-2G의 조합(Ex-4 + GLP-2-2G)을 실험동물에 12일간 투여 후, 실험동물로부터 십이지장(Duodenum)을 적출하여 점막 깊이(mucosal depth) 및 융모의 높이(villi height)를 측정한 결과를 나타내는 그래프이다.
도 12d는 본 발명의 일 실시예에 따른 다양한 이종 특이성 융합단백질(MG12-1, MG12-3, MG12-4 및 MG12-5), 그리고 Exendin 4(Ex-4), GLP-2-2G, 및 Exendin 4와 GLP-2-2G의 조합(Ex-4 + GLP-2-2G)을 실험동물에 12일간 투여 후, 실험동물로부터 공장(jejunum)을 적출하여 점막 깊이(mucosal depth) 및 융모의 높이(villi height)를 측정한 결과를 나타내는 그래프이다.
도 13a는 본 발명의 콜린 결핍 고지방 식이에 따른 대사 증후군 모델 동물에 본 발명의 일 실시예에 따른 MG12의 투여 스케쥴을 개략적으로 나타낸 개요도이다.
도 13b는 상기 도 13a에 도시된 실험 스케쥴에 따라 수행된 동물실험에서 시간의 경과에 따른 체중의 변화를 나타낸 그래프이다.
도 13c는 상기 도 13a에 도시된 실험 스케쥴에 따라 수행된 동물실험에서 약물 투여 후 시간의 경과에 따른 체중의 상대 변화를 보다 상세하게 나타낸 그래프이다.
도 13d는 상기 도 13a에 도시된 실험 스케쥴에 따라 수행된 동물실험에서 섭취한 사료의 양을 측정한 결과를 나타내는 그래프이다.
도 14a는 상기 도 13a에 도시된 실험 스케쥴에 따라 수행된 동물시험에 사용된 각 실험군에 대하여 수행된 복강내당 분석 결과를 나타내는 그래프로 12시간 사료 제한을 한 후 2 g/kg의 투여량으로 포도당을 복강투여한 후 시간별로 총 3시간 동안 측정한 혈당량을 기록한 것이다.
도 14b는 상기 도 14a의 실험결과를 혈당 변화 곡선하 면적(AUC)으로 측정한 결과를 나타내는 그래프이다.
도 15a는 상기 도 13a에 도시된 실험 스케쥴에 따라 수행된 동물실험 종료 후 희생된 각 실험군의 실험동물에서 적출된 간 조직을 촬영한 사진이다.
도 15b는 상기 도 15a의 실험동물의 각 실험군별로 간조직의 중량을 측정한 결과를 나타내는 그래프이다.
도 15c는 상기 도 15a의 실험동물의 각 실험군별로 혈중 AST 수준을 측정한 결과를 나타내는 그래프이다.
도 16a는 중증 비알코올성 지방간염(severe NASH) 유발 동물 모델의 제조과정 및 본 발명의 일 실시예에 따른 MG-12, 음성대조군(vehicle) 및 양성대조군으로서 obeticholic acid(OCA)를 투여하는 동물 실험의 투여 스케쥴을 나타낸 개요도이다.
도 16b는 상기 도 16a에 도시된 실험 스케쥴대로 수행된 동물실험의 8주차부터 각 실험군별로 시간의 경과에 따른 체중의 변화를 측정한 결과를 나타내는 그래프이다.
도 16c는 도 16a에 도시된 실험 스케쥴대로 수행된 동물실험 종료 후 각 실험군별로 희생된 실험동물에서 적출된 간 조직의 중량을 측정한 결과를 나타내는 그래프이다.
도 16d는 도 16a에 도시된 실험 스케쥴대로 수행된 동물실험에서 각 실험군별로 혈중 AST(좌측) 및 ALT(우측) 수준을 측정한 결과를 나타내는 일련의 그래프이다.
도 16e는 도 16a에 도시된 실험 스케쥴대로 수행된 동물실험에서 각 실험군별로 NAFLD 활성 지수를 측정한 결과를 나타내는 그래프이다.
본 문서에서 사용되는 용어 "GLP-1"은 "글루카곤-유사 펩타이드-1(glucagon-like peptide-1)"의 약어로서 프로글루카곤 펩타이드의 조직특이적인 번역 후 가공에 의해 유도되는 30 또는 31 아미노산 길이의 펩타이드 호르몬이다. GLP-1은 음식 섭취 시 소장의 장내분비(enteroendocrine) L-세포 및 뇌간(brain stem)의 고립 속(solitary tract) 핵 내의 특정 신경세포에서 생산되어 분비된다. 최초 산물인 GLP-1(1-37)은 쉽게 아마이드화되며 절단에 의해 두 가지의 동등한 생물학적 활성을 가진 절단된 형태(GLP-1(7-36) 아마이드 및 GLP-1(7-37))로 전환된다. 활성 GLP-1은 아미노산 위치 13-20 및 24-35의 두 개의 알파-나선 부위와 상기 두 알파-나선 부위를 연결하는 링커 지역을 포함한다. GLP-1은 포도당-의존적으로 혈당 수준을 낮추는 역할을 수행하기 때문에, 제2형 당뇨병 치료제로 개발되어 사용되고 있다. 그러나, 생체 내에서 GLP-1은 디펩티딜 펩티데이즈-4(DPP-4)에 의해 신속하게 분해되기 때문에 생체 내 반감기가 2분에 불과하여, 자연 상태의 펩타이드로는 그 효과가 극히 제한적이다.
본 문서에서 사용되는 용어 "GLP-2"는 GLP-1과 마찬가지로 프로글루카곤의 번역 후 절단 공정에 의해 생성되는 33 아미노산 길이의 펩타이드로서 소장의 장내분비 L 세포와 중추신경계의 다양한 신경세포에서 생산이 된다. GLP-2는 음식 섭취 시 GLP-1과 함께 분비가 된다. GLP-2의 경우 투여 시 소장 성장 및 기능을 향상시키고, 뼈의 파괴를 감소시키며 신경보호작용을 하는 것으로 알려지고 있어, 현재 단장증후군이나 크론병, 골다공증과 같은 질환의 치료제로 개발되고 있다.
본 문서에서 사용되는 용어 "GLP-1 유사체"는 생물학적으로 GLP-1의 기능을 수행하는 단백질로서 GLP-1/Exendin-4 수용체에 결합하여 하류 신호전달을 매개할 수 있는 단백질을 의미하며, "GLP-1 수용체 작용제"로도 지칭된다.
본 문서에서 사용되는 용어 "GLP-2 유사체"는 생물학적으로 GLP-2의 기능을 수행하는 단백질로서 GLP-2 수용체에 결합하여 하류 신호전달을 매개할 수 있는 단백질을 의미하며, "GLP-2 수용체 작용제"로도 지칭된다.
본 발명에서 사용되는 용어 "융합단백질"은 둘 이상의 단백질 또는 단백질 내 특정 기능을 담당하는 도메인이 각각의 단백질 또는 도메인이 본연의 기능을 담당하도록 연결된 재조합 단백질(recombinant protein)을 의미한다.
본 문서에서 사용되는 용어 "반감기 증가 모이어티"는 재조합 단백질에 연결되어, 당해 재조합 단백질의 체내 반감기를 향상시키기 위한 기능기를 의미한다. 이러한 "반가기 증가 모이어티"로는 항체 Fc 영역(Capon et al., Nature. 337: 525-531, 1989), PEG(Caliceti and Veronese, Adv. Drug Delivery Rev. 55: 1261-1277, 2003), XTEN(Schellenberger et al., Nat. Biotechnol. 27: 1186-1190, 2009), PAS(Pro-Ala-Ser, Schlapschy et al., Protein Eng. Des. Sel. 26: 489-501, 2013), ELP(elastine-like peptide, Floss et al., Trends Biotechnol. 28: 37-45, 2010), 글리신-풍부 HAP(homo-amino-acid polymer, Schlapschy et al., Protein Eng. Des. Sel. 20: 273-284, 2007), GLK(gelatine-like protein, Huang et al., Eur. J. Pharm. Biopharm. 74(3): 435-441, 2010), 및 혈청 알부민(Sheffield et al., Cell Physiol. Biochem., 45(2): 772-782, 2018) 등이 사용될 수 있으며, 이와 같은 단백질에 부가되는 "반감기 증가 모이어티"에 대하여는 리뷰논문 등을 통해 잘 알려져 있다(Strohl, W. R., BioDrugs, 29(4): 215-239, 2015). 이에, 상기 개별 인자들에 대한 선행논문 및 상기 리뷰논문들은 본 문서에 참조로 삽입이 된다.
본 문서에서 사용되는 용어 "항체 Fc 영역"은 항체를 파파인으로 절단하였을 때 생성되는 단편 중 결정화되는 단편(crystalized fragment)을 의미하며, Fc 수용체라고 지칭되는 세포 표면 수용체 및 보체계(complement system)의 몇몇 단백질과 상호작용을 한다. Fc 영역은 중쇄의 두 번째 및 세 번째 불변 영역(CH2 및 CH3)을 포함하는 단편이 힌지 부분에서 분자 간 이황화 결합에 의해 연결된 동형 이량체 구조를 나타낸다. IgG의 Fc 영역은 다수의 N-글리칸 부착 부위를 가지고 있으며, 이는 Fc 수용체-매개 작용에 있어서 중요한 역할을 수행하는 것으로 알려져 있다.
본 문서에서 사용되는 용어 "하이브리드 Fc 영역"은 다양한 서브타입의 Ig Fc 영역의 부분들의 조합에 의해 생성된 Fc 영역 펩타이드를 의미하며, 이러한 Fc 영역의 부분들의 조합에 의해 Fc 수용체 및 보체와의 결합능에 있어서 야생형 Fc 영역과 차이를 나타낼 수 있다.
본 문서에서 사용되는 용어 "Exendin"은 도마뱀 Heloderma suspectum의 독에서 분리된 39 아미노산으로 구성된 펩타이드이다. Exendin 4는 GLP-1과 아미노산 서열상 50% 동일하며, 글루카곤 펩타이드 패밀리의 일원으로, GLP-1 수용체의 작용제로서 GLP-1과 동등한 역할을 수행하는 것으로 알려져 있다. Exendin-4는 최근 및 "extenatide"로도 불린다. Exendin 3는 상기 Exendin 4에서 두 번째 및 세 번째 아미노산이 각각 세린 및 아스파르트산으로 치환된 변이체이다.
본 문서에서 사용되는 용어 "Lixisenatide"는 GLP-1 수용체 작용제 중 하나로서, Sanofi사에 의해 제조되어, 유럽에서는 Lyxumia라는 상표명으로, 미국에서는 Adlyxin이라는 상표명으로 제2형 당뇨병 치료를 위한 일일 투여 주사제로 판매되고 있는 약물이다.
본 문서에서 사용되는 용어 "Albiglutide"는 GSK사에 의해 유럽에서는 Eperzan이라는 상표명으로, 미국에서는 Tanzeum이라는 상표명으로 제2형 당뇨병 치료제로 판매되고 있는 GLP-1 수용체 작용제 중의 하나이다.
본 문서에서 사용되는 용어 "Liraglutide"는 Novo Nordisk사에 의해 "Victoza"라는 상표명으로 제2형 당뇨병 및 비만 치료제로 판매되고 있는 피하주사형 GLP-1 수용체 작용제이다.
본 문서에서 사용되는 용어 "Taspoglutide"는 Ipsen사와 Roche사에 의해 공동개발된 GLP-1 수용체 작용제로 제2형 당뇨병 치료제로, GLP-1(7-36) 펩타이드의 8번째 및 35번째 아미노산인 알라닌이 메틸화되어 있고 마지막 아미노산이 아마이드화되어 있는 GLP-1 유도체이다. 단, 다른 펩타이드와 융합단백질의 형태로 제조될 경우에는 C-말단이 아마이드화되지 않고 일반적인 카르복실기인 경우도 무방하다.
본 문서에서 사용되는 용어 "XTEN"은 Amunix사에 의해 개발된 단백질 의약품의 생체 내 반감기를 향상시키기 위해 부가되는 6개의 아미노산을 포함하는 비구조화된(unstructed) 저면역원성 펩타이드로서 통상 144 a.a를 단위로 하여 그의 배수의 아미노산으로 구성되어 있다(US20100239554A1).
본 문서에서 사용되는 용어 "Teduglutide"는 GLP-2의 2번째 아미노산인 알라닌(A)이 글라이신(G)로 치환된 돌연변이체로서 미국에서는 Gattex라는 상표명으로, 유럽에서는 Revestive라는 상표명으로 단장증후군 치료제로 판매되고 있는 GLP-2 유사체이다.
본 문서에서 사용되는 용어 "Glepaglutide"는 반감기가 향상된 GLP-2 유사체로 단장증후군 치료제로 개발되어 현재 단장증후군에 대하여 임상 3상시험을 진행 중인 약물이다.
본 문서에서 사용되는 용어 "GLP-2 analogue 10"는 GLP-2 유사체 중 하나로서 GLP-2의 11번째 및 18번째 아미노산을 시스테인으로 치환하여 두 치환된 시스테인의 티올기를 통해 지질화된 분자 내 가교제가 연결됨으로써 안정화된 구조를 갖게 되고, C-말단에 Exendin 4의 C-말단의 9개 아미노산을 부가한 것을 특징으로 한다(Yang et al., J. Med. Chem. 61: 3218-3223, 2018).
본 문서에서 사용되는 용어 "링커 펩타이드"는 둘 이상의 다른 생물학적 활성을 가진 단백질 또는 펩타이드를 연결하여 융합단백질을 제조할 사용되는 비구조화된 펩타이드이다.
본 문서에서 사용되는 용어 "흡수불량(malabsorption)"은 장관 특히, 소장에서 영양소가 일부 또는 전부 흡수되지 않아 생기는 질환을 말한다. 원인은 첫째, 1차적 선천적 이상으로서 젖당·설탕 등 이당류 분해효소의 결핍, 췌장·소장 등의 소화효소 결핍, 포도당과 비타민 B12 등 소장 점막의 전송장애 등을 들 수 있고, 둘째, 2차적 원인으로서 장질환 등으로 계속 흡수불량이 일어나는 경우로서, 이 밖에 장관 내의 효소가 부족하거나 정상 상태의 장내 세균이 변하는 경우, 췌장·간·담낭 등의 질환으로 소화가 잘 되지 않는 경우, 기생충·복통 등 장관 벽의 질환이 있는 경우, 장관절제 수술로 흡수 면적이 줄었을 경우 등을 들 수 있다. 위험 인자로는 알코올 과다섭취, 장관 수술, 가족 중 흡수불량이나 낭포성 섬유증 환자가 있는 경우, 광유 또는 다른 완화제를 사용한 경우 등이 있다.
본 문서에서 사용되는 용어 "염증성 장질환(inflammatory bowel disease)"은 장관 내 비정상적인 만성 염증이 호전과 재발을 반복하는 질환으로 흔히 궤양성 대장염과 크론병이 대표적이며 아직까지 명확한 발병기전은 밝혀져 있지 않고 있다. 염증성 장질환의 진단은 임상 증상, 내시경 및 조직병리 소견, 혈액검사소견, 영상의학검사 소견을 종합하여 이루어지며, 염증성 장질환은 증상이 없어지는 관해기와 악화되는 활동기가 반복되는 만성 질환으로 질환의 완치보다는 증상의 조절과 합병증 예방 및 삶의 질을 향상시키는 것을 치료 목적으로 하고 있다.
본 문서에서 사용되는 용어 "궤양성 장염(ulcerative colitis)"은 크론병, 베체트병과 함께 염증성 장질환의 하나로, 대장에 원인 불명의 염증 또는 궤양이 만성적으로 생기는 질환이다. 정확한 원인은 아직 밝혀지지 않았다. 대부분의 경우 증상의 악화와 호전이 반복되는데, 현대의학으로는 완치가 어려운 난치성 질환이다.
본 문서에서 사용되는 용어 "베체트병(Bechete's disease)"은 자가면역질환의 하나로 자가면역에 의해 신체에 존재하는 점막 특히 위장관의 점막이 헐게 되는 질병으로, 증상이 다양하고, 병소가 나타나는 부위 역시 개인에 따라 다르며, 신경계나 위장관계, 안구계, 혈관계와 같은 부위에 나타날 경우 치명적으로 발전할 수 있는 난치성 질환으로 현재까지 근본적인 치료법이 존재하지 않고 있다.
본 문서에서 사용되는 "단장증후군(short bowel syndrome, SBS)"은 흡수장애 질환으로, 소장의 일부를 수술에 의해 제거하거나 또는 상기 창자의 분절(segment)의 기능이상(dysfunction)에 의해서 유발될 수 있다. 예를 들면, 크론병(Crohn's disease), 소화관의 염증 장애, 창자꼬임(volvulus), 혈액공급이 차단되어 조직사 (tissue death)를 초래하는 소장의 자연 꼬임(spontaneous twisting), 소장의 종양, 소장의 상처 또는 외상, 괴사성 장염(necrotizing enterocolitis), 비만을 치료하기 위한 우회술(bypass surgery), 소장의 질병 및 손상된 부위를 제거하기 위한 수술과 관련된 수술에 의해서 대부분의 장애가 유발된다. 또한, 일부 유아는 선천적으로 짧은 창자를 가지고 태어나기도 한다.
본 문서에서 사용되는 용어 "대사증후군(metabolic syndrome)"은 인슐린 저항성이 원인인 것으로 추정되는 질환으로 콜레스테롤, 혈압, 혈당치 중 2개 이상의 수치에 이상이 생기는 증상을 의미한다. 각종 심혈관 질환과 제2형 당뇨병의 위험 요인들이 서로 군집을 이루는 현상을 한 가지 질환군으로 개념화시킨 것이다. 인슐린 저항성(IR) 및 이와 관련된 복잡하고 다양한 여러 대사이상과 임상양상을 모두 포괄하여 설명할 수 있는 유용한 개념이다. 대사증후군을 방치하면, 동맥경화, 심근경색, 뇌졸중 등 심혈관 질환 혹은 제2형 당뇨병의 발병 위험도가 증가하는 것으로 알려져 있다.
발명의 상세한 설명:
본 발명의 일 관점에 따르면, GLP-1 유사체 및 GLP-2 유사체가 융합된 이중 특이성 융합단백질이 제공된다.
상기 이중 특이성 융합단백질은 반감기 증가 모이어티가 부가된 것일 수 있고, 상기 반감기 증가 모이어티는 상기 GLP-1 유사체와 GLP-2 유사체 사이에 삽입이 되거나 전체 융합단백질의 N-말단 또는 C-말단에 부가된 것일 수 있으며, 바람직하게는 항체 Fc 영역, PEG, XTEN, PAS(Pro-Ala-Ser), ELP(elastin-like peptide), 글리신-풍부 HAP(homo-amino-acid polymer), GLP(gelatine-like protein), 또는 혈청 알부민일 수 있다.
상기 이중 특이성 융합단백질은 체내에서 자연적으로 발현이 되는 GLP-1 및 GLP-2가 중간 펩타이드(intervention peptide)에 의해 연결된 프로글루카곤 또는 그의 유사체가 아니라, GLP-1 유사체 및 GLP-2 유사체가 직접 연결되거나 두 펩타이드가 상기 중간 펩타이드가 아닌 다른 형태의 링커 펩타이드에 의해 연결된 융합단백질일 수 있다.
본 발명의 일 관점에 따르면, GLP-1 유사체가 항체 Fc 영역에 연결된 제1융합단백질 및 GLP-2 유사체가 항체 Fc 영역에 연결된 제2융합단백질을 포함하며, 상기 제1융합단백질 및 제2융합단백질의 이량체화에 의해 생성되는 이중 특이성 융합단백질이 제공된다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-1 유사체는 GLP-1, 엑센딘 3(Exendin 3), 엑센딘 4(Exendin 4), GLP-1/Exendin 4 하이브리드 펩타이드, GLP-1-XTEN, Exendin 4-XTEN, Lixisenatide, Albiglutide, Liraglutide, 또는 Taspoglutide일 수 있다. 선택적으로, 상기 GLP-1 유사체는 두 개의 GLP-1이 링커 펩타이드에 의해 연결된 GLP-1 연속 반복체일 수 있다.
아울러, 상기 이중 특이성 융합단백질에 있어서, 상기 GLP-1 유사체 및 상기 GLP-2 유사체 중 적어도 하나는 연속적 반복체(tandem repeat)이고, 상기 GLP-1 유사체 및 상기 GLP-2 유사체의 반복 횟수는 서로 상이한 것일 수 있다. 상기와 같은 구조는 이중 특이성 융합단백질의 비대칭성을 위해 도입이 되는 것으로서, 이와 같이 이형 이량체를 형성하는 단위 융합단백질의 크기가 달라지면, 동형 이량체 생성 정도를 모니터링하기 용이하기 때문에 품질 제어(quality control)가 가능할 뿐만 아니라 기존의 반감기 증가기술로 잘 알려진 PEGylation 대비 제조 공정을 간소화할 수 있기 때문에 생산원가를 절감할 수 있는 이점이 있다. 이러한 GLP-1 유사체와 GLP-2 유사체의 반복단위수는 요구되는 GLP-1R 및 GLP-2R에 대한 결합친화도에 따라 조절될 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-1은 서열번호 1 또는 2로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Exendin 3는 서열번호 3으로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Exendin 4는 서열번호 4로 기재되는 아미노산 서열로 구성될 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-1/Exendin 4 하이브리드는 서열번호 5로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Lixisenatide는 서열번호 6으로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Exendin 4-XTEN은 서열번호 7로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Albiglutide는 서열번호 8로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Liraglutide는 서열번호 9로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 Taspoglutide는 서열번호 10으로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-1 연속 반복체는 서열번호 11로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 항체 Fc 영역은 하이브리드 항체 Fc 영역일 수 있고, 상기 하이브리드 항체 Fc 영역은 서열번호 12 내지 16으로 구성되는 군으로부터 선택되는 아미노산 서열로 구성된 것일 수 있다. 아울러, 상기 하이브리드 항체 Fc 영역은 ADCC(antibody-dependent cell cytotoxicity)나 CDC(complement-dependent cytotoxicity)와 같은 체내 투여 시 원하지 않은 부작용을 유발하지 않도록 추가적으로 변이된 것일 수 있다. 이러한 하이브리드 항체 Fc 영역은 대한민국 특허 제897938호에 기재된 것일 수 있고, 서열번호 13로 기재되는 아미노산 서열로 구성이 되는 하이브리드 Fc 영역의 18번째 아미노산인 트레오닌(T)가 글루타민(Q)로 치환되고, 196번째 아미노산인 메티오닌(M)이 류신(L)으로 치환된 서열번호 14로 기재되는 하이브리드 Fc 영역 변이체 또는 서열번호 12로 기재되는 아미노산 서열로 구성이 되는 하이브리드 Fc 영역의 18번째 아미노산인 트레오닌(T)가 글루타민(Q)로 치환되고, 196번째 아미노산인 메티오닌(M)이 류신(L)으로 치환된 서열번호 15로 기재되는 아미노산 서열로 구성이 되는 하이브리드 Fc 영역 변이체일 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-2 유사체는 GLP-2, Glepaglutide, 또는 GLP-2 analogue 10일 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-2는 서열번호 17 내지 20 중 어느 하나로 기재되는 아미노산 서열을 포함할 수 있다. 서열번호 18로 기재되는 아미노산 서열로 구성되는 펩타이드는 인간 GLP-2 야생형 펩타이드이고, 서열번호 17로 기재되는 아미노산 서열로 구성되는 인간 GLP-2 변이체는 2번째 아미노산인 알라닌이 글라이신으로 치환된 것으로서 Teduglutide로도 불린다. 한편, 서열번호 19로 기재되는 아미노산 서열로 구성되는 GLP-2 변이체는 2번째 아미노산인 알라닌(A)이 글라이신(G)로 변이되었을 뿐만 아니라 16번째 아미노산인 아스파라긴(N)이 글라이신(G)으로 변이되고 17번째 아미노산인 류신(L)이 글루타민(Q)로 변이가 된 GLP-2 변이체(GLP-2 A2G, N16G, L17Q)로서 GLP-2로서의 기능은 그대로 유지하면서도 재조합 생산 시 GLP-2의 이량체화나 그로 인한 응집체 형성을 억제하는 것으로 알려지고 있다(Baker et al., J. Mol. Recognit. 25: 155-164, 2012). 선택적으로 GLP-2 야생형 펩타이드에서 2번째 아미노산인 알라닌이 글라이신으로 치환되고 17번째 아미노산인 류신이 글루타민으로 치환된 것(A2G, L17Q, 서열번호 20)도 상기 서열번호 19로 기재되는 아미노산 서열로 구성되는 GLP-2 유사체와 동등한 기능을 발휘할 수 있으므로, 본 발명에서 GLP-2 유사체로 사용하는 것이 가능하다.
상기 이중 특이성 융합단백질에 있어서, 상기 Glepaglutide는 서열번호 21로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 GLP-2 analogue 10는 서열번호 22로 기재되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 제1융합단백질은 서열번호 23 내지 30로 구성되는 군으로부터 선택되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 제2융합단백질은 서열번호 31 내지 36으로 구성되는 군으로부터 선택되는 아미노산 서열을 포함할 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 제1융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 10번째 아미노산인 세린이 시스테인(C)으로 치환되고, 22번째 아미노산인 트레오닌(T)이 트립토판(W)으로 치환된 것(Knob 구조)일 수 있고, 제2융합단백질은 Fc 영역 중 CH3 도메인의 5번째 아미노산인 타이로신(Y)이 시스테인(C)로, 22번째 아미노산인 트레오닌이 세린(S)로, 24번째 아미노산인 류신(L)이 알라닌(A)로, 63번째 아미노산인 타이로신(Y)이 발린(V)로 치환된 것(Hole 구조)일 수 있고, 반대로 상기 제1융합단백질은 Fc 영역 중 CH3 도메인의 5번째 아미노산인 타이로신(Y)이 시스테인(C)로, 22번째 아미노산인 트레오닌이 세린(S)로, 24번째 아미노산인 류신(L)이 알라닌(A)로, 63번째 아미노산인 타이로신(Y)이 발린(V)로 치환된 것(Hole 구조)일 수 있고, 상기 제2융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 10번째 아미노산인 세린이 시스테인(C)으로 치환되고, 22번째 아미노산인 트레오닌(T)이 트립토판(W)으로 치환된 것(Knob 구조)일 수 있다.
선택적으로, 상기 제1융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 22번째 아미노산인 트레오닌(T)가 타이로신(Y)로 치환되고, 상기 제2융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 63번째 아미노산인 타이로신(Y)이 트레오닌(T)로 치환된 것이고, 상기 제2융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 63번째 아미노산인 타이로신(Y)이 트레오닌(T)로 치환된 것이고, 상기 제1융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 63번째 아미노산인 타이로신(Y)이 트레오닌(T)로 치환된 것일 수 있다. 다만 상기 63번째 아미노산의 변이는 서열번호 69로 기재되는 인간 IgG1의 CH3 도메인의 아미노산 서열이 기준이 아니라 IMGT(international ImMunoGeneTics information system)의 numbering 규칙에 따르면(Lefranc et al., Dev. Comp. Immunol., 27: 55-77, 2003), Y86T로 표시 될 수 있다.
상기 이중 특이성 융합단백질에 있어서, 상기 융합단백질의 융합파트너들 사이, 즉 펩타이드 또는 도메인 사이에는 하나 이상의 링커 펩타이드가 삽입이 될 수 있다. 즉, 상기 GLP-1 유사체 및 GLP-2 유사체가 융합된 이중 특이성 융합단백질의 경우 GLP-1 유사체 및 GLP-2 유사체 사이에 링커 펩타이드가 삽입이 될 수 있고, 상기 제1융합단백질 및 제2융합단백질의 이량체화에 의해 생성되는 이중 특이성 융합단백질의 경우 제1융합단백질 내부의 GLP-1 유사체와 항체 Fc 영역 사이에 링커 펩타이드가 삽입이 될 수 있고, 마찬가지로 제2융합단백질 내의 GLP-2 유사체와 항체 Fc 영역 사이에 링커 펩타이드가 삽입이 될 수 있다. 이 때, 상기 링커 펩타이드는 N-글리칸 부착 부위를 포함하거나 포함하지 않는 것일 수 있고, 더 바람직하게는 상기 제1융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하지 않고 상기 제2융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함할 수 있다. 선택적으로, 상기 제1융합단백질 및 상기 제2융합단백질 모두 N-글리칸 부착 부위를 포함하지 않는 것일 수도 있고 상기 제1융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하지 않고 상기 제2융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함한 것일 수도 있다.
상기 링커 펩타이드는 EPKSSDKTHTCPPCP(서열번호 37), EPKSCDKTHTCPPCP(서열번호 38), GGGGSGGGGSGGGGSEPKSSDKTHTCPPCP(서열번호 39), GGGGSGGGGSGGGGSEPKSCDKTHTCPPCP(서열번호 40), AKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECP(서열번호 41), GGGGSGGGGSGGGGSEKEKEEQEERTHTCPPCP(서열번호 42), GGGGSGGGGSGGGGSAKNTTAPATTRNTTRGGEEKKKEKEKEEQEERTHTCPPCP(서열번호 43), AAGSGGGGGSGGGGSGGGGS(서열번호 44), GGGGSGGGGSGGGGS(서열번호 45), GGSGG(서열번호 46), GGSGGSGGS(서열번호 47), GGGSGG(서열번호 48), 서열번호 (G4S)n(단위체: 서열번호 49, n은 1 내지 10의 정수), (GGS)n(n은 1 내지 10의 정수), (GS)n(n은 1 내지 10의 정수), (GSSGGS)n(단위체: 서열번호 50, n은 1 내지 10의 정수), KESGSVSSEQLAQFRSLD(서열번호 51), EGKSSGSGSESKST(서열번호 52), GSAGSAAGSGEF(서열번호 53), (EAAAK)n(단위체: 서열번호 54, n은 1 내지 10의 정수), CRRRRRREAEAC(서열번호 55), A(EAAAK)4ALEA(EAAAK)4A(서열번호 56), GGGGGGGG(서열번호 57), GGGGGG(서열번호 58), AEAAAKEAAAAKA(서열번호 59), PAPAP(서열번호 60), (Ala-Pro)n(n은 1 내지 10의 정수), VSQTSKLTRAETVFPDV(서열번호 61, PLGLWA(서열번호 62), TRHRQPRGWE(서열번호 63), AGNRVRRSVG(서열번호 64), RRRRRRRR(서열번호 65), GFLG(서열번호 66), GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE(서열번호 67), 또는 GSTSGSGKPGSGEGS(서열번호 68)일 수 있다.
본 발명의 일 관점에 따르면, 상기 이중 특이성 융합단백질을 포함하는 약학적 조성물이 제공된다.
상기 약학적 조성물은 장의 증식을 필요로 하는 질환 또는 증상의 치료에 사용될 수 있다.
상기 장의 증식을 필요로 하는 질환 또는 증상은 흡수장애, 염증성 장질환(inflammatory bowel disease), 또는 단장증후군(short bowel syndrome)일 수 있다.
상기 약학적 조성물에 있어서, 상기 염증성 장질환은 궤양성 장염, 베체트병 또는 크론병(Crohn's disease)일 수 있다.
본 발명의 일 실시예에 따른 이중 특이성 융합단백질은 생체 내 투여 시 창자 특히 소장의 길이를 신장시킬 뿐만 아니라 소장 내 융모의 길이와 크립트의 깊이를 현저하게 향상시키는 효과를 갖고 있기 때문에, 단장증후군과 같이 소장의 증식 및 기능의 향상을 필요로 하는 질환의 치료에 효율적으로 사용될 수 있다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비알코올성 지방간염의 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 대사증후군 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비만 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 제2형 당뇨병 치료용 약학적 조성물이 제공된다.
본 발명의 다른 일 관점에 따르면 상기 중 어느 하나 이상의 이중 특이성 융합단백질을 유효성분으로 포함하는, 간 섬유증 치료용 약학적 조성물이 제공된다.
GLP-1 수용체 작용제 중 하나인 Exendin-4는 이미 임상시험에서 제2형 당뇨병 환자의 혈당조절 및 체중 조절에 효과가 있음이 증명된 바(DeFronzo et al., Diabetes Care 28: 1092-1100, 2005), 본 발명의 일 실시예에 따른 상기 이중 특이성 융합단백질은 비만, 제2형 당뇨병은 물론 대사증후군 등의 비만 관련 질환의 치료에 사용될 수 있다.
상기 조성물은 악학적으로 허용 가능한 담체를 포함할 수 있고, 상기 담체 외에 약학적으로 허용가능한 보조제, 부형제 또는 희석제를 추가적으로 포함할 수 있다.
본 문서에서 사용되는 용어 "약학적으로 허용가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 약학적 조성물은 포유동물에 투여 시, 활성 성분의 신속한 방출, 또는 지속 또는 지연된 방출이 가능하도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 형태를 포함한다.
본 발명의 일 실시예에 따른 조성물은 다양한 경로로 투여될 수 있으며, 예를 들면, 경구, 비경구, 예를 들면 좌제, 경피, 정맥, 복강, 근육내, 병변내, 비강, 척추관내 투여로 투여될 수 있으며, 또한 서방형 또는 연속적 또는 반복적 방출을 위한 이식장치를 사용하여 투여될 수 있다. 투여횟수는 원하는 범위 내에서 하루에 1회, 또는 수회로 나누어 투여할 수 있으며, 투여 기간도 특별히 한정되지 않는다.
본 발명의 일 실시예에 따른 조성물은 일반적으로 사용되는 약학적으로 허용가능한 담체와 함께 적합한 형태로 제형화될 수 있다. 약학적으로 허용되는 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코오스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 또한 본 발명에 따른 조성물은 그 투여방법이나 제형에 따라 필요한 경우, 현탁제, 용해보조제, 안정화제, 등장화제, 보존제, 흡착방지제, 계면활성화제, 희석제, 부형제, pH 조정제, 무통화제, 완충제, 산화방지제 등을 적절히 포함할 수 있다. 상기에 예시된 것들을 비롯하여 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 최신판]에 상세히 기재되어 있다.
상기 조성물의 환자에 대한 투여량은 환자의 신장, 체표면적, 연령, 투여되는 특정 화합물, 성별, 투여 시간 및 경로, 일반적인 건강, 및 동시에 투여되는 다른 약물들을 포함하는 많은 요소들에 따라 다르다. 약학적으로 활성인 단백질은 100 ng/체중(kg) - 10 ㎎/체중(㎏)의 양으로 투여될 수 있고, 더 바람직하게는 1 내지 500 ㎍/kg(체중)으로 투여될 수 있으며, 가장 바람직하게는 5 내지 50 ㎍/kg(체중)으로 투여될 수 있는데, 상기 요소들을 고려하여 투여량이 조절될 수 있다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 장의 증식을 필요로 하는 질환에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 장의 증식을 필요로 하는 질환 또는 증상의 치료방법이 제공된다.
상기 치료방법에 있어서, 상기 장의 증식을 필요로 하는 질환 또는 증상은 흡수장애, 염증성 장질환(inflammatory bowel disease), 또는 단장증후군(short bowel syndrome)일 수 있으며, 바람직하게는 단증 증후군일 수 있다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 대사증후군에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 대사증후군의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 비만 개체에게 투여하는 단계를 포함하는 상기 개체의 비만 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 제2형 당뇨병에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 제2형 당뇨병의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 비알코올성 지방간질환 또는 비알코올성 지방간염에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 비알코올성 지방간질환 또는 비알코올성 지방간염의 치료방법이 제공된다.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 상기 이중 특이성 융합단백질을 간 섬유증에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 간 섬유증의 치료방법이 제공된다.
상기 치료방법에 있어서 상기 간 섬유증은 만성 비알코올성 지방간염에 의해 발생하는 간 섬유증일 수 있다.
본 문서에서 사용되는 용어 "치료적으로 유효한 양(therapeutically effective amount)"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물의 치료적으로 유효한 양은 0.1 mg/kg 내지 1 g/kg, 더 바람직하게는 1 mg/kg 내지 500 mg/kg일 수 있으나, 유효 투여량은 환자의 나이, 성별 및 상태에 따라 적절히 조절될 수 있다.
상기 둘 이상의 단백질 또는 도메인 사이에는 통상적으로 유연한 구조를 갖는 링커 펩타이드(linker peptide)가 삽입될 수 있다. 상기 링커 펩타이드는 EPKSSDKTHTCPPCP(서열번호 37), EPKSCDKTHTCPPCP(서열번호 38), GGGGSGGGGSGGGGSEPKSSDKTHTCPPCP(서열번호 39), GGGGSGGGGSGGGGSEPKSCDKTHTCPPCP(서열번호 40), AKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECP(서열번호 41), GGGGSGGGGSGGGGSEKEKEEQEERTHTCPPCP(서열번호 42), GGGGSGGGGSGGGGSAKNTTAPATTRNTTRGGEEKKKEKEKEEQEERTHTCPPCP(서열번호 43), AAGSGGGGGSGGGGSGGGGS(서열번호 44), GGGGSGGGGSGGGGS(서열번호 45), GGSGG(서열번호 46), GGSGGSGGS(서열번호 47), GGGSGG(서열번호 48), 서열번호 (G4S)n(단위체: 서열번호 49, n은 1 내지 10의 정수), (GGS)n(n은 1 내지 10의 정수), (GS)n(n은 1 내지 10의 정수), (GSSGGS)n(단위체: 서열번호 50, n은 1 내지 10의 정수), KESGSVSSEQLAQFRSLD(서열번호 51), EGKSSGSGSESKST(서열번호 52), GSAGSAAGSGEF(서열번호 53), (EAAAK)n(단위체: 서열번호 54, n은 1 내지 10의 정수), CRRRRRREAEAC(서열번호 55), A(EAAAK)4ALEA(EAAAK)4A(서열번호 56), GGGGGGGG(서열번호 57), GGGGGG(서열번호 58), AEAAAKEAAAAKA(서열번호 59), PAPAP(서열번호 60), (Ala-Pro)n(n은 1 내지 10의 정수), VSQTSKLTRAETVFPDV(서열번호 61, PLGLWA(서열번호 62), TRHRQPRGWE(서열번호 63), AGNRVRRSVG(서열번호 64), RRRRRRRR(서열번호 65), GFLG(서열번호 66), GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE(서열번호 67), 및 GSTSGSGKPGSGEGS(서열번호 68) 등이 포함될 수 있다.
본 발명의 다른 일 관점에 따르면, 상기 이중 특이성 융합단백질은 상기 제1융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 제1유전자 컨스트럭트 및 상기 제2융합단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 제2유전자 컨스트럭트를 포함하는 재조합 발현벡터를 숙주세포에 형질도입한 후 재조합 방식으로 발현함으로써 생산이 가능하다.
이 경우, 상기 제1유전자 컨스트럭트 및 제2유전자 컨스트럭트는 하나의 발현벡터에 삽입되어 발현되거나, 두 개의 개별적인 발현벡터에 삽입되어 발현이 될 수 있다. 전자의 경우 두 개의 별개의 조절서열에 각각의 유전자 컨스트럭트가 작동가능하게 연결되도록 벡터를 고안하거나 두 유전자 컨스트럭트가 하나의 조절서열에 작동가능하게 연결이 되고, 양 유전자 컨스트럭트를 내부 리보좀 진입 부위(internal ribosome entry site, IRES)가 연결하는 방식을 사용할 수 있다.
본 문서에서 사용되는 용어 "작동 가능하게 연결된(operably linked to)"이란 목적으로 하는 핵산서열(예컨대, 시험관내 전사/번역 시스템에서 또는 숙주세포에서)이 그의 발현이 이루어질 수 있도록 하는 방식으로 상기 조절서열에 연결되어 있다는 것을 의미한다.
상기 "조절서열"이란 용어는 프로모터, 인핸서 및 다른 조절 요소(예, 폴리아데닐화 신호)를 포함하는 의미이다. 조절서열에는 많은 숙주세포에서 목적으로 하는 핵산이 항상적으로 발현될 수 있도록 지시하는 것, 특정한 조직세포에서만 목적으로 하는 핵산이 발현될 수 있도록 지시하는 것(예, 조직특이적 조절서열), 그리고 특정 신호에 의해 발현이 유도되도록 지시하는 것(예, 유도성 조절서열)이 포함된다. 발현벡터의 설계는 형질전환될 숙주세포의 선택 및 원하는 단백질 발현의 수준 등과 같은 인자에 따라 달라질 수 있다는 것은 당업자라면 이해할 수 있다. 본 발명의 발현벡터는 숙주 세포에 도입되어 상기 융합 단백질을 발현할 수 있다. 상기 진핵세포 및 원핵세포에서 발현을 가능하게 하는 조절서열들은 당업자에게 잘 알려져 있다. 상술한 바와 같이, 이들은 보통 전사개시를 담당하는 조절서열들 및, 선택적으로 전사물의 전사종결 및 안정화를 담당하는 폴리-A 신호를 포함한다. 추가적인 조절서열들은 전사조절인자 외에도 번역 증진인자 및/또는 천연-조합 또는 이종성 프로모터 영역을 포함할 수 있다. 예를 들어 포유류 숙주 세포에서 발현을 가능하게 하는 가능한 조절서열들은 CMV-HSV 티미딘 키나아제 프로모터, SV40, RSV-프로모터(로우스 육종 바이러스), 인간 신장 요소 1α-프로모터, 글루코코르티코이드-유도성 MMTV-프로모터(몰로니 마우스 종양 바이러스), 메탈로티오네인-유도성 또는 테트라사이클린-유도성 프로모터 또는, CMV 증폭제 또는 SV40-증폭제와 같은 증폭제를 포함한다. 신경 세포 내 발현을 위해, 신경미세섬유-프로모터(neurofilament-promoter), PGDF-프로모터, NSE-프로모터, PrP-프로모터 또는 thy-1-프로모터들이 사용될 수 있다는 것이 고려되고 있다. 상기 프로모터들은 당 분야에 알려져 있으며, 문헌(Charron, J. Biol. Chem. 270: 25739-25745, 1995)에 기술되어 있다. 원핵세포 내 발현을 위해, lac-프로모터, tac-프로모터 또는 trp 프로모터를 포함하는 다수의 프로모터들이 개시되어 있다. 전사를 개시할 수 있는 인자들 외에, 상기 조절서열들은 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 하류(downstream)에 SV40-폴리-A 부위 또는 TK-폴리-A 부위와 같은 전사 종결 신호를 포함할 수도 있다. 본 문서에서, 적당한 발현 벡터들은 당 분야에 알려져 있으며, 그 예로는 오카야마-베르그(Okayama-Berg) cDNA 발현 벡터 pcDV1(Parmacia), pRc/CMV, pcDNA1, pcDNA3(Invitrogene), pSPORT1(GIBCO BRL), pGX-27(특허 제1442254호), pX(Pagano et al., Science 255: 1144-1147, 1992), 효모 2-혼성(two-hybrid) 벡터, 가령 pEG202 및 dpJG4-5(Gyuris et al., Cell 75: 791-803, 1995) 또는 원핵 발현벡터, 가령 람다 gt11 또는 pGEX(Amersham Pharmacia)가 있다. 본 발명의 핵산 분자들 외에, 벡터는 분비 신호를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 상기 분비신호들은 당업자에게 잘 알려져 있다. 그리고, 사용된 발현 시스템에 따라, 융합단백질을 세포 구획으로 이끌 수 있는 리더서열(leader sequence)이 본 발명의 일 실시예에 따른 폴리뉴클레오타이드의 코딩 서열에 조합되며, 바람직하게는 해독된 단백질 또는 이의 단백질을 세포질 주변 또는 세포외 매질로 직접 분비할 수 있는 리더 서열이다.
또한, 본 발명의 벡터는 예를 들면, 표준 재조합 DNA 기술에 의하여 제조될 수 있으며, 표준 재조합 DNA 기술에는 예를 들면, 평활말단 및 접착말단 라이게이션, 적절한 말단을 제공하기 위한 제한 효소 처리, 부적합한 결합을 방지하기 위하여 알칼리성 포스파테이즈 처리에 의한 인산기 제거 및 T4 DNA 라이게이즈에 의한 효소적 연결 등이 포함된다. 화학적 합성 또는 유전자 재조합 기술에 의하여 얻어진 신호 펩타이드를 코딩하는 DNA, 본 발명의 이중 특이성 융합단백질을 암호화하는 DNA를 적절한 조절서열이 포함되어 있는 벡터에 재조합함으로써 본 발명의 벡터가 제조될 수 있다. 상기 조절 서열이 포함되어 있는 벡터는 상업적으로 구입 또는 제조할 수 있으며, 본 발명의 일 실시예에서는 pBispecific backbone vector(Genexine, Inc., 대한민국)또는 pAD15 vector를 골격 벡터로 사용하였다.
상기 발현벡터는 분비 신호서열을 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있으며, 상기 분비 신호서열은 세포내에서 발현되는 재조합 단백질의 세포 밖으로의 분비를 유도하며, tPA(tissue plasminogen activator) 신호서열, HSV gDs(단순포진 바이러스 당단백질 Ds) 신호서열 또는 성장호르몬 신호서열일 수 있다.
본 발명의 일 실시예에 따른 상기 발현벡터는 숙주세포에서 상기 단백질을 발현하도록 할 수 있는 발현벡터일 수 있으며, 상기 발현벡터는 플라스미드 벡터, 바이러스 벡터, 코스미드 벡터, 파지미드 벡터, 인공 인간 염색체 등 그 어떠한 형태를 나타내더라도 무방하다.
이하, 실시예 및 실험예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
실시예: 이중 특이성 융합단백질의 고안
본 발명자들은 GLP-1 유사체 및 GLP-2 유사체를 모두 포함하는 다양한 이중 특이성 융합단백질을 하기 도 1 및 표 1과 같이 고안하였다.
상기 이중 특이성 융합단백질을 고안함에 있어서, 중점적으로 고려한 사항은 도 2에 기재된 바와 같이, GLP-1 수용체인 GLP-1R에는 GLP-1 외에도 Exendin 4(Ex4), 옥신토모듈린(OXM), GLP-2가 모두 결합하는 반면, GLP-2R에는 GLP-2만 결합한다는 점이다. 이에, 본 발명자들은 GLP-1 유사체의 GLP-1R와의 결합력을 조절하기 위해, GLP-1 유사체의 링커 부분에 글리칸이 부착될 수 있도록 글리칸 부착 도메인이 부가된 것을 사용하였다. 반대로 GLP-2를 포함하는 제2융합단백질에 글리칸 링커가 포함되도록 하고 반대로 GLP-1 유사체를 포함하는 제1융합단백질에 글리칸 부착부위를 포함하지 않는 비변형 링커가 포함되도록 한 이중 특이성 융합단백질(MG12-6)도 고안하였다. 아울러, 본 발명자들은 GLP-2의 17번째 알라닌이 글루타민으로 추가로 치환된 GLP-2 유사체를 사용한 이중 특이성 융합단백질 MG12-7 및 MG12-8을 고안하였다. 이 때 MG12-7 및 MG12-8의 차이점은 MG12-7은 GLP-1로 서열번호 1로 기재되는 A2G 변이체를 사용하는 반면 MG12-8 및 MG12-9는 상기 A2G 변이체 두 개가 (G4S)6 링커로 연결된 연속 반복체(tandem repeat)를 사용한다는 점이다.
실시예 명칭 GLP-1/2 유사체
(서열번호)
링커
(서열번호)
Fc
영역
전체구성
(서열번호)
1 MG12-1 1. GLP-1(1)
2. GLP-2(17)
글리칸 링커(43)
비변형(42)
knob
hole
제1융합단백질(24)
제2융합단백질(32)
2 MG12-2 1. GLP-2(17)
2. GLP-1(1)
글리칸 링커(43)
비변형(42)
knob
hole
제2융합단백질(33)
제1융합단백질(25)
3 MG12-3 1. Exendin 4(4)
2. GLP-2(17)
글리칸 링커(43)
비변형(42)
knob
hole
제1융합단백질(26)
제2융합단백질(32)
4 MG12-4 1. GLP-1/Exendin 4 hybrid(5)
2. GLP-2(17)
글리칸 링커(43)
비변형(42)
knob
hole
제1융합단백질(27)

제2융합단백질(34)
5 MG12-5 1. GLP-1/Exendin 4 hybrid(5)
2. GLP-2(17)
비변형(42)
변형(42)
knob
hole
제1융합단백질(28)

제2융합단백질(34)
6 MG12-6 1. GLP-2(17)
2. GLP-1/Exendin 4 hybrid(5)
글리칸 링커(43)
비변형(42)
knob
hole
제2융합단백질(35)

제1융합단백질(28)
7 MG12-7 1. GLP-1/Exendin 4 hybrid(5)
2. GLP-2(19)
글리칸 링커(43)
비변형(39)
knob
hole
제1융합단백질(29)

제2융합단백질(36)
8 MG12-8 1. GLP-1(11)
2. GLP-2(19)
비변형(39)
비변형(39)
knob
hole
제1융합단백질(30)
제2융합단백질(36)
9 MG12-9 1. GLP-1(11)
2. GLP-2(17)
비변형(39)
비변형(42)
knob
hole
제1융합단백질(30)
제2융합단백질(34)
아울러, 상기 이중 특이성 융합단백질의 경우 이종 이량체(heterodimer)가 우선적으로 생성되도록 하기 위해서 Knobs-into-holes 기술을 적용시켰다. 즉, 제1융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 10번째 아미노산인 세린(S)이 시스테인(C)으로 치환되고, 22번째 아미노산인 트레오닌(T)이 트립토판(W)으로 치환된 것(Knob)일 수 있고, 제2융합단백질은 Fc 영역 중 CH3 도메인의 5번째 아미노산인 타이로신(Y)이 시스테인(C)로, 22번째 아미노산인 트레오닌(T)이 세린(S)로, 24번째 아미노산인 류신(L)이 알라닌(A)으로, 63번째 아미노산인 타이로신(Y)이 발린(V)으로 치환된 것(Hole)일 수 있다. 이때, 상기 변이가 일어난 아미노산의 위치는 기준서열(서열번호 69의 인간 IgG1 CH3 도메인의 아미노산 서열)을 기준으로 한다. 만일 상기 CH3 도메인 상에 Knobs-into-Holes 구조와 무관한 부위에서 아미노산의 부가, 결실 또는 치환 등의 추가적인 변이가 발생한 경우라도 상기 기준서열을 기준으로 하여 해당 위치에 상응하는 아미노산이 변이된 것을 사용하면 된다. 선택적으로, 상기 Knobs-into-Holes 구조는 당업계에 잘 알려진 다른 아미노산 변이를 통해 도입될 수 있다. 이러한 변이는 선행문헌(Wei et al., Oncotarget 2017, 8(31): 51037-51049; Ridgway et al., Protein Eng. 1996, 9(7): 617-621; Carter, P., J. Immunol. Methods 2001, 48(1-2): 7-15; Merchant et al., Nat. Biotechnol. 1998, 16(7): 677-681)에 잘 기술되어 있다. 이러한 선택적인 변이로는 예컨대 제1융합단백질의 CH3 도메인의 22번째 아미노산인 트레오닌이 타이로신으로 치환된 Knob 구조 및 제2융합단백질의 CH3 도메인의 63번째 아미노산인 타이로신이 트레오닌으로 치환된 Hole 구조의 조합을 통해 이중 특이성 이량체 융합단백질이 생성될 수 있다. 상기 Knobs-into-Holes 구조는 반대로 상기 제1융합단백질에 Hole 구조가 도입되고, 상기 제2융합단백질에 Knob 구조가 도입되어 형성될 수 있다.상기와 같이 고안한 실시예 1 내지 5의 이중 특이성 융합단백질의 제1융합단백질 및 제2융합단백질을 암호화하는 유전자 컨스트럭트를 PCR 및 위치지정 돌연변이 유도 프라이머를 이용하여 증폭함으로써 각각 합성한 후, 이를 각각 pAD15 벡터(Genexine, Inc., 대한민국)에 삽입함으로써, 발현벡터를 제조하였다.
상기와 같이 제조된 벡터 컨스트럭트들을 Thermo Fisher사의 ExpiCHO kit를 이용하여 일시적 발현을 수행하였다. 구체적으로 ExpiCHO-S cell에 상기와 같이 제조된 벡터 컨스트럭트와 키트 내에 포함되어 있는 ExpiFectamine 시약을 혼합한 후 8% CO2 및 37℃의 조건을 갖춘 배양기에서 1일간 배양 후 온도를 32℃로 낮춰서 7일 차까지 배양을 진행하였다.
상기 배양을 통해 얻어진 상층액을 Protein A 칼럼 및 이차 칼럼을 통해 정제된 실시예 1 내지 5의 융합단백질(각각, 'MG12-1',' 'MG12-2', 'MG12-3', 'MG12-4', 및 'MG12-5'로 명명함)을 4X LDS 시료 완충액과 주사용수로 적절히 희석하여 최종 3-10 μg/20 μL이 되도록 조제하였다. 환원조건 시료의 경우 각 분석하고자 하는 물질과 4X LDS 시료 완충액, 10X 환원제와 주사용수를 적절히 희석하여 최종 3-10 μg/20 μL이 되도록 조제하고 70℃ 가열블록에서 10분간 가열하였다. 준비된 시료를 미리 설치된 전기영동 장비에 고정된 겔의 각 웰에 20 μL씩 적재하였다. 사이즈 마커의 경우 3~5 μL/well을 적재하였다. 전원공급장치를 120 V, 90분으로 설정한 후 전기영동을 수행하였다. 전기영동이 완료된 겔을 분리한 후 염색용액 및 탈-염색 용액을 이용하여 염색하고, 결과를 분석하였다.
분석결과 도 3a에서 확인되는 바와 같이, 모든 이중 특이성 융합단백질들은 비-환원 조건에서 50~75 kDa 사이, 환원 조건에서는 37 kDa 부위에서 관찰되었다. 이형 이량체 형태를 이루고 있는 본 발명의 이중 특이성 융합단백질들 중에서 한쪽의 힌지에 당쇄를 포함하고 있는 실시예 1 내지 4의 융합단백질의 경우, 환원 조건에서 두 개의 서로 다른 크기를 갖는 단량체들이 관찰되었고, 힌지에서의 당쇄를 포함하지 않는 실시예 5의 융합단백질(MG12-5)의 경우는 하나의 크기를 갖는 단량체가 관찰되었다.
아울러, 본 발명자들은 Knobs-into-Holes(KiH) 구조를 포함하지 않는 Fc와 융합된 GLP-2 동형 이량체(GLP-2-Fc homodimer, 서열번호 25)와 Knobs-to-Holes 구조를 포함한 MG12-5를 각각 위와 동일한 환원/비-환원 조건에서 SDS-PAGE 분석을 수행하였다.
그 결과, 도 3b에서 확인되는 바와 같이, KiH 구조를 포함한 MG12-5의 경우 그렇지 않은 GLP-2-Fc 동형이량체 대비 비환원 조건에서 단량체 형태의 불순물 형성이 현저히 억제됨을 확인하였다.
아울러, 본 발명자들은 MG12-6 내지 MG12-9를 암호화하는 폴리뉴클레오타이드를 합성한 후, 동물세포에서 임시 발현하기 위해서 HEK293F 세포에 N293F 벡터 시스템(와이바이오로직스)을 이용하여 플라스미드 DNA 형질감염을 수행하였다. 핵산 준비를 위해 배지 3 ml에 플라스미드 DNA 25 μg을 넣어 혼합한 후, 2 mg/ml PEI(Polyethylenimine, PolyPlus, USA) 25 μg를 첨가하고 혼합하였다. 반응액은 상온에서 15분 동안 정치한 후, 1x106 cells/ml로 배양된 80~1000 ml의 배양액에 넣어 120 rpm, 37℃ 8% CO2의 조건으로 24시간 동안 배양하였다. DNA 형질감염 24시간 후에 영양 보충배지 성분(Soytone, BD, USA)을 최종 농도 10 g/L가 되도록 첨가하였다. 7일 동안 배양한 후 세포배양액을 5000 rpm에서 10분 동안 원심 분리하여 상층액을 회수하였다. 이어, Protein A 레진(Resin)을 컬럼(Column)에 충진하고 1x DPBS로 세척하여 준비하였고, 상기 회수된 상층액을 0.5 ml/min의 속도로 4℃에서 레진과 결합시켰고, 0.1 M Glycine으로 단백질을 용출하였다. 완충용액을 교체하기 위하여 용출한 용액을 투석튜브(GeBAflex tube, Geba, Israel)에 넣어 1x DPBS로 4℃에서 투석하였으며, 이를 통해 수득된 물질은 PBS(pH 7.4) 완충액으로 제형화하였다.
수득된 MG12-6 내지 MG12-9 역시 상술한 바와 같이, 환원 및 비환원 조건에서 SDS 겔 전기영동을 수행하였다. 그 결과, 도 3c 내지 3e에서 확인되는 바와 같이, 본 발명의 일 실시예에 따른 이형 이량체 융합단백질들은 정상적으로 발현이 됨을 확인할 수 있었다.
결론적으로, SDS-PAGE를 통하여 본 발명의 실시예에 따른 모든 이중 특이성 융합단백질이 정상적으로 생산 및 정제될 수 있었고, 특히 MG12-5와 GLP-2-Fc 동형 이량체의 비교를 통해 증명되었듯이, KiH 구조를 적용한 이중 특이성 이중단백질의 경우 그렇지 않은 경우에 비해 단량체 형태의 불순물 형성이 현저히 저하되는 것을 확인하였다.
실험예 1: GLP-1 시험관내 활성 확인
본 발명자들은 상기 실시예에서 제조된 이중 특이성 융합단백질의 GLP-1 시험관내(in vitro) 활성을 cAMP 분석으로 조사하였다. 구체적으로, GLP-1 특이적인 반응에 의해 cAMP가 유도되는 정도를 평가하기 위해, cAMP 특이적으로 루시페린을 발현하는 세포주에 GLP-1 수용체를 함께 발현할 수 있도록 형질전환 세포주(GLP1R_cAMP/luc)를 제작하였다. 상기 세포를 해동 및 적절히 유지시킨 후, 0.05% TE(Trypsin EDTA)를 첨가하여 세포를 플라스크로부터 분리하고, 살아 있는 세포 수를 계수하였다. 활성 평가에 필요한 세포 수만큼 회수하여 세척하고, 0.5% FBS, DMEM/고 포도당 배지로 세포를 희석하여 2x104 cell/80 μL/well로 파종하였다. 16시간 정도 37℃, 5% CO2 배양기에서 세포를 배양한 후, 평가하고자 하는 다양한 농도의 검액을 20 μL/well로 처리하고 5시간 동안 37℃, 5% CO2 배양기에서 반응 시켰다. 반응이 완료된 플레이트에 Bright-GloTM 분석 시약을 100 μL/well로 처리한 후 2분간 상온에서 반응시켰다. 반응이 종료된 플레이트를 Luminometer에 삽입하고 생물발광 정도를 측정하였다.
분석 결과, 표 2 및 도 4a 내지 4e에서 확인되는 바와 같이 GLP-1-Fc 동형 이량체의 경우 천연 GLP-1 펩타이드 대비 약 72%의 활성을 나타내었고, 본 발명의 실시예 1, 3, 4 및 5에 따른 이중 특이성 융합단백질(각각 MG12-1, 3, 4 및 5)은 각각 9%, 118%, 39%, 35%의 상대활성을 나타내었다. DPP-4 효소에 의한 절단을 방지하기 위해 N-말단 돌연변이가 도입되고, GLP-1과 접합된 힌지에 당쇄를 포함하는 MG12-1의 경우 당쇄화에 의하여 활성이 약 11배 감소되는 현상을 보였고, MG12-1에서 GLP-1 대신 Exendin 4를 도입한 MG12-3의 경우 MG12-1 보다 약 13배 증가한 활성을 보였다. MG12-1에서 GLP-1 대신 GLP-1과 Exendin 4가 혼합된 GLP-1/Exendin 4 하이브리드가 도입된 MG12-4 및 MG12-5는 힌지의 당쇄화 유무와 상관없이 약 35-39%로 유사한 상대활성을 나타내었다.
본 발명의 실시예에 따른 이중 특이성 융합단백질의 시험관내 GLP-1 활성
  GLP-1
펩타이드
GLP-1-Fc
동형 이량체
실시예 1 실시예 3 실시예 4 실시예 5
EC50(pM) 26 36 304 22 66 75
GLP-1 대비
상대활성(%)
100 72 9 118 39 35
실험예 2: GLP-2 시험관내 활성 확인 본 발명자들은 상기 실시예에서 제조된 이중 특이성 융합단백질의 GLP-2 시험관내(in vitro) 활성을 cAMP 분석으로 조사하였다.
구체적으로, GLP-2 특이적인 반응에 의해 cAMP가 유도되는 정도를 평가하기 위해, cAMP 특이적으로 열리는 CNG 채널을 발현하는 세포주에 GLP-2 수용체를 발현하게 한 형질전환 세포주(Human GLP2R ACTOneTM)를 확보하였다. 상기 세포를 해동 및 적절히 유지시킨 후, GLP-1 시험관내 활성 분석과 동일한 조건으로 세포를 플라스크로부터 분리하고 활성 평가에 필요한 세포 수만큼 회수하여 세척하였다. 세척한 세포를 세포배양 배지(DMEM/고포도당 배지, 10% FBS, 5% G418, 0.01% puromycin)로 희석하여 3~5x104 cell/100 μL/well로 파종한 후 20시간 정도 37℃, 5% CO2 배양기에서 세포를 배양하였다. CO2 배양기에서 플레이트를 꺼낸 후 현미경으로 세포를 관찰하고 세포의 포화도가 80% 이상이 되었을 때, 1X 염료 적재 용액 (EliteTM fluorescent membrane potential dye kit, eEnzyme)을 100 μL/well로 첨가하였다. 실온에서 차광하여 2~2.5시간 반응시키고, 검액을 첨가하기 전 ELISA를 이용하여 형광 기준치(Fluorescence baseline, F0)를 측정하였다. 그 후 평가하고자 하는 다양한 농도의 검액을 50 μL/well로 처리하고 0.5시간 동안 반응시킨 다음, ELISA를 이용하여 형광값(Ft)을 측정하였다. Ft/F0 비율을 이용하여 각 검액의 반응성을 평가하였다.
그 결과, 도 5a 내지 5e에서 확인되는 바와 같이, GLP-2-Fc 동형 이량체의 경우 천연 GLP-2 펩타이드 대비 약 132%의 활성을 나타내었고, 본 발명의 실시예 1, 3, 4 및 5에 따른 이중 특이성 융합단백질(각각 MG12-1, 3, 4, 및 5)는 각각 43%, 54%, 48%, 59%의 상대활성을 나타내었다. 모든 MG12 변이체들은 DPP-4 효소에 의한 절단을 방지하기 위해 N-말단 돌연변이가 도입되고, GLP-1의 경우와는 다르게 GLP-2가 접합된 힌지에 당쇄를 포함하지 않기 때문에 모든 변이체들은 거의 유사한 GLP-2 활성을 나타내는 것으로 확인하였다.
본 발명의 실시예에 따른 이중 특이성 융합단백질의 시험관내 GLP-2 활성
  GLP-2
펩타이드
GLP-2-Fc
동형 이량체
실시예 1 실시예 3 실시예 4 실시예 5
EC50(nM) 0.58 0.44 1.35 1.07 1.22 0.99
GLP-2 대비
상대활성(%)
100 132 43 54 48 59
실험예 3: MG12-2의 시험관내 GLP-1, GLP-2 활성 분석
본 발명자들은 GLP-1와 하이브리드 Fc 영역 사이의 힌지 부분에 당쇄를 부가한 실시예 1, 3 및 4의 융합단백질과 반대로 GLP-2와 하이브리드 Fc 영역 사이의 힌지 부분에 당쇄가 부가되고 GLP-1을 포함하는 융합단백질에는 당쇄가 포함되지 않도록 고안된 실시예 2의 이중 특이성 융합단백질(MG12-2)의 경우 GLP-1 및 GLP-2 활성이 어떻게 나타나는지 GLP-1-Fc 동형 이량체 및 GLP-2-Fc 동형이량체와 비교하여 조사하였다.
그 결과, 표 4 및 도 6a 내지 6d에서 확인되는 바와 같이, 본 발명의 실시예 2의 이중 특이성 융합단백질(MG12-2)은 GLP-1 및 GLP-2 활성에 대하여 각각 GLP-1-Fc 동형 이량체 대비 약 11.2%, GLP-2-Fc 동형 이량체 대비 약 17.5%의 활성을 나타내는 것으로 확인하였다. 이는, GLP-1 활성은 MG12-1과 유사한 수준이었으나, GLP-2 활성은 다른 MG12-2 변이체 대비 약 4-5배 낮은 값을 나타낸 것이다.
본 발명의 실시예 2에 따른 이중 특이성 융합단백질의 시험관내 GLP-1 및 GLP-2 활성
GLP-1 활성 GLP-2 활성
GLP-1-Fc
동형 이량체
MG12-2 GLP-2-Fc
동형 이량체
MG12-2
EC50 44.9 pM 402.3 pM 7.7 nM 44 nM
상대활성(%) 100 11.2 100 17.5
실험예 4: 생체 내 약물동태학 프로파일 분석
상기에서 제조된 실시예 1, 3 내지 5에 따른 이중 특이성 융합단백질(MG12-1, 3, 4 및 5)의 반감기 및 곡선 하 면적(AUC, Area Under the Curve), 혈중 최고 농도(Cmax) 등을 비교함으로써 약물동태학(PK) 프로파일을 확인하였다.
먼저, 그룹 당 3마리의 수컷 SD(Sprague Dawley) 랫트에 각각의 단백질을 1 mg/kg의 함량으로 피하(SC) 경로로 투여하였다. 주입 전, 및 주입 후 0.5, 1, 5, 10, 24, 48, 72, 120, 및 168 시간 경과 후 혈액을 수득하여, 이를 30분 동안 실온 보관하여 응집시켰다. 응집된 혈액을 3,000 rpm에서 10분 동안 원심 분리한 후, 각 샘플의 혈청을 수득하였고, 초저온 냉동고에 저장하였다. 투여 단백질 중 GLP-1 부위와 Fc를 특이적으로 검출하도록 고안된 시험법(GLP-1-Fc ELISA)과 투여 단백질 중 GLP-2 부위와 Fc를 특이적으로 검출하도록 고안된 시험법(GLP-2-Fc ELISA)으로 분석하였다. 구체적으로, 마우스 기원의 인간 면역글로불린 G4(IgG4)와 결합하는 항체를 코팅한 플레이트에 생체 시료를 적재고, 비오틴화 항-GLP-1 항체를 이용하여 목적 단백질을 검출하는 방법(GLP-1-Fc ELISA)과 GLP-2에 특이적으로 반응하는 단클론 항체가 코팅된 플레이트에 생체 시료를 적재하고 마우스 기원의 인간 면역글로불린 G4(IgG4)에 HRP가 결합된 2차 항체를 이용하여 목적 단백질을 검출하는 방법(GLP-2-Fc ELISA)을 사용하였다. 수득 및 준비된 혈청 샘플은 표준 곡선의 직선상의 위치에서 분석되도록 적절히 희석하여 적재하였다.
그 결과, 표 5 및 6 그리고 도 7a 및 7b에서 확인되는 바와 같이, MG12-1, 3, 4, 5는 대체적으로 GLP-1-Fc ELISA 및 GLP-2-Fc ELISA로 분석한 결과에서 서로 유사한 PK 프로파일을 보였다. Cmax에서는 두 방법 모두에서 MG12-5가 가장 높은 값을 나타내었고, 반면에 MG12-3에서 가장 낮았다. 이 경향은 AUClast에서도 거의 유사하게 나타났다. 최종 반감기의 경우, MG12-3에서 두 방법 모두 가장 길게 나타났고, GLP-1-Fc ELISA 시험법에서는 MG12-4가, GLP-2-Fc ELISA에서는 MG12-5가 가장 낮은 반감기를 나타내었다.
실시예 Cmax (ng/mL) Tmax (h) AUClast (ng*h/mL) 반감기 (h)
1 442.2±20.8 10 13919.8±824.9 16.5±6.3
3 301.0±57.4 10 9257.4±1543.3 29.5±2.7
4 328.7±34.5 10 7679.8±1228.9 9.0±0.3
5 1036.2±59.5 10 26059.6±3028.5 18.4±6.2
실시예 Cmax (ng/mL) Tmax (h) AUClast (ng*h/mL) 반감기 (h)
1 1136.7±261.0 24.0±0.0 78639.0±11205.3 43.7±1.8
3 697.4±148.0 24.0±8.1 63977.3±10131.5 56.2±7.1
4 1052.5±112.8 24.0±0.0 78983.2±6542.8 49.0±2.1
5 3201.3±95.6 24.0±0.0 188741.6±7870.5 30.6±2.1
결론적으로 MG12-1, 3, 4, 5 모두 정상 모델 랫트에 피하투여 시, 적절히 노출되는 것을 확인할 수 있었고, Cmax 및 AUClast는 MG12-5에서 가장 높은 특징을 보였다.
실험예 5: 생체 내 활성 확인
5-1: 실험동물의 소장의 변화 및 영양소 흡수능 변화 분석
물질 투여에 따른 소장의 변화 및 영양소 흡수능의 변화를 관찰하기 위하여 B6 정상 마우스에서 실험을 진행하였다. PBS와 GLP-2-2G는 1일 2회, GLP-2-Fc 동형 이량체와 MG12-5는 3일 1회를 2주간 투여하였다. GLP-2-Fc 동형 이량체와 MG12-5의 경우 약물을 투여하지 않는 기간에는 다른 투여군과 마찬가지로 PBS를 1일 2회 투여하였다. 3일 간격으로 체중 및 식이 섭취를 관찰하고, 투여 전, 투여 5일차-6일차, 투여 11일차-12일차에 분변을 수집하여 열량 측정계(bomb calorimetry)를 통해 열량분석을 수행하였고, 해당 기간에 섭취한 사료 또한 동일 분석을 통해 열량분석을 수행하였다. 섭취 사료의 열량에서 분변의 열량을 제외한 값을 에너지 흡수율로 정의하였다. 약물 투여 14일차에 실험동물을 희생시켜 소장(Pylorus ileum)의 무게를 측정하였다.
그 결과, 도 8a에서 확인되는 바와 같이, 투약 기간 동안 대조군 대비 다른 실험군에서 소장무게의 증가가 확인되었는데, 그 중 MG12-5 투여군에서의 소장무게의 증가가 가장 두드러지게 나타났으며, 이는 도 8b, 8d 및 8e에서 나타난 바와 같이, 실제 체중의 증가와 에너지 흡수율의 변화 양상과 일치하는 것으로 확인되었다. 특히 도 8d에서 나타난 바와 같이, 투여 1주일 후의 에너지 흡수율의 변화에 있어서 오직 본 발명의 일 실시예에 따른 MG12-5 투여군에서만 유의한 증가 양상이 나타났다. 한편, 도 8c에서 나타난 바와 같이, 각 실험 물질의 투여 전에 수행된 실험에서는 에너지 흡수율의 변화가 나타나지 않았다. 그러나 오히려 체중은 GLP-2를 포함하고 있는 약물 투여군에서 증가하는 경향을 보였고, MG12-5에서 음성대조군(담체 투여군) 대비 유의미하게 증가하는 것을 확인하였다. 에너지 흡수율은 투여 전에는 모든 그룹에서 유사하게 확인되었고, 2회 투여 후인 1주차에서는 GLP-2를 포함하고 있는 약물 투여군에서 증가하는 경향은 보이나 MG12-5에서만 담체 투여군(vehicle) 대비 통계적으로 유의한 증가를 보였고, 4회 투여 후인 2주차에서는 GLP-2-Fc homo보다도 유의미한 증가를 보였다. 모든 투약이 종료되고 각 그룹의 소장무게를 측정한 결과, 에너지 흡수(energy absoprtion)와 유사하게 GLP-2를 포함하고 있는 약물 투여군에서 대조군 대비 유의미한 증가를 관찰하였으며, 특히 MG12-5에서는 다른 두 투약군 대비 통계적으로 유의미한 증가를 보였다.
결론적으로 MG12-5에서 GLP-2-2G 및 GLP-2-Fc 동형 이량체 대비 우월한 소장 무게 증가 효능을 확인하였고, 이는 섭취 사료의 열량을 보다 효율적으로 흡수하게 하여 다른 투약군 대비 통계적으로 유의미한 몸무게 증가를 보이게 하는 것으로 판단되었다.
아울러, 본 발명자들은 MG12-5 외에 다른 형태로 고안된 이중 특이성 융합단백질(MG12-1 및 MG12-4) 역시 실험동물의 소장무게 및 에너지 흡수율을 증가시키는지 확인하기 위해, 투여 물질만 달리하여 상기와 동일한 실험을 수행하였다. 구체적으로 PBS, 10 nmol/kg GLP-1-Fc 동형 이량체, 10 nmol/kg GLP-2-Fc 동형 이량체, 20 nmol/kg MG12-1, 및 20 nmol/kg MG12-4를 각각 피하 투여 하였다. 약물은 주 2회로 2주간 총 4회 투여 하였다. 4회 투약 후 부검 전 몸무게 측정을 하였고, 부검 후 소장을 적출하여 무게를 측정하였다. 부검 후 마우스의 위장관을 통째로 분리하여 장간막과 췌장을 제거한 후, 회장과 맹장이 만나는 부위를 절단하여 소장과 대장으로 분리하였다. 분리된 소장은 10% 중성 포르말린으로 관류세척하여 내용물을 제거하고, 흡수성 타올로 중성 포르말린을 제거한 후 무게를 측정하였다.
실험 결과, 도 9a 및 9b에서 확인되는 바와 같이, 음성대조군 대비 GLP-1-Fc 동형 이량체, GLP-2-Fc 동형 이량체 투여군에서 소장무게 증가 경향을 보였으며, GLP-2-Fc 동형 이량체 투여군에서는 통계적으로 유의미한 증가를 보였다. MG12-1, MG12-4 투여군에서는 GLP-2-Fc 동형 이량체 투여군보다 더 큰 소장무게의 증가를 보였고 두 그룹 모두에서 음성 대조군 대비 통계적으로 유의미한 소장무게의 증가를 보였다. 부검 전 체중변화에서는 음성대조군 대비 GLP-1-Fc 동형 이량체에서 수치적으로 감소, GLP-2-Fc 동형 이량체에서는 변화가 없었으며, MG12-1, MG12-4 투여군에서는 모두 수치적으로 체중 증가 경향을 보였다. 모든 약물 투여군에서 통계적 유의미한 변화는 관찰할 수 없었다.
결론적으로 정상 마우스에 투여 시 MG12-1, MG12-4 투여군에서 GLP-1-Fc 동형 이량체, 및 GLP-2-Fc 동형 이량체보다 소장 무게 증가, 몸무게 증가 효과가 더 우월한 것을 확인하였다.
5-2: 형광분석
이어 본 발명자들은 본 발명의 일 실시예에 따른 이중 특이성 융합단백질의 투여에 따른 각 조직 및 장기에서의 분포를 관찰하기 위하여 B6 정상 마우스에서 실험을 수행하였다. 각 물질의 투여 후 분포를 추적 관찰하기 위한 형광물질(fluorophore)로 Cy5.5를 사용하였다. 투여하고자 하는 각 물질인 MG12-1, MG12-4 및 GLP-1Fc 동형 이량체를 붕산 완충액(pH 8.5)로 완충액 교환을 수행하고, Cy5.5 표지 키트(GE, #PA15605)의 프로토콜을 참고하여 적정량의 Cy5.5와 냉장조건에서 밤새 반응시켰다. 반응이 완료된 물질에 있는 반응하지 않은 Cy5.5를 PBS 치환 과정을 통해 제거하고 최종 SDS-PAGE를 통해 Cy5.5가 잘 반응되었는지 확인하였다. 각 투여 물질은 형광강도를 측정할 수 있는 ELISA 플레이트 판독기를 이용하여 동일한 형광강도를 갖도록 10% DMSO/PBS로 희석한 후 투여하였다. 약물 투여 후, Tmax로 예상되는 24시간 경과 후에 부검 및 관류하여 뇌, 소장, 대장에서 각 투여 약물의 분포를 비교 평가하였다.
그 결과, 하기 표 7 및 도 10에서 나타난 바와 같이, 뇌에서 세 투여 약물의 분포도는 큰 차이를 보이지 않았고, 소장 및 대장에서의 분포량은 GLP-1-Fc 동형이량체 대비 MG12-1, MG12-4에서 더 많은 것으로 확인되었고, 이는 통계적으로 유의미한 차이였다.
결론적으로 정상 마우스에 Cy5.5를 부착시킨 GLP-1-Fc 동형이량체, MG12-1, MG12-4를 투여 시, MG12-1, MG12-4는 GLP-1-Fc homodimer 대비 소장 및 대장으로 더 많이 분포되는 것으로 확인되었다.
각 기관에서의 평균 형광강도
물질 소장 대장
Cy5.5 0 0 0
GLP-1-Fc
동형 이량체
161 854 310
MG12-1 489 7320 3702
MG12-4 297 4302 2343
5-3: PET-MRI 분석
이어 본 발명자들은 물질 투여에 따른 각 조직 장기에서의 분포를 관찰하기 위하여 Balb/c-nude 마우스에서 실험을 수행하였다. 각 물질의 투여 후 분포를 추적 관찰하기 위한 방사성 표지자로 Zr89를 사용하였다. 투여하고자 하는 각 물질을 예비시험을 통해 선정된 킬레이터 및 반응 조건으로 Zr89를 표지하였다. 표지된 Zr89-단백질을 PD-10 칼럼을 이용하여 정제하고 Radio TLC와 SEC-HPLC를 이용하여 Zr89 표지효율 및 순도를 확인하였다. Zr89-단백질의 표지효율이 90% 이상, 순도는 80% 이상일 때 적합 판정하였고, 표지된 단백질은 0.2 mCi/0.2 cc로 맞추어 피하투여하였다. 투여물질 당 3마리씩 투여 진행하였으며, 주입 후 1시간, 6시간, 24시간, 48시간, 168시간에 PET-MRI를 이용하여 20분간 정적 영상을 얻었다. 영상 분석을 통해 간, 소장, 대장에서 시간에 따른 약물의 분포를 SUV(Standardized Uptake Value)로 나타내어 비교분석하였다.
분석결과, 도 11에서 확인되는 바와 같이, Fc만 투여한 경우 세 장기에서 특별히 구분되는 분포 특징을 보이지는 않았다. GLP-1-Fc 동형 이량체 및 GLP-2-Fc 동형 이량체의 경우 세 장기 모두에서 Fc대비 증가한 SUV 값을 나타내었고, 특히 소장 및 대장에서 조금 더 증가폭이 컸다. MG12-1, MG12-4, MG12-5의 경우 간으로의 분포는 Fc 대비 줄어들거나 거의 차이가 없었고, 소장 및 대장으로의 분포는 GLP-1-Fc 동형 이량체, GLP-2-Fc 동형 이량체 대비 우월하게 높은 분포를 나타내었다. 이는 MG12-1, MG12-4에서 더 두드러지는 경향을 보였다.
결론적으로 Balb/c-nude 마우스에 Zr89를 부착시킨 Fc, GLP-1-Fc homodimer, GLP-2-Fc homodimer, MG12-1, MG12-4, MG12-5를 투여하여 분포도를 관찰한 결과, MG12-1, MG12-4, MG12-5에서 Fc, GLP-1-Fc homo, 및 GLP-2-Fc homo대비 우월하게 소장 및 대장으로의 물질 분포가 증가하는 것으로 확인되었다.
실험예 6: GLP-1 및 GLP-2 콤보 대비 MG12의 현저한 효과
본 발명자들은 단순한 GLP-1 및 GLP-2의 병용투여와 본 발명의 일 실시예에 따른 이중 특이성 융합단백질의 효과를 비교하고자 하였다.
구체적으로, 물질 투여에 따른 몸무게 및 소장의 변화를 관찰하기 위하여 B6 정상 마우스에서 실험을 진행하였다. PBS(Vehicle), 10 nmol/kg Exendin-4(Ex-4), 33.3 nmol/kg GLP-2-2G, Ex-4 + GLP-2-2G, 33.3 nmol/kg MG12-1, 33.3 nmol/kg MG12-3, 33.3 nmol/kg MG12-4, 33.3 nmol/kg MG12-5를 피하 투여하였다. 약물은 Ex-4, GLP-2-2G, Ex-4 + GLP-2-2G의 경우 일 2회로 12일간 총 24회 투여하였고, 나머지 군의 경우 주 2회로 12일간 총 4회 투여하였다. 시험 기간 동안 주 2회 약물 투여 개시 후, 사료 섭취량을 측정하여 누적 사료섭취량으로 나타내었고, 부검 전 몸무게를 측정하여 사료섭취량 대비체중을 계산하였다. 부검 후 소장의 무게와 십이지장 및 공장의 점막 깊이(Mucosal depth) 및 융모 높이(Villus heigh)를 측정하였다. 상세하게는 부검 후 마우스의 위장관을 통째로 분리하여 장간막과 췌장을 제거한 후 회장과 맹장이 만나는 부위를 절단하여 소장과 대장으로 분리하였다. 분리된 소장은 10% 중성 포르말린으로 관류세척하여 내용물을 제거하고, 흡수성 타올로 중성 포르말린을 제거한 후 무게를 측정하였다 무게를 측정한 소장은 십이지장(Duodenum)과 공장(Jejunum) 부분을 적절히 잘라 10% 중성 포르말린액으로 고정하여 조직병리검사에 사용하였다.
그 결과, 대조군(vehicle) 대비 Ex-4 및 GLP-2-2G 투여군에서 소장무게 증가경향을 보였으며 Ex-4를 제외한 모든 실험군에서 대조군 대비 통계적으로 유의성 있는 소장무게 증가를 나타냈다(도 12a). Ex-4 + GLP-2-2G 투여군의 경우 각각의 물질 투여시보다 수치적으로 더 큰 소장무게 증가 경향을 나타냈고, 본 발명의 일 실시예에 따른 MG12의 경우 병용 투여군보다 수치적으로 더 큰 소장무게 증가 경향을 나타냈다. 특히 MG12-5의 경우 병용 투여군보다 통계적으로 유의한 소장 증가를 나타냈다. 이러한 경향은 십이지장 및 공장의 점막 깊이 및 융모 높이를 측정한 결과에서도 유사하게 나타났다(도 12c 및 12d). 소장의 형태학적 증가에 따른 체중 증가를 확인하기 위하여 누적 사료 섭취량으로 정규화(normalize)하여 체중증가 경향을 비교하였다. 그 결과 도 12b에서 확인되는 바와 같이, 대조군 대비 Ex-4와 병용 투여군에서 약간 증가하는 경향을 보였고, MG12의 경우 병용 투여군 대비 수치적으로 더 큰 체중증가를 나타냈고, 특히, MG12-3, MG12-4, MG12-5에서는 병용 투여군 대비 통계적으로 유의미한 체중 증가를 나타내었다.
결론적으로 정상 마우스에 투여 시 본 발명의 일 실시예에 따른 이중 특이성 융합단백질(MG12) 투여군에서 Ex-4 + GLP-2-2G 보다 소장 무게 및 조직병리학적 변화, 사료섭취량으로 정규화한 몸무게 변화에 있어서 더 우월한 효과를 나타내는 것으로 확인하였다.
실험예 7: MG12 단백질의 대사 증후군 치료효과
본 발명자들은 본 발명의 일 실시예에 따른 MG12가 단장 증후군 외에 다양한 대사 증후군에 대하여 치료효과가 있는 여부를 확인하고자 하였다.
이를 위해 구체적으로, 본 발명자들은 고지방 식이를 통해 지방간 및 지방간염을 유도한 실험동물을 대상으로 도 13a 및 표 8에 나타낸 바와 같이, 8주령의 C57BL/6J male 마우스를 사용하여 콜린 결핍 고지방 식이(CD-HFD)를 12주간 처리하였고, 4주간 CD-HFD 식이와 동시에 20 nmol/kg의 MG12-5, MG12-8, 그리고 각각 10 nmol/kg의 GLP-1 및 GLP-2 조합(combo)을 피하로 주 2회 투여하였고, 실험동물의 다양한 혈청학적 지표 및 조직검사를 수행하였다.
각 실험군 별 식이 조건, 투여 물질 및 투여량
실험군 식이 종류 투여 물질 투여량 실험동물 수 투여경로
정상식이군 정상식이 PBS - 6 피하
음성대조군 CD-HFD PBS - 6 피하
MG12-8 투여군 CD-HFD MG12-8 20 nmol/kg 6 피하
MG12-5 투여군 CD-HFD MG12-5 20 nmol/kg 6 피하
GLP-1 및 GLP-2
병용 투여군
CD-HFD GLP-1 + GLP-2 10 + 10 nmol/kg 6 피하
7-1: 체중 변화 및 먹이 섭취량 변화분석
우선 본 발명자들은 실험기간 동안 실험동물의 체중 및 먹이 섭취량의 변화를 기록하였다. 그 결과, 도 13b 및 도 13c에서 나타난 바와 같이, 본원발명의 MG12 투여 시 실험동물의 체중이 유의하게 감소하였으며, 특히 본 발명의 일 실시예에 따른 MG12-5 및 MG12-8 투여군의 경우 정상식이군(NCD + PBS) 그리고 GLP-1 및 GLP-2 병용 투여군보다 상대적 체중감량 효과가 더 크게 나타났으며, 먹이 섭취량 역시 도 13d에서 확인되는 바와 같이, 정상식이군이나 병용투여군(combo)보다 더 낮게 나타남을 확인할 수 있었다. 이는 본 발명의 일 실시예에 따른 이형이량체 융합단백질이 GLP-1 및 GLP-2의 단순 병용투여보다 더 뛰어난 효과를 나타냄을 시사하는 것이다.
7-2: 혈당 감소 효과 분석
이어 본 발명자들은 본 발명의 일 실시예에 따른 MG-12의 체중감량 효과 외에 혈당 강하 효과를 조사하였다.
상술한 바와 같이 CD-HFD를 16주간 실시한 후 약물(MG12-5, MG12-8, GLP-1 및 GLP-2 병용)을 4주간 1주에 2차례 투여한 마우스를 12시간 동안 사료 급이를 제한한 후 2 g/kg의 용량으로 포도당을 복강투여한 후 시간별로 총 3시간 동안 혈당의 변화를 측정하였다. 그 결과 도 14a에서 확인되는 바와 같이, 정상급이군 대비 CD-HFD 급이군에서는 더 높은 혈당 증가 현상이 확인되었다. 반면, 담체만 투여한 음성대조군(CD-HFD + PBS) 대비 본 발명의 일 실시예에 따른 MG12-5 및 MG12-8 투여군에서는 통계적으로 유의한 혈당 감소가 확인되었다. GLP-1 및 GLP-2 병용투여 대비 MG12에서 통계적으로 유의하게 더 높은 효력을 확인할 수 있었다. 도 14b는 혈당 변화와 관련된 곡선하 면적(area under curve)을 나타낸 그래프로서 CD-HFD에 의해 증가한 혈당 변화의 곡선하 면적이 GLP-1 및 GLP-2의 투여에 의해 정상 범위로 감소하며, 특히 MG12-5 및 MG12-8에 의해 2배 이상 감소하는 것을 확인할 수 있다.
7-3: 간 조직 검사
본 발명자들은 상기와 같은 약물 투여 실험을 마친 마우스를 희생시켜 간 조직을 적출하여, 이에 대한 사진 촬영을 함으로써 간조직의 크기와 색상의 변화를 관찰하였고, 적출된 간조직의 무게를 측정하는 한편, 간독성 수치를 나타내는 지표인 ALT의 혈중 수준을 측정하였다.
그 결과, 도 15a에서 나타난 바와 같이, MG12-5 투여군, MG12-8 투여군, 및 GLP-1 및 GLP-2 병용투여군에서 정상식이군과 유사한 간 색상을 관찰할 수 있었고 간 조직 내 지방 축적이 약물에 의해 감소한 것을 확인하였다. 아울러, 도 15b에서 확인되는 바와 같이, 정상식이군과 CD-HFD 급이군 간의 간 무게는 유사하였으며, MG12-5와 GLP-1 및 GLP-2 병용 투여에 의해 간 무게가 감소하였고, MG12-8 투여군에서 가장 큰 간 무게 감소 경향을 발견할 수 있었다. 뿐만 아니라, 도 15c에서 확인되는 바와 같이 16주 CD-HFD 식이 이후 측정한 간 독성을 나타내는 혈중 ALT의 수치를 확인한 결과 CD-HFD 식이에 의해 ALT가 약 2배 증가하였으나, MG12-5투여군 및 MG12-8 투여군의 경우 정상식이군과 유사한 정도로 ALT가 감소하는 것을 확인하였다. 반면, GLP-1 및 GLP-2 병용투여군은 음성대조군과 유사하게 높은 혈중 ALT가 확인되었다. 이는 GLP-1 및 GLP-2의 단순 병용투여에서 간독성 보호효과가 없었던 반면 본 발명의 일 실시예에 따른 MG12의 투여 시 간독성 보호효과가 나타남을 보여주는 결과이다.
실험예 8: MG12 단백질의 비알코올성 지방간염 치료효과
상기 결과를 바탕으로 본 발명자들은 본 발명의 일 실시예에 따른 MG12가 지방간에서 더 발달하여 나타나는 중증 비알코올성 지방간염(non-alcoholic steatohepatitis, NASH)에 대한 치료효과를 나타내는지 여부를 확인하기 위해 중증 NASH 유발 동물모델을 사용한 동물실험을 수행하였다.
이를 위해 구체적으로 도 16a에 도시된 바와 같은 태어난 지 2일령의 C57BL/6 마우스에 200 mg/kg의 스트렙토조토신(streptozotocin, STZ)를 1회 복강투여한 뒤 4주차부터 60%의 고지방 식이를 4주간 급이한 후 3주 동안 60% 고지방 식이와 음성대조군으로 PBS(vehicle), 그리고 본 발명의 일 실시예에 따른 MG12-8 약물을 10, 30, 그리고 90 nmol/kg의 투여량으로 주 3회 피하투여(s.c.)하였다. 11주차에 마우스를 희생하여 간 및 혈액을 얻어 분석을 진행하였다. 양성대조군인 OCA(obeticholic acid)로 8주차부터 매일 구강으로 30 mg/kg의 농도로 3주간 투여하였다.
우선 체중의 변화를 측정한 결과, 도 16b에서 확인되는 바와 같이, 음성대조군과 비교하여 양성대조군 및 본 발명의 일 실시예에 따른 MG12-8를 처리한 실험군 모두 유사한 체중의 변화를 보임을 확인하였다.
아울러, 본 발명자들은 상기 실험동물들을 대상으로 간 손상의 척도인 혈중 AST 및 ALT 농도를 측정하였다. 그 결과 도 16d에서 확인되는 바와 같이, 음성대조군과 비교했을 때 양성대조군은 AST의 경우 유사한 정도의 발현이 확인되었으며, ALT의 경우 오히려 음성대조군과 비교하여 증가하는 것으로 나타났다. 반면, 본 발명의 일 실시예에 따른 MG12-8은 농도와 무관하게 혈중 AST 및 ALT의 수준을 모두 통계적으로 유의하게 감소시키는 것으로 확인되었다. 이는 본 발명의 일 실시예에 따른 MG12가 중증 NASH에 대한 치료효과가 있는 물질임을 입증하는 결과이다.
이어 본 발명자들은 본 발명의 일 실시예에 따른 MG12의 비알코올성 지방간 증(NAFLD)에 대한 치료효과를 NAFLD 활성 지수를 통해 분석하고자 하였다. NAFLD 활성 지수는 간의 지방축적, 염증반응, 그리고 간세포의 모양의 변화 등을 종합적으로 분석하여 나타낸 지수로서 지방축적은 연두색, 염증반응은 회색, 그리고 간세포의 변화(ballooning)은 핑크색으로 표기하였다. 그 결과, 도 16e에서 확인되는 바와 같이, 음성대조군과 비교하여 양성대조군은 비록 간 내 지방축적은 다소 감소시켰으나, 염증반응을 억제하는데 실패하여 전체적인 지수는 음성대조군과 동등하게 나타났다. 반면, 본 발명의 일 실시예에 따른 MG12-8은 투여량 의존적으로 NAFLD 활성 지수를 낮추는 것으로 확인되었는데, 특히 30 nmol/kg 및 90 nmol/kg 투여군에서는 0.5 점 이하로 음성대조군 대비 1/8 이하로 낮추는 현저한 효과를 나타냈다. 이는 본 발명의 일 실시예에 따른 MG12가 비알코올성 지방간증에 대하여 매우 효과적인 치료제 후보물질임을 입증하는 결과이다.
이상의 결과를 놓고 볼 때, 본 발명의 일 실시예에 따른 MG12는 GLP-1 및 GLP-2의 단순 병용투여 시와 비교하여 단장 증후군이나 비만, 제2형 당뇨병 및 비알코올성 지방간염 등 대사성 질환의 치료에 있어서 매우 효과적인 치료 후보물질임을 알 수 있다. 따라서, 본 발명의 일 실시예에 따른 이형 이량체 융합단백질은 단장 증후군 및 대사성 질환 등 종래에 GLP-1 및/또는 GLP-2에 의해 치료가 시도된 다양한 질환의 치료제로 매우 유용하게 사용될 수 있다.
본 발명은 상술한 실시예 및 실험예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명의 일 실시예에 따른 조성물은 비만, 제2형 당뇨병, 비만, 비알코올성 지방간질환, 비알코올성 지방간염, 간 섬유증과 같은 대사성 질환의 치료제로 융용하게 사용될 수 있다.

Claims (47)

  1. GLP-1 유사체 및 GLP-2 유사체가 융합된 이중 특이성 융합단백질.
  2. 제1항에 있어서,
    반감기 증가 모이어티가 부가된 것인, 이중 특이성 융합단백질.
  3. 제2항에 있어서,
    상기 반감기 증가 모이어티는 상기 GLP-1 유사체와 GLP-2 유사체 사이에 삽입이 되거나 전체 융합단백질의 N-말단 또는 C-말단에 부가된 것인, 이중 특이성 융합단백질.
  4. 제2항에 있어서, 상기 반감기 증가 모이어티는 항체 Fc 영역, PEG, XTEN, PAS(Pro-Ala-Ser), ELP(elastin-like peptide), 글리신-풍부 HAP(homo-amino-acid polymer), GLP(gelatine-like protein), 또는 혈청 알부민인, 이중 특이성 융합단백질.
  5. GLP-1 유사체가 항체 Fc 영역에 연결된 제1융합단백질 및 GLP-2 유사체가 항체 Fc 영역에 연결된 제2융합단백질을 포함하며, 상기 제1융합단백질 및 제2융합단백질의 이량체화에 의해 생성되는 이중 특이성 융합단백질.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 GLP-1 유사체는 GLP-1, 엑센딘 3(Exendin 3), 엑센딘 4(Exendin 4), GLP-1/Exendin 4 하이브리드, GLP-1-XTEN, Lixisenatide, Albiglutide, Liraglutide, Dulaglutide, Extenatide, Taspoglutide, Lixisenatide, 또는 GLP-1 연속 반복체인, 이중 특이성 융합단백질.
  7. 제5항에 있어서,
    상기 GLP-1 유사체 및 상기 GLP-2 유사체 중 적어도 하나는 연속적 반복체(tandem repeat)이고, 상기 GLP-1 유사체 및 상기 GLP-2 유사체의 반복 횟수는 서로 상이한 것을 특징으로 하는, 이중 특이성 융합단백질.
  8. 제6항에 있어서,
    상기 GLP-1은 서열번호 1 또는 2로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  9. 제6항에 있어서, 상기 Exendin 3는 서열번호 3으로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  10. 제6항에 있어서, 상기 Exendin 4는 서열번호 4로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  11. 제6항에 있어서,
    상기 GLP-1/Exendin 4 하이브리드는 서열번호 5로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  12. 제6항에 있어서,
    상기 Lixisenatide는 서열번호 6으로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  13. 제6항에 있어서,
    상기 Exendin 4-XTEN은 서열번호 7로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  14. 제6항에 있어서,
    상기 Albiglutide는 서열번호 8로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  15. 제6항에 있어서,
    상기 Liraglutide는 서열번호 9로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  16. 제6항에 있어서,
    상기 Taspoglutide는 서열번호 10으로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  17. 제6항에 있어서,
    상기 GLP-1 연속 반복체는 서열번호 11로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  18. 제4항 또는 제5항에 있어서,
    상기 항체 Fc 영역은 하이브리드 항체 Fc 영역인, 이중 특이성 융합단백질.
  19. 제18항에 있어서,
    상기 하이브리드 항체 Fc 영역은 둘 이상의 아이소타입의 적어도 두 개 이상부분이 혼합된 형태의 Fc 영역인, 이중 특이성 융합단백질.
  20. 제4항 또는 제5항에 있어서,
    상기 제1융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 10번째 아미노산인 세린이 시스테인(C)으로 치환되고, 22번째 아미노산인 트레오닌(T)이 트립토판(W)으로 치환된 것(Knob 구조)이고, 제2융합단백질은 Fc 영역 중 CH3 도메인의 5번째 아미노산인 타이로신(Y)이 시스테인(C)로, 22번째 아미노산인 트레오닌이 세린(S)로, 24번째 아미노산인 류신(L)이 알라닌(A)로, 63번째 아미노산인 타이로신(Y)이 발린(V)로 치환된 것(Hole 구조)이거나, 또는
    상기 제1융합단백질은 Fc 영역 중 CH3 도메인의 5번째 아미노산인 타이로신(Y)이 시스테인(C)으로, 22번째 아미노산인 트레오닌이 세린(S)로, 24번째 아미노산인 류신(L)이 알라닌(A)로, 63번째 아미노산인 타이로신(Y)이 발린(V)로 치환된 것(Hole 구조)이고, 상기 제2융합단백질은 하이브리드 Fc 영역 중 CH3 도메인의 10번째 아미노산인 세린이 시스테인(C)으로 치환되고, 22번째 아미노산인 트레오닌(T)이 트립토판(W)으로 치환된 것(Knob 구조)인, 이중 특이성 융합단백질.
  21. 제18항에 있어서,
    상기 하이브리드 항체 Fc 영역은 서열번호 12 내지 16으로 구성되는 군으로부터 선택되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  22. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 GLP-2 유사체는 GLP-2, Glepaglutide, 또는 GLP-2 analogue 10인, 이중 특이성 융합단백질.
  23. 제22항에 있어서,
    상기 GLP-2는 서열번호 17 내지 20으로 구성되는 군으로부터 선택되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  24. 제22항에 있어서,
    상기 Glepaglutide는 서열번호 21로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  25. 제22항에 있어서,
    상기 GLP-2 analogue 10는 서열번호 22로 기재되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  26. 제5항에 있어서,
    상기 제1융합단백질은 서열번호 23 내지 30으로 구성되는 군으로부터 선택되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  27. 제5항에 있어서,
    상기 제2융합단백질은 서열번호 31 내지 36으로 구성되는 군으로부터 선택되는 아미노산 서열을 포함하는, 이중 특이성 융합단백질.
  28. 제5항에 있어서,
    상기 GLP-1 유사체 및 상기 GLP-2 유사체 사이 또는 상기 GLP-1 유사체 및 상기 Fc 영역 사이 또는 상기 GLP-2 유사체 및 상기 Fc 영역 사이에 링커 펩타이드가 삽입된, 이중 특이성 융합단백질.
  29. 제28항에 있어서,
    상기 링커 펩타이드는 N-글리칸 부착 부위를 포함하거나 포함하지 않는, 이중 특이성 융합단백질.
  30. 제29항에 있어서,
    상기 제1융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하지 않고 상기 제2융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하는, 이중 특이성 융합단백질.
  31. 제29항에 있어서,
    상기 제1융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하고 상기 제2융합단백질은 상기 링커 펩타이드에 N-글리칸 부착 부위를 포함하지 않는, 이중 특이성 융합단백질.
  32. 제28항에 있어서,
    상기 링커 펩타이드는 EPKSSDKTHTCPPCP(서열번호 37), EPKSCDKTHTCPPCP(서열번호 38), GGGGSGGGGSGGGGSEPKSSDKTHTCPPCP(서열번호 39), GGGGSGGGGSGGGGSEPKSCDKTHTCPPCP(서열번호 40), AKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECP(서열번호 41), GGGGSGGGGSGGGGSEKEKEEQEERTHTCPPCP(서열번호 42), GGGGSGGGGSGGGGSAKNTTAPATTRNTTRGGEEKKKEKEKEEQEERTHTCPPCP(서열번호 43), AAGSGGGGGSGGGGSGGGGS(서열번호 44), GGGGSGGGGSGGGGS(서열번호 45), GGSGG(서열번호 46), GGSGGSGGS(서열번호 47), GGGSGG(서열번호 48), 서열번호 (G4S)n(단위체: 서열번호 49, n은 1 내지 10의 정수), (GGS)n(n은 1 내지 10의 정수), (GS)n(n은 1 내지 10의 정수), (GSSGGS)n(단위체: 서열번호 50, n은 1 내지 10의 정수), KESGSVSSEQLAQFRSLD(서열번호 51), EGKSSGSGSESKST(서열번호 52), GSAGSAAGSGEF(서열번호 53), (EAAAK)n(단위체: 서열번호 54, n은 1 내지 10의 정수), CRRRRRREAEAC(서열번호 55), A(EAAAK)4ALEA(EAAAK)4A(서열번호 56), GGGGGGGG(서열번호 57), GGGGGG(서열번호 58), AEAAAKEAAAAKA(서열번호 59), PAPAP(서열번호 60), (Ala-Pro)n(n은 1 내지 10의 정수), VSQTSKLTRAETVFPDV(서열번호 61, PLGLWA(서열번호 62), TRHRQPRGWE(서열번호 63), AGNRVRRSVG(서열번호 64), RRRRRRRR(서열번호 65), GFLG(서열번호 66), GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE(서열번호 67), 또는 GSTSGSGKPGSGEGS(서열번호 68)인, 이중 특이성 융합단백질.
  33. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는 약학적 조성물.
  34. 제33항에 있어서,
    장의 증식을 필요로 하는 질환 또는 증상의 치료에 사용되는, 약학적 조성물.
  35. 제34항에 있어서,
    상기 장의 증식을 필요로 하는 질환 또는 증상은 흡수 불량, 염증성 장 질환 또는 단장 증후군인, 약학적 조성물.
  36. 제35항에 있어서,
    상기 염증성 장 질환은 궤양성 장염, 베체트병 또는 단장 증후군인, 약학적 조성물.
  37. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비알코올성 지방간염의 치료용 약학적 조성물.
  38. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는, 대사증후군 치료용 약학적 조성물.
  39. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는, 비만 치료용 약학적 조성물.
  40. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는, 제2형 당뇨병 치료용 약학적 조성물.
  41. 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 유효성분으로 포함하는, 간 섬유증 치료용 약학적 조성물.
  42. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 장의 증식을 필요로 하는 질환에 걸린 개체에 투여하는 단계를 포함하는 상기 개체의 장의 증식을 필요로 하는 질환 또는 증상의 치료방법.
  43. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 대사증후군에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 대사증후군의 치료방법.
  44. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 비만 개체에게 투여하는 단계를 포함하는 상기 개체의 비만 치료방법.
  45. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 제2형 당뇨병에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 제2형 당뇨병의 치료방법.
  46. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 비알코올성 지방간질환 또는 비알코올성 지방간염에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 비알코올성 지방간질환 또는 비알코올성 지방간염의 치료방법.
  47. 치료적으로 유효한 양의 제1항 내지 제32항 중 어느 한 항의 이중 특이성 융합단백질을 비알코올성 간 섬유증에 걸린 개체에게 투여하는 단계를 포함하는 상기 개체의 간 섬유증의 치료방법.
PCT/KR2021/003128 2020-03-12 2021-03-12 신규 이중 특이성 단백질 및 그의 용도 WO2021182928A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21767580.0A EP4119571A4 (en) 2020-03-12 2021-03-12 NEW BISPECIFIC PROTEIN AND USE THEREOF
CN202180034304.8A CN115485292A (zh) 2020-03-12 2021-03-12 新的双特异性蛋白及其用途
BR112022018134A BR112022018134A2 (pt) 2020-03-12 2021-03-12 Proteína biespecífica nova e seu uso

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0030727 2020-03-12
KR20200030727 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182928A1 true WO2021182928A1 (ko) 2021-09-16

Family

ID=77670796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003128 WO2021182928A1 (ko) 2020-03-12 2021-03-12 신규 이중 특이성 단백질 및 그의 용도

Country Status (5)

Country Link
EP (1) EP4119571A4 (ko)
KR (2) KR102349718B1 (ko)
CN (1) CN115485292A (ko)
BR (1) BR112022018134A2 (ko)
WO (1) WO2021182928A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118240917A (zh) * 2024-05-27 2024-06-25 正大天晴药业集团南京顺欣制药有限公司 一种检测glp—1、glp—1类似物或glp—1融合蛋白生物学活性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442254A1 (en) 2001-10-09 2004-08-04 Energy Related Devices, Inc. Membrane catalytic heater
KR100897938B1 (ko) 2007-05-30 2009-05-18 주식회사 제넥신 면역글로불린 융합 단백질
US20100239554A1 (en) 2009-02-03 2010-09-23 Amunix Inc. a Delaware Corporation Extended recombinant polypeptides and compositions comprising same
US20140193407A1 (en) * 2009-03-27 2014-07-10 Glaxo Group Limited Drug fusions and conjugates
KR101825049B1 (ko) * 2014-12-31 2018-02-05 주식회사 제넥신 GLP 및 면역글로불린 하이브리드 Fc 융합 폴리펩타이드 및 이의 용도
KR20190065346A (ko) * 2016-10-14 2019-06-11 젠코어 인코포레이티드 IL15/IL15Rα 이종이량체 Fc-융합 단백질

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080300173A1 (en) * 2004-07-13 2008-12-04 Defrees Shawn Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1]
EP2045265B1 (en) * 2005-09-22 2012-11-21 Biocompatibles Uk Ltd. GLP-1 (Glucagon-like peptide-1) fusion polypeptides with increased peptidase resistance
CA3140561A1 (en) * 2019-05-14 2020-11-19 Progen Co., Ltd. A novel modified immunoglobulin fc fusion protein and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442254A1 (en) 2001-10-09 2004-08-04 Energy Related Devices, Inc. Membrane catalytic heater
KR100897938B1 (ko) 2007-05-30 2009-05-18 주식회사 제넥신 면역글로불린 융합 단백질
US20100239554A1 (en) 2009-02-03 2010-09-23 Amunix Inc. a Delaware Corporation Extended recombinant polypeptides and compositions comprising same
US20140193407A1 (en) * 2009-03-27 2014-07-10 Glaxo Group Limited Drug fusions and conjugates
KR101825049B1 (ko) * 2014-12-31 2018-02-05 주식회사 제넥신 GLP 및 면역글로불린 하이브리드 Fc 융합 폴리펩타이드 및 이의 용도
KR20190065346A (ko) * 2016-10-14 2019-06-11 젠코어 인코포레이티드 IL15/IL15Rα 이종이량체 Fc-융합 단백질

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
CALICETIVERONESE, ADV. DRUG DELIVERY REV., vol. 55, 2003, pages 1261 - 1277
CAPON ET AL., NATURE, vol. 337, 1989, pages 525 - 531
CARTER, P., J. IMMUNOL. METHODS, vol. 48, no. 1-2, 2001, pages 7 - 15
CHARRON, J. BIOL. CHEM., vol. 270, 1995, pages 25739 - 25745
DEFRONZO ET AL., DIABETES CARE, vol. 28, 2005, pages 1092 - 1100
FLOSS ET AL., TRENDS BIOTECHNOL, vol. 28, 2010, pages 37 - 45
GUTNIAK ET AL., N. ENGL. J. MED., vol. 326, 1992, pages 1316 - 1322
GYURIS ET AL., CELL, vol. 75, 1995, pages 791 - 803
HUANG ET AL., EUR. J. PHARM. BIOPHARM., vol. 74, no. 3, 2010, pages 435 - 441
KOEHLER ET AL., CELL METABOL, vol. 21, no. 3, 2015, pages 379 - 391
KUNKEL ET AL., NEUROGASTROENTEROL. MOTIL., vol. 23, 2011, pages 739 - e328
LEFRANC ET AL., DEV. COMP. IMMUNOL., vol. 27, 2003, pages 55 - 77
MADSEN ET AL., REGUL. PEPT., vol. 184, 2013, pages 30 - 39
MERCHANT ET AL., NAT. BIOTECHNOL., vol. 16, no. 7, 1998, pages 677 - 681
PAGANO ET AL., SCIENCE, vol. 255, 1992, pages 1144 - 1147
PRO-ALA-SERSCHLAPSCHY ET AL., PROTEIN ENG. DES. SEL., vol. 26, 2013, pages 489 - 501
REMINGTON'S PHARMACEUTICAL SCIENCES
RIDGWAY ET AL., PROTEIN ENG, vol. 9, no. 7, 1996, pages 617 - 621
SCHELLENBERGER ET AL., NAT. BIOTECHNOL., vol. 27, 2009, pages 1186 - 1190
SCHLAPSCHY ET AL., PROTEIN ENG. DES. SEL., vol. 20, 2007, pages 273 - 284
See also references of EP4119571A4
SHEFFIELD ET AL., CELL PHYSIOL. BIOCHEM., vol. 45, no. 2, 2018, pages 772 - 782
STROHL, W. R., BIODRUGS, vol. 29, no. 4, 2015, pages 215 - 239
WEI ET AL., ONCOTARGET, vol. 8, no. 31, 2017, pages 51037 - 51049
WISMANN PERNILLE; PEDERSEN SØREN L.; HANSEN GITTE; MANNERSTEDT KARIN; PEDERSEN PHILIP J.; JEPPESEN PALLE B.; VRANG NIELS; FOSGERAU: "Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice", PHYSIOLOGY & BEHAVIOR, vol. 192, 11 March 2018 (2018-03-11), pages 72 - 81, XP085410848, ISSN: 0031-9384, DOI: 10.1016/j.physbeh.2018.03.004 *
YANG ET AL., J. MED. CHEM., vol. 61, 2018, pages 3218 - 3223

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118240917A (zh) * 2024-05-27 2024-06-25 正大天晴药业集团南京顺欣制药有限公司 一种检测glp—1、glp—1类似物或glp—1融合蛋白生物学活性的方法

Also Published As

Publication number Publication date
EP4119571A4 (en) 2024-04-03
BR112022018134A2 (pt) 2022-11-22
KR20210116322A (ko) 2021-09-27
CN115485292A (zh) 2022-12-16
KR20220005622A (ko) 2022-01-13
EP4119571A1 (en) 2023-01-18
KR102349718B1 (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
AU2016346870B2 (en) Dual function proteins and pharmaceutical composition comprising same
WO2014073845A1 (en) A composition for treating diabetes or diabesity comprising oxyntomodulin analog
WO2014017843A1 (en) Composition for treating hyperlipidemia comprising oxyntomodulin derivative
WO2015183038A1 (ko) 지속형 인슐린 아날로그 결합체 및 지속형 인슐린 분비 펩타이드 결합체를 포함하는 당뇨병 치료용 조성물
AU2016346864B2 (en) Long-acting FGF21 fusion proteins and pharmaceutical composition comprising same
WO2012169798A2 (en) Novel oxyntomodulin derivatives and pharmaceutical composition for treating obesity comprising the same
WO2018004283A2 (ko) 글루카곤 유도체, 이의 결합체, 및 이를 포함하는 조성물, 및 이의 치료적 용도
WO2018088838A1 (en) Pharmaceutical composition for preventing or treating hepatitis, hepatic fibrosis, and hepatic cirrhosis comprising fusion proteins
WO2013029279A1 (zh) 新的glp-ⅰ类似物及其制备方法和用途
AU2015372767B2 (en) Glucagon derivatives
WO2022080986A1 (ko) Glp-1/gip 이중작용제, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2021182928A1 (ko) 신규 이중 특이성 단백질 및 그의 용도
WO2018174668A2 (ko) 인슐린 수용체와의 결합력이 감소된 인슐린 아날로그의 결합체 및 이의 용도
WO2022245179A1 (en) Composition for combination therapy comprising growth differentiation factor-15 variant and glucagon-like peptide-1 receptor agonist
WO2020184941A1 (en) Glp-1 fusion proteins and uses thereof
WO2021182927A1 (ko) 신규 대사증후군 및 그와 관련된 질환 치료용 약학 조성물
WO2020017916A1 (en) Pharmaceutical composition comprising polypeptide
WO2022010319A1 (ko) 글루카곤-유사 펩타이드-1 및 인터루킨-1 수용체 길항제를 포함하는 융합단백질 및 이의 용도
WO2021107519A1 (en) Biotin moiety-conjugated polypeptide and pharmaceutical composition for oral administration comprising the same
WO2021230705A1 (ko) 신규 재조합 융합단백질 및 그의 용도
WO2021162460A1 (ko) 신규 비알코올성 간질환의 치료용 약학적 조성물
WO2024107006A1 (en) Dual function proteins and uses thereof
WO2023204556A1 (ko) 장질환의 예방 또는 치료를 위한 GLP-2와, 인슐린 분비 펩타이드, TNFα 억제제, 또는 이 둘 모두의 병용 요법
WO2022080989A1 (ko) 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물
WO2019125003A1 (ko) 경구용 유전자 전달체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767580

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018134

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767580

Country of ref document: EP

Effective date: 20221012

ENP Entry into the national phase

Ref document number: 112022018134

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220909

WWE Wipo information: entry into national phase

Ref document number: 17910348

Country of ref document: US