WO2022080989A1 - 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물 - Google Patents

글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2022080989A1
WO2022080989A1 PCT/KR2021/014468 KR2021014468W WO2022080989A1 WO 2022080989 A1 WO2022080989 A1 WO 2022080989A1 KR 2021014468 W KR2021014468 W KR 2021014468W WO 2022080989 A1 WO2022080989 A1 WO 2022080989A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
lupus
peptide
seq
glucagon
Prior art date
Application number
PCT/KR2021/014468
Other languages
English (en)
French (fr)
Inventor
김은정
최재혁
김정국
김정아
오의림
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to EP21880635.4A priority Critical patent/EP4230219A1/en
Priority to CN202180070486.4A priority patent/CN116390769A/zh
Priority to US18/031,940 priority patent/US20230381281A1/en
Priority to JP2023522943A priority patent/JP2023546088A/ja
Publication of WO2022080989A1 publication Critical patent/WO2022080989A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • compositions for preventing or treating lupus-related diseases comprising a glucagon/GLP-1/GIP triple agonist or a long-acting conjugate thereof.
  • Systemic Lupus Erythematosus also referred to as systemic lupus erythematosus, lupus, or S.L.E.
  • S.L.E. systemic lupus erythematosus
  • S.L.E. systemic lupus erythematosus
  • Lupus is also classified as small vessel vasculitis, but it is not only affected by a specific area called blood vessels, but also all tissues of the body, including joints and muscles, skin, nervous tissue, lungs, kidneys, heart, and hematopoietic organs. It can be said that it is different from other vasculitis in that it becomes an attack target. In the same vein, in the case of lupus, it is difficult to predict the progression of the disease, and it is presented with various symptoms, making it difficult to diagnose and treat clinically.
  • GLP-1 glucagon-like peptide-1
  • GIP glycose-dependent insuliontropic polypeptide
  • GLP-1 is a hormone secreted from the small intestine when stimulated by food intake. It promotes insulin secretion from the pancreas in a blood sugar concentration-dependent manner and suppresses the secretion of glucagon to help lower blood sugar levels. In addition, it acts as a satiety factor, slowing the digestion of the stomach, and delaying the passage time of the digested food, thereby reducing food intake. Moreover, it has been reported that food intake suppression and weight loss effect when administered to rats were confirmed, and these effects were confirmed to be the same in both normal and obese states, demonstrating the potential as a treatment for obesity.
  • GIP is a representative hormone (incretin hormone) secreted from the gastrointestinal tract and is a hormone composed of 42 amino acids secreted from K cells in the small intestine. It is well known to give the effect, and recent studies have reported the effect of suppressing diet and anti-inflammatory.
  • Glucagon is produced by the pancreas when blood sugar begins to drop due to a cause, such as medication or disease, or a hormone or enzyme deficiency. Glucagon is responsible for signaling the liver to break down glycogen to release glucose and raise blood sugar levels to normal levels. In addition, glucagon has an anti-obesity effect by promoting lipolysis and energy expenditudre by activating hormone sensitive lipase in adipocytes and suppressing appetite in animals and humans, in addition to the effect of increasing blood sugar. has been reported to appear.
  • the present inventors completed the invention by developing a triple agonist having simultaneous activity on glucagon, GLP-1 and GIP receptors and confirming their potential as therapeutic agents for lupus-related diseases.
  • compositions for preventing or treating a lupus-related disease comprising a glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt thereof, a solvate thereof, or a conjugate thereof.
  • Lupus- comprising administering to an individual in need thereof, an effective amount of the glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt, a solvate thereof, or a conjugate thereof, or the pharmaceutical composition
  • an effective amount of the glucagon/GLP-1/GIP triple agonist a pharmaceutically acceptable salt, a solvate thereof, or a conjugate thereof, or the pharmaceutical composition
  • a method for preventing or treating a related disease is provided.
  • glucagon/GLP-1/GIP triple agonist a pharmaceutically acceptable salt thereof, a solvate thereof, or a conjugate thereof for use in the manufacture of a medicament for the prophylaxis or treatment of lupus-related diseases.
  • One aspect provides a pharmaceutical composition for preventing or treating lupus-related diseases, comprising a glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt or solvate thereof.
  • Glucagon (GCG) is a hormone secreted by ⁇ cells in the islets of Langerhans in the pancreas, and has a feedback relationship by acting opposite to insulin.
  • GLP-1 Glucagon-like peptide-1
  • GIP glucose-dependent insulinotropic polypeptide or gastric inhibitory polypeptide
  • Glucagon/GLP-1/GIP triple agonist is “GCG/GLP-1/GIP triple agonist”, “GCG/GLP-1/GIP receptor triple agonist”, “ GCG receptor, GLP-1 receptor, and GIP receptor triple agonist”, “GCGR/GLP-1R/GIPR triple agonist”, “triple agonist”, or “glucagon receptor, GLP-1 receptor, and GIP receptor triple agonist” can be used interchangeably with “peptide”.
  • the glucagon/GLP-1/GIP triple agonist may be a peptide having activity against a glucagon receptor, a GLP-1 receptor, and a GIP receptor.
  • the “peptide having activity on the glucagon receptor, the GLP-1 receptor, and the GIP receptor” has a significant level of activity on the glucagon receptor, the GLP-1 receptor, and the GIP receptor, specifically, the glucagon receptor, GLP- 1 Receptor and GIP receptor in vitro activity of about 0.1% or more, 1% or more, 2% or more, 3% or more, compared to native ligand (native glucagon, native GLP-1 or native GIP), respectively, 4 % or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more , 80% or more, 90% or more, 100% or more, 100% to 500%, or 100%
  • “About” is a range inclusive of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, and the like, including, but not limited to, all values within a range equivalent to or similar to the value following the term “about”. .
  • the peptide may have an increased half-life in the body compared to any one of native GLP-1, native glucagon, and native GIP, but is not particularly limited thereto.
  • the peptide may be an analog of native glucagon, but is not limited thereto.
  • the native glucagon analog includes a peptide having one or more differences in amino acid sequence compared to the native glucagon, a peptide modified through modification of the native glucagon sequence, or a native glucagon mimic.
  • native glucagon may have the following amino acid sequence:
  • the peptide may be an analog of native glucagon in which at least one amino acid is modified in the native glucagon sequence.
  • the modification may be selected from the group consisting of substitution, addition, deletion, modification, and combinations of two or more thereof.
  • the substitution may include both a substitution with an amino acid or a substitution with a non-naturally occurring compound.
  • the length of the amino acid to be added is not particularly limited, but 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more amino acids may be added. and broadly includes the addition of a polypeptide, but is not particularly limited thereto.
  • the glucagon analog is 1, 2, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, in the native glucagon amino acid sequence. 19 times, 20 times, 21 times, 23 times, 24 times, 27 times, 28 times and 29 times, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, or 20 amino acids may be substituted with other amino acids, In addition, independently or additionally, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more amino acids may be added to the C-terminus thereof. , but is not particularly limited thereto.
  • the glucagon analog is 1, 2, 3, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20 times, 21 times, 23 times, 24 times, 27 times, 28 times and 29 times, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 amino acids may be substituted with other amino acids, and also independently or additionally its C - 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, or 11 or more amino acids may be added to the terminal, but are not particularly limited thereto not.
  • the glucagon analog is 1, 2, 3, 10, 13, 14, 15, 16, 17, 18, 19, 20, in the native glucagon amino acid sequence.
  • 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, or 17 or more amino acids may be substituted with other amino acids, and independently or additionally 1 or more, 2 or more, 3 or more, at the C-terminus thereof, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, or 11 or more amino acids may be added, but is not particularly limited thereto.
  • the glucagon analog is 1, 2, 13, 16, 17, 18, 19, 20, 21, 23, 24, 27, in the native glucagon amino acid sequence.
  • 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, Or 14 amino acids may be substituted with other amino acids, and independently or additionally 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more at the C-terminus thereof.
  • 10 or more, 11 or more amino acids may be added, but is not particularly limited thereto.
  • amino acids introduced from the native glucagon are tyrosine, alpha-methyl-glutamic acid, Aib, methionine, glutamic acid, histidine, lysine, leucine, isoleucine, glutamine, valine, glycine, alanine, cysteine, serine, alanine, aspartic acid, and arginine. It may be selected from the group consisting of, but is not particularly limited thereto.
  • the added amino acid sequence may be derived from a native GLP-1, native GIP, or native exendin-4 amino acid sequence.
  • the glucagon/GLP-1/GIP triple agonist may be non-naturally occurring.
  • the glucagon/GLP-1/GIP triple agonist may be an isolated peptide.
  • the glucagon/GLP-1/GIP triple agonist is a peptide comprising an amino acid sequence represented by the following general formula 1:
  • Xaa1 is histidine (His, H), 4-imidazoacetyl (CA), or tyrosine (Tyr, Y);
  • Xaa2 is glycine (Gly, G), alpha-methyl-glutamic acid, or Aib (aminoisobutyric acid),
  • Xaa3 is glutamic acid (Glu, E) or glutamine (Gln, Q),
  • Xaa7 is threonine (Thr, T) or isoleucine (Ile, I),
  • Xaa10 is leucine (Leu, L), tyrosine (Tyr, Y), lysine (Lys, K), cysteine (Cys, C), or valine (Val, V);
  • Xaa12 is lysine (Lys, K), serine (Ser, S), or isoleucine (Ile, I);
  • Xaa13 is glutamine (Gln, Q), tyrosine (Tyr, Y), alanine (Ala, A), or cysteine (Cys, C);
  • Xaa14 is leucine (Leu, L), methionine (Met, M), or tyrosine (Tyr, Y);
  • Xaa15 is cysteine (Cys, C), aspartic acid (Asp, D), glutamic acid (Glu, E), or leucine (Leu, L);
  • Xaa16 is glycine (Gly, G), glutamic acid (Glu, E), or serine (Ser, S),
  • Xaa17 is glutamine (Gln, Q), arginine (Arg, R), isoleucine (Ile, I), glutamic acid (Glu, E), cysteine (Cys, C), or lysine (Lys, K);
  • Xaa18 is alanine (Ala, A), glutamine (Gln, Q), arginine (Arg, R), or histidine (His, H);
  • Xaa19 is alanine (Ala, A), glutamine (Gln, Q), cysteine (Cys, C), or valine (Val, V);
  • Xaa20 is lysine (Lys, K), glutamine (Gln, Q), or arginine (Arg, R);
  • Xaa21 is glutamic acid (Glu, E), glutamine (Gln, Q), leucine (Leu, L), cysteine (Cys, C), or aspartic acid (Asp, D);
  • Xaa23 is isoleucine (Ile, I) or valine (Val, V),
  • Xaa24 is alanine (Ala, A), glutamine (Gln, Q), cysteine (Cys, C), asparagine (Asn, N), aspartic acid (Asp, D), or glutamic acid (Glu, E);
  • Xaa27 is valine (Val, V), leucine (Leu, L), lysine (Lys, K), or methionine (Met, M);
  • Xaa28 is cysteine (Cys, C), lysine (Lys, K), alanine (Ala, A), asparagine (Asn, N), or aspartic acid (Asp, D);
  • Xaa29 is cysteine (Cys, C), glycine (Gly, G), glutamine (Gln, Q), threonine (Thr, T), glutamic acid (Glu, E), or histidine (His, H);
  • Xaa30 is cysteine (Cys, C), glycine (Gly, G), lysine (Lys, K), or histidine (His, H), or is absent;
  • R1 is cysteine (Cys, C), GKKNDWKHNIT (SEQ ID NO: 106), m-SSGAPPPS-n (SEQ ID NO: 107), or m-SSGQPPPS-n (SEQ ID NO: 108), or is absent;
  • m is -Cys-, -Pro-, or -Gly-Pro-;
  • n is -Cys-, -Gly-, -Ser-, or -His-Gly-, or absent.
  • the peptide contains any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102, and consists essentially of any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102 , may be composed of any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102, but is not limited thereto.
  • Xaa14 is leucine or methionine
  • Xaa15 may be cysteine, aspartic acid, or leucine.
  • the peptide comprises any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 12, 14 to 17, and 21 to 102, SEQ ID NOs: 1 to 12, 14 to 17, and 21 It may consist essentially of any one amino acid sequence selected from the group consisting of to 102, SEQ ID NOs 1 to 12, 14 to 17, and one consisting of any one amino acid sequence selected from the group consisting of 21 to 102, However, the present invention is not limited thereto.
  • Such a peptide may significantly activate one or more of a glucagon receptor, a GLP-1 receptor, and a GIP receptor, but is not particularly limited thereto. Specifically, it may be to significantly activate GLP-1, or to significantly activate a glucagon receptor and/or a GIP receptor in addition, but is not particularly limited thereto.
  • Xaa2 is glycine, alpha-methyl-glutamic acid, or Aib;
  • Xaa7 is threonine
  • Xaa10 is tyrosine, cysteine, or valine
  • Xaa12 is lysine or isoleucine
  • Xaa13 is tyrosine, alanine, glutamine, or cysteine
  • Xaa14 is leucine, cysteine, or methionine
  • Xaa15 is cysteine, leucine, glutamic acid, or aspartic acid
  • Xaa17 is glutamine, arginine, isoleucine, cysteine, glutamic acid, or lysine;
  • Xaa18 is alanine, glutamine, arginine, or histidine;
  • Xaa19 is alanine, glutamine, valine, or cysteine
  • Xaa20 is lysine, arginine, or glutamine
  • Xaa21 is glutamic acid, glutamine, leucine, cysteine, or aspartic acid;
  • Xaa23 is isoleucine or valine
  • Xaa24 is cysteine, alanine, glutamine, asparagine, glutamic acid, or aspartic acid;
  • Xaa27 may be leucine or lysine, but is not particularly limited thereto.
  • Xaa2 is glycine, alpha-methyl-glutamic acid, or Aib;
  • Xaa7 is threonine
  • Xaa10 is tyrosine, cysteine, or valine
  • Xaa12 is lysine or isoleucine
  • Xaa13 is tyrosine, alanine, or cysteine
  • Xaa14 is leucine or methionine
  • Xaa15 is cysteine or aspartic acid
  • Xaa17 is glutamine, arginine, isoleucine, cysteine, or lysine;
  • Xaa18 is alanine, arginine, or histidine
  • Xaa19 is alanine, glutamine, or cysteine
  • Xaa20 is lysine or glutamine
  • Xaa21 is glutamic acid, cysteine, or aspartic acid
  • Xaa23 is valine
  • Xaa24 is alanine, glutamine, cysteine, asparagine, or aspartic acid
  • Xaa27 may be leucine or lysine, but is not particularly limited thereto.
  • Xaa2 is alpha-methyl-glutamic acid or Aib
  • Xaa7 is threonine
  • Xaa10 is tyrosine or cysteine
  • Xaa12 is lysine or isoleucine
  • Xaa13 is tyrosine, alanine, or cysteine
  • Xaa14 is leucine or methionine
  • Xaa15 is cysteine or aspartic acid
  • Xaa16 is glutamic acid
  • Xaa17 is arginine, isoleucine, cysteine, or lysine;
  • Xaa18 is alanine, arginine, or histidine
  • Xaa19 is alanine, glutamine, or cysteine
  • Xaa20 is lysine or glutamine
  • Xaa21 is glutamic acid or aspartic acid
  • Xaa23 is valine
  • Xaa24 is glutamine, asparagine, or aspartic acid
  • Xaa27 is leucine
  • Xaa28 may be cysteine, alanine, asparagine, or aspartic acid.
  • Xaa1 is histidine or 4-imidazoacetyl
  • Xaa2 is alpha-methyl-glutamic acid or Aib
  • Xaa3 is glutamine
  • Xaa7 is threonine
  • Xaa10 is tyrosine
  • Xaa12 is isoleucine
  • Xaa13 is alanine or cysteine
  • Xaa14 is methionine
  • Xaa15 is aspartic acid
  • Xaa16 is glutamic acid
  • Xaa17 is isoleucine or lysine
  • Xaa18 is alanine or histidine
  • Xaa19 is glutamine or cysteine
  • Xaa20 is lysine
  • Xaa21 is aspartic acid
  • Xaa23 is valine
  • Xaa24 is asparagine
  • Xaa27 is leucine
  • Xaa28 is alanine or asparagine
  • Xaa29 is glutamine or threonine
  • Xaa30 may be cysteine or lysine or absent.
  • Xaa2 is glycine, alpha-methyl-glutamic acid, or Aib;
  • Xaa3 is glutamine
  • Xaa7 is threonine
  • Xaa10 is tyrosine, cysteine, or valine
  • Xaa12 is lysine
  • Xaa13 is tyrosine
  • Xaa14 is leucine
  • Xaa15 is aspartic acid
  • Xaa16 is glycine, glutamic acid, or serine
  • Xaa17 is glutamine, arginine, cysteine, or lysine
  • Xaa18 is alanine, arginine, or histidine
  • Xaa19 is alanine or glutamine
  • Xaa20 is lysine or glutamine
  • Xaa21 is glutamic acid, cysteine, or aspartic acid
  • Xaa23 is valine
  • Xaa24 is alanine, glutamine, or cysteine
  • Xaa27 is leucine or lysine
  • Xaa29 may be glycine, glutamine, threonine, or histidine, but is not particularly limited thereto.
  • These peptides have significant activation levels of GLP-1 receptors and glucagon receptors, and are higher than those of GIP receptors;
  • the activation levels of GLP-1 receptor, glucagon receptor and GIP receptor are all significant;
  • the degree of activation of the GLP-1 receptor and the GIP receptor is significant and may correspond to a case where the activation level of the glucagon receptor is higher than that of the glucagon receptor, but is not particularly limited thereto.
  • Such a peptide include amino acids selected from the group consisting of SEQ ID NOs: 8, 9, 21 to 37, 39, 42, 43, 49 to 61, 64 to 83, 85, 86, 88, 89, 91 to 93, 95 to 102 and a peptide comprising or (essentially) consisting of a sequence, but is not particularly limited thereto.
  • the peptide may include an amino acid sequence represented by the following general formula (2).
  • Xaa1 is 4-imidazoacetyl, histidine, or tyrosine;
  • Xaa2 is glycine, alpha-methyl-glutamic acid, or Aib;
  • Xaa10 is tyrosine or cysteine
  • Xaa13 is alanine, glutamine, tyrosine, or cysteine;
  • Xaa14 is leucine, methionine, or tyrosine
  • Xaa15 is aspartic acid, glutamic acid, or leucine
  • Xaa16 is glycine, glutamic acid, or serine
  • Xaa17 is glutamine, arginine, isoleucine, glutamic acid, cysteine, or lysine;
  • Xaa18 is alanine, glutamine, arginine, or histidine;
  • Xaa19 is alanine, glutamine, cysteine, or valine;
  • Xaa20 is lysine, glutamine, or arginine
  • Xaa21 is cysteine, glutamic acid, glutamine, leucine, or aspartic acid;
  • Xaa23 is isoleucine or valine
  • Xaa24 is cysteine, alanine, glutamine, asparagine, or glutamic acid
  • Xaa28 is lysine, cysteine, asparagine, or aspartic acid
  • Xaa29 is glycine, glutamine, cysteine, or histidine
  • Xaa30 is cysteine, glycine, lysine, or histidine
  • Xaa31 is proline or cysteine
  • Xaa40 is cysteine or absent.
  • Xaa13 is alanine, tyrosine, or cysteine
  • Xaa15 is aspartic acid or glutamic acid
  • Xaa17 is glutamine, arginine, cysteine, or lysine
  • Xaa18 is alanine, arginine, or histidine
  • Xaa21 is cysteine, glutamic acid, glutamine, or aspartic acid
  • Xaa23 is isoleucine or valine
  • Xaa24 is cysteine, glutamine, or asparagine
  • Xaa28 is cysteine, asparagine, or aspartic acid
  • Xaa29 is glutamine, cysteine, or histidine
  • Xaa30 may be cysteine, lysine, or histidine.
  • Examples of such a peptide include an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 22, 42, 43, 50, 64 to 77, and 95 to 102, more specifically SEQ ID NOs: 21, 22, 42, 43, 50, 64 to 77, and a peptide comprising or (essentially) consisting of an amino acid sequence selected from the group consisting of 96 to 102, but is not particularly limited thereto.
  • the peptide may comprise an amino acid sequence of the following general formula 3:
  • Xaa1 is histidine or tyrosine
  • Xaa2 is alpha-methyl-glutamic acid or Aib
  • Xaa13 is alanine, tyrosine or cysteine
  • Xaa17 is arginine, cysteine, or lysine
  • Xaa18 is alanine or arginine
  • Xaa19 is alanine or cysteine
  • Xaa21 is glutamic acid or aspartic acid
  • Xaa24 is glutamine or asparagine
  • Xaa28 is cysteine or aspartic acid
  • Xaa29 is cysteine, histidine, or glutamine
  • Xaa30 is cysteine or histidine
  • Xaa31 is proline or cysteine
  • Xaa40 may be cysteine or absent.
  • a peptide examples include a peptide comprising or (essentially) consisting of an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 22, 42, 43, 50, 64 to 71, 75 to 77, and 96 to 102. However, it is not particularly limited thereto.
  • R1 is cysteine, GKKNDWKHNIT (SEQ ID NO: 106), CSSGQPPPS (SEQ ID NO: 109), GPSSGAPPPS (SEQ ID NO: 110), GPSSGAPPPSC (SEQ ID NO: 111), PSSGAPPPS (SEQ ID NO: 112), PSSGAPPPSG (SEQ ID NO: SEQ ID NO: 110) 113), PSSGAPPPSHG (SEQ ID NO: 114), PSSGAPPPSS (SEQ ID NO: 115), PSSGQPPPS (SEQ ID NO: 116), or PSSGQPPPSC (SEQ ID NO: 117), or may be absent, but is not particularly limited thereto.
  • the triple agent may include an intramolecular bridge (eg, a covalent bridge or a non-covalent bridge), and specifically may be in a form including a ring, for example, a glucagon analog or No. 16 of the triple agent And it may be in the form of a ring formed between amino acids 20, but is not particularly limited thereto.
  • an intramolecular bridge eg, a covalent bridge or a non-covalent bridge
  • a ring for example, a glucagon analog or No. 16 of the triple agent
  • it may be in the form of a ring formed between amino acids 20, but is not particularly limited thereto.
  • amino acids 16 and 20 from the N-terminus may form a ring with each other.
  • Non-limiting examples of the ring may include a lactam bridge (or lactam ring).
  • the triple agent includes all those modified to include an amino acid capable of forming a ring at a desired position to include a ring.
  • amino acid pairs 16 and 20 of the glucagon analog or triple agonist may be substituted with glutamic acid or lysine, each capable of forming a ring, but is not limited thereto.
  • Such a ring may be formed between the amino acid side chains in the glucagon analog or triple agent, for example, a lactam ring is formed between the side chain of lysine and the side chain of glutamic acid, but is not particularly limited thereto.
  • the peptide may include any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102.
  • the peptide consists essentially of any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102, or the peptide consists of any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 102 it could be
  • the peptide has an amino acid sequence of SEQ ID NOs: 1 to 102 and 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83% , 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more It may include, but is not limited to, amino acid sequences having identity.
  • “Homology” or “identity” refers to the degree to which two given amino acid sequences or base sequences are related to each other and can be expressed as a percentage. Whether any two peptide sequences have homology, similarity or identity can be determined, for example, by Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444, using a known computer algorithm such as the “FASTA” program. or, as performed in the Needleman program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (version 5.0.0 or later), Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol.
  • GAP program is defined as the total number of symbols in the shorter of two sequences divided by the number of similarly aligned symbols (ie, amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp.
  • the glucagon analog or triple agonist may be prepared by a combination of several methods for preparing various peptides.
  • one or more amino acid sequences are different from those of native glucagon, and the alpha-carbon of the N-terminal amino acid residue has been removed, glucagon receptors, GLP-1 receptors, and GIP receptors.
  • glucagon receptors As an example of an analog of glucagon prepared by a combination of these methods, one or more amino acid sequences are different from those of native glucagon, and the alpha-carbon of the N-terminal amino acid residue has been removed, glucagon receptors, GLP-1 receptors, and GIP receptors.
  • the triple agonist may replace some amino acids with other amino acids or non-natural compounds in order to avoid the recognition action of the activator degrading enzyme in order to increase the half-life in the body.
  • the triple agent may be a peptide having an increased half-life in the body by avoiding the recognition action of the degrading enzyme through substitution of the second amino acid sequence in the amino acid sequence, but amino acid substitution or change to avoid the recognition action of the degrading enzyme in the body is included without limitation.
  • the triple agent may be synthesized by a method well known in the art according to its length, for example, an automatic peptide synthesizer, or may be produced by a genetic engineering technique.
  • the peptide may be prepared by standard synthetic methods, recombinant expression systems, or any other method in the art. Accordingly, a peptide according to an aspect can be synthesized by a number of methods including, but not limited to, for example, methods including:
  • a method for obtaining a fragment of a peptide by any combination of (a), (b) and (c), and then ligating the fragments to obtain a peptide, and recovering the peptide.
  • the preparation of the peptide may include modification using L- or D-form amino acids, and/or non-natural amino acids; and/or modifying the native sequence by modifying, for example, modification of side chain functional groups, intramolecular covalent bonds, such as inter-side chain ring formation, methylation, acylation, ubiquitination, phosphorylation, aminohexylation, biotinylation, etc. includes all that Also, the above modifications include all substitutions with non-naturally occurring compounds.
  • Substituted or added amino acids used in the above modification may use atypical or non-naturally occurring amino acids as well as the 20 amino acids commonly found in human proteins.
  • Commercial sources of atypical amino acids may include, but are not limited to, Sigma-Aldrich, ChemPep and Genzyme pharmaceuticals.
  • aminoisobutyric acid (Aib) may be prepared by synthesizing amino acids of Strecker in acetone, but is not limited thereto.
  • Peptides containing such atypical or non-naturally occurring amino acids and canonical peptide sequences may be synthesized and purchased from commercial peptide synthesis companies, for example, American peptide company or Bachem in the United States, or Anygen in Korea, but limited thereto. doesn't happen
  • the peptide may have an unmodified N-terminus and/or C-terminus, but its N-terminus and/or C-terminus is chemically modified to protect it from proteolytic enzymes in vivo and to increase stability. Modified, protected with an organic group, or modified by adding amino acids to the end of the peptide, etc., are also included in the scope of the peptide according to the above aspect.
  • the end of the peptide has a free carboxyl group, but is not particularly limited thereto.
  • the N-terminus and/or the C-terminus may be modified to remove these charges.
  • the N-terminus may be acetylated and/or the C-terminal amidation may be performed, but the present invention is not particularly limited thereto.
  • the peptide may be unmodified or amidated at the C-terminus, but is not limited thereto.
  • the peptide may be an amidated C-terminus.
  • the peptide includes both the peptide itself, a salt thereof (eg, a pharmaceutically acceptable salt of the peptide), or a solvate thereof.
  • the type of the salt is not particularly limited. However, it is preferable that the form is safe and effective for an individual, such as a mammal, but is not particularly limited thereto.
  • the peptide may be in any pharmaceutically acceptable form.
  • pharmaceutically acceptable means a sufficient amount to exhibit a therapeutic effect and does not cause side effects, and includes the type of disease, the patient's age, weight, health, sex, the patient's sensitivity to the drug, and the route of administration. , can be easily determined by those skilled in the art according to factors well known in the medical field, such as administration method, number of administration, treatment period, combination or concurrently used drugs.
  • the peptide may be in the form of a pharmaceutically acceptable salt thereof.
  • the salts include conventional acid addition salts used in the pharmaceutical field, for example in the treatment of lupus, for example, salts derived from inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, sulfamic acid, phosphoric acid or nitric acid; and acetic acid, propionic acid, succinic acid, glycolic acid, stearic acid, citric acid, maleic acid, malonic acid, methanesulfonic acid, tartaric acid, malic acid, phenylacetic acid, glutamic acid, benzoic acid, salicylic acid, 2-acetoxybenzoic acid, fumaric acid, toluenesulfonic acid, oxalic acid or salts derived from organic acids such as trifluoroacetic acid.
  • the salt may be a base addition salt such as ammonium, dimethylamine, monomethylamine, monoethylamine, or diethylamine.
  • the salts also include conventional metal salt forms, for example salts derived from metals such as lithium, sodium, potassium, magnesium, or calcium.
  • the acid addition salt, base addition salt or metal salt may be prepared according to a conventional method.
  • Pharmaceutically acceptable salts and general methodologies for their preparation are well known in the art. For example, in P. Stahl, et al. Handbook of Pharmaceutical Salts: Properties, Selection and Use, 2nd Revised Edition (Wiley-VCH, 2011)]; [S.M. Berge, et al., "Pharmaceutical Salts," Journal of Pharmaceutical Sciences, Vol. 66, No. 1, January 1977].
  • triphosphonium salts include benzotriazol-1-yloxytris (pyrrolagino) phosphonium hexafluorophosphate (PyBOP), bromotris (pyrrolazino) phosphonium hexafluorophosphate (PyBroP), 7 -Azabenzotriazol-1-yloxytris(pyrrolazino)phosphonium hexafluorophosphate (PyAOP), examples of tetramethyluronium salts are 2-(1H-benzotriazol-1-yl)- 1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(7-azabenzotriazol-1-yl)-1,1,3,3-
  • racemization inhibitors eg, N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (HONB), 1-hydroxybenzotriazole (HOBt), 1-hydroxy- 7-azabenzotriazole (HOAt), 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt), ethyl 2-cyano-2- (hydroxyl mino)acetate (Oxyma), etc.
  • the solvent used for the condensation may be appropriately selected from those known to be useful for the peptide condensation reaction.
  • acid amides such as anhydrous or water-containing N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, etc.; halogenated hydrocarbons such as methylene chloride, chloroform, etc.; Alcohols such as fluoroethanol and phenol, sulfoxides such as dimethylsulfoxide, tertiary amines such as pyridine, ethers such as dioxane and tetrahydrofuran, nitriles such as acetonitrile, propionitrile, methyl acetate, ethyl Esters such as acetates and the like, suitable mixtures thereof, and the like can be used.
  • Alcohols such as fluoroethanol and phenol, sulfoxides such as dimethylsulfoxide, tertiary amines such as pyridine, ethers such as dioxane and tetrahydrofuran, nitriles such as acet
  • the reaction temperature is appropriately selected from a range known to be usable for a peptide binding reaction, and is usually selected from the range of about -20°C to 90°C.
  • Activated amino acid derivatives are usually used in 1.5 to 6-fold excess.
  • solid-phase synthesis when the test using the ninhydrin reaction indicates that the condensation is insufficient, sufficient condensation can be carried out by repeating the condensation reaction without removing the protecting group. If the condensation is still insufficient after repeating the reaction, the unreacted amino acid may be acetylated with an acid anhydride, acetylimidazole, or the like, so that the influence on the subsequent reaction can be avoided.
  • protecting groups for the amino group of the starting amino acid are benzyloxycarbonyl (Z), tert-butoxycarbonyl (Boc), tert-pentyloxycarbonyl, isobornyloxycarbonyl, 4-methoxybenzyloxycarbonyl , 2-chlorobenzyloxycarbonyl (Cl-Z), 2-bromobenzyloxycarbonyl (Br-Z), adamantyloxycarbonyl, trifluoroacetyl, phthaloyl, formyl, 2-nitro phenylsulfenyl, diphenylphosphinothioyl, 9-fluorenylmethyloxycarbonyl (Fmoc), trityl, and the like.
  • Examples of a carboxyl-protecting group for the starting amino acid include, in addition to the above-mentioned C 1-6 alkyl group, C 3-10 cycloalkyl group, C 7-14 aralkyl group, aryl, 2-adamantyl, 4-nitrobenzyl, 4 -methoxybenzyl, 4-chlorobenzyl, phenacyl and benzyloxycarbonylhydrazide, tert-butoxycarbonylhydrazide, tritylhydrazide and the like.
  • the hydroxyl group of serine or threonine may be protected, for example, by esterification or etherification.
  • groups suitable for esterification include lower (C 2-4 ) alkanoyl groups such as acetyl groups, aroyl groups such as benzoyl groups, and groups derived from organic acids and the like.
  • suitable groups for etherification include benzyl, tetrahydropyranyl, tert-butyl (But t ), trityl (Trt), and the like.
  • Examples of the protecting group for the phenolic hydroxyl group of tyrosine include Bzl, 2,6-dichlorobenzyl, 2-nitrobenzyl, Br-Z, tert-butyl and the like.
  • Examples of the protecting group of histidine for imidazole include p-toluenesulfonyl (Tos), 4-methoxy-2,3,6-trimethylbenzenesulfonyl (Mtr), dinitrophenyl (DNP), benzyloxymethyl (Bom), tert-butoxymethyl (Bum), Boc, Trt, Fmoc, and the like.
  • Examples of protecting groups for the guanidino group of arginine include Tos, Z, 4-methoxy-2,3,6-trimethylbenzenesulfonyl (Mtr), p-methoxybenzenesulfonyl (MBS), 2,2, 5,7,8-pentamethylchroman-6-sulfonyl (Pmc), mesitylene-2-sulfonyl (Mts), 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl phonyl (Pbf), Boc, Z, NO 2 and the like.
  • Mtr 4-methoxy-2,3,6-trimethylbenzenesulfonyl
  • MSS p-methoxybenzenesulfonyl
  • Pmc 2,2, 5,7,8-pentamethylchroman-6-sulfonyl
  • Mts mesitylene-2-sulfonyl
  • Pbf 2,2,4,6,7-p
  • Examples of a protecting group for the side chain amino group of lysine include Z, Cl-Z, trifluoroacetyl, Boc, Fmoc, Trt, Mtr, 4,4-dimethyl-2,6-dioxocyclohexylidenyl (Dde), etc. includes
  • Examples of the protecting group for indolyl of tryptophan include formyl (For), Z, Boc, Mts, Mtr, and the like.
  • protecting groups for asparagine and glutamine include Trt, xantyl (Xan), 4,4'-dimethoxybenzhydryl (Mbh), 2,4,6-trimethoxybenzyl (Tmob), and the like.
  • activated carboxyl groups in the starting material include the corresponding acid anhydrides, azides, active esters [esters with alcohols (eg pentachlorophenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol) , cyanomethyl alcohol, paranitrophenol, HONB, N-hydroxysucciimide, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt))] include Examples of activated amino groups in the starting material include the corresponding phosphorus amides.
  • Examples of methods for removing protecting groups include catalytic reduction in a hydrogen stream in the presence of a catalyst such as Pd-black or Pd-carbon; Anhydrous hydrogen fluoride, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid (TFA), trimethylsilyl bromide (TMSBr), trimethylsilyl trifluoromethanesulfonate, tetrafluoroboric acid, tris(tris) acid treatment with a solution of fluoro)boric acid, boron tribromide, or a mixture thereof; base treatment with diisopropylethylamine, triethylamine, piperidine, piperazine or the like; and reduction with sodium in liquid ammonia and the like.
  • a catalyst such as Pd-black or Pd-carbon
  • Anhydrous hydrogen fluoride methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid (TFA
  • the removal reaction by acid treatment described above is generally carried out at a temperature of -20°C to 40°C; Acid treatments include anisole, phenol, thioanisole, methacresol and paracresol; This is done efficiently by adding a cation scavenger such as dimethylsulfide, 1,4-butanedithiol, 1,2-ethanedithiol, triisopropylsilane, and the like.
  • a cation scavenger such as dimethylsulfide, 1,4-butanedithiol, 1,2-ethanedithiol, triisopropylsilane, and the like.
  • the 2,4-dinitrophenyl group used as the protecting group of imidazole of histidine is removed by thiophenol treatment;
  • the formyl group used as the protecting group of the indole of tryptophan is not only by acid treatment in the presence of 1,2-ethanedithiol, 1,4-butanedithiol, etc., but also by alkali treatment with diluted sodium hydroxide, diluted ammonia, etc. It is removed by deprotection.
  • Protection of a functional group that should not be involved in the reaction between the starting material and the protecting group, removal of the protecting group, activation of the functional group involved in the reaction, and the like may be appropriately selected from known protecting groups and known means.
  • the left end is the N-terminal (amino terminus) and the right end is the C-terminus (carboxyl terminus) according to conventional peptide markings.
  • the C-terminus of the peptide is an amide (-CONH 2 ), a carboxyl group (-COOH), a carboxylate (-COO-), an alkylamide (-CONHR′, where R′ is alkyl) and an ester (-COOR′,
  • R' may be any one of alkyl or aryl.
  • an amide of a peptide it is formed by solid-phase synthesis using a resin for amide synthesis, or the ⁇ -carboxyl group of a carboxy-terminal amino acid is amidated, and the peptide chain is extended to the desired chain length toward the amino group. Then, a peptide in which the protecting group for the N-terminal ⁇ -amino group of only the peptide chain has been removed and the peptide with only the protecting group for the C-terminal carboxyl group removed from the peptide chain are prepared, and these two peptides are mixed as described above condensed in a solvent. As for the details of the condensation reaction, the same applies as described above.
  • the peptide may be in the form of a solvate thereof.
  • “Solvate” means that the peptide or a salt thereof forms a complex with a solvent molecule.
  • the composition is a pharmaceutical composition for the prevention or treatment of lupus-related diseases, and contains a pharmaceutically effective amount of a pharmaceutically acceptable excipient; and a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 102. It may be a pharmaceutical composition comprising
  • the peptide may be in the form of a long-acting conjugate.
  • the conjugate exhibits an activity equivalent to or higher than that of a native ligand (ie, native glucagon, native GLP-1, and native GIP), and at the same time, a native ligand or derivative thereof to which a carrier (or biocompatible material) is not bound. Compared to that, it may exhibit increased potency and persistence.
  • a native ligand ie, native glucagon, native GLP-1, and native GIP
  • the term “long-acting conjugate” refers to a conjugate with increased durability compared to a natural ligand or a derivative thereof to which a biocompatible material is not bound.
  • the conjugates are “long-acting glucagon/GLP-1/GIP triple agonist conjugate”, “long-acting glucagon/GLP-1/GIP triple agonist”, “long-acting glucagon/GLP-1/GIP conjugate”, “long-acting glucagon/GLP-1/GIP conjugate” GCG/GLP-1/GIP conjugate”, “triple agonist conjugate”, “triple agonist long-acting conjugate”, “long-acting conjugate”, or “conjugate” may be used interchangeably.
  • Such a binder includes not only the above-described form, but also a form encapsulated in biodegradable nanoparticles.
  • the binder may be an isolated binder.
  • the combination may be non-naturally occurring.
  • the peptide may be in the form of a conjugate to which a biocompatible material that increases the half-life in vivo is bound.
  • the pharmaceutical composition may include a conjugate in which the glucagon/GLP-1/GIP triple agonist and a biocompatible material that increases the in vivo half-life are combined.
  • the biocompatible material may be mixed with a carrier.
  • the long-acting conjugate may be represented by the following Chemical Formula 1:
  • X is a glucagon / GLP-1 / GIP triple agonist
  • L is a linker
  • F is a biocompatible material that increases the in vivo half-life of X
  • the glucagon/GLP-1/GIP triple agonist is the same as described above.
  • L may be La, wherein a is 0 or a natural number, provided that when a is 2 or more, each L may be independent of each other.
  • the biocompatible material may be bonded to each other by a covalent chemical bond or a non-covalent chemical bond with the glucagon / GLP-1 / GIP triple agent, and a linker (Linker, L) by a covalent chemical bond, a non-covalent chemical bond, or a combination thereof may be coupled to each other through
  • the - may represent a covalent linkage between X and L and between L and F.
  • One or more amino acid side chains in the glucagon/GLP-1/GIP triple agonist may be conjugated to such biocompatible materials to increase solubility and/or half-life and/or increase bioavailability in vivo. Such modifications may also reduce clearance of therapeutic proteins and peptides.
  • the biocompatible material described above may be water-soluble (amphiphilic or hydrophilic) and/or non-toxic and/or pharmaceutically acceptable.
  • the biocompatible material is a high molecular polymer, fatty acid, cholesterol, albumin and fragments thereof, albumin binding material, a polymer of a repeating unit of a specific amino acid sequence, antibody, antibody fragment, FcRn binding material, connective tissue in vivo, nucleotide, fibronectin, transferrin ( Transferrin), saccharides (saccharide), heparin, and may be selected from the group consisting of elastin, but is not particularly limited thereto.
  • polymer polymer examples include polyethylene glycol (PEG), polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, polyvinyl ethyl ether, biodegradable polymer, lipid polymer, chitin, and a high molecular polymer selected from the group consisting of hyaluronic acid, oligonucleotides, and combinations thereof, and the polysaccharide may include dextran, but is not particularly limited thereto.
  • PEG polyethylene glycol
  • polypropylene glycol ethylene glycol-propylene glycol copolymer
  • polyoxyethylated polyol polyvinyl alcohol
  • polysaccharide polyvinyl ethyl ether
  • biodegradable polymer lipid polymer
  • chitin examples of the polysaccharide may include dextran, but is not particularly limited thereto.
  • the polyethylene glycol is a term encompassing all forms of ethylene glycol homopolymer, PEG copolymer, or monomethyl-substituted PEG polymer (mPEG), but is not particularly limited thereto.
  • the fatty acid may have a binding force with albumin in vivo, but is not particularly limited thereto.
  • the biocompatible materials include, but are not limited to, poly-amino acids such as poly-lysine, poly-aspartic acid and poly-glutamic acid.
  • the elastin may be human tropoelastin, a water-soluble precursor, and may be a polymer of some sequences or some repeating units of these, for example, all of the cases of elastin-like polypeptides, but is not particularly limited thereto. .
  • the biocompatible material may be an FcRn binding material.
  • the FcRn-binding material may be an immunoglobulin Fc region, more specifically an IgG Fc region, more specifically an aglycosylated IgG4 Fc region, but is not particularly limited thereto.
  • Immunoglobulin Fc region refers to a region comprising a heavy chain constant region 2 (CH2) and/or heavy chain constant region 3 (CH3) region, excluding the heavy and light chain variable regions of an immunoglobulin.
  • the immunoglobulin Fc region may be a component constituting a moiety of the conjugate according to an aspect.
  • the immunoglobulin Fc region may include a hinge region in the heavy chain constant region, but is not limited thereto.
  • the immunoglobulin Fc region may include a specific hinge sequence at the N-terminus.
  • flankinge sequence refers to a region that is located in the heavy chain and forms a dimer of an immunoglobulin Fc fragment through an inter disulfide bond.
  • the hinge sequence may be mutated to have only one cysteine residue by deleting a portion of the hinge sequence having the following amino acid sequence, but is not limited thereto:
  • the hinge sequence may include only one cysteine residue by deleting the 8th or 11th cysteine residue in the hinge sequence of SEQ ID NO: 119.
  • the hinge sequence according to one embodiment may be composed of 3 to 12 amino acids, including only one cysteine residue, but is not limited thereto.
  • the hinge sequence may have the following sequence: Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Pro-Ser-Cys-Pro (SEQ ID NO: 120), Glu- Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser-Pro (SEQ ID NO: 121), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser (SEQ ID NO: 122), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Pro (SEQ ID NO: 123), Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser (SEQ ID NO: 124), Glu-Ser- Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser (SEQ ID NO: 125), Glu-Lys-Tyr-Gly-Pro-Pro-Cys (SEQ
  • the hinge sequence may include the amino acid sequence of SEQ ID NO: 129 (Pro-Ser-Cys-Pro) or SEQ ID NO: 138 (Ser-Cys-Pro), but is not limited thereto.
  • the immunoglobulin Fc region may have a form in which two molecules of an immunoglobulin Fc chain form a dimer due to the presence of a hinge sequence.
  • the conjugate of Formula 1 may be in a form in which one end of the linker is linked to one chain of the dimer immunoglobulin Fc region, but is not limited thereto.
  • N-terminus refers to the amino terminus of a protein or polypeptide, and 1, 2, 3, 4, 5, 6, 7, 8 Dogs, 9, or may include up to 10 or more amino acids.
  • the immunoglobulin Fc fragment of the present invention may include a hinge sequence at the N-terminus, but is not limited thereto.
  • part or all of the heavy chain constant region 1 (CH1) and/or the light chain constant region 1 except for only the heavy and light chain variable regions of the immunoglobulin (CL1) may be an extended Fc region. Also, it may be a region in which some fairly long amino acid sequences corresponding to CH2 and/or CH3 have been removed.
  • the immunoglobulin Fc region comprises (a) a CH1 domain, a CH2 domain, a CH3 domain and a CH4 domain; (b) a CH1 domain and a CH2 domain; (c) a CH1 domain and a CH3 domain; (d) a CH2 domain and a CH3 domain; (e) a combination of one or more domains of a CH1 domain, a CH2 domain, a CH3 domain and a CH4 domain with an immunoglobulin hinge region or portion of a hinge region; And (f) it may be selected from the group consisting of a dimer of each domain of the heavy chain constant region and the light chain constant region, but is not limited thereto.
  • the immunoglobulin Fc region may be in a dimeric form, and one molecule of the glucagon/GLP-1/GIP triple agonist may be covalently linked to one Fc region in the dimeric form, wherein the immunoglobulin Fc and The glucagon/GLP-1/GIP triple agonist may be linked to each other by a non-peptidyl polymer.
  • the immunoglobulin Fc and the glucagon/GLP-1/GIP triple agonist may be linked to each other by a non-peptide linker.
  • the immunoglobulin Fc region includes a native amino acid sequence as well as a sequence derivative thereof.
  • An amino acid sequence derivative means that one or more amino acid residues in a natural amino acid sequence have a different sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • amino acid residues 214 to 238, 297 to 299, 318 to 322, or 327 to 331 known to be important for binding may be used as suitable sites for modification.
  • various types of derivatives are possible, such as a site capable of forming a disulfide bond is removed, some amino acids at the N-terminus of native Fc are removed, or a methionine residue may be added to the N-terminus of native Fc Do.
  • the complement binding site for example, the C1q binding site, may be removed, or the ADCC (antibody dependent cell mediated cytotoxicity) site may be removed.
  • Techniques for preparing such an immunoglobulin Fc region sequence derivative are disclosed in International Patent Publication Nos. WO 97/34631 and International Patent Publication No. 96/32478.
  • the above-described Fc derivative may exhibit the same biological activity as that of the Fc region and increase structural stability against heat, pH, etc. of the Fc region.
  • the Fc region may be obtained from a native type isolated in vivo from animals such as humans, cows, goats, pigs, mice, rabbits, hamsters, rats or guinea pigs, or obtained from transformed animal cells or microorganisms. It may be recombinant or a derivative thereof.
  • the method of obtaining from the native type may be a method of obtaining whole immunoglobulin by isolating it from a living body of a human or animal and then treating it with a proteolytic enzyme. When treated with papain, it is cleaved into Fab and Fc, and when treated with pepsin, it is cleaved into pF'c and F(ab) 2 .
  • Fc or pF'c may be separated using size-exclusion chromatography or the like.
  • the human-derived Fc region is a recombinant immunoglobulin Fc region obtained from a microorganism.
  • the immunoglobulin Fc region may have a native sugar chain, an increased sugar chain compared to the native type, a decreased sugar chain compared to the native type, or a form in which the sugar chain is removed.
  • Conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms may be used for the increase or decrease or removal of such immunoglobulin Fc sugar chains.
  • the immunoglobulin Fc region from which the sugar chains are removed from the Fc has significantly reduced binding to complement (c1q) and reduced or eliminated antibody-dependent cytotoxicity or complement-dependent cytotoxicity, so that unnecessary immune responses in vivo are not induced.
  • a form more suitable for the original purpose as a drug carrier may be an immunoglobulin Fc region in which sugar chains are removed or non-glycosylated.
  • Deglycosylation refers to an Fc region from which sugars are removed by an enzyme, and aglycosylation refers to an Fc region that is not glycosylated by being produced in a prokaryote, in a more specific embodiment, in E. coli.
  • the immunoglobulin Fc region may be an Fc region derived from IgG, IgA, IgD, IgE, or IgM, or a combination or hybrid thereof. In a more specific embodiment, it is derived from IgG or IgM, which is most abundant in human blood, and in a more specific embodiment it is derived from IgG, which is known to enhance the half-life of ligand binding proteins. In a still more specific embodiment, the immunoglobulin Fc region is an IgG4 Fc region, and in the most specific embodiment, the immunoglobulin Fc region is an aglycosylated Fc region derived from human IgG4, but is not limited thereto.
  • “Combination” means that, when forming dimers or multimers, polypeptides encoding single-chain immunoglobulin Fc regions of the same origin form bonds with single-chain polypeptides of different origins. That is, it is possible to prepare a dimer or multimer from two or more fragments selected from the group consisting of IgG Fc, IgA Fc, IgM Fc, IgD Fc and IgE Fc fragment.
  • the glucagon/GLP-1/GIP triple agonist may be linked to a biocompatible material through a linker.
  • the linker may be a peptidic linker or a non-peptidyl linker.
  • the linker when the linker is a peptidic linker, it may include one or more amino acids, for example, 1 to 1000 amino acids, but is not particularly limited thereto.
  • the peptidic linker may include Gly, Asn and Ser residues, and neutral amino acids such as Thr and Ala may also be included.
  • various known peptide linkers may be used.
  • the copy number “n” can also be adjusted to achieve proper separation between functional moieties or to allow for optimization of the linker to maintain the necessary inter-moiety interactions.
  • the linker may be a flexible linker comprising G, S, and/or T residues.
  • linkers include (GGGGS)n, (SGGGG)n, (SRSSG)n, (SGSSC)n, (GKSSGSGSESKS)n, (RPPPPC)n, (SSPPPPC)n, (GSTSGSGKSSEGKG)n, (GSTSGSGKSSEGSGSSTKG) n, (GSTSGSGKPGSGEGSTKG)n, or (EGKSSGSGSESKEF)n, wherein n is an integer of 1 to 20, or 1 to 10.
  • non-peptidyl linker includes a biocompatible polymer to which two or more repeating units are linked.
  • the repeating units are linked to each other through any covalent bond other than a peptide bond.
  • the non-peptidyl linker may be a component constituting a moiety of the conjugate.
  • non-peptidyl linker may be used interchangeably with “non-peptidyl polymer”.
  • the conjugate is a biocompatible material, specifically, an immunoglobulin Fc region, and a non-peptidyl linker comprising a reactive group capable of binding to a glucagon/GLP-1/GIP triple agonist at both ends. and the glucagon/GLP-1/GIP triple agonist may be covalently linked to each other.
  • non-peptidyl linker may be selected from the group consisting of fatty acids, saccharides, high molecular weight polymers, low molecular weight compounds, nucleotides, and combinations thereof.
  • the non-peptidyl linker is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, polyvinyl ethyl ether, polylactic acid (PLA) and It may be selected from the group consisting of biodegradable polymers such as polylactic-glycolic acid (PLGA), lipid polymers, chitins, hyaluronic acid, oligonucleotides, and combinations thereof.
  • the polysaccharide may be dextran, but is not limited thereto.
  • the non-peptidyl polymer may be, but is not limited to, polyethylene glycol.
  • L may be a linker containing an ethylene glycol repeating unit.
  • the linker may be polyethylene glycol (PEG) represented by the following formula (2), but is not limited thereto:
  • the PEG moiety in the long-acting conjugate may include, but is not limited to, the -(CH2CH2O)n- structure as well as an oxygen atom intervening between the linking element and the -(CH2CH2O)n-.
  • the polyethylene glycol is a term encompassing all forms of ethylene glycol homopolymer, PEG copolymer, or monomethyl-substituted PEG polymer (mPEG), but is not particularly limited thereto.
  • the non-peptidyl linker may be used without limitation as long as it is a polymer resistant to proteolytic enzymes in vivo.
  • the formula weight of the non-peptidyl polymer is in the range of 1 to 1000 kDa, specifically in the range of 1 to 100 kDa, more specifically in the range of 1 to 20 kDa, but is not limited thereto.
  • the non-peptidyl linker not only one type of polymer, but also a combination of different types of polymers may be used.
  • the formula weight of the ethylene glycol repeating unit moiety in L may be in the range of 1 to 100 kDa, more specifically, in the range of 1 to 20 kDa.
  • both ends of the non-peptidyl linker can bind to a biocompatible material, such as an amine group or a thiol group of an immunoglobulin Fc region, and an amine group or a thiol group of the glucagon/GLP-1/GIP triple agonist, respectively. there is.
  • the non-peptidyl polymer is a reactive group capable of binding to a biocompatible material (eg, immunoglobulin Fc region) and a glucagon/GLP-1/GIP triple agonist at both ends, specifically, glucagon/GLP-1/ It may include, but is not limited to, a reactive group capable of binding to a GIP triple agonist, or an amine group located at the N-terminus or lysine of a biocompatible material (eg, an immunoglobulin Fc region), or a thiol group of cysteine.
  • a biocompatible material eg, immunoglobulin Fc region
  • glucagon/GLP-1/GIP triple agonist at both ends
  • glucagon/GLP-1/ may include, but is not limited to, a reactive group capable of binding to a GIP triple agonist, or an amine group located at the N-terminus or lysine of a biocompatible material (eg, an immunoglobulin Fc region), or a
  • the reactive group of the non-peptidyl polymer capable of binding to a biocompatible material, such as an immunoglobulin Fc region and a glucagon/GLP-1/GIP triple agonist, is selected from the group consisting of an aldehyde group, a maleimide group and a succinimide derivative.
  • a biocompatible material such as an immunoglobulin Fc region and a glucagon/GLP-1/GIP triple agonist
  • the reactive group of the non-peptidyl polymer capable of binding to a biocompatible material, such as an immunoglobulin Fc region and a glucagon/GLP-1/GIP triple agonist.
  • the aldehyde group may be exemplified by a propionaldehyde group or a butyl aldehyde group, but is not limited thereto.
  • succinimidyl valerate succinimidyl methylbutanoate, succinimidyl methylpropionate, succinimidyl butanoate, succinimidyl propionate, N-hydroxysuccini Mead, hydroxy succinimidyl, succinimidyl carboxymethyl or succinimidyl carbonate may be used, but are not limited thereto.
  • the final product resulting from reductive alkylation with aldehyde bonds is much more stable than those linked with amide bonds.
  • the aldehyde reactive group selectively reacts with the N-terminus at a low pH, and can form a covalent bond with a lysine residue at a high pH, for example, pH 9.0.
  • the reactive groups at both ends of the non-peptidyl linker may be the same or different from each other, for example, a maleimide group at one end and an aldehyde group, a propionaldehyde group, or a butyl aldehyde group at the other end.
  • a biocompatible material specifically, an immunoglobulin Fc region and a glucagon/GLP-1/GIP triple agonist can be bound to each end of the non-peptide linker, it is not particularly limited thereto.
  • one end of the non-peptidyl linker may include a maleimide group as a reactive group, and an aldehyde group, a propionaldehyde group, or a butyl aldehyde group at the other end of the non-peptidyl linker.
  • the hydroxyl group can be activated into the various reactive groups by a known chemical reaction, or using a commercially available polyethylene glycol having a modified reactive group. Long-acting binders can be prepared.
  • the non-peptidyl polymer may be linked to a cysteine residue of the glucagon/GLP-1/GIP triple agonist, more specifically, to the -SH group of cysteine, but is not limited thereto.
  • maleimide-PEG-aldehyde is used, the maleimide group is connected to the -SH group of the glucagon/GLP-1/GIP triple agonist by a thioether bond, and the aldehyde group is a biocompatible material, specifically immunoglobulin Fc. It may be connected through a reductive alkylation reaction with the -NH 2 group of, but is not limited thereto, and this corresponds to one example.
  • the reactive group of the non-peptidyl polymer may be linked to -NH 2 located at the N-terminus of the immunoglobulin Fc region, but this corresponds to one example.
  • the long-acting conjugate may be one represented by the following Chemical Formula 1:
  • X is a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 102;
  • L is a linker containing an ethylene glycol repeating unit
  • F is an immunoglobulin Fc region
  • the peptide is one comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 22, 42, 43, 50, 64, 66, 67, 70, 71, 76, 77, 96, 97 and 100 can
  • the peptide may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 22, 42, 43, 50, 66, 67, 77, 96, 97 and 100.
  • the peptide may include an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 22, 42, 43, 50, 77 and 96.
  • the glucagon/GLP-1/GIP triple agonist or a conjugate thereof improves edema, restores skin lesions, and reduces the weight and size of an enlarged spleen due to an inflammatory response in lupus disease model mice.
  • the triple agent having all of the activities for glucagon, GLP-1, and GIP and a long-acting conjugate thereof can be used for the prevention or treatment of lupus-related diseases.
  • the glucagon/GLP-1/GIP triple agonist or a conjugate thereof has activity on all of the glucagon receptor, the GLP-1 receptor, and the GIP receptor, and the activity on the glucagon receptor is higher than the activity on the GLP-1 receptor or the GIP receptor.
  • the peptides represented by SEQ ID NOs: 21, 22, 42, 43, 66, 70, 96, and 97 have very high activity against the glucagon receptor. Since glucagon targets the liver, high activity on the glucagon receptor may increase its distribution in the liver and increase its effect on the liver. However, since many long-acting conjugates of the triple agent exist in the blood when administered, the effect is not limited thereto, and may be suitable for controlling systemic inflammatory diseases such as lupus.
  • prevention refers to any action that inhibits or delays the onset of a lupus-related disease by administration of the composition.
  • treatment refers to any action in which the symptoms of lupus-related diseases are improved or beneficial by administration of the composition.
  • Lupus is an autoimmune disease. Inflammation appears throughout the body as the body's white blood cells and immune cells attack our body and damage tissues. Lupus means a red rash, and it is called systemic lupus erythematosus because this disease occurs not only on the skin but also on the entire body, or lupus for short. This disease is characterized by the fact that 90% of the patients are female, and the onset of the disease occurs between the ages of 20 and 50 years of childbearing age. Since it is an autoimmune disease, inflammation occurs anywhere in the body, and the symptoms vary accordingly, and the symptoms change over time, making it difficult to diagnose.
  • An autoimmune response can cause inflammation anywhere in the body, and it causes a variety of symptoms depending on where the inflammation is caused. If they are listed in order, joint pain occurs due to inflammation in the joints, fever occurs throughout the body due to inflammation of the body, and erythema occurs due to dermatitis. Inflammation of the kidneys causes proteinuria, and inflammation of the membranes surrounding the lungs and heart causes chest pain. In addition, photosensitivity reactions, hair loss, blood cell abnormalities, Raynaud's phenomenon, convulsions, mouth ulcers, etc. may occur.
  • “Lupus” generally refers to systemic lupus erythematosus.
  • Systemic lupus erythematosus (SLE) also referred to as “systemic lupus erythematosus” or “S.L.E”
  • SLE systemic lupus erythematosus
  • S.L.E systemic lupus erythematosus
  • Systemic lupus erythematosus does not necessarily cause symptoms throughout the body, but there are cases in which symptoms appear only in a part of the body.
  • Lupus is also classified as a type of small vessel vasculitis. However, unlike vasculitis that affects only a specific area called blood vessels, lupus targets all tissues in the body. Therefore, drugs that are effective in treating vasculitis may not necessarily be effective in treating lupus, and vice versa.
  • lupus-associated diseases includes lupus or systemic lupus erythematosus in the ordinary sense, and includes all diseases or symptoms accompanying or related to lupus.
  • the lupus-related disease may be one in which symptoms appear in any one or more organs of the lungs, heart, muscles, and joints.
  • the lupus-associated disease may be accompanied by skin lesions. Accordingly, the lupus-related disease can be diagnosed by a skin lesion score.
  • the pharmaceutical composition according to one embodiment may have an effect of treating lupus-related diseases by reducing skin lesions in a patient.
  • the lupus-related disease may include systemic lupus erythematosus (SLE), discoid lupus erythematosus (DLE), drug-induced lupus, neonatal lupus, etc. there is.
  • SLE systemic lupus erythematosus
  • DLE discoid lupus erythematosus
  • drug-induced lupus lupus-related disease
  • neonatal lupus etc. there is.
  • the "Discoid lupus erythematosus (DLE)” is also called “Chronic discoid lupus erythematosus” or “Cutaneous lupus rythematosus”, and rashes occur on the skin such as the face, limbs, etc. Depending on the progress, it may be accompanied by pore swelling and pigmentation.
  • drug-induced lupus refers to lupus caused by the administration of a specific drug.
  • the “neonatal lupus” is lupus that occurs in newborns born to mothers who suffered from lupus during pregnancy.
  • lupus-related disease is, for example, lupus nephritis (Lupus nephritis), pericarditis (pericarditis), pleuritis (pleuritis), interstitial pneumonia (interstitial pneumonia), diseases accompanying lupus such as arthritis (arthritis) may include
  • the lupus-related disease is, for example, butterfly erythema (Butterfly rash), erythema pernio-like (Pernio-like rash), Raynaud phenomenon, oral ulcer (oral ulcer), photosensitivity (photosensitivity), NET It may include lupus-related symptoms, such as livedo.
  • the lupus-associated disease may be systemic lupus erythematosus, lupus discoid erythematosus, drug-induced lupus, neonatal lupus, lupus nephritis, erythema butterfly, or erythema classmates, but is not limited thereto.
  • the pharmaceutical composition may be to reduce skin lesions.
  • the pharmaceutical composition may be to reduce the skin lesion score increased by the lupus-related disease.
  • the pharmaceutical composition may further include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers may include binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, dyes and fragrances, etc. for oral administration, and in the case of injections, buffers, preservatives, pain relief Agents, solubilizers, isotonic agents and stabilizers may be mixed and used.
  • bases, excipients, lubricants and preservatives may be used for topical administration.
  • the dosage form of the pharmaceutical composition may be prepared in various ways by mixing with a pharmaceutically acceptable carrier as described above.
  • a pharmaceutically acceptable carrier for example, in the case of oral administration, it may be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups and wafers, and in the case of injections, it may be prepared in the form of unit dose ampoules or multiple doses.
  • it can be formulated into solutions, suspensions, tablets, pills, capsules, sustained-release preparations, and the like.
  • suitable carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, or mineral oil may be used.
  • fillers, anti-agglomeration agents, lubricants, wetting agents, flavoring agents, emulsifiers and preservatives and the like may be further included.
  • the pharmaceutical composition may further comprise one or more other agents for treating a lupus-related disease.
  • the other agent may be an anti-inflammatory agent or an immunosuppressive agent, but is not limited thereto.
  • the other agent may be a lupus treatment agent, but is not limited thereto.
  • Anti-inflammatory agent refers to a compound for the treatment of an inflammatory disease or condition associated therewith.
  • Anti-inflammatory agents include, but are not limited to, non-steroidal anti-inflammatory drugs (NSAIDs; e.g., aspirin, ibuprofen, naproxen, methyl salicylate, diflunisal, indomethacin, sulindac, diclofenac, ketoprofen, ketorolac, carprofen, fenoprofen, mefenamic acid, piroxicam, meloxicam, methotrexate, celecoxib, valdecoxib, parecoxib, etoricoxib, and nimesulide), corticosteroids (eg, prednisone, betamethasone) , budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, tramcinolone, and fluticasone),
  • the anti-inflammatory agent is a statin or high-density lipoprotein (HDL) and HDL-cholesterol-raising compound.
  • Immunosuppressant and “immunosuppressive agent” include compounds or compositions that inhibit an immune response or symptoms associated therewith.
  • Immunosuppressants include, but are not limited to, purine analogs (eg, azathioprine), methotrexate, cyclosporine (eg, cyclosporine A), cyclophosphamide, leflunomide, mycophenolate (mycophenolate parent).
  • steroids e.g., glucocorticoids, corticosteroids
  • methylprednisone prednisone
  • nonsteroidal anti-inflammatory drugs NSAIDs
  • chloroquine hydroxychloroquine
  • chlorambucil CD20 antagonists (e.g., rituximab, ocrelizumab) , beltuzumab or ofatumumab), abatacept
  • TNF antagonists eg, infliximab, adalimumab, etanercept
  • macrolides eg, pimecrolimus, tacrolimus (FK506), and siroli mus
  • dihydroepiandrosterone lenalidomide
  • CD40 antagonist eg anti-CD40L antibody
  • BLys antagonist eg anti-BLyS (eg belimumab)
  • dactinomycin bucilamine
  • penicillamine leflunomide
  • mer
  • the immunosuppressive agent is methotrexate, hydroxychloroquine, a CD20 antagonist (eg, rituximab, ocrelizumab, veltuzumab or ofatumumab), abatacept, a TNF antagonist (eg, infliximab, a dalimumab, etanercept), sirolimus, and a BLyS antagonist (eg, anti-BLyS (eg, belimumab)).
  • a CD20 antagonist eg, rituximab, ocrelizumab, veltuzumab or ofatumumab
  • abatacept eg, a TNF antagonist (eg, infliximab, a dalimumab, etanercept)
  • sirolimus eg, infliximab, a dalimumab, etanercept
  • BLyS antagonist eg
  • a “lupus therapeutic agent” includes a compound or composition that inhibits or treats symptoms associated with lupus.
  • a known substance may be used for the treatment of lupus.
  • the dosage and frequency of administration of the pharmaceutical composition is determined according to the type of drug as an active ingredient, along with several related factors such as the disease to be treated, the route of administration, the age, sex and weight of the patient, and the severity of the disease.
  • the pharmaceutical composition Since the pharmaceutical composition has excellent in vivo persistence and potency, it is possible to significantly reduce the number and frequency of administration.
  • Another aspect comprises administering an effective amount of the glucagon / GLP-1 / GIP triple agonist, a pharmaceutically acceptable salt, a solvate thereof, or the conjugate, or the pharmaceutical composition to a subject in need thereof , a method for preventing or treating a lupus-related disease is provided.
  • the glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt thereof, a solvate thereof, the conjugate, the pharmaceutical composition, and a lupus-related disease are as described above.
  • an “effective amount” or “pharmaceutically effective amount” means the glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable amount thereof, which, when administered to the patient in single or multiple doses, provides the desired effect in the patient under diagnosis or treatment. refers to the amount or dose of a salt, a solvate thereof, or a combination thereof.
  • An effective amount can be readily determined by the attending physician of ordinary skill in the art by using known techniques or by observing the results obtained under similar circumstances.
  • the mammalian species When determining an effective amount for a patient, the mammalian species; his size, age and general health; the specific disease or disorder involved; degree or severity of involvement of the disease or disorder; individual patient response; the particular compound being administered; mode of administration; the bioavailability characteristics of the agent being administered; selected dosing regimen; use of concomitant medications; and other relevant circumstances are considered by the attending physician.
  • “Individual” means a subject in need of treatment for a disease, and more specifically, refers to mammals such as human or non-human primates, mice, rats, dogs, cats, horses and cattle. .
  • administering means introducing a given substance into a patient by any suitable method.
  • the route of administration may be any general route capable of reaching the in vivo target of the patient.
  • the administration may be, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, or rectal administration, but is not limited thereto.
  • the administration is 0.0001 mg to 1,000 mg, for example, 0.1 mg to 1,000 mg, 0.1 mg to 500 mg, 0.1 mg to 100 mg, 0.1 mg to 50 mg, 0.1 mg to 25 mg, 1 mg to 1,000 mg, 1 mg to 500 mg, 1 mg to 100 mg, 1 mg to 50 mg, or 1 mg to 25 mg may be administered.
  • the dosage may be prescribed in various ways depending on factors such as formulation method, administration method, patient's age, weight, sex, pathological condition, food, administration time, administration route, excretion rate and reaction sensitivity, and those skilled in the art The dosage may be appropriately adjusted in consideration of these factors.
  • the number of administration may be once a day or twice or more within the range of clinically acceptable side effects, and may be administered to one or two or more sites for the administration site, and total daily or at intervals of 2 to 5 days
  • the number of days of administration may range from 1 to 30 days per treatment. If necessary, the same treatment can be repeated after a titration period.
  • the dose is the same as that of a human per kg, or the above dose is converted, for example, by the volume ratio (for example, average value) of the target animal and the organ (heart, etc.) of the human One dose can be administered.
  • an effective amount of the glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt thereof, a solvate thereof, or a conjugate thereof is administered simultaneously, separately, or sequentially with an effective amount of one or more other active ingredients.
  • the one or more other active ingredients may be, but are not limited to, one or more other agents for treating a lupus-related disease.
  • Another aspect provides the use of the glucagon / GLP-1 / GIP triple agonist, a pharmaceutically acceptable salt thereof, a solvate thereof, or the conjugate for use in the manufacture of a medicament for the prophylaxis or treatment of lupus-related diseases. do.
  • the glucagon/GLP-1/GIP triple agonist, a pharmaceutically acceptable salt thereof, a solvate thereof, the conjugate, and a lupus-related disease are as described above.
  • Glucagon / GLP-1 / GIP triple agonist improves edema in a lupus disease model mouse, restores skin lesions, and reduces the weight and size of an enlarged spleen due to an inflammatory response Since it is effective, it can be used for preventing or treating lupus-related diseases.
  • 1 is a graph showing the weight change rate (%) after 10 weeks in a normal mouse control group, a disease model (MRL/lpr) mouse control group, and a group administered with a long-acting conjugate of a triple agent.
  • FIG. 2 is a graph showing skin lesion scores for 10 weeks in a normal mouse control group, a disease model (MRL/lpr) mouse control group, and a group administered with a long-acting conjugate of a triple agent.
  • 3A shows the spleen weight after 10 weeks in the normal mouse control group, the disease model (MRL/lpr) mouse control group, and the triple-acting long-acting conjugate administration group.
  • Figure 3B shows the size of the spleen after 10 weeks in the normal mouse control group, the disease model (MRL/lpr) mouse control group, and the triple-acting long-acting conjugate administration group.
  • a triple agonist of glucagon/GLP-1/GIP exhibiting activity on all glucagon receptors, GLP-1 receptors, and GIP receptors was prepared and its sequences are shown in Table 1 below.
  • an amino acid denoted by X is a non-natural amino acid Aib (aminoisobutyric acid), and an underlined amino acid means that the underlined amino acids form a ring with each other.
  • Aib amino acid denoted by X
  • underlined amino acid means that the underlined amino acids form a ring with each other.
  • CA means 4-imidazoacetyl
  • Y means tyrosine.
  • the triple agonist peptide is used as a triple agonist in which the C-terminus is amidated if necessary.
  • Example 10 kDa PEG that is, maleimide-PEG-aldehyde (10 kDa, NOF, Japan) having a maleimide group and an aldehyde group at both ends, respectively, was added to the triple agent of Example 1 (SEQ ID NOs: 21, 22, 42, 43, 50, 77) , and 96), for pegylation to the cysteine residue of the triple agent and maleimide-PEG-aldehyde in a molar ratio of 1:1 to 3 and a protein concentration of 1 to 5 mg/ml at low temperature for 0.5 to 3 hours reacted.
  • the reaction was carried out in an environment in which 20 to 60% isopropanol was added to 50 mM Tris buffer (pH 7.5). After completion of the reaction, the reaction solution was applied to SP Sepharose HP (GE healthcare, USA) to purify the triple agent mono-pegylated to cysteine.
  • SP Sepharose HP GE healthcare, USA
  • the purified mono-pegylated triple agent and immunoglobulin Fc were reacted at a molar ratio of 1:1 to 5 and a protein concentration of 10 to 50 mg/ml at 4 to 8° C. for 12 to 18 hours.
  • the reaction was carried out in an environment in which 10 to 50 mM sodium cyanoborohydride and 10 to 30% isopropanol as reducing agents were added to 100 mM potassium phosphate buffer (pH 6.0).
  • the reaction solution was applied to a butyl sepharose FF purification column (GE healthcare, USA) and a Source ISO purification column (GE healthcare, USA) to purify a conjugate containing a triple agent and immunoglobulin Fc. .
  • conjugate in which the triple agent of SEQ ID NO: 21 and the immunoglobulin Fc are linked via PEG was designated as a 'conjugate comprising SEQ ID NO: 21 and an immunoglobulin Fc' or a 'long-acting conjugate of SEQ ID NO: 21'. It can be used in combination.
  • conjugate in which the triple agent of SEQ ID NO: 22 and the immunoglobulin Fc are linked through PEG was designated as a 'conjugate comprising SEQ ID NO: 22 and an immunoglobulin Fc' or a 'long-acting conjugate of SEQ ID NO: 22'. It can be used in combination.
  • conjugate in which the triple agent of SEQ ID NO: 42 and the immunoglobulin Fc are linked via PEG was designated as a 'conjugate comprising SEQ ID NO: 42 and immunoglobulin Fc' or 'a long-acting conjugate of SEQ ID NO: 42', which is used herein It can be used in combination.
  • conjugate in which the triple agent of SEQ ID NO: 43 and the immunoglobulin Fc are linked through PEG was designated as a 'conjugate comprising SEQ ID NO: 43 and immunoglobulin Fc' or a 'long-acting conjugate of SEQ ID NO: 43'.
  • a 'conjugate comprising SEQ ID NO: 43 and immunoglobulin Fc' or a 'long-acting conjugate of SEQ ID NO: 43'.
  • conjugate in which the triple agent of SEQ ID NO: 50 and the immunoglobulin Fc are linked through PEG was designated as a 'conjugate comprising SEQ ID NO: 50 and immunoglobulin Fc' or 'a long-acting conjugate of SEQ ID NO: 50', which is used herein It can be used in combination.
  • conjugate in which the triple agent of SEQ ID NO: 77 and the immunoglobulin Fc are linked via PEG was designated as a 'conjugate comprising SEQ ID NO: 77 and an immunoglobulin Fc' or a 'persistent conjugate of SEQ ID NO: 77', which is used herein can be used interchangeably
  • conjugate in which the triple agent of SEQ ID NO: 96 and the immunoglobulin Fc are linked through PEG was designated as a 'conjugate comprising SEQ ID NO: 96 and immunoglobulin Fc' or 'a long-acting conjugate of SEQ ID NO: 96'. It can be used in combination.
  • Each of the above cell lines was transformed to express human GLP-1 receptor, human GCG receptor and human GIP receptor genes in Chinese hamster ovary (CHO), respectively, and is suitable for measuring the activities of GLP-1, GCG and GIP. Therefore, the activity for each part was measured using each transformed cell line.
  • human GLP-1 was serially diluted from 50 nM to 0.000048 nM by 4 times, and prepared in Examples 1 and 2
  • the triple agonist and its long-acting conjugate were serially diluted from 400 nM to 0.00038 nM in 4-fold increments.
  • the culture medium was removed from the cultured CHO cells expressing the human GLP-1 receptor, 5 ⁇ l of each serially diluted substance was added to the cells, and then 5 ⁇ l of a buffer containing cAMP antibody was added for 15 minutes. during incubation at room temperature.
  • Human GCG was serially diluted from 50 nM to 0.000048 nM by 4 times in order to measure the GCG activity of the triple agent prepared in Examples 1 and 2 and the long-acting conjugate thereof, and the triple agent prepared in Examples 1 and 2 and its The long-acting conjugate was serially diluted from 400 nM to 0.00038 nM in 4-fold increments.
  • the culture medium was removed from the cultured CHO cells expressing human GCG receptor, 5 ⁇ l of each serially diluted substance was added to the cells, and 5 ⁇ l of a buffer containing cAMP antibody was added thereto, followed by room temperature for 15 minutes.
  • human GIP was serially diluted from 50 nM to 0.000048 nM by 4 times, and the triple agent prepared in Examples 1 and 2 and its The long-acting conjugate was serially diluted from 400 nM to 0.00038 nM in 4-fold increments.
  • the culture medium was removed from the cultured CHO cells expressing the human GIP receptor, 5 ⁇ l of each serially diluted substance was added to the cells, and 5 ⁇ l of a buffer containing cAMP antibody was added thereto, followed by room temperature for 15 minutes.
  • the long-acting conjugate of the triple agonist prepared above has a function as a triple agonist capable of activating all of the GLP-1 receptor, the GIP receptor and the glucagon receptor.
  • MRL/lpr mice were used to confirm the efficacy of the long-acting conjugate of the triple agonist on lupus in a disease model.
  • Body weight was measured during the administration period, and the degree of skin lesions was measured by observing the snout, ears, wingbone area, and eyes at intervals of 1 week from the 4th week. After the experiment was completed, the spleen was taken through an autopsy, and the weight was measured and observed.
  • 1 is a graph showing the weight change rate (%) after 10 weeks in a normal mouse control group, a disease model (MRL/lpr) mouse control group, and a group administered with a long-acting conjugate of a triple agent.
  • the disease model had increased body weight compared to normal mice.
  • body weight increases due to systemic edema due to an inflammatory response, and the disease model also shows the same characteristics.
  • the test group administered with the long-acting conjugate of the triple agent it was confirmed that the body weight decreased compared to the control group of the disease model mouse, and from this, it was found that the edema was improved.
  • FIG. 2 is a graph showing skin lesion scores for 10 weeks in a normal mouse control group, a disease model (MRL/lpr) mouse control group, and a group administered with a long-acting conjugate of a triple agent.
  • 3A shows the spleen weight after 10 weeks in the normal mouse control group, the disease model (MRL/lpr) mouse control group, and the triple-acting long-acting conjugate administration group.
  • Figure 3B shows the size of the spleen after 10 weeks in the normal mouse control group, the disease model (MRL/lpr) mouse control group, and the triple-acting long-acting conjugate administration group.
  • the spleen in the case of the disease model control group, the spleen was greatly enlarged due to the inflammatory response. It was confirmed that the weight and size of the spleen decreased in the case of the triple agent long-acting conjugate administration group compared to the disease model control group.
  • the long-acting conjugate of the triple agent has an effect of treating or improving lupus-related diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Transplantation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 글루카곤 수용체, GLP-1(Glucagon-like peptide-1) 수용체, 및 GIP(Glucose-dependent insulinotropic polypeptide) 수용체에 대해 활성을 갖는 삼중작용제, 이의 약학적으로 허용 가능한 염, 이의 용매화물, 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물에 관한 것으로, 루푸스 질환 동물 모델에서 염증에 의한 부종 감소, 피부 병변 개선 및 비장 무게 및 크기를 감소시키는 효과를 갖는다.

Description

글루카곤/GLP-1/GIP 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물
글루카곤/GLP-1/GIP 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.
전신홍반루푸스(Systemic Lupus Erythematosus)는 전신홍반성낭창, 루푸스, 또는 S.L.E라고도 지칭되며, 세포핵의 특정 단백질에 대한 자가항체가 생성되고 면역계의 이상에 의해 자신의 세포나 조직이 파괴되는 만성 염증성 자가면역 질환이다. 대부분의 경우 루푸스는 피부 발진처럼 경미한 증상에 그치기도 하지만, 일부 환자들에게는 신체의 주요 장기인 뇌, 폐, 신장 등에 심각한 면역 이상 증상을 일으킬 수 있다.
루푸스가 발생하는 정확한 원인은 밝혀져 있지 않다. 유전적인 요소와 호르몬, 환경적 요인이 복합적으로 작용해 발생하는 것으로 짐작할 뿐이다. 이 외에 자외선 노출, 이산화규소 먼지, 흡연, 약물 등도 루푸스 발생을 높일 수 있다고 보고되었다.
루푸스 환자는 매년 증가하고 있다. 건강보험심사평가원(Health Insurance Review & Assessment Service, HIRA)의 통계자료에 따르면, 2017년 루푸스로 진료를 받은 인원은 25,757명이었으며, 2015년부터 2017년까지 3년 사이에 진료 인원이 3000명 가량(13.5%) 증가하였다. 연령별로 진료 인원을 살펴보면, 40대(26.6%)가 가장 많았고, 30대(22.2%), 50대(21.9%) 순으로 뒤를 이었다. 성별로는 여성(86.3%)이 남성(13.7%)보다 약 6.3배 높은 비율을 보였다. 따라서, 30~50대 여성의 각별한 주의가 필요함을 알 수 있다.
루푸스는 소혈관 혈관염(Small vessel vasculitis)으로 분류되기도 하지만, 혈관이라는 특정 부위에만 영향을 받는 것이 아니라, 관절과 근육뿐만 아니라 피부, 신경조직, 폐, 신장, 심장과 조혈기관 등 온몸의 모든 조직이 공격대상이 된다는 점에서 다른 혈관염과는 다르다고 할 수 있다. 같은 맥락에서 루푸스의 경우 질환의 진행에 대한 예측이 어렵고, 다양한 증상으로 나타나 임상적으로도 진단과 치료에 많은 어려움을 겪고 있다.
GLP-1 (Glucagon-like peptide-1) 및 GIP (Glucose-dependent insuliontropic polypeptide)는 대표적인 위장 호르몬이자 신경 호르몬으로서 음식물 섭취에 따른 혈중 당 농도 조절에 관여하는 물질이다. 글루카곤 (Glucagon)은 췌장에서 분비되는 펩타이드 호르몬으로 전술한 두 물질과 함께 혈중 당 농도 조절 작용에 관여한다.
GLP-1은 음식물 섭취에 자극을 받아 소장에서 분비되는 호르몬으로 혈당 농도 의존적으로 췌장에서의 인슐린 분비를 촉진하고 글루카곤의 분비를 억제하여 혈당 농도를 낮추는 작용을 돕는다. 또한, 포만 인자로 작용하여 위장의 소화작용을 늦추고 음식 소화물의 위장 통과시간을 지연시켜 음식물 섭취를 줄이는 역할을 지닌다. 더욱이 쥐에 투여시 음식 섭취억제와 체중 감소효과가 있음이 보고되었으며, 이러한 효과는 정상과 비만상태 모두에서 동일하게 나타남이 확인되어 비만 치료제로서의 가능성을 보여주었다.
GIP는 위장관에서 분비되는 대표적인 호르몬(인크레틴 호르몬)이자 소장의 K 세포로부터 분비되는 42개 아미노산으로 구성된 호르몬으로서 혈당 농도에 의존적으로 췌장에서의 인슐린 혹은 글루카곤 분비를 촉진하여 혈당의 항상성을 유지하는데 도움을 주는 것으로 잘 알려져있으며, 최근 연구들에서는 식이 억제 및 항염증의 효과가 보고되고 있다.
글루카곤은 약물 치료 또는 질병, 호르몬이나 효소 결핍 등의 원인으로 혈당이 떨어지기 시작하면 췌장에서 생산된다. 글루카곤은 간에 신호하여 글리코겐을 분해하여 글루코스를 방출하도록 유도하고, 혈당 수준을 정상 수준까지 높이는 역할을 한다. 뿐만 아니라, 글루카곤은 혈당 상승효과 이외에 동물과 사람에서의 식욕억제 및 지방세포의 호르몬 민감성 리파제 (hormone sensitive lipase)를 활성화시켜 지방 분해를 촉진 및 에너지대사 (energy expenditudre)를 촉진하여 항-비만 효과를 나타냄이 보고되었다.
이외에도 이러한 GLP-1, GIP, 그리고 글루카곤 호르몬들은 각각이 모두 항염증 효능을 가지고 있는 것으로 보고되어 있다. 이에 본 발명자들은 글루카곤, GLP-1 및 GIP 수용체에 동시에 활성을 갖는 삼중작용제를 개발하여 루푸스-관련 질환에 대한 치료제로서의 가능성을 확인함으로써 발명을 완성하였다.
글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 이의 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
유효량의 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 이의 결합체, 또는 상기 약학적 조성물을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 루푸스-관련 질환을 예방 또는 치료하는 방법을 제공한다.
루푸스-관련 질환의 예방 또는 치료용 약제를 제조하는데 사용하기 위한, 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 이의 결합체의 용도를 제공한다.
본 명세서 전반에서, 천연적으로 존재하는 아미노산에 대한 통상의 1문자 및 3문자 코드가 사용될 뿐만 아니라 Aib (α-아미노이소부티르산), Sar (N-methylglycine), 알파-메틸-글루탐산 (α-methyl-glutamic acid) 등과 같은 다른 아미노산에 대해 일반적으로 허용되는 3문자 코드가 사용된다. 또한 본 명세서에서 약어로 언급된 아미노산은 IUPAC-IUB 명명법에 따라 기재되었다.
알라닌 Ala, A 아르기닌 Arg, R
아스파라긴 Asn, N 아스파르트산 Asp, D
시스테인 Cys, C 글루탐산 Glu, E
글루타민 Gln, Q 글리신 Gly, G
히스티딘 His, H 이소류신 Ile, I
류신 Leu, L 리신 Lys, K
메티오닌 Met, M 페닐알라닌 Phe, F
프롤린 Pro, P 세린 Ser, S
트레오닌 Thr, T 트립토판 Trp, W
티로신 Tyr, Y 발린 Val, V
일 양상은 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염 또는 이의 용매화물을 포함하는, 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
“글루카곤(Glucagon, GCG)”은 췌장의 랑게르한스섬에 있는 α세포에서 분비되는 호르몬으로, 인슐린과는 반대 작용을 하여 피드백 관계에 있다.
“GLP-1(Glucagon-like peptide-1)”은 음식물 섭취에 자극을 받아 소장의 L 세포로부터 분비되는 호르몬으로, 혈당 농도 의존적으로 췌장에서의 인슐린 분비를 촉진하고 글루카곤의 분비를 억제하여 혈당 농도를 낮추는 작용을 돕는다.
“GIP(Glucose-dependent insulinotropic polypeptide 또는 Gastric inhibitory polypeptide)”는 음식물 섭취에 자극을 받아 소장의 K 세포로부터 분비되는 호르몬으로서 혈중 당 농도 조절에 관여하는 물질로 최초에 보고되었다.
상기 “글루카곤/GLP-1/GIP 삼중작용제(Glucagon/GLP-1/GIP triple agonist)”는 “GCG/GLP-1/GIP 삼중작용제”, “GCG/GLP-1/GIP 수용체 삼중작용제”, “GCG 수용체, GLP-1 수용체, 및 GIP 수용체 삼중작용제”, “GCGR/GLP-1R/GIPR 삼중작용제”, “삼중작용제”, 또는 “글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 갖는 펩타이드”와 상호교환적으로 사용될 수 있다.
상기 글루카곤/GLP-1/GIP 삼중작용제는 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 갖는 펩타이드일 수 있다. 상기 “글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 갖는 펩타이드”는 상기 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 유의한 수준의 활성을 가지며, 구체적으로 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 in vitro 활성이 각각 천연형 리간드 (천연형 글루카곤, 천연형 GLP-1 또는 천연형 GIP) 대비 약 0.1% 이상, 1% 이상, 2% 이상, 3% 이상, 4% 이상, 5% 이상, 6% 이상, 7% 이상, 8% 이상, 9% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 100% 이상, 100% 내지 500%, 또는 100% 내지 200%을 나타내는 것을 의미할 수 있다. 이러한 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 갖는 펩타이드의 in vitro 활성을 측정하는 방법은 본원 명세서의 실험예 1을 참조할 수 있으나, 특별히 이에 제한되지 않고, 당업계에 알려진 방법이라면 적절히 사용하여 in vitro 활성을 측정할 수 있다.
"약"은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, "약"이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.
상기 펩타이드는 천연형 GLP-1, 천연형 글루카곤 및 천연형 GIP 중 어느 하나 대비 체내 반감기가 증가된 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 펩타이드는 천연형 글루카곤의 아날로그일 수 있으나, 이에 제한되는 것은 아니다.
상기 천연형 글루카곤의 아날로그는 천연형 글루카곤과 비교하여 아미노산 서열에 하나 이상의 차이가 있는 펩타이드, 천연형 글루카곤 서열의 개질을 통하여 변형시킨 펩타이드, 또는 천연형 글루카곤의 모방체를 포함한다.
한편, 천연형 글루카곤은 다음의 아미노산 서열을 가질 수 있다:
His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr (서열번호: 118)
구체적으로, 상기 펩타이드는 천연형 글루카곤 서열에서 적어도 하나 이상의 아미노산에 변형이 일어난 천연형 글루카곤의 아날로그일 수 있다. 상기 변형은 치환(substitution), 추가(addition), 제거(deletion), 개질(modification) 및 이들의 2 이상의 조합으로 이루어지는 군에서 선택될 수 있다.
상기 치환은 아미노산으로의 치환이나 비-천연형 화합물로의 치환을 모두 포함할 수 있다.
상기 추가는 펩타이드의 N-말단 및/또는 C-말단에 이루어질 수 있다. 한편, 추가되는 아미노산의 길이는 특별히 제한되지 않으나, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상의 아미노산이 추가될 수 있으며, 넓게는 폴리펩타이드의 추가를 포함하나, 특별히 이에 제한되는 것은 아니다.
보다 구체적으로, 상기 글루카곤 아날로그는 천연형 글루카곤 아미노산 서열에서 1번, 2번, 3번, 7번, 10번, 12번, 13번, 14번, 15번, 16번, 17번, 18번, 19번, 20번, 21번, 23번, 24번, 27번, 28번 및 29번으로 이루어진 군에서 선택된, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 17 이상, 18 이상, 19 이상, 또는 20개의 아미노산이 다른 아미노산이 치환된 것일 수 있으며, 또한 독립적으로 또는 추가적으로 이의 C-말단에 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11개 이상의 아미노산이 추가된 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
보다 더 구체적으로 상기 글루카곤 아날로그는 천연형 글루카곤 아미노산 서열에서 1번, 2번, 3번, 10번, 12번, 13번, 14번, 15번, 16번, 17번, 18번, 19번, 20번, 21번, 23번, 24번, 27번, 28번 및 29번으로 이루어진 군에서 선택된, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 17 이상, 18 이상, 19개의 아미노산이 다른 아미노산이 치환된 것일 수 있으며, 또한 독립적으로 또는 추가적으로 이의 C-말단에 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 또는 11개 이상의 아미노산이 추가된 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
보다 더 구체적으로 상기 글루카곤 아날로그는 천연형 글루카곤 아미노산 서열에서 1번, 2번, 3번, 10번, 13번, 14번, 15번, 16번, 17번, 18번, 19번, 20번, 21번, 23번, 24번, 28번 및 29번으로 이루어진 군에서 선택된, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 17개의 아미노산이 다른 아미노산이 치환된 것일 수 있으며, 또한 독립적으로 또는 추가적으로 이의 C-말단에 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 또는 11개 이상의 아미노산이 추가된 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
보다 더 구체적으로 상기 글루카곤 아날로그는 천연형 글루카곤 아미노산 서열에서 1번, 2번, 13번, 16번, 17번, 18번, 19번, 20번, 21번, 23번, 24번, 27번, 28번 및 29번으로 이루어진 군에서 선택된, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12이상, 13이상, 또는 14개의 아미노산이 다른 아미노산이 치환된 것일 수 있으며, 또한 독립적으로 또는 추가적으로 이의 C-말단에 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11개 이상의 아미노산이 추가된 것일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 천연형 글루카곤에서 도입되는 아미노산은 티로신, 알파-메틸-글루탐산, Aib, 메티오닌, 글루탐산, 히스티딘, 리신, 류신, 이소류신, 글루타민, 발린, 글리신, 알라닌, 시스테인, 세린, 알라닌, 아스파르트산, 및 아르기닌으로 이루어진 군으로부터 선택될 수 있으나, 특별히 이에 제한되는 것은 아니다.
예컨대, 상기 추가되는 아미노산 서열은 천연형 GLP-1, 천연형 GIP, 또는 천연형 엑센딘-4 아미노산 서열에서 유래되는 것일 수 있다.
상기 글루카곤/GLP-1/GIP 삼중작용제는 비자연적으로 발생하는(non-naturally occurring) 것일 수 있다.
상기 글루카곤/GLP-1/GIP 삼중작용제는 분리된 펩타이드일 수 있다.
일 구체예에서, 상기 글루카곤/GLP-1/GIP 삼중작용제는 하기 일반식 1로 표시되는 아미노산 서열을 포함하는 펩타이드이다:
Xaa1-Xaa2-Xaa3-Gly-Thr-Phe-Xaa7-Ser-Asp-Xaa10-Ser-Xaa12-Xaa13-Xaa14-Xaa15-Xaa16-Xaa17-Xaa18-Xaa19-Xaa20-Xaa21-Phe-Xaa23-Xaa24-Trp-Leu-Xaa27-Xaa28-Xaa29-Xaa30-R1 (일반식 1, 서열번호 103)
상기 일반식 1에서,
Xaa1은 히스티딘 (His, H), 4-이미다조아세틸 (CA), 또는 티로신 (Tyr, Y)이고,
Xaa2는 글리신 (Gly, G), 알파-메틸-글루탐산, 또는 Aib (aminoisobutyric acid)이며,
Xaa3은 글루탐산 (Glu, E) 또는 글루타민 (Gln, Q)이고,
Xaa7은 트레오닌 (Thr, T) 또는 이소류신 (Ile, I)이며,
Xaa10은 류신 (Leu, L), 티로신 (Tyr, Y), 리신 (Lys, K), 시스테인 (Cys, C), 또는 발린 (Val, V)이고,
Xaa12는 리신 (Lys, K), 세린 (Ser, S), 또는 이소류신(Ile, I)이며,
Xaa13은 글루타민 (Gln, Q), 티로신 (Tyr, Y), 알라닌 (Ala, A), 또는 시스테인 (Cys, C)이고,
Xaa14는 류신 (Leu, L), 메티오닌 (Met, M), 또는 티로신 (Tyr, Y)이며,
Xaa15는 시스테인 (Cys, C), 아스파르트산 (Asp, D), 글루탐산(Glu, E), 또는 류신(Leu, L)이며,
Xaa16은 글리신 (Gly, G), 글루탐산 (Glu, E), 또는 세린 (Ser, S)이고,
Xaa17은 글루타민 (Gln, Q), 아르기닌 (Arg, R), 이소류신 (Ile, I), 글루탐산 (Glu, E), 시스테인 (Cys, C), 또는 리신 (Lys, K)이며,
Xaa18은 알라닌 (Ala, A), 글루타민 (Gln, Q), 아르기닌 (Arg, R), 또는 히스티딘 (His, H)이고,
Xaa19는 알라닌 (Ala, A), 글루타민 (Gln, Q), 시스테인 (Cys, C), 또는 발린 (Val, V)이며,
Xaa20은 리신 (Lys, K), 글루타민 (Gln, Q), 또는 아르기닌 (Arg, R)이고,
Xaa21은 글루탐산 (Glu, E), 글루타민 (Gln, Q), 류신 (Leu, L), 시스테인 (Cys, C), 또는 아스파르트산 (Asp, D)이며,
Xaa23은 이소류신 (Ile, I) 또는 발린 (Val, V)이고,
Xaa24는 알라닌 (Ala, A), 글루타민 (Gln, Q), 시스테인 (Cys, C), 아스파라긴 (Asn, N), 아스파르트산 (Asp, D), 또는 글루탐산 (Glu, E)이며,
Xaa27은 발린 (Val, V), 류신 (Leu, L), 리신 (Lys, K), 또는 메티오닌 (Met, M)이고,
Xaa28은 시스테인 (Cys, C), 리신 (Lys, K), 알라닌 (Ala, A), 아스파라긴 (Asn, N), 또는 아스파르트산 (Asp, D)이며,
Xaa29는 시스테인 (Cys, C), 글리신 (Gly, G), 글루타민 (Gln, Q), 트레오닌 (Thr, T), 글루탐산 (Glu, E), 또는 히스티딘 (His, H)이고,
Xaa30은 시스테인 (Cys, C), 글리신 (Gly, G), 리신 (Lys, K), 또는 히스티딘 (His, H)이거나, 부존재하며,
R1은 시스테인 (Cys, C), GKKNDWKHNIT (서열번호 106), m-SSGAPPPS-n (서열번호 107), 또는 m-SSGQPPPS-n (서열번호 108)이거나, 부존재하며,
여기서,
m은 -Cys-, -Pro-, 또는 -Gly-Pro-이고,
n은 -Cys-, -Gly-, -Ser-, 또는 -His-Gly-이거나, 부존재함.
이러한 삼중작용제의 예로, 상기 펩타이드는 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열을 포함하는 것, 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 필수적으로 구성되는 것, 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 것일 수 있으나, 이에 제한되는 것은 아니다.
다른 구체예에서, 상기 일반식 1에서,
Xaa14는 류신 또는 메티오닌이며,
Xaa15는 시스테인, 아스파르트산, 또는 류신일 수 있다.
이러한 삼중작용제의 예로, 상기 펩타이드는 서열번호 1 내지 12, 14 내지 17, 및 21 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열을 포함하는 것, 서열번호 1 내지 12, 14 내지 17, 및 21 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 필수적으로 구성되는 것, 서열번호 1 내지 12, 14 내지 17, 및 21 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 것일 수 있으나, 이에 제한되는 것은 아니다.
이러한 펩타이드는 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체 중 하나 이상을 유의하게 활성화시킬 수 있으나, 특별히 이에 제한되는 것은 아니다. 구체적으로, GLP-1을 유의하게 활성화시키거나, 추가로 글루카곤 수용체 및/또는 GIP 수용체를 유의하게 활성화시키는 것일 수 있으나, 특별히 이에 제한되지 않는다.
다른 구체예에서, 상기 일반식 1에서,
Xaa2는 글리신, 알파-메틸-글루탐산, 또는 Aib이고,
Xaa7은 트레오닌이며,
Xaa10은 티로신, 시스테인, 또는 발린이고,
Xaa12는 리신 또는 이소류신이며,
Xaa13은 티로신, 알라닌, 글루타민, 또는 시스테인이고,
Xaa14는 류신, 시스테인, 또는 메티오닌이며,
Xaa15는 시스테인, 류신, 글루탐산, 또는 아스파르트산이고,
Xaa17은 글루타민, 아르기닌, 이소류신, 시스테인, 글루탐산, 또는 리신이며,
Xaa18은 알라닌, 글루타민, 아르기닌, 또는 히스티딘이고,
Xaa19는 알라닌, 글루타민, 발린, 또는 시스테인이며,
Xaa20은 리신, 아르기닌, 또는 글루타민이고,
Xaa21은 글루탐산, 글루타민, 류신, 시스테인, 또는 아스파르트산이며,
Xaa23은 이소류신 또는 발린이고,
Xaa24는 시스테인, 알라닌, 글루타민, 아스파라긴, 글루탐산, 또는 아스파르트산이며,
Xaa27은 류신 또는 리신일 수 있으나, 특별히 이에 제한되는 것은 아니다.
보다 더 구체적으로, 상기 일반식 1에서,
Xaa2는 글리신, 알파-메틸-글루탐산, 또는 Aib이고,
Xaa7은 트레오닌이며,
Xaa10은 티로신, 시스테인, 또는 발린이고,
Xaa12는 리신 또는 이소류신이며,
Xaa13은 티로신, 알라닌, 또는 시스테인이고,
Xaa14는 류신 또는 메티오닌이며,
Xaa15는 시스테인 또는 아스파르트산이고,
Xaa17은 글루타민, 아르기닌, 이소류신, 시스테인, 또는 리신이며,
Xaa18은 알라닌, 아르기닌, 또는 히스티딘이고,
Xaa19는 알라닌, 글루타민, 또는 시스테인이며,
Xaa20은 리신 또는 글루타민이고,
Xaa21은 글루탐산, 시스테인, 또는 아스파르트산이며,
Xaa23은 발린이고,
Xaa24는 알라닌, 글루타민, 시스테인, 아스파라긴, 또는 아스파르트산이며,
Xaa27은 류신 또는 리신일 수 있으나, 특별히 이에 제한되지는 않는다.
보다 더 구체적으로, 상기 일반식 1에서,
Xaa2는 알파-메틸-글루탐산 또는 Aib이고,
Xaa7은 트레오닌이며,
Xaa10은 티로신 또는 시스테인이고,
Xaa12는 리신 또는 이소류신이며,
Xaa13은 티로신, 알라닌, 또는 시스테인이고,
Xaa14는 류신 또는 메티오닌이며,
Xaa15는 시스테인 또는 아스파르트산이고,
Xaa16은 글루탐산이며,
Xaa17은 아르기닌, 이소류신, 시스테인, 또는 리신이고,
Xaa18은 알라닌, 아르기닌, 또는 히스티딘이며,
Xaa19는 알라닌, 글루타민, 또는 시스테인이고,
Xaa20은 리신 또는 글루타민이며,
Xaa21은 글루탐산 또는 아스파르트산이고,
Xaa23은 발린이며,
Xaa24는 글루타민, 아스파라긴, 또는 아스파르트산이고,
Xaa27은 류신이며,
Xaa28은 시스테인, 알라닌, 아스파라긴, 또는 아스파르트산일 수 있다.
구체적으로, 상기 일반식 1에서,
Xaa1은 히스티딘 또는 4-이미다조아세틸이고,
Xaa2는 알파-메틸-글루탐산 또는 Aib이며,
Xaa3은 글루타민이고,
Xaa7은 트레오닌이며,
Xaa10은 티로신이고,
Xaa12는 이소류신이며,
Xaa13은 알라닌 또는 시스테인이고,
Xaa14는 메티오닌이며,
Xaa15는 아스파르트산이고,
Xaa16은 글루탐산이며,
Xaa17은 이소류신 또는 리신이고,
Xaa18은 알라닌 또는 히스티딘이며,
Xaa19는 글루타민 또는 시스테인이고,
Xaa20은 리신이며,
Xaa21은 아스파르트산이고,
Xaa23은 발린이며,
Xaa24는 아스파라긴이고,
Xaa27은 류신이며,
Xaa28은 알라닌 또는 아스파라긴이고,
Xaa29는 글루타민 또는 트레오닌이며,
Xaa30은 시스테인 또는 리신이거나, 부존재할 수 있다.
보다 구체적으로, 상기 일반식 1에서,
Xaa2는 글리신, 알파-메틸-글루탐산, 또는 Aib이며,
Xaa3은 글루타민이고,
Xaa7은 트레오닌이며,
Xaa10은 티로신, 시스테인, 또는 발린이고,
Xaa12는 리신이며,
Xaa13은 티로신이고,
Xaa14는 류신이며,
Xaa15는 아스파르트산이며,
Xaa16은 글리신, 글루탐산, 또는 세린이고,
Xaa17은 글루타민, 아르기닌, 시스테인, 또는 리신이며,
Xaa18은 알라닌, 아르기닌, 또는 히스티딘이고,
Xaa19는 알라닌 또는 글루타민이며,
Xaa20은 리신 또는 글루타민이고,
Xaa21은 글루탐산, 시스테인, 또는 아스파르트산이며,
Xaa23은 발린이고,
Xaa24는 알라닌, 글루타민, 또는 시스테인이며,
Xaa27은 류신 또는 리신이고,
Xaa29는 글리신, 글루타민, 트레오닌, 또는 히스티딘일 수 있으나, 특별히 이에 제한되는 것은 아니다.
이러한 펩타이드는 GLP-1 수용체 및 글루카곤 수용체의 활성화 정도가 유의하고, GIP 수용체의 활성화 정도에 비해 높거나; GLP-1 수용체, 글루카곤 수용체 및 GIP 수용체의 활성화 정도가 모두 유의하거나; GLP-1 수용체 및 GIP 수용체의 활성화 정도가 유의하고, 글루카곤 수용체의 활성화에 비해 높은 경우에 해당할 수 있으나, 특별히 이에 제한되지 않는다.
이러한 펩타이드의 예로, 서열번호 8, 9, 21 내지 37, 39, 42, 43, 49 내지 61, 64 내지 83, 85, 86, 88, 89, 91 내지 93, 95 내지 102로 이루어진 군에서 선택된 아미노산 서열을 포함하거나, 이로 (필수적으로) 구성된 펩타이드를 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
다른 구체예에서, 상기 펩타이드는 하기 일반식 2로 표시되는 아미노산 서열을 포함하는 것일 수 있다.
Xaa1-Xaa2-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Xaa10-Ser-Lys-Xaa13-Xaa14-Xaa15-Xaa16-Xaa17-Xaa18-Xaa19-Xaa20-Xaa21-Phe-Xaa23-Xaa24-Trp-Leu-Leu-Xaa28-Xaa29-Xaa30-Xaa31- Ser-Ser-Gly-Gln-Pro-Pro-Pro-Ser-Xaa40 (일반식 2, 서열번호 104)
상기 일반식 2에서,
Xaa1은 4-이미다조아세틸, 히스티딘, 또는 티로신이고;
Xaa2는 글리신, 알파-메틸-글루탐산, 또는 Aib이며;
Xaa10은 티로신, 또는 시스테인이며
Xaa13은 알라닌, 글루타민, 티로신, 또는 시스테인이며;
Xaa14는 류신, 메티오닌, 또는 티로신이고;
Xaa15는 아스파르트산, 글루탐산, 또는 류신이며;
Xaa16은 글리신, 글루탐산, 또는 세린이고;
Xaa17은 글루타민, 아르기닌, 이소류신, 글루탐산, 시스테인, 또는 리신이며;
Xaa18은 알라닌, 글루타민, 아르기닌, 또는 히스티딘이고;
Xaa19는 알라닌, 글루타민, 시스테인, 또는 발린이며;
Xaa20은 리신, 글루타민, 또는 아르기닌이고;
Xaa21은 시스테인, 글루탐산, 글루타민, 류신, 또는 아스파르트산이며;
Xaa23은 이소류신 또는 발린이고;
Xaa24는 시스테인, 알라닌, 글루타민, 아스파라긴, 또는 글루탐산이며;
Xaa28은 리신, 시스테인, 아스파라긴, 또는 아스파르트산이며;
Xaa29는 글리신, 글루타민, 시스테인, 또는 히스티딘이고;
Xaa30은 시스테인, 글리신, 리신, 또는 히스티딘이며;
Xaa31은 프롤린 또는 시스테인이며;
Xaa40은 시스테인이거나, 부존재함.
보다 구체적으로, 상기 일반식 2에서,
Xaa13은 알라닌, 티로신, 또는 시스테인이며;
Xaa15는 아스파르트산 또는 글루탐산이고,
Xaa17은 글루타민, 아르기닌, 시스테인, 또는 리신이며;
Xaa18은 알라닌, 아르기닌, 또는 히스티딘이고;
Xaa21은 시스테인, 글루탐산, 글루타민, 또는 아스파르트산이며;
Xaa23은 이소류신 또는 발린이고;
Xaa24는 시스테인, 글루타민, 또는 아스파라긴이고,
Xaa28은 시스테인, 아스파라긴, 또는 아스파르트산이며;
Xaa29는 글루타민, 시스테인, 또는 히스티딘이고;
Xaa30은 시스테인, 리신, 또는 히스티딘일 수 있다.
이러한 펩타이드의 예로, 서열번호 21, 22, 42, 43, 50, 64 내지 77, 및 95 내지 102로 이루어진 군에서 선택된 아미노산 서열, 보다 구체적으로 서열번호: 21, 22, 42, 43, 50, 64 내지 77, 및 96 내지 102로 이루어진 군에서 선택된 아미노산 서열을 포함하거나, 이로 (필수적으로) 구성된 펩타이드를 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
다른 구체예에서, 상기 펩타이드는 하기 일반식 3의 아미노산 서열을 포함할 수 있다:
Xaa1-Xaa2-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Xaa13-Leu-Asp-Glu-Xaa17-Xaa18-Xaa19-Lys-Xaa21-Phe-Val-Xaa24-Trp-Leu-Leu-Xaa28-Xaa29-Xaa30-Xaa31-Ser-Ser-Gly-Gln-Pro-Pro-Pro-Ser-Xaa40 (일반식 3, 서열번호 105),
상기 일반식 3에서,
Xaa1은 히스티딘 또는 티로신이고;
Xaa2는 알파-메틸-글루탐산 또는 Aib이며;
Xaa13은 알라닌, 티로신 또는 시스테인이고;
Xaa17은 아르기닌, 시스테인, 또는 리신이며;
Xaa18은 알라닌 또는 아르기닌이고;
Xaa19는 알라닌 또는 시스테인이며;
Xaa21은 글루탐산 또는 아스파르트산이고;
Xaa24는 글루타민 또는 아스파라긴이며,
Xaa28은 시스테인 또는 아스파르트산이며;
Xaa29는 시스테인, 히스티딘, 또는 글루타민이고;
Xaa30은 시스테인 또는 히스티딘이며;
Xaa31은 프롤린 또는 시스테인이며;
Xaa40은 시스테인 또는 부존재할 수 있다.
이러한 펩타이드의 예로, 서열번호 21, 22, 42, 43, 50, 64 내지 71, 75 내지 77, 및 96 내지 102로 이루어진 군에서 선택된 아미노산 서열을 포함하거나, 이로 (필수적으로) 구성된 펩타이드를 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
또한, 상기 일반식 1에서 R1은 시스테인, GKKNDWKHNIT(서열번호 106), CSSGQPPPS (서열번호 109), GPSSGAPPPS (서열번호 110), GPSSGAPPPSC (서열번호 111), PSSGAPPPS (서열번호 112), PSSGAPPPSG (서열번호 113), PSSGAPPPSHG (서열번호 114), PSSGAPPPSS (서열번호 115), PSSGQPPPS (서열번호 116), 또는 PSSGQPPPSC (서열번호 117)이거나, 부존재할 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 삼중작용제는 분자 내 가교 (intramolecular bridge)를 포함할 수 있으며 (예컨대, 공유결합적 가교 또는 비공유결합적 가교), 구체적으로 고리를 포함하는 형태일 수 있으며, 예컨대 글루카곤 아날로그 또는 삼중작용제의 16번 및 20번 아미노산 사이에 고리가 형성된 형태일 수 있으나, 특별히 이에 제한되는 것은 아니다.
일 구체예에서, 상기 일반식에서 N-말단으로부터 16번 아미노산과 20번 아미노산은 서로 고리를 형성하는 것일 수 있다.
상기 고리의 비제한적인 예로 락탐 가교 (또는 락탐 고리)를 포함할 수 있다.
또한, 상기 삼중작용제는 고리를 포함하도록, 목적하는 위치에 고리를 형성할 수 있는 아미노산을 포함하도록 변형된 것을 모두 포함한다.
예컨대, 글루카곤 아날로그 또는 삼중작용제의 16번 및 20번 아미노산 쌍이 각각 고리를 형성할 수 있는 글루탐산 또는 리신으로 치환된 것일 수 있으나, 이에 제한되지 않는다.
이러한 고리는 상기 글루카곤 아날로그 또는 삼중작용제 내의 아미노산 곁사슬 간에 형성될 수 있으며, 그 예로 리신의 곁 사슬과 글루탐산의 곁 사슬 간에 락탐 고리가 형성되는 형태일 수 있으나, 특별히 이에 제한되는 것은 아니다.
다른 구체예에서, 상기 펩타이드는 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열을 포함하는 것일 수 있다.
다른 구체예에서, 상기 펩타이드는 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 필수적으로 구성된 것이거나, 상기 펩타이드는 서열번호 1 내지 102로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성된 것일 수 있다.
본원에서 '특정 서열번호로 구성되는 펩타이드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 펩타이드와 동일 혹은 상응하는 활성을 가지는 경우라면 해당 서열번호의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 침묵 돌연변이(silent mutation)를 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본 발명의 범위 내에 속하는 것이 자명하다. 즉, 일부 서열의 차이가 있더라도 일정 수준 이상의 서열 동일성을 나타내며 GIP 수용체에 대한 활성을 나타낸다면 본 발명의 범위에 속할 수 있다. 구체적으로, 상기 펩타이드는 서열번호 1 내지 102의 아미노산 서열과 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99% 이상의 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되지 않는다.
“상동성(homology)” 또는 “동일성(identity)”은 두 개의 주어진 아미노산 서열 또는 염기 서열과 서로 관련된 정도를 의미하며 백분율로 표시될 수 있다. 임의의 두 펩타이드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA(Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
펩타이드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al.(1970), J Mol Biol.48: 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본 발명에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
일 구체예에서, 다양한 펩타이드 제조를 위한 여러 방법들의 조합으로 상기 글루카곤 아날로그 또는 삼중작용제를 제조할 수 있다.
이러한 방법들의 조합으로 제조되는 글루카곤의 아날로그의 예로, 천연형 글루카곤과 아미노산 서열이 하나 이상 다르고, N-말단의 아미노산 잔기의 알파-탄소가 제거된, 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 활성을 보유한 펩타이드 등이 있으나, 이에 제한되지 않는다.
또한, 상기 삼중작용제는 체내 반감기의 증가를 위해 활성체 분해 효소의 인식작용을 회피하기 위하여 일부 아미노산을 타 아미노산 혹은 비 천연형 화합물로 치환할 수 있다.
구체적으로, 상기 삼중작용제는 아미노산 서열 중 두 번째 아미노산 서열의 치환을 통해 분해효소의 인식 작용을 회피하여 체내 반감기를 증가시킨 펩타이드일 수 있으나, 체내 분해 효소의 인식 작용을 회피하기 위한 아미노산 치환 또는 변경은 제한 없이 포함된다.
상기 삼중작용제는 그 길이에 따라 이 분야에서 잘 알려진 방법, 예를 들어 자동 펩타이드 합성기에 의해 합성할 수 있으며, 유전자 조작 기술에 의하여 생산할 수도 있다. 구체적으로, 상기 펩타이드는 표준 합성 방법, 재조합 발현 시스템, 또는 임의의 다른 당해 분야의 방법에 의해 제조될 수 있다. 따라서, 일 양상에 따른 펩타이드는, 예를 들어 하기를 포함하는 방법을 포함하는 다수의 방법으로 합성될 수 있으나, 이에 제한되는 것은 아니다:
(a) 펩타이드를 고체상 또는 액체상 방법의 수단으로 단계적으로 또는 단편 조립에 의해 합성하고, 최종 펩타이드 생성물을 분리 및 정제하는 방법; 또는
(b) 펩타이드를 코딩하는 핵산 작제물을 숙주세포 내에서 발현시키고, 발현 생성물을 숙주 세포 배양물로부터 회수하는 방법; 또는
(c) 펩타이드를 코딩하는 핵산 작제물의 무세포 시험관 내 발현을 수행하고, 발현 생성물을 회수하는 방법; 또는
(a), (b) 및 (c)의 임의의 조합으로 펩타이드의 단편을 수득하고, 이어서 단편을 연결시켜 펩타이드를 수득하고, 당해 펩타이드를 회수하는 방법.
또한, 상기 펩타이드의 제조는 L-형 혹은 D-형 아미노산, 및/또는 비-천연형 아미노산을 이용한 변형; 및/또는 천연형 서열을 개질, 예를 들어 측쇄 작용기의 변형, 분자 내 공유결합, 예컨대, 측쇄 간 고리 형성, 메틸화, 아실화, 유비퀴틴화, 인산화, 아미노헥산화, 바이오틴화 등과 같이 개질함으로써 변형하는 것을 모두 포함한다. 또한, 상기 변형은 비-천연형 화합물로의 치환을 모두 포함한다.
상기 변형에 이용되는 치환되거나 추가되는 아미노산은 인간 단백질에서 통상적으로 관찰되는 20개의 아미노산뿐만 아니라 비정형 또는 비-자연적 발생 아미노산을 사용할 수 있다. 비정형 아미노산의 상업적 출처에는 Sigma-Aldrich, ChemPep과 Genzyme pharmaceuticals가 포함될 수 있으나, 이에 제한되지 않는다. 예를 들어, Aib(aminoisobutyric acid)은 아세톤에서 슈트레커의 아미노산 합성에 의해 제조될 수 있으나, 이에 제한되지 않는다. 이러한 비정형 또는 비-자연적 발생 아미노산이 포함된 펩타이드와 정형적인 펩타이드 서열은 상업화된 펩타이드 합성 회사, 예를 들어 미국의 American peptide company나 Bachem, 또는 한국의 Anygen을 통해 합성 및 구매 가능할 수 있으나, 이에 제한되지 않는다.
또한, 상기 펩타이드는 N-말단 및/또는 C-말단이 변형되지 않은 것일 수 있으나, 생체 내의 단백질 절단 효소들로부터 보호하고 안정성을 증가시키기 위하여 이의 N-말단 및/또는 C-말단 등이 화학적으로 변형되거나 유기단으로 보호되거나, 또는 펩타이드 말단 등에 아미노산이 추가되어 변형된 형태 역시 상기 양상에 따른 펩타이드의 범주에 포함된다. C-말단이 변형되지 않은 경우, 펩타이드의 말단은 자유 카르복실기를 가지나, 특별히 이에 제한되는 것은 아니다.
특히, 화학적으로 합성한 펩타이드의 경우, N- 및 C-말단이 전하를 띠고 있기 때문에, 이러한 전하를 제거하기 위하여 N-말단 및/또는 C-말단을 변형할 수 있다. 예를 들어, N-말단을 아세틸화(acetylation) 및/또는 C-말단을 아미드화(amidation)할 수 있으나, 특별히 이에 제한되지는 않는다.
일 구체예에서, 상기 펩타이드는 그 C-말단이 변형되지 않았거나 아미드화된 것일 수 있으나, 이에 제한되지 않는다.
일 구체예에서, 상기 펩타이드는 그 C-말단이 아미드화된 것일 수 있다.
상기 펩타이드는 펩타이드 그 자체, 이의 염(예컨대, 상기 펩타이드의 약학적으로 허용가능한 염), 또는 이의 용매화물의 형태를 모두 포함한다.
상기 염의 종류는 특별히 제한되지는 않는다. 다만, 개체, 예컨대 포유류에게 안전하고 효과적인 형태인 것이 바람직하나, 특별히 이에 제한되는 것은 아니다.
또한, 상기 펩타이드는 약학적으로 허용되는 임의의 형태일 수 있다.
용어 "약학적으로 허용가능한"이란 치료 효과를 나타낼 수 있을 정도의 충분한 양과 부작용을 일으키지 않는 것을 의미하며, 질환의 종류, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 투여 경로, 투여 방법, 투여 횟수, 치료 기간, 배합 또는 동시 사용되는 약물 등 의학 분야에 잘 알려진 요소에 따라 당업자에 의해 용이하게 결정될 수 있다.
일 구체예에서, 상기 펩타이드는 이의 약학적으로 허용가능한 염의 형태일 수 있다. 상기 염은 약학 분야, 예를 들면 루푸스 치료제 분야에서 사용되는 통상의 산 부가염, 예를 들면 염산, 브롬산, 황산, 술팜산, 인산 또는 질산과 같은 무기산으로부터 유도된 염; 및 아세트산, 프로피온산, 숙신산, 글리콜산, 스테아르산, 시트르산, 말레산, 말론산, 메탄술폰산, 타르타르산, 말산, 페닐아세트산, 글루탐산, 벤조산, 살리실산, 2-아세톡시벤조산, 푸마르산, 톨루엔술폰산, 옥살산 또는 트리플루오로아세트산과 같은 유기산으로부터 유도된 염을 포함한다. 또한, 상기 염은, 암모늄, 디메틸아민, 모노메틸아민, 모노에틸아민, 디에틸아민과 같은 염기 부가 염일 수 있다. 또한, 상기 염은 통상의 금속 염 형태, 예를 들면 리튬, 소듐, 칼륨, 마그네슘, 또는 칼슘과 같은 금속으로부터 유도된 염을 포함한다. 상기 산 부가염, 염기 부가염 또는 금속염은 통상의 방법에 따라 제조될 수 있다. 약학적으로 허용가능한 염 및 이를 제조하는 일반 방법론은 관련 기술 분야에 널리 공지되어 있다. 예를 들어, 문헌 [P. Stahl, et al. Handbook of Pharmaceutical Salts: Properties, Selection and Use, 2nd Revised Edition (Wiley-VCH, 2011)]; [S.M. Berge, et al., "Pharmaceutical Salts," Journal of Pharmaceutical Sciences, Vol. 66, No. 1, January 1977]을 참조할 수 있다.
보호된 아미노산 또는 펩타이드의 축합을 위하여, 펩타이드 합성에 유용한 각종 활성화 시약, 특히 바람직하게는 트리스포스포늄염, 테트라메틸우로늄염, 카보다이이미드 등이 사용될 수 있다. 트리스포스포늄염의 예는 벤조트라이아졸-1-일옥시트리스(피롤라지노)포스포늄헥사플루오로포스페이트(PyBOP), 브로모트리스(피롤라지노)포스포늄헥사플루오로포스페이트(PyBroP), 7-아자벤조트라이아졸-1-일옥시트리스(피롤라지노)포스포늄헥사플루오로포스페이트(PyAOP)를 포함하고, 테트라메틸우로늄염의 예는 2-(1H-벤조트라이아졸-1-일)-1,1,3,3-테트라메틸우로늄헥사플루오로포스페이트(HBTU), 2-(7-아자벤조트라이아졸-1-일)-1,1,3,3-테트라메틸우로늄헥사플루오로포스페이트(HATU), 2-(1H-벤조트라이아졸-1-일)-1,1,3,3-테트라메틸우로늄테트라플루오로보레이트(TBTU), 2-(5-노보난-2,3-다이카복시이미드)-1,1,3,3-테트라메틸우로늄테트라플루오로보레이트(TNTU), O-(N-석시미딜)-1,1,3,3-테트라메틸우로늄테트라플루오로보레이트(TSTU)를 포함하고, 카보다이이미드의 예는 N,N'-다이사이클로헥실카보다이이미드(DCC), N,N'-다이아이소프로필카보다이이미드(DIPCDI), N-에틸-N'-(3-다이메틸아미노프로필)카보다이이미드 염산염(EDCI·HCl) 등을 포함한다. 이들을 이용하는 축합을 위하여, 라세미화 저해제[예컨대, N-하이드록시-5-노보넨-2,3-다이카복실산 이미드(HONB), 1-하이드록시벤조트라이아졸(HOBt), 1-하이드록시-7-아자벤조트라이아졸(HOAt), 3,4-다이하이드로-3-하이드록시-4-옥소-1,2,3-벤조트라이아진(HOOBt), 에틸 2-사이아노-2-(하이드록시이미노)아세테이트(Oxyma) 등]의 첨가가 바람직하다. 축합에 사용되는 용매는 펩타이드 축합 반응에 유용한 것으로 공지된 것들로부터 적절하게 선택될 수 있다. 예를 들어, 무수 또는 물-함유 N,N-다이메틸폼아마이드, N,N-다이메틸아세트아마이드, N-메틸피롤리돈 등과 같은 산 아마이드, 염화메틸렌, 클로로폼 등과 같은 할로겐화된 탄화수소, 트라이플루오로에탄올, 페놀 등과 같은 알코올, 다이메틸설폭사이드 등과 같은 설폭사이드, 피리딘 등과 같은 3급 아민, 다이옥산, 테트라하이드로퓨란 등과 같은 에터, 아세토나이트릴, 프로피오나이트릴 등과 같은 나이트릴, 메틸 아세테이트, 에틸 아세테이트 등과 같은 에스터, 이들의 적절한 혼합물 등이 사용될 수 있다. 반응 온도는 펩타이드 결합 반응에 사용 가능한 것으로 공지된 범위로부터 적절하게 선택되고, 통상 약 -20℃ 내지 90℃의 범위로부터 선택된다. 활성화된 아미노산 유도체는 통상 1.5 내지 6배 과잉으로 사용된다. 고상 합성에서, 닌하이드린 반응을 이용하는 시험이 축합이 불충분한 것을 나타낼 경우, 충분한 축합은 보호기의 제거 없이 축합 반응을 반복함으로써 수행될 수 있다. 반응을 반복한 후에도 축합이 여전히 불충분할 경우, 미반응 아미노산은 산 무수물, 아세틸이미다졸 등으로 아세틸화될 수 있으므로 후속 반응에 대한 영향이 회피될 수 있게 된다.
출발 아미노산의 아미노기에 대한 보호기의 예는 벤질옥시카보닐(Z), tert-부톡시카보닐(Boc), tert-펜틸옥시카보닐, 아이소보닐옥시카보닐, 4-메톡시벤질옥시카보닐, 2-클로로벤질옥시카보닐(Cl-Z), 2-브로모벤질옥시카보닐(Br-Z), 아다만틸옥시카보닐, 트라이플루오로아세틸, 프탈로일, 폼일, 2-나이트로페닐설페닐, 다이페닐포스피노티오일, 9-플루오레닐메틸옥시카보닐(Fmoc), 트라이틸 등을 포함한다.
출발 아미노산에 대한 카복실-보호기의 예는, 위에서 언급된 C1-6 알킬기, C3-10 사이클로알킬기, C7-14 아르알킬기 이외에, 아릴, 2-아다만틸, 4-나이트로벤질, 4-메톡시벤질, 4-클로로벤질, 페나실 및 벤질옥시카보닐하이드라자이드, tert-부톡시카보닐하이드라자이드, 트라이틸하이드라자이드 등을 포함한다.
세린 또는 트레오닌의 하이드록실기는, 예를 들어, 에스터화 또는 에터화에 의해 보호될 수 있다. 에스터화에 적합한 기의 예는, 아세틸기 등과 같은 저급(C2-4) 알카노일기, 벤조일기 등과 같은 아로일기, 및 유기산 등으로부터 유래된 기를 포함한다. 또한, 에터화에 적합한 기의 예는 벤질, 테트라하이드로피란일, tert-부틸(But), 트라이틸(Trt) 등을 포함한다.
티로신의 페놀성 하이드록실기에 대한 보호기의 예는 Bzl, 2,6-다이클로로벤질, 2-나이트로벤질, Br-Z, tert-부틸 등을 포함한다.
히스티딘의 이미다졸에 대한 보호기의 예는 p-톨루엔설포닐(Tos), 4-메톡시-2,3,6-트라이메틸벤젠설포닐(Mtr), 다이나이트로페닐(DNP), 벤질옥시메틸 (Bom), tert-부톡시메틸 (Bum), Boc, Trt, Fmoc 등을 포함한다.
아르기닌의 구아니디노기에 대한 보호기의 예는 Tos, Z, 4-메톡시-2,3,6-트라이메틸벤젠설포닐(Mtr), p-메톡시벤젠설포닐(MBS), 2,2,5,7,8-펜타메틸크로만-6-설포닐(Pmc), 메시틸렌-2-설포닐(Mts), 2,2,4,6,7-펜타메틸다이하이드로벤조퓨란-5-설포닐(Pbf), Boc, Z, NO2 등을 포함한다.
리신의 곁사슬 아미노기에 대한 보호기의 예는 Z, Cl-Z, 트라이플루오로아세틸, Boc, Fmoc, Trt, Mtr, 4,4-다이메틸-2,6-다이옥소사이클로헥실리덴일(Dde) 등을 포함한다.
트립토판의 인돌릴에 대한 보호기의 예는 폼일(For), Z, Boc, Mts, Mtr 등을 포함한다.
아스파라긴 및 글루타민에 대한 보호기의 예는 Trt, 잔틸(Xan), 4,4'-다이메톡시벤즈하이드릴(Mbh), 2,4,6-트라이메톡시벤질(Tmob) 등을 포함한다.
출발 물질 중의 활성화된 카복실기의 예는 대응하는 산 무수물, 아자이드, 활성 에스터[알코올과의 에스터(예컨대, 펜타클로로페놀, 2,4,5-트라이클로로페놀, 2,4-다이나이트로페놀, 사이아노메틸알코올, 파라나이트로페놀, HONB, N-하이드록시석시미드, 1-하이드록시벤조트라이아졸(HOBt), 1-하이드록시-7-아자벤조트라이아졸(HOAt))] 등을 포함한다. 출발 재료 내 활성화된 아미노기의 예는 대응하는 인 아마이드를 포함한다.
보호기를 제거하는 방법의 예는, Pd-블랙 또는 Pd-탄소와 같은 촉매의 존재 하에서의 수소 스트림 중의 촉매 환원; 무수 플루오린화수소, 메탄설폰산, 트라이플루오로메탄설폰산, 트라이플루오로아세트산(TFA), 트라이메틸실릴 브로마이드(TMSBr), 트라이메틸실릴 트라이플루오로메탄설포네이트, 테트라플루오로붕산, 트리스(트라이플루오로)붕산, 삼브로민화붕소, 또는 이의 혼합물 용액을 이용한 산 처리; 다이아이소프로필에틸아민, 트라이에틸아민, 피페리딘, 피페라진 등을 이용한 염기 처리; 및 액체 암모니아 중에서 나트륨에 의한 환원 등을 포함한다. 위에서 기재된 산 처리에 의한 제거 반응은 일반적으로 -20℃ 내지 40℃의 온도에서 수행되고; 산 처리는 아니솔, 페놀, 티오아니솔, 메타크레졸 및 파라크레졸; 다이메틸설파이드, 1,4-부탄다이티올, 1,2-에탄다이티올, 트라이아이소프로필실란 등과 같은 양이온 스캐빈저(cation scavenger)를 첨가함으로써 효율적으로 수행된다. 또한, 히스티딘의 이미다졸의 보호기로서 사용되는 2,4-다이나이트로페닐기는 티오페놀 처리에 의해 제거되고; 트립토판의 인돌의 보호기로서 사용되는 폼일기는 1,2-에탄다이티올, 1,4-부탄다이티올 등의 존재 중에서 산처리에 의한 것뿐만 아니라, 희석 수산화나트륨, 희석 암모니아 등에 의한 알칼리 처리에 의한 탈보호에 의해 제거된다.
출발 물질과 보호기의 반응에 관여되지 않아야 하는 작용기의 보호, 보호기의 제거, 반응에 관여하는 작용기의 활성화 등은 공지된 보호기 및 공지된 수단으로부터 적절하게 선택될 수 있다.
본 명세서에서 언급된 펩타이드에 대해서, 좌측 단부가 통상의 펩타이드 마킹에 따라서 N-말단(아미노 말단)이고, 우측 단부가 C-말단(카복실 말단)이다. 펩타이드의 C-말단은 아마이드(-CONH2), 카복실기(-COOH), 카복실레이트(-COO-), 알킬아마이드(-CONHR', 여기에서 R'는 알킬임) 및 에스터(-COOR', 여기에서 R'은 알킬 또는 아릴임) 중 어느 하나일 수도 있다.
펩타이드의 아마이드를 제조하는 방법에서, 이것은 아마이드 합성을 위하여 수지를 이용하는 고상 합성에 의해 형성되거나, 또는 카복시 말단 아미노산의 α-카복실기가 아마이드화되고, 펩타이드 사슬이 아미노기 측을 향하여 목적하는 사슬 길이로 연장되고, 그 후, 펩타이드 사슬만의 N-말단 α-아미노기에 대한 보호기가 제거된 펩타이드 및 C-말단 카복실기에 대한 보호기만이 펩타이드 사슬에서 제거된 펩타이드가 제조되고, 이들 두 펩타이드는 위에서 기재된 혼합된 용매 중에서 축합된다. 축합 반응에 대한 상세에 대해서, 상술한 바와 같은 것이 적용된다. 축합에 의해 얻어진 보호된 펩타이드가 정제된 후에, 모든 보호기가 위에서 기재된 방법에 의해 제거되어 목적하는 펩타이드를 수득할 수 있다. 이 펩타이드를 주된 분획의 정제 및 동결-건조의 각종 공개적으로 공지된 수단을 이용해서 정제함으로써, 펩타이드의 목적하는 아마이드가 제조될 수 있다.
일 구체예에서, 상기 펩타이드는 이의 용매화물의 형태일 수 있다. “용매화물”은 상기 펩타이드 또는 이의 염이 용매 분자와 복합체를 형성한 것을 의미한다.
일 구체예에서, 상기 조성물은 루푸스-관련 질환의 예방 또는 치료를 위한 약학적 조성물로서, 약학적으로 허용되는 부형제;와 서열번호 1 내지 102 중 어느 하나의 아미노산 서열을 포함하는 펩타이드를 약학적 유효량으로 포함하는 약학적 조성물일 수 있다.
일 구체예에서, 상기 펩타이드는 지속형 결합체의 형태일 수 있다. 상기 결합체는 천연형 리간드(즉, 천연형 글루카곤, 천연형 GLP-1 및 천연형 GIP)와 동등 또는 그 이상의 활성을 나타내는 동시에 캐리어(또는 생체적합성 물질)가 결합되지 않은 천연형 리간드 또는 그 유도체에 비하여 증가된 효력의 지속성을 나타낼 수 있다. 용어 “지속형 결합체”란 생체적합성 물질이 결합되지 않은 천연형 리간드 또는 그의 유도체에 비해 효력의 지속성이 증가된 결합체를 의미한다. 따라서, 상기 결합체는 “지속형 글루카곤/GLP-1/GIP 삼중작용제 결합체”, “지속형 글루카곤/GLP-1/GIP 삼중작용제”, “지속형 글루카곤/GLP-1/GIP 결합체”, “지속형 GCG/GLP-1/GIP 결합체”, “삼중작용제 결합체”, “삼중작용제의 지속형 결합체”, “지속형 결합체”, 또는 “결합체”와 상호교환적으로 사용될 수 있다. 이러한 결합체는 상술한 형태뿐만 아니라, 생분해성 나노파티클에 봉입된 형태 등을 모두 포함한다.
상기 결합체는 분리된 결합체일 수 있다.
상기 결합체는 비자연적으로 발생하는(non-naturally occurring) 것일 수 있다.
일 구체예에서, 상기 펩타이드는 생체 내 반감기를 증가시키는 생체적합성 물질이 결합된 결합체의 형태일 수 있다. 따라서, 상기 약학적 조성물은 상기 글루카곤/GLP-1/GIP 삼중작용제와 생체 내 반감기를 증가시키는 생체적합성 물질이 결합된 결합체를 포함할 수 있다. 상기 생체적합성 물질은 캐리어(carrier)와 혼용될 수 있다.
일 구체예에서, 상기 지속형 결합체는 하기 화학식 1로 표시될 수 있다:
[화학식 1]
X - L - F
단, 이때 X는 글루카곤/GLP-1/GIP 삼중작용제이고,
L은 링커이고;
F는 X의 생체 내 반감기를 증가시키는 생체적합성 물질이고,
-는 X와 L 사이, L과 F사이의 결합 연결을 나타낸다.
상기 화학식 1에서, 글루카곤/GLP-1/GIP 삼중작용제에 대해서는 상술한 바와 같다.
상기 화학식 1에서, L은 La일 수 있고, 여기에서 a는 0 또는 자연수이며, 다만 a가 2 이상일 때, 각각의 L은 서로 독립적일 수 있다.
상기 생체적합성 물질은 상기 글루카곤/GLP-1/GIP 삼중작용제와 공유 화학결합 또는 비공유 화학결합으로 서로 결합되는 것일 수 있으며, 공유 화학결합, 비공유 화학결합 또는 이들의 조합으로 링커(Linker, L)을 통하여 서로 결합되는 것일 수 있다. 일 구체예에서, 상기 -는 X와 L 사이, L과 F사이의 공유결합 연결을 나타낼 수 있다.
글루카곤/GLP-1/GIP 삼중작용제 내의 하나 이상의 아미노산 측쇄는 생체 내에서 가용성 및/또는 반감기를 증가시키고/시키거나 생체이용률을 증가시키기 위해 이러한 생체적합성 물질에 접합될 수 있다. 이러한 변형은 또한 치료학적 단백질 및 펩타이드의 소거(clearance)를 감소시킬 수 있다. 상술한 생체적합성 물질은 수용성 (양친매성 또는 친수성) 및/또는 무독성 및/또는 약학적으로 허용가능한 것일 수 있다.
상기 생체적합성 물질은 고분자 중합체, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합 물질, 생체 내 결합조직, 뉴클레오티드, 피브로넥틴, 트랜스페린(Transferrin), 당류(saccharide), 헤파린, 및 엘라스틴으로 구성된 군으로부터 선택되는 것일 수 있으나, 특별히 이에 제한되지 않는다.
상기 고분자 중합체의 예로, 폴리에틸렌 글리콜(PEG), 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히알루론산, 올리고뉴클레오티드 및 이들의 조합으로 구성된 군으로부터 선택되는 고분자 중합체를 들 수 있고, 상기 다당류로는 덱스트란이 포함될 수 있으나, 특별히 이에 제한되지 않는다.
상기 폴리에틸렌 글리콜은, 에틸렌 글리콜 동종 중합체, PEG 공중합체, 또는 모노메틸-치환된 PEG 중합체(mPEG)의 형태를 모두 포괄하는 용어이나, 특별히 이에 제한되는 것은 아니다.
상기 지방산은 생체 내 알부민과 결합력을 갖는 것일 수 있으나, 특별히 이에 제한되지 않는다.
상기 생체적합성 물질은 폴리-리신, 폴리-아스파르트산 및 폴리-글루탐산과 같은 폴리-아미노산을 포함하나, 이에 제한되는 것은 아니다.
상기 엘라스틴의 경우 수용성 전구체인 인간 트로포엘라스틴(tropoelastin)일 수 있으며, 이들 중 일부 서열 혹은 일부 반복단위의 중합체일 수 있으며, 예컨대, 엘라스틴 유사 폴리펩타이드인 경우를 모두 포함하나, 특별히 이에 제한되는 것은 아니다.
일 구체예에서, 상기 생체적합성 물질은 FcRn 결합 물질일 수 있다. 구체적으로, 상기 FcRn 결합 물질은 면역글로불린 Fc 영역일 수 있으며, 보다 구체적으로 IgG Fc 영역, 더 구체적으로는 비당쇄화된 IgG4 Fc 영역일 수 있으나, 특별히 이에 제한되지 않는다.
"면역글로불린 Fc 영역"은, 면역글로불린의 중쇄와 경쇄 가변 영역을 제외한, 중쇄 불변영역 2(CH2) 및/또는 중쇄 불변영역 3(CH3) 부분을 포함하는 부위를 의미한다. 상기 면역글로불린 Fc 영역은 일 양상에 따른 결합체의 모이어티를 이루는 일 구성일 수 있다.
이러한 면역글로불린 Fc 영역은 중쇄 불변영역에 힌지(hinge) 부분을 포함할 수 있으나, 이에 제한되는 것은 아니다.
일 구체예에서, 면역글로불린 Fc 영역은 N-말단에 특정 힌지 서열을 포함할 수 있다.
용어 “힌지 서열”은 중쇄에 위치하여 내부 이황화결합(inter disulfide bond)을 통하여 면역글로불린 Fc 단편의 이량체를 형성하는 부위를 의미한다.
일 구체예에서, 상기 힌지 서열은 하기의 아미노산 서열을 갖는 힌지 서열 중 일부가 결실되어 하나의 시스테인 잔기만을 갖도록 변이된 것일 수 있으나, 이에 제한되지 않는다:
Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser-Cys-Pro(서열번호 119).
상기 힌지 서열은 서열번호 119의 힌지 서열 중 8번째 또는 11번째 시스테인 잔기가 결실되어 하나의 시스테인 잔기만을 포함하는 것일 수 있다. 일 구체예에 따른 힌지 서열은 하나의 시스테인 잔기만을 포함하는, 3 내지 12개의 아미노산으로 구성된 것일 수 있으나, 이에 제한되지 않는다. 보다 구체적으로, 일 구체예에 따른 힌지 서열은 다음과 같은 서열을 가질 수 있다: Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Pro-Ser-Cys-Pro(서열번호 120), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser-Pro(서열번호 121), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser(서열번호 122), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Pro(서열번호 123), Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser(서열번호 124), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys(서열번호 125), Glu-Lys-Tyr-Gly-Pro-Pro-Cys(서열번호 126), Glu-Ser-Pro-Ser-Cys-Pro(서열번호 127), Glu-Pro-Ser-Cys-Pro(서열번호 128), Pro-Ser-Cys-Pro(서열번호 129), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Ser-Cys-Pro(서열번호 130), Lys-Tyr-Gly-Pro-Pro-Pro-Ser-Cys-Pro(서열번호 131), Glu-Ser-Lys-Tyr-Gly-Pro-Ser-Cys-Pro(서열번호 132), Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys(서열번호 133), Lys-Tyr-Gly-Pro-Pro-Cys-Pro(서열번호 134), Glu-Ser-Lys-Pro-Ser-Cys-Pro(서열번호 135), Glu-Ser-Pro-Ser-Cys-Pro(서열번호 136), Glu-Pro-Ser-Cys(서열번호 137), Ser-Cys-Pro(서열번호 138).
더욱 구체적으로는, 상기 힌지 서열은 서열번호 129(Pro-Ser-Cys-Pro)또는 서열번호 138(Ser-Cys-Pro)의 아미노산 서열을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
일 구체예에 따른 면역글로불린 Fc 영역은 힌지 서열의 존재로 면역글로불린 Fc 사슬 두 분자가 이량체를 형성한 형태일 수 있다. 또한, 일 구체예에 따른 화학식 1의 결합체는 링커의 일 말단이 이량체의 면역글로불린 Fc 영역의 한 사슬에 연결된 형태일 수 있으나, 이에 제한되는 것은 아니다.
용어 “N-말단”은 단백질 또는 폴리펩티드의 아미노 말단을 의미하는 것으로, 아미노 말단의 최말단, 또는 최말단으로부터 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 또는 10개 이상의 아미노산까지 포함하는 것일 수 있다. 본 발명의 면역글로불린 Fc 단편은 힌지 서열을 N-말단에 포함할 수 있으나, 이에 제한되지 않는다.
또한, 상기 면역글로불린 Fc 영역은 천연형과 실질적으로 동등하거나 향상된 효과를 갖는 한, 면역글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄 불변영역 1(CL1)을 포함하는 확장된 Fc 영역일 수 있다. 또한, CH2 및/또는 CH3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수도 있다.
예컨대, 상기 면역글로불린 Fc 영역은 (a) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인; (b) CH1 도메인 및 CH2 도메인; (c) CH1 도메인 및 CH3 도메인; (d) CH2 도메인 및 CH3 도메인; (e) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인 중 1개 또는 2개 이상의 도메인과 면역글로불린 힌지 영역 또는 힌지 영역의 일부와의 조합; 및 (f) 중쇄 불변영역 각 도메인과 경쇄 불변영역의 이량체로 구성된 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.
상기 면역글로불린 Fc 영역은 이합체 형태(dimeric form)일 수 있으며, 이합체 형태의 하나의 Fc 영역에 글루카곤/GLP-1/GIP 삼중작용제 한 분자가 공유결합적으로 연결될 수 있으며, 이때 상기 면역글로불린 Fc와 글루카곤/GLP-1/GIP 삼중작용제는 비펩타이드성 중합체에 의해 서로 연결될 수 있다. 한편, 이합체 형태의 하나의 Fc 영역에 글루카곤/GLP-1/GIP 삼중작용제 두 분자가 대칭적으로 결합하는 것 역시 가능하다. 이때 상기 면역글로불린 Fc와 글루카곤/GLP-1/GIP 삼중작용제는 비펩타이드성 링커에 의해 서로 연결될 수 있다. 그러나, 상기 기술된 예에 제한되는 것은 아니다.
또한, 상기 면역글로불린 Fc 영역은 천연형 아미노산 서열뿐만 아니라 이의 서열 유도체를 포함한다. 아미노산 서열 유도체란 천연 아미노산 서열 중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다.
예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다. 또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가될 수도 있는 등 다양한 종류의 유도체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예로 C1q 결합부위가 제거될 수도 있고, ADCC(antibody dependent cell mediated cytotoxicity) 부위가 제거될 수도 있다. 이러한 면역글로불린 Fc 영역의 서열 유도체를 제조하는 기술은 국제특허공개 제WO 97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다.
분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩타이드에서의 아미노산 교환은 당해 분야에 공지되어 있다 (H.Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation) 및 아미드화(amidation) 등으로 변형(modification)될 수도 있다.
상기 기술한 Fc 유도체는 상기 Fc 영역과 동등한 생물학적 활성을 나타내며 Fc 영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 것일 수 있다.
또한, 이러한 Fc 영역은 인간, 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트 또는 기니아 픽 등의 동물의 생체 내에서 분리한 천연형으로부터 얻어질 수도 있고, 형질전환된 동물세포 또는 미생물로부터 얻어진 재조합형 또는 이의 유도체일 수 있다. 여기서, 천연형으로부터 획득하는 방법은 전체 면역글로불린을 인간 또는 동물의 생체로부터 분리한 후, 단백질 분해효소를 처리하여 획득하는 방법일 수 있다. 파파인을 처리할 경우에는 Fab 및 Fc로 절단되고, 펩신을 처리할 경우에는 pF'c 및 F(ab)2로 절단된다. 이를 크기 배제 크로마토그래피 (size-exclusion chromatography) 등을 이용하여 Fc 또는 pF'c를 분리할 수 있다. 더 구체적인 실시형태에서는 인간 유래의 Fc 영역을 미생물로부터 수득한 재조합형 면역글로불린 Fc 영역이다.
또한, 면역글로불린 Fc 영역은 천연형 당쇄, 천연형에 비해 증가된 당쇄, 천연형에 비해 감소한 당쇄 또는 당쇄가 제거된 형태일 수 있다. 이러한 면역글로불린 Fc 당쇄의 증감 또는 제거에는 화학적 방법, 효소학적 방법 및 미생물을 이용한 유전 공학적 방법과 같은 통상적인 방법이 이용될 수 있다. 여기서, Fc에서 당쇄가 제거된 면역글로불린 Fc 영역은 보체(c1q)와의 결합력이 현저히 저하되고, 항체-의존성 세포독성 또는 보체-의존성 세포 독성이 감소 또는 제거되므로, 생체 내에서 불필요한 면역 반응을 유발하지 않는다. 이런 점에서 약물의 캐리어로서의 본래의 목적에 보다 부합하는 형태는 당쇄가 제거되거나 비당쇄화된 면역글로불린 Fc 영역이라 할 수 있다.
"당쇄의 제거(Deglycosylation)"는 효소로 당을 제거한 Fc 영역을 말하며, 비당쇄화(Aglycosylation)는 원핵동물, 더 구체적인 실시 형태에서는 대장균에서 생산하여 당쇄화되지 않은 Fc 영역을 의미한다.
또한, 면역글로불린 Fc 영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 Fc 영역일 수 있다. 더 구체적인 실시 형태에서는 인간 혈액에 가장 풍부한 IgG 또는 IgM 유래이며, 보다 더 구체적인 실시 형태에서는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래이다. 더욱 더 구체적인 실시 형태에서 상기 면역글로불린 Fc 영역은 IgG4 Fc 영역이며, 가장 구체적인 실시 형태에서 상기 면역글로불린 Fc 영역은 인간 IgG4 유래의 비당쇄화된 Fc 영역이나, 이에 제한되는 것은 아니다.
"조합(combination)"이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 Fc 영역을 암호화하는 폴리펩타이드가 상이한 기원의 단쇄 폴리펩타이드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
상기 글루카곤/GLP-1/GIP 삼중작용제는 링커를 통해 생체적합성 물질과 연결될 수 있다.
상기 링커는 펩타이드성 링커 또는 비펩타이드성 링커일 수 있다.
상기 링커가 펩타이드성 링커일 때, 1개 이상의 아미노산을 포함할 수 있으며, 예컨대 1개부터 1000개의 아미노산을 포함할 수 있으나, 특별히 이에 제한되는 것은 아니다. 상기 펩타이드성 링커는 Gly, Asn 및 Ser 잔기를 포함할 수 있으며, Thr 및 Ala과 같은 중성 아미노산들도 포함될 수 있다. 상기 생체적합성 물질과 글루카곤/GLP-1/GIP 삼중작용제를 연결하기 위하여 공지의 다양한 펩타이드 링커가 사용될 수 있다. 또한, 기능적 일부분 사이의 적절한 분리를 달성하기 위하여 또는 필수적인 내부-모이어티(inter-moiety)의 상호작용을 유지하기 위한 링커의 최적화를 고려하여 카피 수 "n"을 조절할 수 있다. 해당 기술분야에서 다른 가요성 링커들이 알려져 있는데, 예를 들어 수용성을 향상시키기 위하여 극성 아미노산 잔기를 추가하는 것뿐만 아니라 유연성을 유지하기 위하여 T 및 A와 같은 아미노산 잔기를 추가한 G 및 S 링커가 있을 수 있다. 따라서 일 구체예에 있어서, 상기 링커는 G, S, 및/또는 T 잔기를 포함하는 유연성 링커일 수 있다. 상기 링커는 (GpSs)n 및 (SpGs)n으로부터 선택되는 일반식을 가질 수 있고, 이 경우, 독립적으로, p는 1 내지 10의 정수이고, s = 0 내지 10의 0 또는 정수이고, p + s는 20 이하의 정수이고, 및 n은 1 내지 20의 정수이다. 더욱 구체적으로 링커의 예는 (GGGGS)n, (SGGGG)n, (SRSSG)n, (SGSSC)n, (GKSSGSGSESKS)n, (RPPPPC)n, (SSPPPPC)n,  (GSTSGSGKSSEGKG)n, (GSTSGSGKSSEGSGSTKG)n, (GSTSGSGKPGSGEGSTKG)n, 또는 (EGKSSGSGSESKEF)n이고, 상기 n은 1 내지 20, 또는 1 내지 10의 정수이다.
상기 "비펩타이드성 링커"는 반복 단위가 2개 이상 결합된 생체적합성 중합체를 포함한다. 상기 반복 단위들은 펩타이드 결합이 아닌 임의의 공유결합을 통해 서로 연결된다. 상기 비펩타이드성 링커는 상기 결합체의 모이어티를 이루는 일 구성일 수 있다.
상기 “비펩타이드성 링커”는 “비펩타이드성 중합체”와 혼용되어 사용될 수 있다.
일 구체예에서, 상기 결합체는 양쪽 말단에 생체적합성 물질, 구체적으로 면역글로불린 Fc 영역, 및 글루카곤/GLP-1/GIP 삼중작용제와 결합될 수 있는 반응기를 포함하는 비펩타이드성 링커를 통하여 생체적합성 물질과 글루카곤/GLP-1/GIP 삼중작용제가 서로 공유결합적으로 연결된 것일 수 있다.
구체적으로, 상기 비펩타이드성 링커는 지방산, 당류(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오티드 및 이들의 조합으로 구성된 군으로부터 선택되는 것일 수 있다.
특별히 이에 제한되지 않으나, 상기 비펩타이드성 링커는 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 폴리비닐에틸에테르, PLA(polylactic acid) 및 PLGA(polylactic-glycolic acid)와 같은 생분해성 고분자, 지질 중합체, 키틴류, 히알루론산, 올리고뉴클레오티드 및 이들의 조합으로 구성된 군으로부터 선택되는 것일 수 있다. 상기 다당류는 덱스트란일 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적인 실시 형태에서, 상기 비펩타이드성 중합체는 폴리에틸렌 글리콜일 수 있으나, 이에 제한되지 않는다. 따라서, 상기 화학식 1에서, L은 에틸렌글리콜 반복 단위를 함유하는 링커일 수 있다.
구체적으로, 상기 링커는 하기 화학식 2로 표시되는 폴리에틸렌글리콜(PEG)일 수 있으나, 이에 제한되는 것은 아니다:
[화학식 2]
Figure PCTKR2021014468-appb-I000001
여기서, n= 10 내지 2400, n= 10 내지 480, 또는 n = 50 내지 250이나, 이에 제한되지 않는다.
상기 지속형 결합체에서 PEG 모이어티는, -(CH2CH2O)n-구조 뿐만 아니라 연결 요소와 이 -(CH2CH2O)n- 사이에 개재하는 산소 원자도 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 폴리에틸렌 글리콜은, 에틸렌 글리콜 동종 중합체, PEG 공중합체, 또는 모노메틸-치환된 PEG 중합체(mPEG)의 형태를 모두 포괄하는 용어이나, 특별히 이에 제한되는 것은 아니다.
또한, 당해 분야에 이미 알려진 이들의 유도체 및 당해 분야의 기술 수준에서 용이하게 제조할 수 있는 유도체들도 본 발명의 범위에 포함된다.
상기 비펩타이드성 링커는 생체 내 단백질 분해 효소에 저항성 있는 중합체이면 제한 없이 사용될 수 있다. 비펩타이드성 중합체의 화학식량은 1 내지 1000 kDa 범위, 구체적으로 1 내지 100 kDa 범위, 보다 구체적으로 1 내지 20 kDa 범위이나, 이에 제한되지 않는다. 또한, 상기 비펩타이드성 링커는 한 종류의 중합체뿐만 아니라 상이한 종류의 중합체들의 조합이 사용될 수도 있다. 일 구체예에서, 상기 L 내의 에틸렌글리콜 반복 단위 부분의 화학식량은 1 내지 100 kDa 범위, 보다 구체적으로 1 내지 20 kDa 범위에 있는 것일 수 있다.
일 구체예에서, 상기 비펩타이드성 링커의 양 말단은 각각 생체적합성 물질, 예컨대 면역글로불린 Fc 영역의 아민기 또는 티올기, 및 글루카곤/GLP-1/GIP 삼중작용제의 아민기 또는 티올기에 결합할 수 있다.
구체적으로, 상기 비펩타이드성 중합체는 양쪽 말단에 각각 생체적합성 물질(예컨대, 면역글로불린 Fc 영역) 및 글루카곤/GLP-1/GIP 삼중작용제와 결합될 수 있는 반응기, 구체적으로는 글루카곤/GLP-1/GIP 삼중작용제, 혹은 생체적합성 물질(예컨대, 면역글로불린 Fc 영역)의 N-말단 또는 리신에 위치한 아민기, 또는 시스테인의 티올기와 결합될 수 있는 반응기를 포함할 수 있으나, 이에 제한되지 않는다.
또한, 생체적합성 물질, 예컨대 면역글로불린 Fc 영역 및 글루카곤/GLP-1/GIP 삼중작용제와 결합될 수 있는, 상기 비펩타이드성 중합체의 반응기는 알데히드기, 말레이미드기 및 석시니미드 유도체로 구성된 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. 상기에서, 알데히드기로 프로피온 알데히드기 또는 부틸 알데히드기를 예로서 들 수 있으나, 이에 제한되지 않는다. 상기에서, 석시니미드 유도체로는 석시니미딜 발레르에이트, 석시니미딜 메틸부타노에이트, 석시니미딜 메틸프로피온에이트, 석시니미딜 부타노에이트, 석시니미딜 프로피오네이트, N-하이드록시석시니미드, 히드록시 석시니미딜, 석시니미딜 카르복시메틸 또는 석시니미딜 카보네이트가 이용될 수 있으나, 이에 제한되지 않는다.
또한, 알데히드 결합에 의한 환원성 알킬화로 생성된 최종 산물은 아미드 결합으로 연결된 것보다 훨씬 안정적이다. 알데히드 반응기는 낮은 pH에서 N-말단에 선택적으로 반응하며, 높은 pH, 예를 들어 pH 9.0 조건에서는 리신 잔기와 공유결합을 형성할 수 있다.
또한, 상기 비펩타이드성 링커의 양쪽 말단의 반응기는 서로 동일하거나 또는 서로 상이할 수 있으며, 예를 들어, 한쪽 말단에는 말레이미드기를, 다른 쪽 말 단에는 알데히드기, 프로피온 알데히드기, 또는 부틸 알데히드기를 가질 수 있다. 그러나, 비펩타이드성 링커의 각 말단에 생체적합성 물질, 구체적으로 면역글로불린 Fc 영역과 글루카곤/GLP-1/GIP 삼중작용제가 결합될 수 있다면, 특별히 이에 제한되지 않는다. 예를 들어, 상기 비펩타이드성 링커의 한쪽 말단에는 반응기로서 말레이미드기를 포함하고, 다른 쪽 말단에는 알데히드기, 프로피온 알데히드기 또는 부틸 알데히드기 등을 포함할 수 있다.
양쪽 말단에 히드록시 반응기를 갖는 폴리에틸렌 글리콜을 비펩타이드성 중합체로 이용하는 경우에는 공지의 화학반응에 의해 상기 히드록시기를 상기 다양한 반응기로 활성화하거나, 상업적으로 입수 가능한 변형된 반응기를 갖는 폴리에틸렌 글리콜을 이용하여 상기 지속형 결합체를 제조할 수 있다.
일 구체예에서, 상기 비펩타이드성 중합체는 글루카곤/GLP-1/GIP 삼중작용제의 시스테인 잔기, 보다 구체적으로 시스테인의 -SH 기에 연결되는 것일 수 있으나, 이에 제한되지 않는다.
만약, 말레이미드-PEG-알데히드를 사용하는 경우, 말레이미드기는 글루카곤/GLP-1/GIP 삼중작용제의 -SH기와 티오에테르(thioether) 결합으로 연결하고, 알데히드기는 생체적합성 물질, 구체적으로 면역글로불린 Fc의 -NH2기와 환원적 알킬화 반응을 통해 연결할 수 있으나, 이에 제한되지 않으며, 이는 하나의 일례에 해당한다.
또한, 상기 결합체에서, 비펩타이드성 중합체의 반응기가 면역글로불린 Fc 영역의 N-말단에 위치한 -NH2와 연결된 것일 수 있으나, 이는 하나의 일례에 해당한다.
일 구체예에서, 상기 지속형 결합체는 하기 화학식 1로 표시되는 것일 수 있다:
[화학식 1]
X - L - F
단, 이때 X는 서열번호 1 내지 102 중 어느 하나의 아미노산 서열을 포함하는 펩타이드이고;
L은 에틸렌글리콜 반복 단위를 함유하는 링커이며,
F는 면역글로불린 Fc 영역이고,
-는 X와 L 사이, L과 F 사이의 공유결합 연결을 나타낸다.
다른 구체예에서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 64, 66, 67, 70, 71, 76, 77, 96, 97과 100으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 것일 수 있다.
다른 구체예에서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 66, 67, 77, 96, 97과 100으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 것일 수 있다.
다른 구체예에서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 77과 96으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 것일 수 있다.
상기 글루카곤/GLP-1/GIP 삼중작용제 또는 이의 결합체는 루푸스 질환 모델 마우스에서 부종을 개선하고, 피부 병변을 회복시키며, 염증 반응으로 인해 비대해진 비장의 무게 및 크기를 감소시키는 것을 확인하였다. 이를 통해 글루카곤, GLP-1, 및 GIP에 대한 활성을 모두 가지는 삼중작용제 및 이의 지속형 결합체가 루푸스-관련 질환의 예방 또는 치료 용도로 사용될 수 있음을 확인하였다.
상기 글루카곤/GLP-1/GIP 삼중작용제 또는 이의 결합체는 글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 대해 모두 활성을 가지고 있으며, 글루카곤 수용체에 대한 활성이 GLP-1 수용체 또는 GIP 수용체에 대한 활성보다 높을 수 있다. 예컨대, 서열번호 21, 22, 42, 43, 66, 70, 96, 및 97로 표시되는 펩타이드는 글루카곤 수용체에 대한 활성이 매우 높다. 글루카곤은 간을 표적으로 하므로, 글루카곤 수용체에 대한 활성이 높으면, 간에서의 분배가 증가하여 간에 대한 효과가 증가할 수 있다. 단, 삼중작용제의 지속형 결합체는 투여시 혈액 내에도 다수가 존재하므로 그 효과는 이에 제한되지 않고, 루푸스와 같은 전신성 염증질환 조절에 적합할 수 있다.
용어 “예방”은 상기 조성물의 투여로 루푸스-관련 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미한다.
용어 “치료”는 상기 조성물의 투여로 루푸스-관련 질환의 증세가 호전되거나 이롭게 되는 모든 행위를 의미한다.
"루푸스(lupus)"는 자가면역질환이다. 우리 몸의 백혈구 면역세포가 우리 몸을 공격해 조직이 손상을 받으면서 전신에 염증이 나타난다. 루푸스는 빨간 발진을 의미하는데, 이 병이 피부뿐 아니라 몸 전체에 생긴다하여 전신홍반루푸스라 하며, 줄여서 루푸스라 부른다. 이 병은 환자의 90%가 여성이고 20~50세의 가임기에 발병하는 특징이 있다. 자가면역질환이라 몸의 어디에서든 염증이 생기고 이에 따라 증상이 다양하게 나타나며, 시간에 따라서도 증상이 달라져 진단이 쉽지 않은 병이다.
자가면역 반응은 몸의 어디에서든 염증을 일으킬 수 있으며, 어디에 염증을 일으키냐에 따라 다양한 증상을 발생시킨다. 흔한 차례대로 나열하면 관절에 염증을 일으켜 관절통이 생기고, 전신의 염증으로 전신에서 열이 나고, 피부염으로 홍반이 생긴다. 콩팥에 염증을 일으켜 단백뇨가 생기게 되고, 폐와 심장을 둘러싸는 막의 염증으로 흉통이 생긴다. 그 외에 광과민 반응, 탈모, 혈액세포 이상, 레이노 현상, 경련, 입안 궤양 등이 발생할 수 있다. 
“루푸스(lupus)”는 일반적으로 전신홍반루푸스를 지칭한다. “전신홍반루푸스(Systemic lupus erythematosus, SLE)”는 “전신홍반성낭창”, 또는 “S.L.E”라고도 지칭되며, 만성 염증성 자가면역 질환이고, 결합조직과 피부, 관절, 혈액, 신장 등 신체의 다양한 기관을 침범하는 전신성 질환이다. 전신홍반루푸스는 반드시 전신에 증상이 나타나는 것은 아니며, 신체의 일부에만 증상이 나타나는 경미한 경우도 있다. 루푸스는 소혈관 혈관염의 일종으로 분류되기도 한다. 그러나, 혈관염이 혈관이라는 특정 부위에만 영향을 받는 것과 달리, 루푸스는 온몸의 모든 조직이 공격 대상이 된다. 따라서, 혈관염 치료에 효과가 있는 약물이 반드시 루푸스 치료에도 효과가 나타날 수 있는 것은 아니며, 그 반대도 마찬가지이다.
“루푸스-관련 질환(lupus-associated diseases)”은 통상적인 의미의 루푸스(lupus) 또는 전신홍반루푸스를 포함하며, 루푸스와 동반되거나 관련된 질환 또는 증상을 모두 포함하는 의미이다. 상기 루푸스-관련 질환은 폐, 심장, 근육, 및 관절 중 어느 하나 이상의 기관에 증상이 나타나는 것일 수 있다. 상기 루푸스-관련 질환은 피부 병변(skin lesion)을 동반할 수 있다. 따라서, 상기 루푸스-관련 질환은 피부 병변 점수(skin lesion score)에 의해 진단될 수 있다. 일 구체예에 따른 약학적 조성물은 환자의 피부 병변을 감소시킴으로써 루푸스-관련 질환을 치료하는 효과를 가질 수 있다.
구체적으로, 상기 루푸스-관련 질환은 전신홍반루푸스(SLE), 원판상홍반루푸스(Discoid lupus erythematosus, DLE), 약물유발성 루푸스(drug-induced lupus), 신생아 루푸스(Neonatal lupus) 등을 포함할 수 있다.
상기 “원판상홍반루푸스(Discoid lupus erythematosus, DLE)”는 “만성 원판상홍반성낭창” 또는 “피부홍반루푸스(Cutaneous lupus rythematosus)”라고도 하며, 안면, 팔다리 등 피부에 발진이 발생한다. 경과에 따라 모공부각전, 색소침착 등을 수반할 수 있다.
상기 “약물유발성 루푸스(drug-induced lupus)”는 특정 약물의 투여에 의해 발병한 루푸스를 의미한다.
상기 “신생아 루푸스(Neonatal lupus)”는 임신 기간에 루푸스를 앓은 모체로부터 태어난 신생아에게 발생하는 루푸스이다.
또한, 상기 루푸스-관련 질환은 예를 들어, 루푸스신염(Lupus nephritis), 심장막염(pericarditis), 가슴막염(pleuritis), 간질성폐렴(interstitial pneumonia), 관절염(arthritis) 등의 루푸스와 동반되는 질환을 포함할 수 있다.
또한, 상기 루푸스-관련 질환은 예를 들어, 나비형 홍반(Butterfly rash), 동창상 홍반(Pernio-like rash), 레이노(Raynaud) 현상, 구강 궤양(oral ulcer), 광선과민증(photosensitivity), 그물울혈반(livedo) 등의 루푸스 관련 증상을 포함할 수 있다.
일 구체예에서, 상기 루푸스-관련 질환은 전신홍반루푸스, 원판상홍반루푸스, 약물유발성 루푸스, 신생아 루푸스, 루푸스신염, 나비형 홍반, 또는 동창상 홍반일 수 있으나, 이에 제한되지 않는다.
일 구체예에서, 상기 약학적 조성물은 피부 병변(skin lesion)을 감소시키는 것일 수 있다. 상기 약학적 조성물은 루푸스-관련 질환에 의해 증가된 피부 병변 점수를 감소시키는 것일 수 있다.
상기 약학적 조성물은 약학적으로 허용가능한 담체를 더 포함할 수 있다. 약학적으로 허용되는 담체는 경구 투여 시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소 및 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제 및 안정화제 등을 혼합하여 사용할 수 있으며, 국소 투여용의 경우에는 기제, 부형제, 윤활제 및 보존제 등을 사용할 수 있다.
상기 약학적 조성물의 제형은 상술한 바와 같은 약학적으로 허용가능한 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여 시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽 및 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 그 외에도 용액, 현탁액, 정제, 환약, 캡슐 및 서방형 제제 등으로 제형화할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.
상기 약학적 조성물은 루푸스-관련 질환을 치료하기 위한 하나 이상의 다른 제제를 더 포함할 수 있다. 구체적으로, 상기 다른 제제는 항염증제 또는 면역억제제일 수 있으나, 이에 제한되지 않는다. 보다 구체적으로, 상기 다른 제제는 루푸스 치료제일 수 있으나, 이에 제한되지 않는다.
"항염증제"란 염증성 질환 또는 이와 관련된 증상의 치료를 위한 화합물을 지칭한다. 항염증제는, 비제한적 예로서, 비스테로이드성 항염증성 약물(NSAID; 예, 아스피린, 이부프로펜, 나프록센, 메틸 살리실레이트, 디플루니살, 인도메타신, 설린닥, 디클로페낙, 케토프로펜, 케토롤락, 카프로펜, 페노프로펜, 메페남산, 피록시캄, 멜록시캄, 메토트렉사트, 셀레콕십, 발데콕십, 파레콕십, 에토리콕십, 및 니메설리드), 코티코스테로이드(예, 프레드니손, 베타메타손, 부데소니드, 코르티손, 덱사메타손, 히드로코르티손, 메틸프레드니솔론, 프레드니솔론, 트람시놀론, 및 플루티카손), 라파마이신(예, 문헌[Migita et al., Clin. Exp. Immunol. (1997) 108:199-203]; [Migita et al., Clin. Exp. Immunol. (1996) 104:86-91]; [Foroncewicz et al., Transpl. Int. (2005) 18:366-368] 참조), 고밀도 지질단백질(HDL) 및 HDL-콜레스테롤 상승 화합물(예, 문헌[Birjmohun et al. (2007) Arterioscler. Thromb. Vasc. Biol., 27:1153-1158]; [Nieland et al. (2007) J. Lipid Res., 48:1832-1845]; 항염증제로서 로지글리타존의 용도를 개시한 [Bloedon et al. (2008) J. Lipid Res., Samaha et al. (2006) Arterioscler. Thromb. Vasc. Biol., 26:1413-1414], [Duffy et al. (2005) Curr. Opin. Cardiol., 20:301-306] 참조), rho-키나아제 억제제(예, 문헌[Hu, E. (2006) Rec. Patents Cardiovasc. Drug Discov., 1:249-263] 참조), 항말라리아제(예, 히드록시클로로퀸 및 클로로퀸), 아세트아미노펜, 글루코코티코이드, 스테로이드, 베타-작용제, 항콜린제, 메틸 크산틴, 금 주입(예, 나트륨 오로티오말레이트), 설파살라진, 페니실라민, 항혈관형성제, 댑손, 소랄렌, 항바이러스제, 스타틴(예, 문헌[Paraskevas et al. (2007) Curr. Pharm. Des., 13:3622-36]; [Paraskevas, K.I. (2008) Clin. Rheumatol. 27:281-287] 참조), 및 항생제(예, 테트라시클린)를 포함한다. 특정 구체예에서, 항염증제는 스타틴 또는 고밀도 지질단백질(HDL) 및 HDL-콜레스테롤 상승 화합물이다.
"면역억제제" 및 "면역억제성 제제"는 면역 반응 또는 이와 관련된 증상을 억제하는 화합물 또는 조성물을 포함한다. 면역억제제는, 비제한적 예로서 퓨린 유사체(예, 아자티오프린), 메토트렉사트, 시클로스포린(예, 시클로스포린 A), 시클로포스파미드, 레플루노미드, 미코페놀레이트(미코페놀레이트 모페틸), 스테로이드(예, 글루코코티코이드, 코티코스테로이드), 메틸프레드니손, 프레드니손, 비스테로이드성 항염증성 약물(NSAID), 클로로퀸, 히드록시클로로퀸, 클로람부실, CD20 길항제(예, 리툭시맙, 오크렐리주맙, 벨투주맙 또는 오파투무맙), 아바타셉트, TNF 길항제(예, 인플릭시맙, 아달리무맙, 에타네르셉트), 마크로리드(예, 피메크롤리무스, 타크롤리무스 (FK506), 및 시롤리무스), 디히드로에피안드로스테론, 레날리도미드, CD40 길항제(예, 항-CD40L 항체), 아베티무스 나트륨, BLys 길항제(예, 항-BLyS(예, 벨리무맙)), 다크티노마이신, 부실라민, 페니실라민, 레플루노미드, 머캅토퓨린, 피리미딘 유사체(예, 시토신 아라비노시드), 미조리빈, 알킬화제(예, 질소 머스타드, 페닐알라닌 머스타드, 부슬판, 및 시클로포스파미드), 엽산 길항제(예, 아미노프테린 및 메토트렉사트), 항생제(예, 라파마이신, 악티노마이신 D, 미토마이신 C, 퓨라마이신, 및 클로람페니콜), 인간 IgG, 항림프구 글로불린(ALG), 항체(예, 항-CD3(OKT3), 항-CD4(OKT4), 항-CD5, 항-CD7, 항-IL-2 수용체(예, 다클리주맙 및 바실릭시맙), 항-알파/베타 TCR, 항-ICAM-1, 무로노납-CD3, 항-IL-12, 알레무투주맙 및 면역독소에 대한 항체), 1-메틸트립토판, 및 이의 유도체 및 유사체를 포함한다. 특정 구체예에서, 면역억제제는 메토트렉사트, 히드록시클로로퀸, CD20 길항제(예, 리툭시맙, 오크렐리주맙, 벨투주맙 또는 오파투무맙), 아바타셉트, TNF 길항제(예, 인플릭시맙, 아달리무맙, 에타네르셉트), 시롤리무스, 및 BLyS 길항제(예, 항-BLyS(예, 벨리무맙))로 구성된 군으로부터 선택된다.
“루푸스 치료제”는 루푸스와 관련된 증상을 억제하거나 이를 치료하는 화합물 또는 조성물을 포함한다. 상기 루푸스 치료제는 공지의 물질을 사용할 수 있다.
상기 약학적 조성물의 투여량과 횟수는 치료할 질환, 투여 경로, 환자의 연령, 성별 및 체중, 질환의 중증도 등 여러 관련 인자와 함께, 활성성분인 약물의 종류에 따라 결정된다.
상기 약학적 조성물은 생체 내 지속성 및 역가가 우수하므로, 투여 횟수 및 빈도를 현저하게 감소시킬 수 있다.
다른 양상은 유효량의 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 상기 결합체, 또는 상기 약학적 조성물을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 루푸스-관련 질환을 예방 또는 치료하는 방법을 제공한다.
상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 상기 결합체, 상기 약학적 조성물, 및 루푸스-관련 질환에 대해서는 상술한 바와 같다.
"유효량" 또는 "약학적 유효량"은 환자에게 단일 또는 다회 용량으로 투여되었을 때, 진단 또는 치료 하에 환자에서 원하는 효과를 제공하는, 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 이의 결합체의 양 또는 용량을 지칭한다. 유효량은 공지 기술을 사용함으로써 또는 유사 환경 하에서 수득한 결과를 관찰함으로써 관련 기술분야의 통상의 기술자로서 주치의 진단의에 의해 쉽게 결정될 수 있다. 환자에 대한 유효량을 결정할 때, 포유동물종; 그의 크기, 연령 및 일반적인 건강 상태; 연루된 구체적인 질환 또는 장애; 질환 또는 장애의 연루 정도 또는 중증도; 개별 환자의 반응; 투여되는 특정 화합물; 투여 모드; 투여되는 제제의 생체이용성 특징; 선택된 투약 요법; 동시 약물처치 사용; 및 다른 관련된 환경을 포함하나, 이에 제한되지 않는 다수의 인자가 주치의 진단의에 의해 고려된다.
“개체”란 질환의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로 인간 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말 및 소 등의 포유류를 의미한다.
“투여”는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미한다. 투여 경로는 환자의 생체 내 표적에 도달할 수 있는 어떠한 일반적인 경로일 수 있다. 상기 투여는, 예를 들어, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 직장 내 투여일 수 있으나, 이에 제한되지 않는다.
상기 투여는 일 구체예에 따른 조성물을 개체당 일당 0.0001 mg 내지 1,000 mg, 예를 들면, 0.1 mg 내지 1,000 mg, 0.1 mg 내지 500 mg, 0.1 mg 내지 100 mg, 0.1 mg 내지 50 mg, 0.1 mg 내지 25 mg, 1 mg 내지 1,000 mg, 1 mg 내지 500 mg, 1 mg 내지 100 mg, 1 mg 내지 50 mg, 또는 1 mg 내지 25 mg을 투여하는 것일 수 있다. 다만, 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성별, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있고, 당업자라면 이러한 요인들을 고려하여 투여량을 적절히 조절할 수 있다. 투여 횟수는 1일 1회 또는 임상적으로 용인가능한 부작용의 범위 내에서 2회 이상이 가능하고, 투여 부위에 대해서도 1개소 또는 2개소 이상에 투여할 수 있으며, 매일 또는 2 내지 5일 간격으로 총 투여 일수는 한번 치료 시 1일에서 30일까지 투여될 수 있다. 필요한 경우, 적정 시기 이후에 동일한 치료를 반복할 수 있다. 인간 이외의 동물에 대해서도, kg당 인간과 동일한 투여량으로 하거나, 또는 예를 들면 목적의 동물과 인간과의 기관(심장 등)의 용적비(예를 들면, 평균값) 등으로 상기의 투여량을 환산한 양을 투여할 수 있다.
상기 방법에서, 유효량의 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 이의 결합체는 유효량의 하나 이상의 다른 활성 성분과 동시에, 개별적으로, 또는 순차적으로 투여할 수 있다. 상기 하나 이상의 다른 활성 성분은 루푸스-관련 질환을 치료하기 위한 하나 이상의 다른 제제일 수 있으나, 이에 제한되지 않는다.
다른 양상은 루푸스-관련 질환의 예방 또는 치료용 약제를 제조하는데 사용하기 위한, 상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 또는 상기 결합체의 용도를 제공한다.
상기 글루카곤/GLP-1/GIP 삼중작용제, 이의 약학적으로 허용가능한 염, 이의 용매화물, 상기 결합체, 및 루푸스-관련 질환에 대해서는 상술한 바와 같다.
본원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 할 수 없다.
일 양상에 따른 글루카곤/GLP-1/GIP 삼중작용제, 또는 이의 지속형 결합체는 루푸스 질환 모델 마우스에서 부종을 개선하고, 피부 병변을 회복시키며, 염증 반응으로 인해 비대해진 비장의 무게 및 크기를 감소시키는 효과가 있으므로, 루푸스-관련 질환의 예방 또는 치료 용도로 사용될 수 있다.
도 1은 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 체중 변화율(%)을 나타낸 그래프이다.
도 2는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 간 피부 병변 점수를 나타낸 그래프이다.
도 3A는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 비장 무게를 나타낸 것이다.
도 3B는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 비장 크기를 나타낸 것이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 글루카곤/GLP-1/GIP 삼중작용제의 제조
글루카곤 수용체, GLP-1 수용체, 및 GIP 수용체에 모두 활성을 나타내는 글루카곤/GLP-1/GIP 삼중작용제를 제조하여 하기 표 1에 이의 서열을 나타냈다.
서열번호 서열 정보
1 H X Q G T F T S D V S S Y L D G Q A A K E F I A W L V K G C  
2 H X Q G T F T S D V S S Y L D G Q A Q K E F I A W L V K G C  
3 H X Q G T F T S D V S S Y L L G Q A A K Q F I A W L V K G G G P S S G A P P P S C  
4 H X Q G T F T S D V S S Y L L G Q Q Q K E F I A W L V K G C  
5 H X Q G T F T S D V S S Y L L G Q Q Q K E F I A W L V K G G G P S S G A P P P S C  
6 H X Q G T F T S D V S S Y L D G Q A A K E F V A W L L K G C  
7 H X Q G T F T S D V S K Y L D G Q A A K E F V A W L L K G C  
8 H X Q G T F T S D V S K Y L D G Q A A Q E F V A W L L K G C  
9 H X Q G T F T S D V S K Y L D G Q A A Q E F V A W L L A G C  
10 H X Q G T F T S D V S K Y L D G Q A A Q E F V A W L L A G G G P S S G A P P P S C  
11 CA G E G T F T S D L S K Y L D S R R Q Q L F V Q W L K A G G P S S G A P P P S H G  
12 CA G E G T F I S D L S K Y M D E Q A V Q L F V E W L M A G G P S S G A P P P S H G  
13 CA G E G T F I S D Y S I Q L D E I A V Q D F V E W L L A Q K P S S G A P P P S H G  
14 CA G Q G T F T S D Y S I Q L D E I A V R D F V E W L K N G G P S S G A P P P S H G  
15 CA G Q G T F T S D L S K Q M D E E A V R L F I E W L K N G G P S S G A P P P S H G  
16 CA G Q G T F T S D L S K Q M D S E A Q Q L F I E W L K N G G P S S G A P P P S H G  
17 CA G Q G T F T S D L S K Q M D E E R A R E F I E W L L A Q K P S S G A P P P S H G  
18 CA G Q G T F T S D L S K Q M D S E R A R E F I E W L K N T G P S S G A P P P S H G  
19 CA G Q G T F T S D L S I Q Y D S E H Q R D F I E W L K D T G P S S G A P P P S H G  
20 CA G Q G T F T S D L S I Q Y E E E A Q Q D F V E W L K D T G P S S G A P P P S H G  
21 Y X Q G T F T S D Y S K Y L D E C R A K E F V Q W L L D H H P S S G Q P P P S 고리형성
22 Y X Q G T F T S D Y S K C L D E K R A K E F V Q W L L D H H P S S G Q P P P S 고리형성
23 Y X Q G T F T S D Y S K Y L D E C R A K E F V Q W L L A Q K G K K N D W K H N I T 고리형성
24 Y X Q G T F T S D Y S K Y L D E C R A K E F V Q W L K N G G P S S G A P P P S 고리형성
25 H X Q G T F T S D C S K Y L D E R A A Q D F V Q W L L D G G P S S G A P P P S  
26 H X Q G T F T S D C S K Y L D S R A A Q D F V Q W L L D G G P S S G A P P P S  
27 H X Q G T F T S D Y S K Y L D E R A C Q D F V Q W L L D Q G G P S S G A P P P S  
28 H X Q G T F T S D Y S K Y L D E K R A Q E F V C W L L A Q K G K K N D W K H N I T  
29 H X Q G T F T S D Y S K Y L D E K A A K E F V Q W L L N T C 고리형성
30 H X Q G T F T S D Y S K Y L D E K A Q K E F V Q W L L D T C 고리형성
31 H X Q G T F T S D Y S K Y L D E K A C K E F V Q W L L A Q 고리형성
32 H X Q G T F T S D Y S K Y L D E K A C K D F V Q W L L D G G P S S G A P P P S 고리형성
33 H X Q G T F T S D Y S I A M D E I H Q K D F V N W L L A Q K C 고리형성
34 H X Q G T F T S D Y S K Y L D E K R Q K E F V N W L L A Q K C 고리형성
35 H X Q G T F T S D Y S I A M D E I H Q K D F V N W L L N T K C 고리형성
36 H X Q G T F T S D Y S K Y L C E K R Q K E F V Q W L L N G G P S S G A P P P S G 고리형성
37 H X Q G T F T S D Y S K Y L D E C R Q K E F V Q W L L N G G P S S G A P P P S G 고리형성
38 CA X Q G T F T S D K S S Y L D E R A A Q D F V Q W L L D G G P S S G A P P P S S  
39 H X Q G T F T S D Y S K Y L D G Q H A Q C F V A W L L A G G G P S S G A P P P S  
40 H X Q G T F T S D K S K Y L D E R A C Q D F V Q W L L D G G P S S G A P P P S  
41 H X Q G T F T S D K S K Y L D E C A A Q D F V Q W L L D G G P S S G A P P P S  
42 Y X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L D H H P S S G Q P P P S C 고리형성
43 Y X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L D H H C S S G Q P P P S 고리형성
44 H G Q G T F T S D C S K Q L D G Q A A Q E F V A W L L A G G P S S G A P P P S  
45 H G Q G T F T S D C S K Y M D G Q A A Q D F V A W L L A G G P S S G A P P P S  
46 H G Q G T F T S D C S K Y L D E Q H A Q E F V A W L L A G G P S S G A P P P S  
47 H G Q G T F T S D C S K Y L D G Q R A Q E F V A W L L A G G P S S G A P P P S  
48 H G Q G T F T S D C S K Y L D G Q R A Q D F V N W L L A G G P S S G A P P P S  
49 CA X Q G T F T S D Y S I C M D E I H Q K D F V N W L L N T K 고리형성
50 H X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L D H H P S S G Q P P P S C 고리형성
51 H X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L N T C 고리형성
52 H X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L D T C 고리형성
53 H X E G T F T S D Y S I A M D E I H Q K D F V N W L L A Q C 고리형성
54 H X E G T F T S D Y S I A M D E I H Q K D F V D W L L A E C 고리형성
55 H X Q G T F T S D Y S I A M D E I H Q K D F V N W L L A Q C 고리형성
56 H X Q G T F T S D Y S K Y L D E K R Q K E F V N W L L A Q C 고리형성
57 H X Q G T F T S D Y S I A M D E I H Q K D F V N W L L N T C 고리형성
58 H X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L N T K C 고리형성
59 CA X Q G T F T S D Y S I C M D E K H Q K D F V N W L L N T K 고리형성
60 CA X Q G T F T S D Y S I A M D E K H C K D F V N W L L N T K 고리형성
61 CA X Q G T F T S D Y S I A M D E I A C K D F V N W L L N T K 고리형성
62 CA X Q G T F T S D K S K Y L D E R A A Q D F V Q W L L D G G P S S G A P P P S
63 CA X Q G T F T S D C S K Y L D E R A A Q D F V Q W L L D G G P S S G A P P P S
64 Y X Q G T F T S D Y S K Y L D E C A A K E F V Q W L L D H H P S S G Q P P P S 고리형성 
65 H X Q G T F T S D Y S K C L D E K R A K E F V Q W L L D H H P S S G Q P P P S 고리형성
66 Y X Q G T F T S D Y S K Y L D E C R A K D F V Q W L L D H H P S S G Q P P P S 고리형성
67 Y X Q G T F T S D Y S K Y L D E C A A K D F V Q W L L D H H P S S G Q P P P S 고리형성
68 Y X Q G T F T S D Y S K C L D E K A A K E F V Q W L L D H H P S S G Q P P P S 고리형성
69 Y X Q G T F T S D Y S K C L D E R A A K E F V Q W L L D H H P S S G Q P P P S 고리형성
70 Y X Q G T F T S D Y S K C L D E K R A K D F V Q W L L D H H P S S G Q P P P S 고리형성
71 Y X Q G T F T S D Y S K Y L D E R A C K D F V Q W L L D H H P S S G Q P P P S 고리형성
72 Y X Q G T F T S D C S K Y L D E R A A K D F V Q W L L D H H P S S G Q P P P S 고리형성
73 CA X Q G T F T S D Y S K Y L D E C R A K E F V Q W L L D H H P S S G Q P P P S 고리형성
74 CA X Q G T F T S D Y S K C L D E K R A K E F V Q W L L D H H P S S G Q P P P S 고리형성
75 Y X Q G T F T S D Y S K Y L D E K A A K E F V Q W L L D H H P S S G Q P P P S C 고리형성
76 Y X Q G T F T S D Y S K Y L D E K R A K D F V Q W L L D H H P S S G Q P P P S C 고리형성
77 Y X Q G T F T S D Y S K Y L D E K A A K D F V Q W L L D H H P S S G Q P P P S C 고리형성
78 H X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L D T K C 고리형성
79 H X E G T F T S D Y S I A M D E I H Q K D F V N W L L A Q K C 고리형성
80 H X E G T F T S D Y S I A M D E I H Q K D F V D W L L A E K C 고리형성
81 CA X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L N T C 고리형성
82 CA X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L D T C 고리형성
83 CA X E G T F T S D Y S I A M D E I H Q K D F V N W L L A Q C 고리형성
84 CA X E G T F T S D Y S I A M D E I H Q K D F V D W L L A E C 고리형성
85 CA X Q G T F T S D Y S I A M D E I H Q K D F V N W L L A Q C 고리형성
86 CA X Q G T F T S D Y S K Y L D E K R Q K E F V N W L L A Q C 고리형성
87 CA X Q G T F T S D Y S I A M D E I H Q K D F V N W L L N T C 고리형성
88 CA X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L N T K C 고리형성
89 CA X Q G T F T S D Y S K Y L D E K R Q K E F V Q W L L D T K C 고리형성
90 CA X E G T F T S D Y S I A M D E I H Q K D F V N W L L A Q K C 고리형성
91 CA X E G T F T S D Y S I A M D E I H Q K D F V D W L L A E K C 고리형성
92 CA X Q G T F T S D Y S I A M D E I H Q K D F V N W L L A Q K C 고리형성
93 CA X Q G T F T S D Y S K Y L D E K R Q K E F V N W L L A Q K C 고리형성
94 CA X Q G T F T S D Y S I A M D E I H Q K D F V N W L L N T K C 고리형성
95 Y X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L C H H P S S G Q P P P S 고리형성
96 Y X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L D H C P S S G Q P P P S 고리형성
97 Y X Q G T F T S D Y S K Y L D E K R A K E F V Q W L L D C H P S S G Q P P P S 고리형성
98 Y X Q G T F T S D Y S K A L D E K A A K E F V N W L L D H H P S S G Q P P P S C 고리형성
99 Y X Q G T F T S D Y S K A L D E K A A K D F V N W L L D H H P S S G Q P P P S C 고리형성
100 Y X Q G T F T S D Y S K A L D E K A A K E F V Q W L L D Q H P S S G Q P P P S C 고리형성
101 Y X Q G T F T S D Y S K A L D E K A A K E F V N W L L D Q H P S S G Q P P P S C 고리형성
102 Y X Q G T F T S D Y S K A L D E K A A K D F V N W L L D Q H P S S G Q P P P S C 고리형성
상기 표 1에 기재된 서열에서 X로 표기된 아미노산은 비천연형 아미노산인 Aib (aminoisobutyric acid)이며, 밑줄로 표시된 아미노산은 밑줄로 표시된 아미노산들이 서로 고리를 형성하는 것을 의미한다. 또한, 상기 표 1에서 CA는 4-이미다조아세틸(4-imidazoacetyl)을, Y는 티로신을 의미한다.
상기 삼중작용제 펩타이드는 필요에 따라 C-말단을 아미드화한 삼중작용제로 이용한다.
실시예 2: 삼중작용제의 지속형 결합체의 제조
양 말단에 각각 말레이미드기 및 알데히드기를 가지는 10kDa의 PEG, 즉 말레이미드-PEG-알데히드 (10kDa, NOF, 일본)를 실시예 1의 삼중작용제 (서열번호 21, 22, 42, 43, 50, 77, 및 96)의 시스테인 잔기에 페길화시키기 위하여, 삼중작용제와 말레이미드-PEG-알데히드의 몰비를 1 : 1 내지 3, 단백질의 농도를 1 내지 5 ㎎/㎖로 하여 저온에서 0.5 내지 3 시간 동안 반응시켰다. 이때, 반응은 50 mM Tris 완충액(pH 7.5)에 20 내지 60% 아이소프로판올이 첨가된 환경 하에서 수행되었다. 반응이 종료된 후, 상기 반응액을 SP 세파로스 HP (GE healthcare, 미국)에 적용하여 시스테인에 모노-페길화된 삼중작용제를 정제하였다.
다음으로, 상기 정제된 모노-페길화된 삼중작용제와 면역글로불린 Fc을 몰비를 1 : 1 내지 5, 단백질의 농도를 10 내지 50㎎/㎖로 하여 4 내지 8℃에서 12 내지 18시간 동안 반응시켰다. 반응은 100 mM 인산칼륨 완충액 (pH 6.0)에 환원제인 10 내지 50 mM 소디움시아노보로하이드라이드와 10 내지 30 % 아이소프로판올이 첨가된 환경 하에서 수행되었다. 반응이 종료된 후, 상기 반응액을 부틸 세파로스 FF 정제컬럼 (GE healthcare, 미국)과 Source ISO 정제컬럼 (GE healthcare, 미국)에 적용하여, 삼중작용제와 면역글로불린 Fc를 포함하는 결합체를 정제하였다.
제조 후 역상 크로마토그래피, 크기배제 크로마토그래피 및 이온교환 크로마토그래피로 분석한 순도는 95 % 이상이었다.
여기서, 서열번호 21의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 21과 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 21의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다.
여기서, 서열번호 22의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 22와 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 22의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다.
여기서, 서열번호 42의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 42와 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 42의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다.
여기서, 서열번호 43의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 43과 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 43의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다
여기서, 서열번호 50의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 50과 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 50의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다.
여기서, 서열번호 77의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 77와 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 77의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다
여기서, 서열번호 96의 삼중작용제 및 면역글로불린 Fc가 PEG를 통하여 연결된 결합체를, '서열번호 96과 면역글로불린 Fc를 포함하는 결합체' 혹은 '서열번호 96의 지속형 결합체'로 명명하였고, 이들은 본원에서 혼용되어 사용될 수 있다.
실험예 1: 삼중작용제 및 이의 지속형 결합체의 in vitro 활성 측정
상기 실시예 1 및 2에서 제조된 삼중작용제와 이의 지속형 결합체의 활성을 측정하기 위해 GLP-1 수용체, 글루카곤(GCG) 수용체, 및 GIP 수용체가 각각 형질전환된 세포주를 이용하여 in vitro에서 세포 활성을 측정하는 방법을 이용하였다.
상기 각 세포주는 CHO (chinese hamster ovary)에 인간 GLP-1 수용체, 인간 GCG 수용체 및 인간 GIP 수용체 유전자를 각각 발현하도록 형질 전환된 것으로서, GLP-1, GCG 및 GIP의 활성을 측정하기에 적합하다. 따라서, 각 부분에 대한 활성을 각각의 형질 전환 세포주를 이용하여 측정하였다.
상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체의 GLP-1 활성 측정을 위해 인간 GLP-1을 50nM 부터 4배씩 0.000048nM까지 연속적으로 희석하고, 상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체를 400nM 부터 4배씩 0.00038nM까지 연속적으로 희석하였다. 상기 배양된 인간 GLP-1 수용체가 발현된 CHO 세포에서 배양액을 제거하고 연속적으로 희석된 각 물질들을 5㎕씩 상기 세포에 첨가한 다음, cAMP 항체가 포함된 완충액을 5㎕씩 추가 한 뒤 15분 동안 상온에서 배양하였다. 그런 다음 세포용해완충액 (cell lysis buffer)이 포함된 detection mix를 10㎕씩 가하여 세포를 용해시키고, 90분 동안 상온에서 반응시켰다. 상기 반응이 완료된 세포용해물을 LANCE cAMP kit (PerkinElmer, USA)에 적용하여 축적된 cAMP를 통해 EC50값을 산출한 후, 상호 비교하였다. 인간 GLP-1 대비 상대 역가는 하기 표 2와 표 3에 나타내었다.
상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체의 GCG 활성 측정을 위해 인간 GCG을 50nM 부터 4배씩 0.000048nM까지 연속적으로 희석하고, 상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체를 400nM 부터 4배씩 0.00038nM까지 연속적으로 희석하였다. 상기 배양된 인간 GCG 수용체가 발현된 CHO 세포에서 배양액을 제거하고 연속적으로 희석된 각 물질들을 5㎕씩 상기 세포에 첨가한 다음, cAMP 항체가 포함된 완충액을 5㎕씩 추가 한 뒤 15분 동안 상온에서 배양하였다. 그런 다음 세포용해완충액(cell lysis buffer)이 포함된 detection mix를 10㎕씩 가하여 세포를 용해시키고, 90분 동안 상온에서 반응시켰다. 상기 반응이 완료된 세포용해물을 LANCE cAMP kit (PerkinElmer, USA)에 적용하여 축적된 cAMP를 통해 EC50값을 산출한 후, 상호 비교하였다. 인간 GCG 대비 상대 역가는 하기 표2와 표3에 나타내었다.
상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체의 GIP 활성 측정을 위해 인간 GIP을 50nM 부터 4배씩 0.000048nM까지 연속적으로 희석하고, 상기 실시예 1과 2에서 제조된 삼중작용제와 이의 지속형 결합체를 400nM 부터 4배씩 0.00038nM까지 연속적으로 희석하였다. 상기 배양된 인간 GIP 수용체가 발현된 CHO 세포에서 배양액을 제거하고 연속적으로 희석된 각 물질들을 5㎕씩 상기 세포에 첨가한 다음, cAMP 항체가 포함된 완충액을 5㎕씩 추가 한 뒤 15분 동안 상온에서 배양하였다. 그런 다음 세포용해완충액(cell lysis buffer)이 포함된 detection mix를 10㎕씩 가하여 세포를 용해시키고, 90분 동안 상온에서 반응시켰다. 상기 반응이 완료된 세포용해물을 LANCE cAMP kit (PerkinElmer, USA)에 적용하여 축적된 cAMP를 통해 EC50값을 산출한 후, 상호 비교하였다. 인간 GIP 대비 상대 역가는 하기 표 2와 표 3에 나타내었다.
삼중작용제 천연형 펩타이드 대비 In vitro 활성 (%)
서열번호 vs GLP-1 vs Glucagon vs GIP
1 3.2 <0.1 <0.1
2 5.9 <0.1 <0.1
3 1.8 <0.1 <0.1
4 8.5 <0.1 <0.1
5 42.1 <0.1 <0.1
6 17.0 <0.1 <0.1
7 13.7 <0.1 <0.1
8 14.2 0.10 <0.1
9 32.1 0.13 <0.1
10 46.0 <0.1 <0.1
11 1.4 <0.1 <0.1
12 0.4 <0.1 <0.1
13 < 0.1 < 0.1 < 0.1
14 28.0 < 0.1 < 0.1
15 79.2 <0.1 <0.1
16 2.1 < 0.1 < 0.1
17 0.2 < 0.1 < 0.1
18 <0.1 <0.1 <0.1
19 <0.1 <0.1 <0.1
20 <0.1 <0.1 <0.1
21 17.8 267 22.7
22 20.1 140 59.7
23 4.01 9.3 <0.1
24 41.2 9.3 < 0.1
25 82.6 0.1 <0.1
26 64.5 0.2 <0.1
27 83.1 0.8 0.9
28 17.2 1.6 <0.1
29 38.5 6.0 <0.1
30 142 0.7 0.8
31 135 2.2 2.4
32 151 1.7 8.8
33 24.5 <0.1 10.4
34 19.1 0.92 0.6
35 7.5 <0.1 1.3
36 37.4 0.39 0.2
37 236 6.21 2.2
38 2.3 - -
39 13.9 0.53 <0.1
40 75.2 <0.1 <0.1
41 34.3 <0.1 <0.1
42 33.9 205.8 7.8
43 12.6 88.4 3.70
44 1.3 <0.1 <0.1
45 6.6 < 0.1 < 0.1
46 1.4 < 0.1 < 0.1
47 2.4 < 0.1 < 0.1
48 1.5 < 0.1 < 0.1
49 29.8 <0.1 3.3
50 67.4 50.5 2.7
51 14.4 2.0 0.1
52 44.1 7.5 0.3
53 161 8.4 1.3
54 30.6 1.4 0.1
55 27.1 0.7 2.4
56 57.9 4.9 0.8
57 11.7 <0.1 0.3
58 39.1 2.6 0.2
59 40.3 <0.1 4.0
60 106.2 <0.1 8.2
61 59.8 <0.1 2.8
62 5.2 <0.1 <0.1
63 15.3 <0.1 <0.1
64 64.6 60.1 92.9
65 95.4 25.2 11.6
66 15.8 172 17.2
67 28.5 46.2 39.8
68 27.9 8.8 107
69 24.3 9.6 62.8
70 15.1 71.3 64.4
71 90.1 12.7 94.7
72 11.5 1.0 1.6
73 22.6 5.4 3.0
74 12.9 0.9 1.0
75 35.1 8.5 18.0
76 10.3 47.6 11.7
77 38.7 12.2 35.5
78 51.0 14.0 0.12
79 41.5 4.9 1.4
80 8.1 0.0 0.1
81 7.8 0.3 <0.1
82 9.5 1.1 <0.1
83 47.3 1.3 0.4
84 4.2 <0.1 <0.1
85 4.3 <0.1 0.3
86 28.4 0.4 0.2
87 0.9 <0.1 <0.1
88 9.6 0.3 <0.1
89 7.1 0.7 <0.1
90 7.4 <0.1 <0.1
91 31.9 16.8 0.3
92 0.8 <0.1 0.4
93 5.7 0.3 0.7
94 0.5 <0.1 <0.1
95 2.1 0.4 <0.1
96 34.4 194.8 5.2
97 10.5 62.8 2.6
98 28.1 8.2 47.1
99 20.9 14.9 57.7
100 42.2 12.7 118.5
101 23.2 13.9 40.1
102 23.3 29.5 58.0
지속형 결합체 천연형 펩타이드 대비 in vitro 활성 (%)
vs GLP-1 vs Glucagon vs GIP
21 0.1 1.6 0.2
22 0.1 0.9 0.5
42 3.1 23.1 1.2
43 2.1 13.5 0.6
50 15.4 6.9 0.7
77 6.7 1.7 6.6
96 0.3 4.0 0.3
상기에서 제조한 삼중작용제의 지속형 결합체는 GLP-1 수용체, GIP 수용체 및 글루카곤 수용체를 모두 활성화시킬 수 있는 삼중작용제로 기능을 가진다.
실험예 2 : 삼중작용제의 지속형 결합체의 루푸스 질환 모델에서의 효력 확인
루푸스에 대한 삼중작용제의 지속형 결합체의 효력을 질환 모델에서 확인하기 위하여 MRL/lpr 마우스를 사용하였다.
부형제를 투여한 정상 마우스 대조군과 질환 모델 대조군이 있으며, 삼중작용제의 지속형 결합체를 0.12 mg/kg로 투여한 시험군이 있다. 부형제 및 약물의 투여는 2일 간격으로 하고 실험은 10주째 종료하였다. 삼중작용제의 지속형 결합체는 실시예 2에서 제조된 지속형 결합체(서열번호 42)를 사용하였다.
투여 기간 동안 체중을 측정하였고, 4주차부터 1주일 간격으로 주둥이, 귀, 날개뼈 주변 및 눈 등을 관찰하여 피부 병변의 정도를 점수로 측정 하였다. 실험이 종료된 후, 부검을 통해 비장을 취하여 무게를 측정하고 관찰하였다.
도 1은 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 체중 변화율(%)을 나타낸 그래프이다.
도 1에 나타낸 바와 같이, 질환 모델은 정상 마우스와 대비하여 체중이 증가되어 있는 것을 확인할 수 있었다. 루푸스 환자의 경우 염증 반응으로 인한 전신부종으로 체중이 증가되는 특징을 보이는데, 질환 모델도 동일한 특징을 보인 것이다. 또한, 삼중작용제의 지속형 결합체를 투여한 시험군의 경우 질환 모델 마우스 대조군에 비해 체중이 감소한 것을 확인할 수 있었고, 이로부터 부종이 개선되었음을 알 수 있었다.
도 2는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 간 피부 병변 점수를 나타낸 그래프이다.
도 2에 나타낸 바와 같이, 질환 모델 대조군에서 피부 병변이 시간이 지남에 따라 점점 심해지는 것을 확인할 수 있었다. 그러나, 삼중작용제의 지속형 결합체 투여군의 경우 피부 병변의 정도가 정상 마우스에 가깝게 회복되었다.
도 3A는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 비장 무게를 나타낸 것이다.
도 3B는 정상 마우스 대조군, 질환 모델(MRL/lpr) 마우스 대조군, 및 삼중작용제의 지속형 결합체 투여군의 10주 후 비장 크기를 나타낸 것이다.
도 3A 및 도 3B에 나타낸 바와 같이, 질환 모델 대조군의 경우 염증 반응으로 인해 비장이 매우 비대해져 있는 특징을 보였다. 삼중작용제의 지속형 결합체 투여군의 경우 질환 모델 대조군에 비해 비장의 무게 및 크기가 감소한 것을 확인할 수 있었다.
따라서, 삼중작용제의 지속형 결합체는 루푸스-관련 질환의 치료 또는 개선 효과가 있음을 알 수 있었다.

Claims (12)

  1. 루푸스-관련 질환의 예방 또는 치료를 위한 약학적 조성물로서,
    약학적으로 허용되는 부형제;와
    서열번호 1 내지 102 중 어느 하나의 아미노산 서열을 포함하는 펩타이드를 약학적 유효량으로 포함하는 약학적 조성물.
  2. 청구항 1에 있어서, 상기 펩타이드는 지속형 결합체의 형태이고, 상기 지속형 결합체는 하기 화학식 1로 표시되는 약학적 조성물:
    [화학식 1]
    X - L - F
    단, 이때 X는 서열번호 1 내지 102 중 어느 하나의 아미노산 서열을 포함하는 펩타이드이고;
    L은 에틸렌글리콜 반복 단위를 함유하는 링커이며,
    F는 면역글로불린 Fc 영역이고,
    -는 X와 L 사이, L과 F 사이의 공유결합 연결을 나타낸다.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 펩타이드는 그 C-말단이 아미드화된 약학적 조성물.
  4. 청구항 1 또는 청구항 2에 있어서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 64, 66, 67, 70, 71, 76, 77, 96, 97과 100으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 약학적 조성물.
  5. 청구항 4에 있어서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 66, 67, 77, 96, 97과 100으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 약학적 조성물.
  6. 청구항 5에 있어서, 상기 펩타이드는 서열번호 21, 22, 42, 43, 50, 77과 96으로 구성된 군으로부터 선택된 아미노산 서열을 포함하는 약학적 조성물.
  7. 청구항 1 또는 청구항 2에 있어서, 상기 펩타이드 서열에서 N-말단으로부터 16번 아미노산과 20번 아미노산은 서로 고리를 형성하는 것인, 약학적 조성물.
  8. 청구항 2에 있어서, 상기 L 내의 에틸렌글리콜 반복 단위 부분의 화학식량은 1 내지 100 kDa 범위에 있는 약학적 조성물.
  9. 청구항 2에 있어서, 상기 F는 IgG Fc 영역인, 약학적 조성물.
  10. 청구항 1 또는 청구항 2에 있어서, 상기 루푸스-관련 질환은 폐, 심장, 근육, 및 관절 중 어느 하나 이상의 기관에 증상이 나타나는 것인, 약학적 조성물.
  11. 청구항 1 또는 청구항 2에 있어서, 상기 루푸스-관련 질환은 전신홍반루푸스(Systemic lupus erythematosus, SLE), 원판상홍반루푸스(Discoid lupus erythematosus, DLE), 약물유발성 루푸스(drug-induced lupus), 신생아 루푸스(Neonatal lupus), 루푸스신염(Lupus nephritis), 나비형 홍반(Butterfly rash), 또는 동창상 홍반(Pernio-like rash)인 것인, 약학적 조성물.
  12. 청구항 1 또는 청구항 2에 있어서, 상기 약학적 조성물은 피부 병변(skin lesion)을 감소시키는 것인, 약학적 조성물.
PCT/KR2021/014468 2020-10-16 2021-10-18 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물 WO2022080989A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21880635.4A EP4230219A1 (en) 2020-10-16 2021-10-18 Pharmaceutical composition comprising glucagon/glp-1/gip triple agonist or long-acting conjugate thereof for preventing or treating lupus-related diseases
CN202180070486.4A CN116390769A (zh) 2020-10-16 2021-10-18 包括胰高血糖素/glp-1/gip三重激动剂或其长效缀合物的用于预防或治疗狼疮相关疾病的药物组合物
US18/031,940 US20230381281A1 (en) 2020-10-16 2021-10-18 Pharmaceutical composition comprising glucagon/glp-1/gip triple agonist or long-acting conjugate thereof for preventing or treating lupus-related diseases
JP2023522943A JP2023546088A (ja) 2020-10-16 2021-10-18 グルカゴン/glp-1/gip三重作用剤またはその持続型結合体を含むループス関連疾患の予防用または治療用の薬学的組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0134482 2020-10-16
KR20200134482 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080989A1 true WO2022080989A1 (ko) 2022-04-21

Family

ID=81209112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014468 WO2022080989A1 (ko) 2020-10-16 2021-10-18 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물

Country Status (6)

Country Link
US (1) US20230381281A1 (ko)
EP (1) EP4230219A1 (ko)
JP (1) JP2023546088A (ko)
KR (1) KR20220050822A (ko)
CN (1) CN116390769A (ko)
WO (1) WO2022080989A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US20130203659A1 (en) * 2006-04-20 2013-08-08 Leslie P. Miranda Glp-1 compounds
JP2017503474A (ja) * 2013-11-06 2017-02-02 ジーランド ファーマ アクティーゼルスカブ グルカゴン−glp−1−gipトリプルアゴニスト化合物
KR20170080522A (ko) * 2015-12-31 2017-07-10 한미약품 주식회사 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2018152172A1 (en) * 2017-02-14 2018-08-23 Vanderbilt University Glp-1r agonists and uses thereof
JP2019069942A (ja) * 2012-12-06 2019-05-09 ステルス バイオセラピューティックス コープ ペプチド治療薬およびその使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US20130203659A1 (en) * 2006-04-20 2013-08-08 Leslie P. Miranda Glp-1 compounds
JP2019069942A (ja) * 2012-12-06 2019-05-09 ステルス バイオセラピューティックス コープ ペプチド治療薬およびその使用方法
JP2017503474A (ja) * 2013-11-06 2017-02-02 ジーランド ファーマ アクティーゼルスカブ グルカゴン−glp−1−gipトリプルアゴニスト化合物
KR20170080522A (ko) * 2015-12-31 2017-07-10 한미약품 주식회사 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2018152172A1 (en) * 2017-02-14 2018-08-23 Vanderbilt University Glp-1r agonists and uses thereof

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
BIRJMOHUN, ARTERIOSCLER. THROMB. VASC. BIOL., vol. 27, 2007, pages 1153 - 1158
BLOEDON ET AL., J. LIPID RES., 2008
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
DUFFY ET AL., CURR. OPIN. CARDIOL., vol. 20, 2005, pages 301 - 306
FORONCEWICZ ET AL., TRANSPL. INT., vol. 18, 2005, pages 366 - 368
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
H.NEURATHR.L.HILL: "Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
HU, E., REC. PATENTS CARDIOVASC. DRUG DISCOV., vol. 1, 2006, pages 249 - 263
MIGITA ET AL., CLIN. EXP. IMMUNOL., vol. 104, 1996, pages 86 - 91
MIGITA ET AL., CLIN. EXP. IMMUNOL., vol. 108, 1997, pages 199 - 203
NEEDLEMAN, J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
NIELAND ET AL., J. LIPID RES., vol. 48, 2007, pages 1832 - 1845
P. STAHL ET AL.: "Handbook of Pharmaceutical Salts: Properties, Selection and Use", 2011, WILEY-VCH
PARASKEVAS ET AL., CURR. PHARM. DES., vol. 13, 2007, pages 3622 - 36
PARASKEVAS, K.I., CLIN. RHEUMATOL., vol. 27, 2008, pages 281 - 287
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
S.M. BERGE ET AL.: "Pharmaceutical Salts", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 66, no. 1, January 1977 (1977-01-01), XP002675560, DOI: 10.1002/jps.2600660104
SAMAHA ET AL., ARTERIOSCLER. THROMB. VASC. BIOL., vol. 26, 2006, pages 1413 - 1414
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482

Also Published As

Publication number Publication date
CN116390769A (zh) 2023-07-04
US20230381281A1 (en) 2023-11-30
JP2023546088A (ja) 2023-11-01
KR20220050822A (ko) 2022-04-25
EP4230219A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2014073845A1 (en) A composition for treating diabetes or diabesity comprising oxyntomodulin analog
WO2012173422A9 (en) A conjugate comprising oxyntomodulin and an immunoglobulin fragment, and use thereof
WO2018004283A2 (ko) 글루카곤 유도체, 이의 결합체, 및 이를 포함하는 조성물, 및 이의 치료적 용도
WO2017052321A1 (ko) 다수의 생리활성 폴리펩타이드 및 면역글로불린 Fc 영역을 포함하는, 단백질 결합체
WO2014017843A1 (en) Composition for treating hyperlipidemia comprising oxyntomodulin derivative
WO2015152618A1 (ko) 면역글로불린 fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2018174668A2 (ko) 인슐린 수용체와의 결합력이 감소된 인슐린 아날로그의 결합체 및 이의 용도
WO2020130749A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 및 인슐린을 포함하는 약학 조성물
WO2022080987A1 (ko) 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 혈관염 예방 또는 치료용 약학적 조성물
WO2021066600A1 (ko) 글루카곤, 및 glp-1 수용체 및 gip 수용체 이중 작용제를 포함하는 조성물 및 이의 치료학적 용도
WO2021201654A1 (ko) Glp-2 유도체 또는 이의 지속형 결합체를 포함하는 방사선요법, 화학요법, 또는 이들의 조합으로 유발된 점막염의 예방 또는 치료용 약학적 조성물
WO2022080986A1 (ko) Glp-1/gip 이중작용제, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2022015082A1 (ko) 글루카곤 유도체 또는 이의 결합체의 간질환에 대한 치료적 용도
WO2023106845A1 (ko) 신규한 아디포넥틴 아날로그 및 결합체
WO2022080989A1 (ko) 글루카곤/glp-1/gip 삼중작용제 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물
WO2022080985A1 (ko) Gip 유도체 또는 이의 지속형 결합체를 포함하는 루푸스-관련 질환의 예방 또는 치료용 약학적 조성물
WO2020071865A1 (ko) 글루카곤 및 이를 포함하는 조합물의 치료학적 용도
WO2022015115A1 (ko) 3중 작용성 지속형 결합체 또는 3중 작용제를 포함하는 조합물의 치료학적 용도
WO2021215801A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체를 포함하는 고지혈증 예방 또는 치료용 약학적 조성물 및 예방 또는 치료 방법
WO2022080984A1 (ko) Gip 유도체, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2021133087A1 (ko) Glp-2 또는 이의 결합체를 포함하는 골 대사성 질환에 대한 예방 또는 치료용 약학적 조성물
WO2022164222A2 (ko) Gip 유도체 또는 이의 지속형 결합체를 포함하는 폐질환의 예방 또는 치료용 약학적 조성물
WO2020263063A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체의 간 질환에 대한 치료적 용도
WO2020214013A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체의 고지혈증에 대한 치료적 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522943

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18031940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021880635

Country of ref document: EP

Effective date: 20230516