WO2021182887A2 - 전자빔을 이용한 극자외선 광원 장치 - Google Patents

전자빔을 이용한 극자외선 광원 장치 Download PDF

Info

Publication number
WO2021182887A2
WO2021182887A2 PCT/KR2021/003021 KR2021003021W WO2021182887A2 WO 2021182887 A2 WO2021182887 A2 WO 2021182887A2 KR 2021003021 W KR2021003021 W KR 2021003021W WO 2021182887 A2 WO2021182887 A2 WO 2021182887A2
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
electrode
light source
extreme ultraviolet
source device
Prior art date
Application number
PCT/KR2021/003021
Other languages
English (en)
French (fr)
Other versions
WO2021182887A3 (ko
Inventor
박규창
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to US17/905,909 priority Critical patent/US20230122253A1/en
Priority to EP21768271.5A priority patent/EP4120802A4/en
Priority to CN202180021636.2A priority patent/CN115299182A/zh
Priority to JP2022555071A priority patent/JP2023518016A/ja
Publication of WO2021182887A2 publication Critical patent/WO2021182887A2/ko
Publication of WO2021182887A3 publication Critical patent/WO2021182887A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/02Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused
    • H01J31/04Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused with only one or two output electrodes with only two electrically independant groups or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/46Control electrodes, e.g. grid; Auxiliary electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30407Microengineered point emitters
    • H01J2201/30415Microengineered point emitters needle shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4803Electrodes
    • H01J2229/481Focusing electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/50Plurality of guns or beams
    • H01J2229/507Multi-beam groups, e.g. number of beams greater than number of cathodes

Definitions

  • the present invention relates to an extreme ultraviolet light source device using an electron beam, and more particularly, to a structure of an extreme ultraviolet light source device advantageous for large area.
  • EUV Extreme ultraviolet
  • DUV deep ultraviolet
  • extreme ultraviolet lithography equipment is used in a nanometer-sized micropattern process for semiconductor manufacturing.
  • Current extreme ultraviolet lithography equipment is based on high-power lasers and is entirely dependent on imports.
  • Such extreme ultraviolet lithography equipment is very expensive, has a complicated internal structure, and occupies a large volume.
  • An object of the present invention is to provide an extreme ultraviolet light source device having a simple internal structure, a compact size, and low manufacturing cost.
  • An extreme ultraviolet light source device includes a discharge chamber that maintains an interior in a vacuum, an electron beam emitter positioned inside the discharge chamber to generate an electron beam, and an electron beam emitting unit located inside the discharge chamber and ionized by the electron beam. It contains a metal radiator. Extreme ultraviolet radiation is produced in the plasma generated from the metallic radiator.
  • the electron beam emitter includes a cathode electrode, a plurality of emitters disposed on the cathode electrode and including a carbon-based material, and a gate electrode disposed on the plurality of emitters at a distance from the plurality of emitters and receiving a pulse voltage. do.
  • the plurality of emitters may be configured with a pointed emitter tip and may include carbon nanotubes.
  • a portion of the gate electrode facing the plurality of emitters may be formed of a metal mesh or a perforated plate, and an insulating layer having a thickness greater than the height of each of the plurality of emitters is formed between the cathode electrode and the support around the plurality of emitters. can be located
  • the electron beam emitter may further include an anode electrode positioned on the gate electrode at a distance from the gate electrode and having an opening for passing the electron beam.
  • a voltage of 10 kV or more may be applied to the anode electrode.
  • the electron beam emitter may further include at least one focusing electrode to which a negative voltage is applied.
  • the focusing electrode may be positioned between the gate electrode and the anode electrode.
  • the focusing electrode may include a first focusing electrode and a second focusing electrode positioned closer to the anode electrode than the first focusing electrode.
  • the first and second focusing electrodes may have respective openings.
  • the opening of the second focusing electrode may be smaller than the opening of the first focusing electrode, and the opening of the anode electrode may be smaller than the opening of the second focusing electrode.
  • a cathode electrode and a plurality of emitter and gate electrodes may constitute an electron beam module.
  • the electron beam emitter may further include a rotating plate, and a plurality of electron beam modules may be disposed on the rotating plate to form a circle at a distance from each other.
  • One electron beam module among the plurality of electron beam modules may be aligned to face the opening of the anode electrode, and the other electron beam module may be aligned to face the opening of the anode electrode when the rotating plate is rotated.
  • the metal radiator may be formed of any one of tin droplets falling into the plasma region by an injection device and solid tin composed of a rotating body.
  • the extreme ultraviolet light source device may have an electron beam emitter based on a carbon-based emitter instead of a laser device, thereby simplifying an internal structure, having a compact size, and lowering manufacturing cost.
  • the extreme ultraviolet light source device according to the embodiments may be used as a lithographic apparatus in a fine pattern process for manufacturing a semiconductor.
  • FIG. 1 is a configuration diagram of an extreme ultraviolet light source device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of an electron beam emitting part of the extreme ultraviolet light source device shown in FIG. 1 .
  • FIG. 3 is a block diagram of an extreme ultraviolet light source device according to a second embodiment of the present invention.
  • FIG. 4 is a perspective view of an electron beam emitting part of the extreme ultraviolet light source device shown in FIG. 3 .
  • FIG. 5 is a configuration diagram of an extreme ultraviolet light source device according to a third embodiment of the present invention.
  • 6 and 7 are a perspective view and a cross-sectional view of an electron beam emitting part of the extreme ultraviolet light source device according to the fourth embodiment of the present invention, respectively.
  • gate electrode 24 anode electrode
  • FIG. 1 is a block diagram of an extreme ultraviolet light source device according to a first embodiment of the present invention
  • FIG. 2 is an enlarged view of an electron beam emitting part of the extreme ultraviolet light source device shown in FIG. 1 .
  • the extreme ultraviolet light source device 100 of the first embodiment includes a discharge chamber 10 , an electron beam emitter 20 and a metal radiator 30 positioned inside the discharge chamber 10 .
  • the electron beam emitter 20 is based on a carbon-based emitter that emits electrons by an electric field rather than a laser-based one.
  • the discharge chamber 10 maintains a vacuum inside, and ionizes the metal radiator 30 to generate and maintain plasma.
  • a region in which plasma is maintained among the internal space of the discharge chamber 10 is referred to as a plasma region for convenience.
  • the metal radiator 30 is heated and ionized by an electron beam, and extreme ultraviolet radiation is generated in a plasma region surrounding the metal radiator 30 . That is, the plasma generated from the metal radiator 30 functions as a light source for generating extreme ultraviolet rays.
  • the metal emitter 30 may include any one of lithium (Li), indium (In), tin (Sn), antimony (Sb), tellurium (Te), and aluminum (Al) or a mixture of these metals. have.
  • the metal radiator 30 may be a tin droplet, and an injection device 40 for dropping the tin droplet may be installed in the discharge chamber 10 .
  • the injection device 40 may be configured to drop tin droplets of a preset volume according to a preset time period.
  • the electron beam emitter 20 is located inside the discharge chamber 10 , and may irradiate the electron beam toward the metal radiator 30 from the side of the metal radiator 30 .
  • the electron beam emitter 20 includes a cathode electrode 21 , a plurality of emitters 22 positioned on the cathode electrode 21 , and a plurality of emitters 22 at a distance from the plurality of emitters 22 . It includes a gate electrode 23 positioned on the top and an anode electrode 24 positioned on the gate electrode 23 at a distance from the gate electrode 23 .
  • the plurality of emitters 22 may be configured as a pointed emitter tip, or may be configured as a flat emitter layer.
  • the first case is illustrated in FIGS. 1 and 2 as an example.
  • the plurality of emitters 22 may include a carbon-based material, for example, carbon nanotubes.
  • a portion of the gate electrode 23 facing the plurality of emitters 22 may be formed in the form of a metal mesh or a perforated plate.
  • the metal mesh is a configuration in which thin metal wires are woven in the form of a net at a distance from each other
  • the perforated plate is a configuration in which a plurality of openings are formed in the metal plate.
  • the gate electrode 23 passes the electron beam through the space or the plurality of openings between the metal lines.
  • An insulating layer (or insulating spacer) (not shown) may be positioned between the cathode electrode 21 and the gate electrode 23 around the plurality of emitters 22 .
  • the thickness of the insulating layer is manufactured to be greater than the height of each of the plurality of emitters 22 so that the gate electrode 23 does not come into contact with the plurality of emitters 22 .
  • the gate electrode 23 may maintain an insulating state from the cathode electrode 21 and the plurality of emitters 22 by the insulating layer.
  • the anode electrode 24 is composed of a metal plate in which an opening 241 for passing an electron beam is formed.
  • the center of the opening 241 may coincide with the center of the plurality of emitters 22 and the center of the gate electrode 23 .
  • the distance between the emitter 22 and the gate electrode 23 may be smaller than the distance between the gate electrode 23 and the anode electrode 24 .
  • the cathode electrode 21 may be grounded, a pulse voltage may be applied to the gate electrode 23 , and a high voltage of 10 kV or more may be applied to the anode electrode 24 . Then, an electric field is formed around the plurality of emitters 22 by the voltage difference between the cathode electrode 21 and the gate electrode 23, and electron beams are emitted from the plurality of emitters 22 by this electric field, The electron beam is accelerated by being drawn to the high voltage of the anode electrode 24 .
  • the pulse voltage of the gate electrode 23 is a voltage having a high frequency or a low pulse width, and may have, for example, a high frequency characteristic of 100 kHz or more. This pulse voltage enables high-speed switching of the electron beam, leading to the effect of lowering the driving power.
  • the electron beam passing through the opening 241 of the anode electrode 24 is irradiated to the metal radiator 30 to heat the metal radiator 30 .
  • Extreme ultraviolet radiation is made in the plasma generated from the ionized metal radiator 30 by heating, and the extreme ultraviolet radiation is output to the outside of the discharge chamber 10 through the output opening 11 of the discharge chamber 10 .
  • a reflective mirror 12 for condensing extreme ultraviolet rays toward the output opening 11 may be positioned between the anode electrode 24 and the metal radiator 30 .
  • the reflective mirror 12 has an opening for the passage of the electron beam and includes a reflective surface concave towards the metal emitter 30 .
  • the reflective mirror 12 may be formed by alternately stacking molybdenum (Mo) and silicon (Si) in multiple layers.
  • the extreme ultraviolet light source device 100 of the first embodiment can simplify the internal structure, have a compact size, and lower the manufacturing cost by providing the electron beam emitting unit 20 described above instead of a laser device.
  • the extreme ultraviolet light source device 100 of the first embodiment may be used as a lithographic apparatus in a fine pattern process for manufacturing a semiconductor.
  • FIG. 3 is a configuration diagram of an extreme ultraviolet light source device according to a second embodiment of the present invention
  • FIG. 4 is a perspective view of an electron beam emitting part of the extreme ultraviolet light source device shown in FIG. 3 .
  • a part of the electron beam emitting unit 20 is rotatably configured.
  • the cathode electrode 21 , the plurality of emitters 22 , and the gate electrode 23 constitute the electron beam module 50
  • the plurality of electron beam modules 50 measure the distance between each other on the rotating plate 51 . and may be arranged in a circle.
  • the electron beam emitting unit 20 may include a rotating plate 51 , a rotating shaft 52 fixed to the rotating plate 51 , and a driving unit 53 coupled to the rotating shaft 52 to rotate the rotating shaft 52 .
  • the rotating plate 51 may be a circular plate
  • the driving unit 53 may be configured as a step motor, but is not limited to this example.
  • a part of the rotation shaft 52 and the driving unit 53 may be located outside the discharge chamber 10 .
  • the rotation shaft 52 is vertically shifted from the opening 241 of the anode electrode 24 , and any one of the electron beam modules 50 of the plurality of electron beam modules 50 is connected to the opening 241 of the anode electrode 24 . aligned to face each other.
  • the driving unit 53 rotates the rotating plate 51 so that the other electron beam module 50 faces the anode electrode 24 . let it do
  • the electron beam modules 50 can be used one by one in order.
  • the replacement cycle of the electron beam emitting unit 20 may be increased to simplify maintenance, and the lifespan of the discharge chamber 10 may be increased.
  • the extreme ultraviolet light source device 101 of the second embodiment has the same or similar configuration to the first embodiment described above, except that the electron beam emitting unit 20 is rotatably configured.
  • FIG. 5 is a configuration diagram of an extreme ultraviolet light source device according to a third embodiment of the present invention.
  • the discharge chamber 10 may have a cylindrical shape.
  • the metal radiator 30 may include solid tin and may be configured as a rotating body.
  • the metal radiator 30 composed of a rotating body has a long service life, which is effective in increasing the replacement cycle, and has a very simple configuration compared to an injection device for dropping tin droplets.
  • the electron beam emitter 20 may ionize the metal radiator 30 by irradiating an electron beam toward the metal radiator 30 , and extreme ultraviolet radiation is generated in a plasma region surrounding the metal radiator 30 .
  • the output opening 11 may be located on one side of the metal radiator 30 with respect to the metal radiator 30 , and the reflective mirror 13 may be located on the opposite side of the metal radiator 30 .
  • the reflection mirror 13 reflects the EUV toward the output opening 11 to increase the intensity of the EUV transmitted through the output opening 11 .
  • the extreme ultraviolet light source device 102 of the third embodiment has the same or similar configuration to the above-described first embodiment except for the shape of the discharge chamber 10 and the configuration of the metal radiator 30 .
  • 6 and 7 are a perspective view and a cross-sectional view of an electron beam emitting part of the extreme ultraviolet light source device according to the fourth embodiment of the present invention, respectively.
  • the electron beam emitter 20 further includes at least one focusing electrode positioned between the gate electrode 23 and the anode electrode 24 .
  • the focusing electrode may include a first focusing electrode 26 positioned on the gate electrode 23 and a second focusing electrode 27 positioned on the first focusing electrode 26 .
  • the gate electrode 23 may include a metal mesh 231 corresponding to the plurality of emitters 22 , and a support 232 fixed to an edge of the metal mesh 231 to support the metal mesh 231 .
  • a first insulating layer 251 may be positioned between the cathode electrode 21 and the support 232 around the plurality of emitters 22 .
  • the second insulating layer 252 may be positioned between the gate electrode 23 and the first focusing electrode 26 to insulate the gate electrode 23 and the first focusing electrode 26
  • the third insulating layer 253 may be positioned between the first focusing electrode 26 and the second focusing electrode 27 to insulate the first focusing electrode 26 and the second focusing electrode 27
  • the fourth insulating layer 254 may be positioned between the second focusing electrode 27 and the anode electrode 24 to insulate the second focusing electrode 27 and the anode electrode 24 .
  • the second insulating layer 252 , the first focusing electrode 26 , the third insulating layer 253 , the second focusing electrode 27 , and the fourth insulating layer 254 have respective openings for electron beam passage. do.
  • the openings of the second insulating layer 252 , the third insulating layer 253 , and the fourth insulating layer 254 may have the same size.
  • the diameter of the opening 261 of the first focusing electrode 26 may be smaller than that of the metal mesh 231 of the gate electrode 23
  • the diameter of the opening 271 of the second focusing electrode 27 is the diameter of the first focusing electrode. It may be smaller than the diameter of the opening 261 of 26
  • a diameter of the opening 241 of the anode electrode 24 may be smaller than a diameter of the opening 271 of the second focusing electrode 27 . That is, the first focusing electrode 26 , the second focusing electrode 27 , and the anode electrode 24 may have a small opening in the order.
  • a negative (-) voltage may be applied to the first and second focusing electrodes 26 and 27 . Then, the electron beam passing through the metal mesh 231 of the gate electrode 23 sequentially passes through the opening 261 of the first focusing electrode 26 and the opening 271 of the second focusing electrode 27 while passing through the first and second The two focusing electrodes 26 and 27 are focused by the repulsive force applied.
  • the electron beam emitting unit 20 having the first and second focusing electrodes 26 and 27 may focus the electron beam and reduce the size of the electron beam reaching the metal radiator 30 , and as a result, the metal debris By reducing the generation, the service life of the metal radiator 30 may be increased.
  • the extreme ultraviolet light source device of the fourth embodiment has the same or similar configuration to any one of the first and third embodiments described above except for the configuration of the electron beam emitting unit 20 .
  • the extreme ultraviolet light source device has an electron beam emitter based on a carbon-based emitter instead of a laser device, thereby simplifying the internal structure, having a compact size, and lowering manufacturing cost.
  • the extreme ultraviolet light source device may be used as a lithographic apparatus in a fine pattern process for manufacturing a semiconductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)
  • Plasma Technology (AREA)

Abstract

극자외선 광원 장치는 내부를 진공으로 유지하는 방전 챔버와, 방전 챔버의 내부에 위치하며 전자빔을 생성하는 전자빔 방출부와, 방전 챔버의 내부에 위치하고 전자빔에 의해 이온화되는 금속 방사체를 포함한다. 금속 방사체로부터 발생된 플라즈마에서 극자외선 복사가 이루어진다. 전자빔 방출부는 캐소드 전극과, 캐소드 전극 상에 위치하며 탄소계 물질을 포함하는 복수의 에미터와, 복수의 에미터와 거리를 두고 복수의 에미터 상에 위치하며 펄스 전압을 인가받는 게이트 전극을 포함한다.

Description

전자빔을 이용한 극자외선 광원 장치
본 발명은 전자빔을 이용한 극자외선 광원 장치에 관한 것으로서, 보다 상세하게는 대면적화에 유리한 극자외선 광원 장치의 구조에 관한 것이다.
극자외선(EUV, extreme ultraviolet)은 X-선과 심자외선(DUV, deep ultraviolet) 영역 사이인 대략 10nm에서 100nm에 이르는 파장 대역의 전자기파이다. 최근 리소그래피 또는 나노스케일 이미징과 같이 극자외선 영역을 다루는 응용분야를 위해 컴팩트한 극자외선 광원 개발에 많은 노력이 집중되고 있다.
예를 들어, 반도체 제조를 위한 나노미터 크기의 미세패턴 공정에 극자외선 리소그래피 장비가 사용되고 있다. 현재 극자외선 리소그래피 장비는 고출력의 레이저를 기반으로 하며, 전적으로 수입에 의존하고 있다. 이러한 극자외선 리소그래피 장비는 매우 고가이고, 내부 구조가 복잡하며, 큰 부피를 차지하고 있다.
본 발명은 내부 구조가 단순하고, 컴팩트한 크기를 가지며, 제조 비용을 낮출 수 있는 극자외선 광원 장치를 제공하고자 한다.
본 발명의 일 실시예에 따른 극자외선 광원 장치는 내부를 진공으로 유지하는 방전 챔버와, 방전 챔버의 내부에 위치하며 전자빔을 생성하는 전자빔 방출부와, 방전 챔버의 내부에 위치하고 전자빔에 의해 이온화되는 금속 방사체를 포함한다. 금속 방사체로부터 발생된 플라즈마에서 극자외선 복사가 이루어진다. 전자빔 방출부는 캐소드 전극과, 캐소드 전극 상에 위치하며 탄소계 물질을 포함하는 복수의 에미터와, 복수의 에미터와 거리를 두고 복수의 에미터 상에 위치하며 펄스 전압을 인가받는 게이트 전극을 포함한다.
복수의 에미터는 끝이 뾰족한 에미터 팁으로 구성될 수 있고, 탄소 나노튜브를 포함할 수 있다. 게이트 전극 중 복수의 에미터와 마주하는 부분은 금속망 또는 다공판으로 구성될 수 있고, 복수의 에미터 주위로 캐소드 전극과 지지체 사이에 복수의 에미터 각각의 높이보다 큰 두께를 가지는 절연층이 위치할 수 있다.
전자빔 방출부는, 게이트 전극과 거리를 두고 게이트 전극 상에 위치하며 전자빔 통과를 위한 개구를 구비한 애노드 전극을 더 포함할 수 있다. 애노드 전극에는 10kV 이상의 전압이 인가될 수 있다.
전자빔 방출부는, 마이너스 전압을 인가받는 적어도 하나의 집속 전극을 더 포함할 수 있다. 집속 전극은 게이트 전극과 애노드 전극 사이에 위치할 수 있다.
집속 전극은 제1 집속 전극과, 제1 집속 전극보다 애노드 전극에 더 가깝게위치하는 제2 집속 전극을 포함할 수 있다. 제1 및 제2 집속 전극은 각자의 개구를 구비할 수 있다. 제2 집속 전극의 개구는 제1 집속 전극의 개구보다 작을 수 있고, 애노드 전극의 개구는 제2 집속 전극의 개구보다 작을 수 있다.
캐소드 전극과 복수의 에미터 및 게이트 전극이 전자빔 모듈을 구성할 수 있다. 전자빔 방출부는 회전판을 더 포함할 수 있으며, 회전판 상에 복수의 전자빔 모듈이 서로간 거리를 두고 원을 이루며 배치될 수 있다.
복수의 전자빔 모듈 중 어느 하나의 전자빔 모듈이 애노드 전극의 개구와 마주하도록 정렬될 수 있고, 회전판 회전 시 다른 하나의 전자빔 모듈이 애노드 전극의 개구와 마주하도록 정렬될 수 있다.
금속 방사체는 주입 장치에 의해 플라즈마 영역으로 낙하하는 주석 액적과, 회전체로 구성된 고체 주석 중 어느 하나로 이루어질 수 있다.
실시예들에 따른 극자외선 광원 장치는 레이저 장비 대신 탄소계 에미터에 기반한 전자빔 방출부를 구비함으로써 내부 구조를 단순화하고, 컴팩트한 크기를 가지며, 제조 비용을 낮출 수 있다. 실시예들에 따른 극자외선 광원 장치는 반도체 제조를 위한 미세 패턴 공정에서 리소그래피 장치로 사용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른 극자외선 광원 장치의 구성도이다.
도 2는 도 1에 도시한 극자외선 광원 장치 중 전자빔 방출부의 확대도이다.
도 3은 본 발명의 제2 실시예에 따른 극자외선 광원 장치의 구성도이다.
도 4는 도 3에 도시한 극자외선 광원 장치 중 전자빔 방출부의 사시도이다.
도 5는 본 발명의 제3 실시예에 따른 극자외선 광원 장치의 구성도이다.
도 6과 도 7은 각각 본 발명의 제4 실시예에 따른 극자외선 광원 장치 중 전자빔 방출부의 사시도와 단면도이다.
[부호의 설명]
100, 101, 102: 극자외선 광원 장치
10: 방전 챔버 11: 출력 개구
12, 13: 반사 거울 20: 전자 방출부
21: 캐소드 전극 22: 에미터
23: 게이트 전극 24: 애노드 전극
26: 제1 집속 전극 27: 제2 집속 전극
30: 금속 방사체 40: 주입 장치
50: 전자빔 모듈 51: 회전판
52: 회전축 53: 구동부
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 극자외선 광원 장치의 구성도이고, 도 2는 도 1에 도시한 극자외선 광원 장치 중 전자빔 방출부의 확대도이다.
도 1을 참고하면, 제1 실시예의 극자외선 광원 장치(100)는 방전 챔버(10)와, 방전 챔버(10)의 내부에 위치하는 전자빔 방출부(20) 및 금속 방사체(30)를 포함한다. 전자빔 방출부(20)는 레이저 기반이 아닌 전계에 의해 전자를 방출하는 탄소계 에미터를 기반으로 한다.
방전 챔버(10)는 내부를 진공으로 유지하며, 금속 방사체(30)를 이온화하여 플라즈마를 발생시키고 이를 유지한다. 방전 챔버(10)의 내부 공간 중 플라즈마가 유지되는 영역을 편의상 플라즈마 영역이라 한다.
금속 방사체(30)는 전자빔에 의해 가열되어 이온화되고, 금속 방사체(30)를 둘러싸는 플라즈마 영역에서 극자외선 복사가 이루어진다. 즉 금속 방사체(30)로부터 발생된 플라즈마가 극자외선을 생성하는 광원으로 기능한다. 금속 방사체(30)는 리튬(Li), 인듐(In), 주석(Sn), 안티몬(Sb), 텔루르(Te), 및 알루미늄(Al) 중 어느 하나의 금속 또는 이 금속의 혼합물을 포함할 수 있다.
금속 방사체(30)는 주석 액적일 수 있으며, 방전 챔버(10)에는 주석 액적을 낙하시키는 주입 장치(40)가 설치될 수 있다. 주입 장치(40)는 미리 설정된 부피의 주석 액적을 미리 설정된 시간 주기에 따라 낙하시키는 구성으로 이루어질 수 있다.
전자빔 방출부(20)는 방전 챔버(10)의 내부에 위치하며, 금속 방사체(30)의 옆쪽에서 금속 방사체(30)를 향해 전자빔을 조사할 수 있다. 전자빔 방출부(20)는 캐소드 전극(21)과, 캐소드 전극(21) 상에 위치하는 복수의 에미터(22)와, 복수의 에미터(22)와 거리를 두고 복수의 에미터(22) 상에 위치하는 게이트 전극(23)과, 게이트 전극(23)과 거리를 두고 게이트 전극(23) 상에 위치하는 애노드 전극(24)을 포함한다.
복수의 에미터(22)는 끝이 뾰족한 에미터 팁으로 구성되거나, 평평한 에미터 층으로 구성될 수 있다. 도 1과 도 2에서 첫번째 경우를 예로 들어 도시하였다. 복수의 에미터(22)는 탄소계 물질, 예를 들어 탄소 나노튜브를 포함할 수 있다.
게이트 전극(23) 중 복수의 에미터(22)와 마주하는 부분은 금속망 또는 다공판 형태로 구성될 수 있다. 금속망은 얇은 금속선들이 서로간 거리를 두고 망(net) 형태로 직조된 구성이고, 다공판은 금속판에 복수의 개구가 형성된 구성이다. 게이트 전극(23)은 금속선들 사이의 공간 또는 복수의 개구를 통해 전자빔을 통과시킨다.
복수의 에미터(22) 주위로 캐소드 전극(21)과 게이트 전극(23) 사이에는 도시하지 않은 절연층(또는 절연 스페이서)이 위치할 수 있다. 이때 절연층의 두께는 복수의 에미터(22) 각각의 높이보다 크게 제작되어 게이트 전극(23)이 복수의 에미터(22)와 접촉하지 않도록 한다. 게이트 전극(23)은 절연층에 의해 캐소드 전극(21) 및 복수의 에미터(22)와 절연 상태를 유지할 수 있다.
애노드 전극(24)은 전자빔 통과를 위한 개구(241)가 형성된 금속판으로 구성된다. 개구(241)의 중앙은 복수의 에미터(22)의 중앙 및 게이트 전극(23)의 중앙과 일치할 수 있다. 에미터(22)와 게이트 전극(23)간 거리는 게이트 전극(23)과 애노드 전극(24)간 거리보다 작을 수 있다.
캐소드 전극(21)은 접지될 수 있고, 게이트 전극(23)에는 펄스 전압이 인가될 수 있으며, 애노드 전극(24)에는 10kV 이상의 고전압이 인가될 수 있다. 그러면 캐소드 전극(21)과 게이트 전극(23)의 전압 차에 의해 복수의 에미터(22) 주위로 전계가 형성되고, 이 전계에 의해 복수의 에미터(22)로부터 전자빔이 방출되며, 방출된 전자빔은 애노드 전극(24)의 고전압에 이끌려 가속된다.
이때 게이트 전극(23)의 펄스 전압은 높은 주파수 또는 낮은 펄스 폭을 가진 전압으로서, 예를 들어 100kHz 이상의 고주파수 특성을 가질 수 있다. 이러한 펄스 전압은 전자빔의 고속 스위칭을 가능하게 하며, 구동 전력을 낮추는 효과로 이어진다.
애노드 전극(24)을 향해 가속된 전자빔 중 애노드 전극(24)의 개구(241)를 통과한 전자빔이 금속 방사체(30)에 조사되어 금속 방사체(30)를 가열한다. 가열에 의해 이온화된 금속 방사체(30)로부터 발생된 플라즈마에서 극자외선 복사가 이루어지며, 극자외선은 방전 챔버(10)의 출력 개구(11)를 통해 방전 챔버(10)의 외부로 출력된다.
이때 애노드 전극(24)과 금속 방사체(30) 사이에는 출력 개구(11)를 향해 극자외선을 집광하는 반사 거울(12)이 위치할 수 있다. 반사 거울(12)은 전자빔 통과를 위한 개구를 구비하며, 금속 방사체(30)를 향해 오목한 반사면을 포함한다. 반사 거울(12)은 몰리브덴(Mo)과 실리콘(Si)이 번갈아 다층으로 쌓인 것을 이용할 수 있다.
제1 실시예의 극자외선 광원 장치(100)는 레이저 장비 대신 전술한 전자빔 방출부(20)를 구비함으로써 내부 구조를 단순화하고, 컴팩트한 크기를 가지며, 제조 비용을 낮출 수 있다. 제1 실시예의 극자외선 광원 장치(100)는 반도체 제조를 위한 미세 패턴 공정에서 리소그래피 장치로 사용될 수 있다.
도 3은 본 발명의 제2 실시예에 따른 극자외선 광원 장치의 구성도이고, 도 4는 도 3에 도시한 극자외선 광원 장치 중 전자빔 방출부의 사시도이다.
도 3과 도 4를 참고하면, 제2 실시예의 극자외선 광원 장치(101)에서 전자빔 방출부(20)의 일부는 회전식으로 구성된다. 예를 들어, 캐소드 전극(21)과 복수의 에미터(22) 및 게이트 전극(23)이 전자빔 모듈(50)을 구성하고, 복수의 전자빔 모듈(50)이 회전판(51) 상에서 서로간 거리를 두고 원을 이루며 배열될 수 있다.
전자빔 방출부(20)는 회전판(51)과, 회전판(51)에 고정된 회전축(52)과, 회전축(52)에 결합되어 회전축(52)을 회전시키는 구동부(53)를 포함할 수 있다. 회전판(51)은 원판일 수 있으며, 구동부(53)는 스텝 모터로 구성될 수 있으나, 이러한 예시로 한정되지 않는다. 회전축(52)의 일부와 구동부(53)는 방전 챔버(10)의 외부에 위치할 수 있다.
회전축(52)은 애노드 전극(24)의 개구(241)와 수직 방향으로 어긋나 있으며, 복수의 전자빔 모듈(50) 중 어느 하나의 전자빔 모듈(50)이 애노드 전극(24)의 개구(241)와 마주하도록 정렬된다. 애노드 전극(24)과 마주하도록 정렬된 전자빔 모듈(50)이 일정시간 사용 후 수명이 다하면, 구동부(53)가 회전판(51)을 회전시켜 다른 전자빔 모듈(50)이 애노드 전극(24)과 마주하도록 한다.
이와 같이 회전판(51) 위에 복수의 전자빔 모듈(50)을 배치하고, 회전판(51)을 회전시킴으로써 전자빔 모듈(50)을 하나씩 순서대로 사용할 수 있다. 이 경우, 전자빔 방출부(20)의 교체 주기가 늘어나 유지보수를 간소화할 수 있으며, 방전 챔버(10)의 수명도 증대시킬 수 있다.
제2 실시예의 극자외선 광원 장치(101)는 전자빔 방출부(20)가 회전식으로 구성되는 것을 제외하고 전술한 제1 실시예와 동일 또는 유사한 구성으로 이루어진다.
도 5는 본 발명의 제3 실시예에 따른 극자외선 광원 장치의 구성도이다.
도 5를 참고하면, 제3 실시예의 극자외선 광원 장치(102)에서 방전 챔버(10)는 원통 형상일 수 있다. 금속 방사체(30)는 고체 주석을 포함할 수 있으며, 회전체로 구성될 수 있다. 회전체로 구성된 금속 방사체(30)는 사용 수명이 길어 교체 주기를 늘리는데 효과적이고, 주석 액적을 낙하시키는 주입 장치 대비 구성이 매우 단순하다.
전자빔 방출부(20)는 금속 방사체(30)를 향해 전자빔을 조사하여 금속 방사체(30)를 이온화할 수 있고, 금속 방사체(30)를 둘러싸는 플라즈마 영역에서 극자외선 복사가 이루어진다. 금속 방사체(30)를 중심으로 금속 방사체(30)의 일측에 출력 개구(11)가 위치할 수 있고, 반대측에 반사 거울(13)이 위치할 수 있다. 반사 거울(13)은 출력 개구(11)를 향해 극자외선을 반사시켜 출력 개구(11)를 투과하는 극자외선의 강도를 높인다.
제3 실시예의 극자외선 광원 장치(102)는 방전 챔버(10)의 형상과 금속 방사체(30)의 구성을 제외하고 전술한 제1 실시예와 동일 또는 유사한 구성으로 이루어진다.
도 6과 도 7은 각각 본 발명의 제4 실시예에 따른 극자외선 광원 장치 중 전자빔 방출부의 사시도와 단면도이다.
도 6과 도 7을 참고하면, 제4 실시예의 극자외선 광원 장치에서 전자빔 방출부(20)는 게이트 전극(23)과 애노드 전극(24) 사이에 위치하는 적어도 하나의 집속 전극을 더 포함한다. 집속 전극은 게이트 전극(23) 상에 위치하는 제1 집속 전극(26)과, 제1 집속 전극(26) 상에 위치하는 제2 집속 전극(27)을 포함할 수 있다.
게이트 전극(23)은 복수의 에미터(22)에 대응하는 금속망(231)과, 금속망(231)의 가장자리에 고정되어 금속망(231)을 지지하는 지지체(232)를 포함할 수 있다. 그리고 복수의 에미터(22) 주위로 캐소드 전극(21)과 지지체(232) 사이에 제1 절연층(251)이 위치할 수 있다.
제2 절연층(252)이 게이트 전극(23)과 제1 집속 전극(26) 사이에 위치하여 게이트 전극(23)과 제1 집속 전극(26)을 절연시킬 수 있고, 제3 절연층(253)이 제1 집속 전극(26)과 제2 집속 전극(27) 사이에 위치하여 제1 집속 전극(26)과 제2 집속 전극(27)을 절연시킬 수 있다. 그리고 제4 절연층(254)이 제2 집속 전극(27)과 애노드 전극(24) 사이에 위치하여 제2 집속 전극(27)과 애노드 전극(24)을 절연시킬 수 있다.
제2 절연층(252), 제1 집속 전극(26), 제3 절연층(253), 제2 집속 전극(27), 및 제4 절연층(254)은 전자빔 통과를 위한 각자의 개구를 구비한다. 제2 절연층(252)과 제3 절연층(253) 및 제4 절연층(254)의 개구는 같은 크기로 형성될 수 있다.
제1 집속 전극(26)의 개구(261) 직경은 게이트 전극(23)의 금속망(231)보다 작은 크기일 수 있고, 제2 집속 전극(27)의 개구(271) 직경은 제1 집속 전극(26)의 개구(261) 직경보다 작을 수 있다. 애노드 전극(24)의 개구(241) 직경은 제2 집속 전극(27)의 개구(271) 직경보다 작을 수 있다. 즉 제1 집속 전극(26), 제2 집속 전극(27), 애노드 전극(24)의 순서대로 작은 크기의 개구를 구비할 수 있다.
제1 및 제2 집속 전극(26, 27)에는 마이너스(-) 전압이 인가될 수 있다. 그러면 게이트 전극(23)의 금속망(231)을 통과한 전자빔이 제1 집속 전극(26)의 개구(261)와 제2 집속 전극(27)의 개구(271)를 차례로 거치면서 제1 및 제2 집속 전극(26, 27)이 가하는 척력에 의해 집속된다.
제1 및 제2 집속 전극(26, 27)을 구비한 전자빔 방출부(20)는 전자빔을 집속하여 금속 방사체(30)에 도달하는 전자빔의 크기를 줄일 수 있으며, 그 결과 금속 찌꺼기(Debris)의 생성을 줄여 금속 방사체(30)의 사용 수명을 늘릴 수 있다.
제4 실시예의 극자외선 광원 장치는 전자빔 방출부(20)의 구성을 제외하고 전술한 제1 실시예와 제3 실시예 중 어느 한 실시예와 동일 또는 유사한 구성으로 이루어진다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
본 발명의 실시예들에 따른 극자외선 광원 장치는 레이저 장비 대신 탄소계 에미터에 기반한 전자빔 방출부를 구비함으로써 내부 구조를 단순화하고, 컴팩트한 크기를 가지며, 제조 비용을 낮출 수 있다. 본 발명의 실시예들에 따른 극자외선 광원 장치는 반도체 제조를 위한 미세 패턴 공정에서 리소그래피 장치로 사용될 수 있다.

Claims (10)

  1. 내부를 진공으로 유지하는 방전 챔버;
    상기 방전 챔버의 내부에 위치하며, 전자빔을 생성하는 전자빔 방출부; 및
    상기 방전 챔버의 내부에 위치하고, 상기 전자빔에 의해 이온화되는 금속 방사체를 포함하며,
    상기 금속 방사체로부터 발생된 플라즈마에서 극자외선 복사가 이루어지고,
    상기 전자빔 방출부는 캐소드 전극과, 캐소드 전극 상에 위치하며 탄소계 물질을 포함하는 복수의 에미터와, 복수의 에미터와 거리를 두고 복수의 에미터 상에 위치하며 펄스 전압을 인가받는 게이트 전극을 포함하는 극자외선 광원 장치.
  2. 제1항에 있어서,
    상기 복수의 에미터는 끝이 뾰족한 에미터 팁으로 구성되며, 탄소 나노튜브를 포함하는 극자외선 광원 장치.
  3. 제2항에 있어서,
    상기 게이트 전극 중 상기 복수의 에미터와 마주하는 부분은 금속망 또는 다공판으로 구성되며,
    상기 복수의 에미터 주위로 상기 캐소드 전극과 상기 게이트 전극 사이에 상기 복수의 에미터 각각의 높이보다 큰 두께를 가지는 절연층이 위치하는 극자외선 광원 장치.
  4. 제1항에 있어서,
    상기 전자빔 방출부는, 상기 게이트 전극과 거리를 두고 상기 게이트 전극 상에 위치하며 전자빔 통과를 위한 개구를 구비한 애노드 전극을 더 포함하고,
    상기 애노드 전극에는 10kV 이상의 전압이 인가되는 극자외선 광원 장치.
  5. 제4항에 있어서,
    상기 전자빔 방출부는, 상기 게이트 전극과 상기 애노드 전극 사이에 위치하며 마이너스 전압을 인가받는 적어도 하나의 집속 전극을 더 포함하는 극자외선 광원 장치.
  6. 제5항에 있어서,
    상기 집속 전극은 제1 집속 전극과, 상기 제1 집속 전극보다 상기 애노드 전극에 더 가깝게 위치하는 제2 집속 전극을 포함하는 극자외선 광원 장치.
  7. 제6항에 있어서,
    상기 제1 및 제2 집속 전극은 각자의 개구를 구비하고,
    상기 제2 집속 전극의 개구는 상기 제1 집속 전극의 개구보다 작으며, 상기 애노드 전극의 개구는 상기 제2 집속 전극의 개구보다 작은 극자외선 광원 장치.
  8. 제4항에 있어서,
    상기 캐소드 전극과 상기 복수의 에미터 및 상기 게이트 전극이 전자빔 모듈을 구성하고,
    상기 전자빔 방출부는 회전판을 더 포함하며,
    상기 회전판 상에 복수의 전자빔 모듈이 서로간 거리를 두고 원을 이루며 배치되는 극자외선 광원 장치.
  9. 제8항에 있어서,
    상기 복수의 전자빔 모듈 중 어느 하나의 전자빔 모듈이 상기 애노드 전극의 개구와 마주하도록 정렬되고, 상기 회전판 회전 시 다른 하나의 전자빔 모듈이 상기 애노드 전극의 개구와 마주하도록 정렬되는 극자외선 광원 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 금속 방사체는 주입 장치에 의해 상기 플라즈마 영역으로 낙하하는 주석 액적과, 회전체로 구성된 고체 주석 중 어느 하나로 이루어지는 극자외선 광원 장치.
PCT/KR2021/003021 2020-03-13 2021-03-11 전자빔을 이용한 극자외선 광원 장치 WO2021182887A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/905,909 US20230122253A1 (en) 2020-03-13 2021-03-11 Extreme-ultraviolet light source device using electron beams
EP21768271.5A EP4120802A4 (en) 2020-03-13 2021-03-11 EXTREME ULTRAVIOLET ELECTRON BEAM LIGHT SOURCE DEVICE
CN202180021636.2A CN115299182A (zh) 2020-03-13 2021-03-11 利用电子束的极紫外线光源装置
JP2022555071A JP2023518016A (ja) 2020-03-13 2021-03-11 電子ビームを用いた極紫外線光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0031395 2020-03-13
KR1020200031395A KR102430082B1 (ko) 2020-03-13 2020-03-13 전자빔을 이용한 극자외선 광원 장치

Publications (2)

Publication Number Publication Date
WO2021182887A2 true WO2021182887A2 (ko) 2021-09-16
WO2021182887A3 WO2021182887A3 (ko) 2021-11-04

Family

ID=77670792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003021 WO2021182887A2 (ko) 2020-03-13 2021-03-11 전자빔을 이용한 극자외선 광원 장치

Country Status (6)

Country Link
US (1) US20230122253A1 (ko)
EP (1) EP4120802A4 (ko)
JP (1) JP2023518016A (ko)
KR (1) KR102430082B1 (ko)
CN (1) CN115299182A (ko)
WO (1) WO2021182887A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240076128A (ko) * 2022-11-23 2024-05-30 주식회사 월드빔솔루션 전자빔 기반 극자외선 광원 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1232516A4 (en) * 1999-10-27 2003-03-12 Jmar Res Inc METHOD AND SYSTEM FOR GENERATING RADIATION USING MICROCIBLES
US7075096B2 (en) * 2004-02-13 2006-07-11 Plex Llc Injection pinch discharge extreme ultraviolet source
DE102005030304B4 (de) * 2005-06-27 2008-06-26 Xtreme Technologies Gmbh Vorrichtung und Verfahren zur Erzeugung von extrem ultravioletter Strahlung
JP2007305908A (ja) * 2006-05-15 2007-11-22 Ushio Inc 極端紫外光光源装置
JP2009032776A (ja) * 2007-07-25 2009-02-12 Ushio Inc 極端紫外光光源装置及び極端紫外光光源装置における高速粒子の捕捉方法
KR101341672B1 (ko) * 2012-07-27 2013-12-16 경희대학교 산학협력단 디지털 엑스레이 소스
KR102288924B1 (ko) * 2017-07-28 2021-08-11 (주) 브이에스아이 원통형 엑스선 튜브 및 그 제조 방법
RU2706713C1 (ru) * 2019-04-26 2019-11-20 Общество С Ограниченной Ответственностью "Эуф Лабс" Источник коротковолнового излучения высокой яркости
WO2019244874A1 (ja) * 2018-06-22 2019-12-26 ナノックス イメージング ピーエルシー 冷陰極電子源及びこれを備えるx線発生装置

Also Published As

Publication number Publication date
US20230122253A1 (en) 2023-04-20
EP4120802A4 (en) 2024-04-17
EP4120802A2 (en) 2023-01-18
JP2023518016A (ja) 2023-04-27
KR102430082B1 (ko) 2022-08-04
CN115299182A (zh) 2022-11-04
KR20210115508A (ko) 2021-09-27
WO2021182887A3 (ko) 2021-11-04

Similar Documents

Publication Publication Date Title
CN1217560C (zh) 产生超紫外线的光子源及产生光子的方法
US8860293B2 (en) Electron emitting element and method for producing the same
WO2021182887A2 (ko) 전자빔을 이용한 극자외선 광원 장치
JP2004504690A (ja) 電子電界エミッタの放出状態を改善するための方法
JP2001507800A (ja) 電子ビーム加速器
JP2006522941A (ja) 光導電表面を帯電させるためのナノ構造体を基にしたシステムおよび方法
US4821305A (en) Photoelectric X-ray tube
US20030053588A1 (en) Radiation-generating devices utilizing multiple plasma-discharge sources and microlithography apparatus and methods utilizing the same
WO2013025080A1 (ko) 냉각 및 차폐 기능이 있는 엑스레이 소스
WO2013042810A1 (ko) 다중타겟 및 다중전자빔을 구비한 엑스선 발생장치
WO2015068992A1 (en) Transparent type flat panel x-ray generation apparatus and x-ray imaging system
WO2011052971A2 (ko) 탄소나노튜브 실을 이용한 엑스레이 발생 장치
JPH0687408B2 (ja) プラズマx線発生装置
WO2023038448A1 (ko) 전자빔 및 액적 기반 극자외선 광원 장치
JP2008500686A (ja) Xuv線を発生させかつ放射するための装置
WO2024112091A1 (ko) 전자빔 기반 극자외선 광원 장치
WO2023038446A1 (ko) 전자빔 기반 극자외선 광원 장치
US7034322B2 (en) Fluid jet electric discharge source
JP2748984B2 (ja) チャネルプレートを備えたイメージ増強管の操作方法およびチャネルプレートを備えたイメージ増強管装置
JPH01265443A (ja) X線露光装置
RU218186U1 (ru) Устройство электронной литографии
WO1987006055A1 (en) Photoelectric x-ray tube
JPS61292322A (ja) 電子ビ−ム転写装置
JPS5814459A (ja) X線発生装置
JPH095495A (ja) 紫外線発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768271

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022555071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021768271

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE