WO2011052971A2 - 탄소나노튜브 실을 이용한 엑스레이 발생 장치 - Google Patents

탄소나노튜브 실을 이용한 엑스레이 발생 장치 Download PDF

Info

Publication number
WO2011052971A2
WO2011052971A2 PCT/KR2010/007380 KR2010007380W WO2011052971A2 WO 2011052971 A2 WO2011052971 A2 WO 2011052971A2 KR 2010007380 W KR2010007380 W KR 2010007380W WO 2011052971 A2 WO2011052971 A2 WO 2011052971A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
seal
cathode
yarn
ray
Prior art date
Application number
PCT/KR2010/007380
Other languages
English (en)
French (fr)
Other versions
WO2011052971A3 (ko
Inventor
이충훈
김현숙
공병윤
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2011052971A2 publication Critical patent/WO2011052971A2/ko
Publication of WO2011052971A3 publication Critical patent/WO2011052971A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly

Definitions

  • the present invention relates to an X-ray generating apparatus, and more particularly, X-ray using a carbon nanotube yarn for generating X-rays using a carbon nanotube (CNT) yarn as a cathode. It relates to a generating device.
  • CNT carbon nanotube
  • a typical X-ray generator is a ceramic stem (also referred to as a vacuum tube) in which a pin of a cathode is vertically installed, and an exit window in which a target metal is deposited on a lower surface thereof is supported by a ceramic valve and soldered to each other. It arrange
  • the x-ray generating apparatus needs to have a different characteristic of the lead used on both sides of the stem side and the exit window side, which complicates the work process, resulting in poor productivity.
  • the soldering process of the exit window side and the valve made of a ceramic is later than the process of providing a tungsten coil (cathode filament) to a cathode pin.
  • the tungsten coil and the negative electrode pin fixing the tungsten coil are exposed to high temperature, and there is a problem in that the fixing portions of the tungsten pin and the negative electrode pin are heated. As a result, the fixing of the tungsten coil and the negative electrode pin is loosened, which is a problem of deterioration of the characteristics and life of the filament, there is a risk of lack of reliability.
  • a bipolar structure (diode structure) of a cathode and an anode is generally adopted.
  • a high voltage is applied to the anode to accelerate the electrons, thereby making it difficult to focus and control electrons.
  • the hot electron emission in the filament appears to be omnidirectional emission, the efficiency of the amount of electrons reaching the positive electrode is inevitably reduced.
  • the present invention has been made to solve the above problems, an object of the present invention to provide an X-ray generating apparatus using a carbon nanotube seal to generate an X-ray using a carbon nanotube seal as a cathode.
  • the X-ray generating apparatus comprises a cathode portion and an anode portion.
  • the cathode part includes a carbon nanotube seal as a cathode.
  • the anode part is disposed on the carbon nanotube chamber, and the electrons emitted from the carbon nanotube chamber collide to generate X-rays.
  • the X-ray generating apparatus may further include a lens disposed between the carbon nanotube seal and the anode and inducing electron emission through the carbon nanotube seal to accelerate the electron beam to focus on the anode. have.
  • the carbon nanotube seal may have a potential applied to both ends or one end thereof.
  • the anode portion is one of a transmission type and a reflection type.
  • the carbon nanotube yarn may be formed by drawing and yarning the yarn from the carbon nanotubes synthesized perpendicular to the substrate.
  • the grid may have a mesh shape in which holes through which electrons pass are arranged lattice.
  • the cathode portion when a high voltage is applied to the anode portion, the cathode portion emits electrons at room temperature.
  • the present invention also provides an X-ray generating apparatus using a carbon nanotube seal including a cathode portion and an anode portion.
  • the cathode part includes a carbon nanotube seal as a cathode.
  • the anode part surrounds the carbon nanotube seal in a tubular shape, and when electrons emitted through the outer circumferential surface of the carbon nanotube seal collide with the inner side, X-rays are generated outside the outer side opposite to the inner side.
  • linear X-rays may be generated by applying a potential to both ends of the carbon nanotube chamber at the cathode portion.
  • point x-rays may be generated.
  • the carbon nanotube seal is used as the cathode, electrons can be generated at room temperature, and can generate electrons in several microseconds. Through the electric potential control applied to the cathode, the electron generation intensity can be controlled, and electrons can be generated uniformly.
  • the acceleration voltage of the electron is as low as 10 to 30 kV.
  • the life of the x-ray generating device can be extended. And the x-ray generator according to the present invention can replace only the cathode compared to the conventional x-ray generator manufactured in one piece.
  • FIG. 1 is a view schematically showing an X-ray generating apparatus using a carbon nanotube seal according to a first embodiment of the present invention.
  • FIG. 2 is a view showing the carbon nanotube yarn of FIG. 1.
  • 3 to 5 are optical micrographs showing the x-ray image of FIG. 1.
  • FIG. 6 is a view schematically showing an X-ray generating apparatus using a carbon nanotube seal according to a second embodiment of the present invention.
  • FIG. 7 is a view schematically illustrating an X-ray generating apparatus using a carbon nanotube seal according to a third exemplary embodiment of the present invention.
  • FIG. 8 is a schematic view of an x-ray generating apparatus using a carbon nanotube seal according to a fourth embodiment of the present invention.
  • FIGS. 1 to 3 is a view schematically showing an X-ray generating apparatus 100 using the carbon nanotube seal 10 according to the first embodiment of the present invention.
  • FIG. 2 is a view illustrating the carbon nanotube seal 10 of FIG. 1.
  • 3 is an optical micrograph showing the x-ray image of FIG.
  • the x-ray generator 100 includes a cathode part, a lens 30, and an anode part 40.
  • the negative electrode part includes a carbon nanotube seal 10 as a negative electrode.
  • the lens 30 is disposed on the carbon nanotube chamber 10 to induce electron emission through the carbon nanotube chamber 10 to accelerate and focus the electron beam 80.
  • the anode part 40 is disposed above the lens 30, and generates the X-ray 90 through the collision of the electron beam 80 focused through the lens 30.
  • the potential of the carbon nanotube seal 10 of the cathode portion 10 is applied to the potential (HV-).
  • HV- potential of the carbon nanotube seal 10 of the cathode portion 10
  • the carbon nanotube yarn 10 may be formed by drawing and yarning the yarn from carbon nanotubes synthesized perpendicular to the substrate.
  • the reason for using the carbon nanotube seal 10 as the cathode is as follows. That is, although a general carbon nanotube may be used as the negative electrode, the reason for using the carbon nanotube seal 10 is as follows.
  • carbon nanotubes are formed by synthesizing carbon nanotubes using a catalyst on a substrate. At this time, the amorphous carbon may be present between the substrate and the carbon nanotubes, the adhesion between the substrate and the carbon nanotubes may not be good, and when a high electric field is applied, a defect may occur in which the carbon nanotubes are pulled out of the substrate.
  • Non-silicone carbon may cause problems in the conductivity of the substrate, and high heat may be generated when high current is emitted due to ohmic contact.
  • the carbon nanotube seal 10 is an emitter using the field emission principle in which electrons are emitted when an electric field is applied to a conductive emitter having a sharp tip in a vacuum, and thus has a unidirectional straightness of electron emission. This is because it provides high efficiency.
  • a plurality of lenses 30 are provided on the carbon nanotube seal 10, and holes 32 are formed to correspond to the direction in which the carbon nanotube seal 10 is disposed.
  • the lens 30 accelerates and focuses the electron beam 80 passing through the lens 30 toward the anode portion 40 by the applied voltage.
  • the anode part 40 is generally formed of a thin film of beryllium (Be), and one of a transmission type and a reflection type may be used.
  • a transparent anode portion 40 is disclosed.
  • a process of generating the X-ray 90 in the X-ray generator 100 using the carbon nanotube seal 10 according to the first embodiment will be described below.
  • the carbon nanotube seal 10 Electrons are emitted from the outer circumferential surface. Electrons emitted from the carbon nanotube seal 10 are accelerated and focused while passing through the lens 30. In particular, the lens 30 focuses the electron beam 80 to the lower surface of the anode portion 40. When the electron beam 80 collides with the lower surface of the anode portion 40, a linear X-ray 90 is emitted to the upper surface of the anode portion 40.
  • the cathode may be applied even when a high voltage (HV ++) is applied to the anode portion 40 and the lens 30 at room temperature. Electrons are emitted from the part.
  • HV ++ high voltage
  • the electron generation intensity can be controlled and the electrons can be generated uniformly. That is, the intensity of electron generation can be controlled by adjusting the potential difference between the cathode that determines electron emission and the anode portion 40 that is responsible for accelerating electrons. At this time, the acceleration voltage of the electron is low as 10 to 30kV. You can lower the focal spot size.
  • the x-ray generator 100 may replace only the negative electrode as compared with the conventional x-ray generator.
  • the carbon nanotube seal 10 when used, electrons are uniformly generated, and thus the electron generation uniformity may be formed in a Gaussian form.
  • the X-ray image is clear and uniform.
  • the X-ray image is 10kV (HV ++) in the anode portion 40, 0V in the grid, -400 ⁇ -500V (HV-) in the cathode portion, the application current of 1mA or less in the cathode portion, 600mA applied current of the anode portion 40, It is an optical microscope photograph taken under the exposure time of 1 second or less.
  • the X-ray generator 100 may generate a current of 5 mA or more even at a low voltage of 10 kV or less, and may be manufactured as a portable type having a resolution of 20 ⁇ m.
  • the triode type is illustrated as the X-ray generating apparatus 100 in the first embodiment, the present invention is not limited thereto.
  • the X-ray generator 200 may be implemented as a diode type.
  • the X-ray generator 200 includes a cathode part and an anode part 140.
  • the cathode part includes a carbon nanotube seal 110 as a cathode and emits electrons.
  • the anode 140 is applied with a high voltage (HV + +) to accelerate the electrons emitted from the cathode, and generates the X-ray 190 by the collision of the accelerated electrons.
  • HV + + high voltage
  • an example in which the carbon nanotube seal 10 emits electrons from the outer circumferential surface to generate the linear X-ray 90 is not limited thereto.
  • electrons may be emitted through one end of the carbon nanotube chamber 210 to generate the point x-ray 290. That is, the carbon nanotube seal 10 according to the first embodiment is installed in parallel to the anode portion 40, and the carbon nanotube seal 210 according to the third embodiment is installed perpendicular to the anode portion 240. .
  • FIG. 7 is a view schematically illustrating an X-ray generator 400 using the carbon nanotube seal 210 according to the third embodiment of the present invention.
  • the x-ray generator 400 includes a cathode part and an anode part 240.
  • the negative electrode portion is provided with a carbon nanotube seal 210 as a negative electrode, one end of the carbon nanotube seal 210 is disposed in the vertical direction toward the positive electrode portion 240.
  • a potential HV- is applied to the other end of the carbon nanotube seal 210.
  • the lens 230 is disposed on the carbon nanotube chamber 210 and induces electron emission through the carbon nanotube chamber 210 to accelerate and focus the electron beam 280.
  • the anode part 240 is disposed above the carbon nanotube chamber 210 and generates an X-ray 290 by the collision of the electron beam 280 emitted from one end of the carbon nanotube chamber 210. In this case, an example in which a reflective type is used as the anode part 240 is disclosed.
  • triode type is illustrated as the X-ray generator 400 according to the third embodiment, it may be implemented as a diode type.
  • the X-ray generator 400 may be manufactured in a small size using the carbon nanotube seal 210 having a length of about several centimeters, the X-ray generating apparatus 400 may be implemented as a portable type.
  • the plate-shaped anode portion 40 is installed on the upper portion of the carbon nanotube seal 10 , but is not limited thereto.
  • the anode part 340 may be implemented to surround the outer circumferential surface of the carbon nanotube seal 310.
  • FIG. 8 is a schematic view of an x-ray generator 400 using a carbon nanotube seal 310 according to a fourth embodiment of the present invention.
  • the x-ray generator 400 may include a cathode part and a tubular transmissive anode part 340 surrounding the cathode part, and may be implemented in a small size of less than 1 cm. .
  • the negative electrode part includes a carbon nanotube seal 310 as a negative electrode.
  • the carbon nanotube seal 310 is less than 1 cm.
  • a potential HV ⁇ may be applied to both ends of the carbon nanotube seal 310.
  • anode part 340 has a cylindrical shape surrounding the carbon nanotube seal 310 in a transmission type.
  • the X-ray generating apparatus 400 according to the fourth exemplary embodiment may be manufactured in a very small size of 1 cm or less, it may be used in a field requiring local X-ray irradiation, for example, a cancer diagnosis or treatment field.
  • the X-ray generating apparatus 400 according to the fourth exemplary embodiment may be manufactured in a very small size, local X-ray irradiation may be performed, thereby minimizing a problem due to X-rays irradiated to an unnecessary area.
  • a lens may be installed between the carbon nanotube seal 310 and the anode part 340 to be implemented as a triode type.
  • Carbon nanotube wires in which nanotubes are formed may also be used.
  • the carbon nanotube wire may be formed on the outer circumferential surface of the metal wire by synthesizing the carbon nanotubes by a chemical vapor deposition method after depositing the catalytic metal on the metal wire by a physical vapor deposition method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • X-Ray Techniques (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

본 발명은 탄소나노튜브 실(carbon nanotube(CNT) yarn)을 음극으로 이용하여 엑스레이(X-ray)를 발생시키는 엑스레이 발생 장치를 제공하기 위한 것이다. 본 발명에 따르면, 음극부는 탄소나노튜브 실을 음극으로 구비하며, 탄소나노튜브 실에서 전자를 방출한다. 그리고 양극부는 탄소나노튜브 실의 상부에 배치되어 탄소나노튜브 실에서 방출된 전자가 충돌하여 엑스레이를 발생시킨다. 이때 탄소나노튜브 실은 양극부에 수평 또는 수직하게 설치될 수 있으며, 전자는 선형 엑스레이를 발생시키고 후자는 포인트 엑스레이를 발생시킨다. 양극부는 전술된 바와 같이 탄소나노튜브 실의 상부에 설치될 수도 있고, 탄소나노튜브 실을 둘러싸는 관형으로 설치될 수 있다. 관형의 양극부를 구비하는 엑스레이 발생 장치는 초소형 또는 휴대형으로 제작할 수 있다.

Description

탄소나노튜브 실을 이용한 엑스레이 발생 장치
본 발명은 엑스레이 발생 장치에 관한 것으로, 더욱 상세하게는 탄소나노튜브 실(carbon nanotube(CNT) yarn)을 음극(cathode)으로 이용하여 엑스레이(X-ray)를 발생시키는 탄소나노튜브 실을 이용한 엑스레이 발생 장치에 관한 것이다.
통상적인 엑스레이 발생 장치는 의료용 장치, 공업용 계측장치 등의 X 선원으로써 이용되고 있고, 최근 들어 정전기 제전 장치의 X 선원 및 XRF(X Ray Fluorescence)로도 그 용도가 크게 확대되고 있다. 통상의 엑스레이 발생 장치는 음극부의 핀이 수직 설치된 세라믹제 스템(Stem, 진공 튜브라고도 함)부와, 하면에 타겟 금속이 증착된 출사창을 세라믹제 밸브로 지지하여 서로 납땜하고, 집속 전극을 세라믹제 밸브의 내주면을 따라서 배치하는 동시에 집속 전극의 하단부를 스템부와 밸브로 끼워진 구성을 갖는다. 즉, 세라믹 부품을 2군데에 사용하고 있으므로 취급에 주의가 필요하다. 또한, 종래의 엑스레이 발생 장치는 제조비용을 저렴하게 하는 것이 곤란하다. 스템측과 출사창측 모두 납땜작업을 할 필요가 있으므로 제조에 시간이 걸릴 수 밖에 없다. 또한, 일반적으로 엑스레이 발생 장치는 스템측과 출사창측의 양측에서 사용하는 납제를 다른 특성의 것으로 할 필요가 있어 작업공정이 복잡해지며, 이로 인해 양산성이 떨어지게 된다. 또한 출사창측과 세라믹제 밸브의 납땜 공정이 텅스텐 코일(음극 필라멘트)을 음극핀에 설치하는 공정보다도 이후가 된다. 그로 인해 텅스텐 코일 및 텅스텐 코일을 고정한 음극핀을 고온에 노출시키게 되고, 텅스텐 핀과 음극핀의 고정부가 가열되는 문제점이 있다. 결과적으로 텅스텐 코일과 음극핀의 고정이 느슨해지는 현상이 나타나며, 이는 필라멘트의 특성 및 수명 열화의 문제로 나타나 신뢰성이 결여될 우려가 있게 된다.
한편, 종래의 필라멘트를 이용한 열전자방출 엑스레이 발생 장치의 경우 일반적으로 음극과 양극의 2극형 구조(다이오드 구조)를 채택하고 있다. 좀 더 자세히 설명하면, 음극에서 전자가 방출되면 양극에 고전압을 인가하여 가속시키는 방식을 사용하기 때문에, 전자 집속 및 제어가 어려운 구조를 취하고 있다. 뿐만 아니라 필라멘트에서의 열전자 방출은 전방위 방출이 나타나므로 실제 양극에 도달하는 전자량의 효율은 극히 떨어질 수 밖에 없다.
따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 탄소나노튜브 실을 음극으로 이용하여 엑스레이를 발생시키는 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명에 따른 엑스레이 발생 장치는 음극부 및 양극부를 포함하여 구성된다. 상기 음극부는 탄소나노튜브 실을 음극으로 구비한다. 상기 양극부는 상기 탄소나노튜브 실의 상부에 배치되어 상기 탄소나노튜브 실에서 방출된 상기 전자가 충돌하여 엑스레이를 발생시킨다.
본 발명에 따른 엑스레이 발생 장치는, 상기 탄소나노튜브 실과 상기 양극부 사이에 배치되며, 상기 탄소나노튜브 실의 통한 전자 방출을 유도하여 전자빔을 가속시켜 상기 양극부에 집속시키는 렌즈를 더 포함할 수 있다.
본 발명에 따른 엑스레이 발생 장치에 있어서, 상기 탄소나노튜브 실은 양단 또는 일단에 전위가 인가될 수 있다.
본 발명에 따른 엑스레이 발생 장치에 있어서, 상기 양극부는 투과형 또는 반사형 중에 하나이다.
본 발명에 따른 엑스레이 발생 장치에 있어서, 상기 탄소나노튜브 실은 기판에 수직으로 합성된 탄소나노튜브에서 실을 인출 및 꼬아서(yarning) 형성할 수 있다.
본 발명에 따른 엑스레이 발생 장치에 있어서, 상기 그리드는 전자가 통과하는 구멍이 격자 배열된 매쉬 형태를 가질 수 있다.
본 발명에 따른 엑스레이 발생 장치에 있어서, 상기 양극부에 고전압이 인가되면, 상기 음극부는 상온에서 전자를 방출시킨다.
본 발명은 또한, 음극부 및 양극부를 포함하여 구성되는 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 제공한다. 상기 음극부는 탄소나노튜브 실을 음극으로 구비한다. 그리고 상기 양극부는 관형으로 상기 탄소나노튜브 실을 둘러싸며, 상기 탄소나노튜브 실의 외주면을 통해 방출되는 전자들이 내측면에 충돌하면, 상기 내측면에 반대되는 외측면 밖으로 엑스레이를 발생시킨다.
본 발명에 따른 엑스레이 발생 장치는 음극으로 탄소나노튜브를 사용하기 때문에, 음극부에 탄소나노튜브 실의 양단에 전위를 인가하면 선형 엑스레이를 발생시킬 수 있다. 또는 탄소나노튜브 실을 수직으로 세워서 사용할 경우, 포인트 엑스레이를 발생시킬 수 있다.
특히 음극으로 탄소나노튜브 실을 사용하기 때문에, 상온에서 전자 발생이 가능하며, 수 마이크로초에서 전자를 발생시킬 수 있다. 음극에 인가되는 전위 조절을 통하여 전자 발생 강도를 제어할 수 있고, 전자를 균일하게 발생시킬 수 있다. 전자의 가속전압은 10 내지 30kV로 낮다. 엑스레이 발생 장치의 수명을 연장할 수 있다. 그리고 본 발명에 따른 엑스레이 발생 장치는 종래의 일체형으로 제조된 엑스레이 발생 장치와 비교하여 음극만을 교체할 할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 개략적으로 보여주는 도면이다.
도 2는 도 1의 탄소나노튜브 실을 보여주는 도면이다.
도 3 내지 도 5는 도 1의 엑스레이 이미지를 보여주는 광학현미경 사진이다.
도 6은 본 발명의 제2 실시예에 따른 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 개략적으로 보여주는 도면이다.
도 7은 본 발명의 제3 실시예에 따른 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 개략적으로 보여주는 도면이다.
도 8은 본 발명의 제4 실시예에 따른 탄소나노튜브 실을 이용한 엑스레이 발생 장치를 개략적으로 보여주는 도면이다.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
제1 실시예
본 발명의 제1 실시예에 따른 탄소나노튜브 실(10)을 이용한 엑스레이 발생 장치(100)에 대해서 도 1 내지 도 3을 참조하여 설명하면 다음과 같다. 여기서 도 1은 본 발명의 제1 실시예에 따른 탄소나노튜브 실(10)을 이용한 엑스레이 발생 장치(100)를 개략적으로 보여주는 도면이다. 도 2는 도 1의 탄소나노튜브 실(10)을 보여주는 도면이다. 그리고 도 3은 도 1의 엑스레이 이미지를 보여주는 광학현미경 사진이다.
도 1 내지 도 3을 참조하면, 제1 실시예에 따른 엑스레이 발생 장치(100)는 음극부, 렌즈(30) 및 양극부(40)를 포함하여 구성된다. 음극부는 탄소나노튜브 실(10)을 음극으로 구비한다. 렌즈(30)는 탄소나노튜브 실(10)의 상부에 배치되며, 탄소나노튜브 실(10)의 통한 전자방출을 유도하여 전자빔(80)을 가속 및 집속시킨다. 그리고 양극부(40)는 렌즈(30) 상부에 배치되며, 렌즈(30)를 통과하여 집속된 전자빔(80)의 충돌로 엑스레이(90)를 발생시킨다.
이때 음극부의 탄소나노튜브 실(10)은 양단 또는 일단에 전위(HV-)가 인가된다. 제1 실시예에서는 탄소나노튜브 실(10)의 양단에 전위(HV-)가 인가되는 예를 개시하였다. 탄소나노튜브 실(10)은 기판에 수직으로 합성된 탄소나노튜브에서 실을 인출 및 꼬아서(yarning) 형성할 수 있다.
음극으로 탄소나노튜브 실(10)을 이용하는 이유는 다음과 같다. 즉 음극으로 일반적인 탄소나노튜브를 사용할 수도 있지만, 탄소나노튜브 실(10)을 사용하는 이유는 다음과 같다. 일반적인 탄소나노튜브의 경우, 기판 상에 촉매를 이용하여 탄소나노튜브를 합성하여 형성하게 된다. 이때 기판과 탄소나노튜브 사이에 비정질 탄소가 존재할 수 있고, 기판과 탄소나노튜브 간의 접착력이 좋지 않을 수 있고, 높은 전기장이 가해질 경우 탄소나노튜브가 기판에서 뽑혀나가는 불량이 발생될 수 있기 때문이다. 비정실 탄소는 기판의 전도성에 문제를 발생시킬 수 있으며, 오믹 컨택(ohmic contact)으로 인한 고전류 방출시 고열이 발생될 수 있다. 반면에 탄소나노튜브 실(10)은 진공 중에서 끝이 뾰족한 도전성 에미터에 전기장이 인가되었을 때 전자가 방출되는 전계 방출 원리를 이용하는 에미터로 가장 우수한 성능과 더불어 전자방출의 단방향 직진성을 가지므로 매우 높은 효율을 제공하기 때문이다.
렌즈(30)는 탄소나노튜브 실(10)의 상부에 복수개가 설치되며, 탄소나노튜브 실(10)이 배치된 방향에 대응되게 구멍(32)이 형성되어 있다. 렌즈(30)는 인가되는 전압에 의해 렌즈(30)를 통과하는 전자빔(80)을 양극부(40)를 향하여 가속 및 집속시킨다.
그리고 양극부(40)는 일반적으로 베릴륨(Be)의 얇은 막으로 형성되며, 투과형 또는 반사형 중에 하나가 사용될 수 있다. 제1 실시예에서는 투과형의 양극부(40)를 개시하였다.
이와 같은 제1 실시예에 따른 탄소나노튜브 실(10)을 이용한 엑스레이 발생 장치(100)에서 엑스레이(90)를 발생시키는 과정을 설명하면 다음과 같다.
먼저 양극부(40)와 렌즈(30)에 DC 전압(HV++)이 인가되고, 음극부의 탄소나노튜브 실(10)의 양단에 전위(HV-)가 인가되면, 탄소나노튜브 실(10)의 외주면에서 전자가 방출된다. 탄소나노튜브 실(10)에서 방출된 전자는 렌즈(30)를 통과하면서 가속 및 집속된다. 특히 렌즈(30)는 전자빔(80)을 양극부(40)의 하부면으로 집속시킨다. 그리고 양극부(40)의 하부면에 전자빔(80)이 충돌하면, 양극부(40)의 상부면으로 선형의 엑스레이(90)가 방출된다.
이와 같은 제1 실시예에 따른 엑스레이 발생 장치(100)는 음극으로 탄소나노튜브 실(10)을 이용하기 때문에, 상온에서 양극부(40) 및 렌즈(30)에 고전압(HV++)이 인가되더라도 음극부에서 전자가 방출된다.
음극에 인가되는 전위(HV-) 조절을 통하여 전자 발생 강도를 제어할 수 있고, 전자를 균일하게 발생시킬 수 있다. 즉 전자방출을 결정짓는 음극과, 전자의 가속을 담당하는 양극부(40)의 전위차 조절을 통하여 전자 발생 강도를 제어할 수 있다. 이때 전자의 가속전압은 10 내지 30kV로 낮다. 초점의 스팟 크기(focal spot size)를 낮출 수 있다.
그리고 본 발명에 따른 엑스레이 발생 장치(100)는 종래의 일체형으로 제조된 엑스레이 발생 장치와 비교하여 음극만을 교체할 할 수 있다. 또한 탄소나노튜브 실(10)을 이용하면 전자가 균일하게 발생되어, 전자 발생 균일도가 가우시안(Gaussian) 형태를 이루는 것을 확인할 수 있다.
특히 도 3 내지 도 5에 도시된 바와 같이, 엑스레이 이미지가 선명하고 균일함을 알 수 있다. 여기서 엑스레이 이미지는 양극부(40)에 10kV(HV++), 그리드에 0V, 음극부에 -400~-500V(HV-), 음극부의 인가전류 1mA이하, 양극부(40)의 인가전류 600㎂, 노출시간 1초 이하의 조건에서 촬영한 광학현미경 사진이다.
이와 같이 제1 실시예에 따른 엑스레이 발생 장치(100)는 10kV이하의 낮은 전압에서도 5mA이상의 전류를 발생시킬 수 있으며, 20㎛의 해상도를 가지는 휴대형으로도 제작이 가능하다.
제2 실시예
한편 제1 실시예에서는 엑스레이 발생 장치(100)로 트라이오드 타입(triode type)을 예시하였지만 이에 한정되는 것은 아니다. 예컨대 도 6에 도시된 바와 같이, 엑스레이 발생 장치(200)는 다이오드 타입(diode type)으로 구현할 수도 있다.
도 6을 참조하면, 제2 실시예에 따른 엑스레이 발생 장치(200)는 음극부와 양극부(140)를 포함하여 구성된다. 음극부는 탄소나노튜브 실(110)을 음극으로 구비하며, 전자를 방출한다. 그리고 양극부(140)는 고전압(HV++)이 인가되어 음극부에서 방출된 전자를 가속시키며, 가속된 전자의 충돌로 엑스레이(190)를 발생시킨다.
제3 실시예
한편 제1 실시예에서는 탄소나노튜브 실(10)이 외주면에서 전자를 방출하여 선형 엑스레이(90)를 발생시키는 예를 개시하였지만 이에 한정되는 것은 아니다. 예컨대 도 7에 도시된 바와 같이, 탄소나노튜브 실(210)의 일단을 통하여 전자를 방출시켜 포인트 엑스레이(290)를 발생시킬 수도 있다. 즉 제1 실시예에 따른 탄소나노튜브 실(10)은 양극부(40)에 평행하게 설치되며, 제3 실시예에 따른 탄소나노튜브 실(210)은 양극부(240)에 수직하게 설치된다.
도 7은 본 발명의 제3 실시예에 따른 탄소나노튜브 실(210)을 이용한 엑스레이 발생 장치(400)를 개략적으로 보여주는 도면이다.
도 7을 참조하면, 제4 실시예에 따른 엑스레이 발생 장치(400)는 음극부 및 양극부(240)를 포함하여 구성된다. 음극부는 탄소나노튜브 실(210)을 음극으로 구비되며, 탄소나노튜브 실(210)의 일단이 양극부(240)를 향하여 수직 방향으로 배치된다. 탄소나노튜브 실(210)의 타단부로 전위(HV-)가 인가된다. 렌즈(230)는 탄소나노튜브 실(210)의 상부에 배치되며, 탄소나노튜브 실(210)의 통한 전자방출을 유도하여 전자빔(280)을 가속 및 집속시킨다. 그리고 양극부(240)는 탄소나노튜브 실(210)의 상부에 배치되며, 탄소나노튜브 실(210)의 일단에서 방출된 전자빔(280)의 충돌로 엑스레이(290)를 발생시킨다. 이때 양극부(240)로는 반사형이 사용된 예를 개시하였다.
한편 제3 실시예에 따른 엑스레이 발생 장치(400)로는 트라이오드 타입을 예시하였지만 다이오드 타입으로 구현할 수도 있다.
이와 같은 제4 실시예에 따른 엑스레이 발생 장치(400)는 수cm 정도의 길이를 갖는 탄소나노튜브 실(210)을 사용하여 소형으로 제작이 가능하기 때문에, 휴대형으로도 구현이 가능하다.
제4 실시예
한편 제1 실시예에서는 탄소나노튜브 실(10)의 상부에 판 형상의 양극부(40)가 설치된 예를 개시하였지만 이에 한정되는 것은 아니다. 예컨대, 도 8에 도시된 바와 같이, 양극부(340)가 탄소나노튜브 실(310)의 외주면을 둘러싸는 형태로 구현될 수도 있다.
도 8은 본 발명의 제4 실시예에 따른 탄소나노튜브 실(310)을 이용한 엑스레이 발생 장치(400)를 개략적으로 보여주는 도면이다.
도 8을 참조하면, 제4 실시예에 따른 엑스레이 발생 장치(400)는 음극부와, 음극부를 둘러싸는 관형의 투과형 양극부(340)를 포함하여 구성되며, 1cm 미만으로 최소형으로 구현될 수 있다.
음극부는 탄소나노튜브 실(310)을 음극으로 구비한다. 탄소나노튜브 실(310)은 1cm 미만이다. 엑스레이 발생시 탄소나노튜브 실(310)의 양단에는 전위(HV-)가 인가될 수 있다.
그리고 양극부(340)는 투과형으로 탄소나노튜브 실(310)을 둘러싸는 원통관 형태를 갖는다.
따라서 탄소나노튜브 실(310)의 양단에 전위(HV-)가 인가되고, 양극부(340)에 DC 전압(HV++)이 인가되면, 탄소나노튜브 실(310)의 외주면에서 방사형으로 전자가 방출된다. 방출된 전자가 양극부(340)의 내주면에 충돌하면, 양극부(340)의 외주면으로 엑스레이가 방출된다.
이와 같이 제4 실시예에 따른 엑스레이 발생 장치(400)는 1cm 이하로 초소형으로 제조가 가능하기 때문에, 국부적인 엑스레이 조사가 필요한 분야, 예컨대 암 진단 또는 치료 분야에 사용될 수 있다. 또한 제4 실시예에 따른 엑스레이 발생 장치(400)는 초소형으로 제조가 가능하여 국부적인 엑스레이 조사가 가능하기 때문에, 불필요한 영역에 조사되는 엑스레이로 인한 문제 발생을 최소할 수 있다.
한편 제4 실시예에서는 엑스레이 발생 장치(400)로 다이오드 타입을 예시하였지만, 탄소나노튜브 실(310)과 양극부(340) 사이에 렌즈를 설치하여 트라이오드 타입으로 구현할 수 있음은 물론이다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다. 한편 본 실시예에서는 음극으로 탄소나노튜브 실을 사용하는 예를 개시하였지만 이에 한정되는 것은 아니다. 예컨대 탄소나노튜브 실 대신에 니켈(Ni), 바륨(Ba) 및 텅스텐(W) 중의 하나의 금속 와이어에 니켈(Ni), 코발트(Co) 및 철(Fe) 중에 하나의 촉매금속을 증착하여 탄소나노튜브를 형성한 탄소나노튜브 와이어를 사용할 수도 있다. 이때 탄소나노튜브 와이어는 금속 와이어에 촉매금속을 물리적 증착 방법으로 증착한 이후에, 화학적 증착 방법으로 탄소나노튜브를 합성하여 금속 와이어의 외주면에 형성할 수 있다.

Claims (8)

  1. 탄소나노튜브 실을 음극으로 구비하며, 상기 탄소나노튜브 실에서 전자를 방출하는 음극부;
    상기 탄소나노튜브 실의 상부에 배치되어 상기 탄소나노튜브 실에서 방출된 상기 전자가 충돌하여 엑스레이를 발생시키는 양극부;
    를 포함하는 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  2. 제1항에 있어서,
    상기 탄소나노튜브 실과 상기 양극부 사이에 배치되며, 상기 탄소나노튜브 실의 통한 전자 방출을 유도하여 전자빔을 가속시켜 상기 양극부에 집속시키는 렌즈;
    를 더 포함하는 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  3. 제1항 또는 제2항에 있어서, 상기 탄소나노튜브 실은 양단 또는 일단에 전위가 인가되는 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  4. 제1항 또는 제2항에 있어서,
    상기 양극부는 투과형 또는 반사형 중에 하나인 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  5. 제1항 또는 제2항에 있어서, 상기 탄소나노튜브 실은,
    기판에 수직으로 합성된 탄소나노튜브에서 실을 인출 및 꼬아서(yarning) 형성한 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  6. 제1항 또는 제2항에 있어서, 상기 양극부에 고전압이 인가되면, 상기 음극부는 상온에서 전자를 방출시키는 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  7. 탄소나노튜브 실을 음극으로 구비하는 음극부;
    관형으로 상기 탄소나노튜브 실을 둘러싸며, 상기 탄소나노튜브 실의 외주면을 통해 방출되는 전자들이 내측면에 충돌하면, 상기 내측면에 반대되는 외측면 밖으로 엑스레이를 방출시키는 투과형 양극부;
    를 포함하는 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
  8. 제7항에 있어서, 상기 탄소나노튜브 실은,
    기판에 수직으로 합성된 탄소나노튜브에서 실을 인출 및 꼬아서(yarning) 형성한 것을 특징으로 하는 탄소나노튜브 실을 이용한 엑스레이 발생 장치.
PCT/KR2010/007380 2009-10-28 2010-10-26 탄소나노튜브 실을 이용한 엑스레이 발생 장치 WO2011052971A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090102697A KR20110045937A (ko) 2009-10-28 2009-10-28 탄소나노튜브 실을 이용한 엑스레이 발생 장치
KR10-2009-0102697 2009-10-28

Publications (2)

Publication Number Publication Date
WO2011052971A2 true WO2011052971A2 (ko) 2011-05-05
WO2011052971A3 WO2011052971A3 (ko) 2011-10-13

Family

ID=43922806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007380 WO2011052971A2 (ko) 2009-10-28 2010-10-26 탄소나노튜브 실을 이용한 엑스레이 발생 장치

Country Status (2)

Country Link
KR (1) KR20110045937A (ko)
WO (1) WO2011052971A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631668B1 (ko) * 2015-01-14 2016-06-17 원광대학교산학협력단 여과된 아크 증착을 적용한 탄소나노튜브 실을 포함한 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
KR101690430B1 (ko) * 2015-11-04 2016-12-27 전남대학교산학협력단 자외선 발광 소자
KR101961759B1 (ko) * 2017-04-06 2019-03-25 원광대학교산학협력단 탄소나노튜브 실과 비드구조물을 포함하는 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
KR102386758B1 (ko) * 2019-01-31 2022-04-18 한국전자통신연구원 전계 방출 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027244A (ja) * 2002-06-21 2004-01-29 Canon Inc 成膜装置、成膜方法およびそれを用いた電子放出素子、電子源、画像形成装置の製造方法
JP2004511884A (ja) * 2000-10-06 2004-04-15 ザ ユニバーシティ オブ ノース カロライナ − チャペル ヒル 電子電界放出カソードを使用するx線発生機構
KR20080009043A (ko) * 2004-11-09 2008-01-24 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 나노섬유 리본과 시트 및 트위스트 및 논-트위스트나노섬유 방적사의 제조 및 애플리케이션
KR100867172B1 (ko) * 2006-12-18 2008-11-06 한국전기연구원 탄소나노튜브 기반의 x-선관 구조

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511884A (ja) * 2000-10-06 2004-04-15 ザ ユニバーシティ オブ ノース カロライナ − チャペル ヒル 電子電界放出カソードを使用するx線発生機構
JP2004027244A (ja) * 2002-06-21 2004-01-29 Canon Inc 成膜装置、成膜方法およびそれを用いた電子放出素子、電子源、画像形成装置の製造方法
KR20080009043A (ko) * 2004-11-09 2008-01-24 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 나노섬유 리본과 시트 및 트위스트 및 논-트위스트나노섬유 방적사의 제조 및 애플리케이션
KR100867172B1 (ko) * 2006-12-18 2008-11-06 한국전기연구원 탄소나노튜브 기반의 x-선관 구조

Also Published As

Publication number Publication date
KR20110045937A (ko) 2011-05-04
WO2011052971A3 (ko) 2011-10-13

Similar Documents

Publication Publication Date Title
KR101341672B1 (ko) 디지털 엑스레이 소스
US7388944B2 (en) Device for generation of x-ray radiation with a cold electron source
US8175222B2 (en) Electron emitter and method of making same
US8488737B2 (en) Medical X-ray imaging system
KR20110090357A (ko) 나노물질 전계방출원을 이용한 초소형 엑스선관
US6907110B2 (en) X-ray tube with ring anode, and system employing same
EP2411997A1 (en) Structured electron emitter for coded source imaging with an x-ray tube
US20130336461A1 (en) X-ray tube and method of controlling x-ray focal spot using the same
WO2011052971A2 (ko) 탄소나노튜브 실을 이용한 엑스레이 발생 장치
WO2011052972A2 (ko) 탄소나노튜브 실을 갖는 엑스레이 소스, 엑스레이 발생 장치 및 그의 제조 방법
KR20140106291A (ko) 평판형 엑스선 발생기를 구비한 엑스선 영상 시스템, 엑스선 발생기 및 전자 방출소자
KR20070071918A (ko) 탄소나노튜브를 이용한 오목한 그리드 구조의 엑스-선관
KR100906148B1 (ko) 탄소나노튜브 전계방출원을 이용한 투과형 마이크로 포커스엑스선관
KR101325210B1 (ko) 탄소나노튜브 기반의 전자빔 에미터를 이용한 진공밀봉형 소형 엑스선 튜브
KR101168146B1 (ko) 탄소나노튜브 실을 이용한 전자빔 또는 엑스-레이 발생 장치
US7062017B1 (en) Integral cathode
CN117038419A (zh) 一种碳纳米管冷阴极微焦点x射线管
KR20150114366A (ko) 나노 구조물을 이용한 엑스선 소스 장치 및 카트리지형 엑스선 소스 장치를 이용한 엑스선 방출 장치
KR101245524B1 (ko) 멀티―빔 x―선관
KR101956540B1 (ko) 탄소나노튜브 실을 포함한 초소형 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
KR102027407B1 (ko) 탄소나노튜브 실을 이용한 필드 에미터 및 냉음극 구조
KR101615337B1 (ko) 탄소나노튜브 실을 포함한 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
JP7407476B2 (ja) X線源装置及びその制御方法
KR101631668B1 (ko) 여과된 아크 증착을 적용한 탄소나노튜브 실을 포함한 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
CN104616952B (zh) 阴控多阴极分布式x射线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827055

Country of ref document: EP

Kind code of ref document: A2