WO2021182515A1 - 切断装置および切断方法 - Google Patents

切断装置および切断方法 Download PDF

Info

Publication number
WO2021182515A1
WO2021182515A1 PCT/JP2021/009540 JP2021009540W WO2021182515A1 WO 2021182515 A1 WO2021182515 A1 WO 2021182515A1 JP 2021009540 W JP2021009540 W JP 2021009540W WO 2021182515 A1 WO2021182515 A1 WO 2021182515A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
continuum
cutting
refracting
main line
Prior art date
Application number
PCT/JP2021/009540
Other languages
English (en)
French (fr)
Inventor
熊澤 誠二
松井 英樹
寛之 田島
貞博 服部
慎司 小島
Original Assignee
パナソニック株式会社
三洋電機株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 三洋電機株式会社, トヨタ自動車株式会社 filed Critical パナソニック株式会社
Priority to US17/911,005 priority Critical patent/US20230088137A1/en
Priority to CN202180019663.6A priority patent/CN115280542A/zh
Publication of WO2021182515A1 publication Critical patent/WO2021182515A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/16Bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a cutting device and a cutting method.
  • Patent Document 1 discloses that the electrode plate to be cut is continuously conveyed by a roll-to-roll method, and the electrode plate is cut by a laser beam.
  • the electrode plate can be cut by a so-called one-stroke writing method in which the electrode plate is continuously scanned with a laser beam and the electrode plate is cut by a continuous cutting portion, and the electrode plate is intermittently scanned with a laser beam.
  • a so-called On-the-FLY method in which a plurality of unit cutting portions (cutting segments) are connected to cut an electrode plate.
  • the electrode plate can be cut reliably, but there is a problem that the output condition of the laser beam greatly depends on the transport speed. For example, when the transport speed of the electrode plate is slow, the amount of heat input to the electrode plate becomes excessive, and there is a possibility that the electrode plate may be burnt or the like. Therefore, in the one-stroke writing method, it is necessary to finely adjust the intensity of the laser beam according to the transport speed of the electrode plate, which makes the output control program of the laser beam very complicated and difficult to create.
  • the output control of the laser beam can be simplified.
  • the on-the-fly method has a problem that the cutting quality largely depends on the transport speed. For example, if the transfer speed of the electrode plate is high, it becomes difficult to connect a plurality of unit cut portions, and there is a possibility that burrs may occur at positions where the cut portions are discontinuous. The burrs generated on the electrode plate cause a short circuit, which leads to deterioration of the quality of the secondary battery. Particularly in recent years, there has been a demand for improvement in production lead time and throughput of secondary batteries, and the transfer speed of electrode plates tends to increase. Therefore, the cutting quality of the electrode plate is more likely to deteriorate.
  • the present disclosure has been made in view of such a situation, and one of the purposes thereof is to provide a technique for suppressing deterioration of cutting quality when cutting an electrode plate.
  • This cutting device includes a transport unit that transports a continuous body of a plurality of electrode plates, a laser scanning unit that scans the continuous body with laser light, and a control unit that controls the laser scanning unit.
  • the control unit scans the continuum while intermittently irradiating the laser beam to form a plurality of continuous unit cutting portions, and the laser divides the continuum into a first portion and a second portion. Control the scanning unit.
  • the unit cutting portion has a main line portion extending along the boundary between the first portion and the second portion, and a refracting portion extending by refracting from the end portion of the main line portion.
  • a cutting method is a cutting method.
  • a continuum of a plurality of electrode plates is conveyed, and the continuum is scanned while intermittently irradiating a laser beam to form a plurality of continuous unit cutting portions, and the continuum is first formed. It includes dividing into a part and a second part.
  • the unit cutting portion has a main line portion extending along the boundary between the first portion and the second portion, and a refracting portion extending by refracting from the end portion of the main line portion.
  • FIG. 2A is a schematic diagram showing the trajectory of the laser beam.
  • FIG. 2B is a schematic view showing the shape of the unit cutting portion in the reference example.
  • FIG. 2C is a schematic view showing the shape of the unit cutting portion in the first embodiment. It is a schematic diagram which shows the shape of the unit cut part in Embodiment 2.
  • FIG. 1 is a perspective view schematically showing a cutting device according to the first embodiment.
  • the cutting device 1 includes a transport unit 2, a laser scanning unit 4, and a control unit 6.
  • the transport unit 2 is a mechanism for transporting the continuum 8.
  • the transport speed is, for example, 1 m / min to 100 m / min.
  • the laser scanning unit 4 is a mechanism that scans the continuum 8 with the laser beam L and cuts the continuum 8.
  • the control unit 6 is a mechanism for controlling the laser scanning unit 4.
  • the direction in which the continuum 8 flows at the position where the continuum 8 is cut by the laser scanning unit 4 is defined as the transport direction A of the continuum 8.
  • the transport direction A is downward in the vertical direction.
  • the continuum 8 of the present embodiment is a strip-shaped member long in the transport direction A, and has a structure in which a plurality of electrode plates 10 are connected.
  • the continuum 8 has a structure in which the electrode plates 10 are arranged in two rows and a plurality of columns.
  • Each electrode plate 10 has a structure in which an electrode active material layer is laminated on a current collector plate.
  • the current collector plate is made of aluminum foil or the like if it is a positive electrode, and copper foil or the like if it is a negative electrode.
  • the electrode active material is lithium cobalt oxide, lithium iron phosphate or the like for the positive electrode, and graphite or the like for the negative electrode.
  • a tab portion 12 is provided on each electrode plate 10 in a state after the continuum 8 has been cut by the laser scanning portion 4. The tab portion 12 projects from the current collector plate of the electrode plate 10 in the width direction B of the continuum 8.
  • the width direction B is a direction orthogonal to the transport direction A.
  • the continuum 8 has a coated portion 14 of the electrode active material and a non-coated portion 16 of the electrode active material.
  • the electrode active material coating portion 14 is arranged at the central portion in the width direction B of the continuum 8.
  • the coating portion 14 corresponds to the electrode active material layer.
  • the coating unit 14 is obtained by applying an electrode slurry containing an electrode active material to the surface of a plate material constituting a current collector plate using a known coating device.
  • the non-coated portions 16 of the electrode active material are arranged at both ends in the width direction B of the continuum 8.
  • the non-coated portion 16 is a portion where the plate material constituting the current collector plate is exposed, and becomes a tab portion 12 by cutting processing by the laser scanning portion 4.
  • An oxide layer for protecting the coated portion 14 may be provided at the boundary between the coated portion 14 and the non-coated portion 16. This oxide layer is preferably provided on the electrode plate 10 constituting the positive electrode.
  • the transport unit 2 continuously transports the continuum 8 to a position facing the laser scanning unit 4 by a feed roll (not shown).
  • the cutting device 1 of the present embodiment includes two laser scanning units 4 arranged in the width direction B.
  • the laser scanning unit 4 irradiates the non-coated portion 16 on one end side of the continuous body 8 being conveyed with the laser beam L.
  • the other laser scanning unit 4 irradiates the non-coated portion 16 on the other end side of the continuous body 8 being conveyed with the laser beam L.
  • the non-coated portions 16 on both sides are cut to form the tab portions 12.
  • a part of the coating portion 14 can also be cut during the cutting process by the laser scanning portion 4.
  • a protective layer (not shown) is provided at the boundary between the coated portion 14 and the non-coated portion 16.
  • the protective layer is, for example, an oxide layer of a metal constituting a current collector plate.
  • a part of the protective layer may be cut in addition to the non-coated portion 16 during the cutting process by the laser scanning portion 4.
  • a part of the coated portion 14 and a part of the protective layer can also be cut.
  • the transport unit 2 has a chamber 18.
  • the chamber 18 suppresses spatter and fume generated by the cutting process with the laser beam L from adhering to the continuum 8 and the cutting device 1 and floating in the atmosphere.
  • the chamber 18 may be omitted.
  • the continuum 8 that has been cut by the laser scanning unit 4 is divided into a product unit 26 and a waste material unit 28.
  • the product unit 26 includes a plurality of continuous electrode plates 10 and a plurality of tab portions 12 formed of a part of the non-coated portion 16. Each tab portion 12 is provided on a one-to-one basis with respect to each electrode plate 10.
  • the waste material portion 28 is a portion of the non-coated portion 16 that does not remain on the product portion 26 side as the tab portion 12.
  • the product unit 26 is transported to the next process line.
  • the waste material section 28 is conveyed in a direction different from that of the product section 26 and is separated from the product section 26.
  • the laser scanning unit 4 has a laser oscillator 34 and a scanning mechanism 36.
  • the laser oscillator 34 a known fiber laser or the like can be adopted.
  • the laser oscillator 34 may be a pulse laser oscillator.
  • the scanning mechanism 36 receives the laser beam L from the laser oscillator 34.
  • As the scanning mechanism 36 a known one can be adopted, and for example, a galvano scanner can be used.
  • the scanning mechanism 36 has a mirror (not shown) rotatably supported by two motors having axes in two directions, and causes the mirror to rotate in the X-axis direction and the Y-axis direction to generate laser light on an XY plane. It can be scanned with L.
  • the scanning mechanism 36 is not limited to such a 2D scanner, and may be a 3D scanner that scans in the focal (Z-axis) direction. In this case, scanning in the Z-axis direction is realized by moving the collimator lens in the Z-axis direction.
  • the scanning mechanism 36 can irradiate the laser beam L toward the continuum 8 and can displace the irradiation direction of the laser beam L by rotating the mirror.
  • the drive of the laser oscillator 34 and the scanning mechanism 36 is controlled by the control unit 6.
  • the control unit 6 is realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and is realized by a computer program or the like as a software configuration, but in FIG. 1, it is realized by their cooperation. It is drawn as a functional block. It is well understood by those skilled in the art that this functional block can be realized in various ways by a combination of hardware and software.
  • FIG. 2A is a schematic diagram showing the trajectory of the laser beam L.
  • FIG. 2B is a schematic view showing the shape of the unit cutting portion in the reference example.
  • FIG. 2C is a schematic view showing the shape of the unit cutting portion in the first embodiment.
  • the control unit 6 scans the continuum 8 while intermittently irradiating the laser beam L to form a plurality of continuous unit cutting portions 38, and divides the continuum 8 into a first portion and a second portion.
  • the laser scanning unit 4 is controlled so as to divide the laser scanning unit 4. That is, the control unit 6 controls the laser scanning unit 4 so as to cut the continuum 8 in an on-the-fly manner.
  • the laser scanning unit 4 sets the irradiation position of the laser light L to a predetermined irradiation start point in the continuous body 8 in each irradiation category in the intermittent irradiation of the laser light L, and starts scanning the continuous body 8 by the laser light L. ..
  • the laser scanning unit 4 rotates the mirror of the scanning mechanism 36 to displace the irradiation position of the laser beam L toward the upstream side in the transport direction A.
  • the laser scanning unit 4 stops the irradiation of the laser beam L. As a result, one unit cutting portion 38 is formed.
  • the formed unit cutting portion 38 flows to the downstream side in the transport direction A.
  • the laser scanning unit 4 returns the irradiation position of the laser beam L to the irradiation start point at a speed faster than the transport speed of the continuum 8. After that, when the end portion of the unit cutting portion 38 formed in the previous irradiation division on the upstream side in the transport direction, that is, the irradiation end position of the laser beam L in the previous irradiation division reaches the irradiation start point, the laser scanning unit 4 moves. Irradiation of the laser beam L in the next irradiation category is started.
  • the control unit 6 can grasp from the transport speed and the elapsed time of the continuum 8 that the irradiation end position of the previous irradiation category has reached the irradiation start point.
  • the locus 40 of the fragmentary laser beam L in other words, the unit cutting portion 38 is continuous, and the continuum 8 is the product portion as the first portion. It is divided into 26 and a waste material portion 28 as a second portion.
  • a locus 40 curved outward in the width direction B is drawn along the contour of the tab portion 12.
  • the tab portion 12 projecting from the electrode plate 10 in the width direction B is formed.
  • Each tab portion 12 is formed by one locus 40 (unit cutting portion 38).
  • a plurality of linear loci 40 are drawn in the portion corresponding to the connection region 42 connecting the two adjacent tab portions 12 in the transport direction A.
  • the plurality of linear unit cutting portions 38 are joined to form a linear connecting region 42.
  • the connection region 42 extends parallel to the transport direction A.
  • the unit cutting portion 38 of the present embodiment is formed from the main line portion 44 extending along the boundary between the product portion 26 and the waste material portion 28 and the end portion of the main line portion 44. It has a refracting portion 46 that is refracted and extends. Each refracting portion 46 extends outward in the width direction B from the end portion of the main line portion 44. As a result, even if the adjacent unit cutting portions 38 are displaced in the width direction B, the refracting portions 46 of the unit cutting portions 38 can be crossed with each other. As a result, adjacent unit cutting portions 38 can be made continuous.
  • the main wire portion 44 has a linear shape extending parallel to the transport direction A.
  • the refracting portion 46 extends from both ends of the main wire portion 44 in a direction intersecting the extending direction of the main wire portion 44, that is, in a direction intersecting the transport direction A.
  • the main line portion 44 has a curved portion protruding in the width direction B and a linear portion located at the hem of the curve and extending parallel to the transport direction A. Has a part and. This linear portion constitutes a part of the connection region 42.
  • the refracting portion 46 extends from the end of the linear portion of the main wire portion 44 in the direction intersecting the transport direction A.
  • the refracting portion 46 may be linear or curved.
  • the tab portion 12 is formed by cutting the non-coated portion 16.
  • the connection region 42 shown in FIG. 2C is formed by cutting the non-coated portion 16.
  • the position where the connection region 42 is provided is not limited to the non-coated portion 16.
  • the connection region 42 may be formed by cutting the end portion of the coating portion 14 in the width direction B. That is, the unit cutting portion 38 forming the connection region 42 may be arranged in the coating portion 14. In this case, at least the main line portion 44 of the unit cutting portion 38 is arranged in the coating portion 14.
  • the connection region 42 may be formed by cutting the protective layer or by cutting the end portion of the coating portion 14 in the width direction B. .. That is, the unit cutting portion 38 forming the connection region 42 may be arranged in the protective layer or the coating portion 14. In this case, at least the main line portion 44 of the unit cutting portion 38 is arranged on the protective layer or the coating portion 14.
  • the cutting device 1 includes a transport unit 2 for transporting the continuous body 8 of the plurality of electrode plates 10, a laser scanning unit 4 for scanning the continuous body 8 with the laser beam L, and the laser scanning unit 4.
  • a control unit 6 for controlling the laser scanning unit 4 is provided.
  • the control unit 6 scans the continuum 8 while intermittently irradiating the laser beam L to form a plurality of continuous unit cutting portions 38, and divides the continuum 8 into a first portion and a second portion.
  • the laser scanning unit 4 is controlled so as to divide the laser scanning unit 4.
  • Each unit cutting portion 38 has a main line portion 44 extending along the boundary between the first portion and the second portion, and a refracting portion 46 extending by refracting from the end portion of the main line portion 44.
  • the refracting portion 46 in the unit cutting portion 38 By providing the refracting portion 46 in the unit cutting portion 38, even if two adjacent unit cutting portions 38 are displaced in the direction in which they intersect with the adjacent direction, the two unit cutting portions can be crossed by intersecting the refracting portions 46. 38 can be made continuous. As a result, the generation of burrs in the cut portions of the first portion and the second portion can be suppressed, so that the deterioration of the cutting quality of the electrode plate can be suppressed. Therefore, it is possible to improve the production lead time and the throughput while maintaining the quality of the secondary battery.
  • the continuum 8 of the present embodiment has a long strip shape in the transport direction A, and is continuous with the electrode active material coating portion 14 provided in the central portion of the width direction B orthogonal to the transport direction A in the continuum 8. It has a non-coated portion 16 of an electrode active material arranged at an end portion in the width direction B of the body 8.
  • the control unit 6 controls the laser scanning unit 4 so as to cut at least the non-applied portion 16 to form a plurality of tab portions 12 arranged at predetermined intervals in the transport direction A. Then, at least a part of the refracting portion 46 extends outward in the width direction B. As a result, it is possible to prevent the end portion of the electrode plate 10 from being cut out by the refracting portion 46.
  • the second embodiment has the same configuration as the first embodiment except that the tab portion 12 is formed by a plurality of unit cutting portions 38.
  • the present embodiment will be mainly described with a configuration different from that of the first embodiment, and the common configuration will be briefly described or the description will be omitted.
  • FIG. 3 is a schematic view showing the shape of the unit cutting portion 38 in the second embodiment.
  • the tab portion 12 is bordered by a plurality of unit cutting portions 38.
  • the tab portion 12 is formed by two substantially L-shaped unit cutting portions 38 and one linear unit cutting portion 38.
  • the L-shaped unit cutting portion 38 has a portion extending in the transport direction A and a portion extending in the width direction B, and the portion extending in the width direction B constitutes a side portion of the tab portion 12. ..
  • the portion extending in the transport direction A constitutes a part of the connection area 42.
  • the linear unit cutting portion 38 forms a top portion of the tab portion 12 extending in the transport direction A.
  • the L-shaped unit cutting portion 38 and the linear unit cutting portion 38 each have refracting portions 46 at both ends. Then, the refracting portion 46 provided at the outer end in the width direction of the L-shaped unit cutting portion 38 intersects with the refracting portion 46 of the linear unit cutting portion 38, whereby these unit cutting portions 38 Is continuous. The refracting portion 46 provided at the opposite end of the L-shaped unit cutting portion 38 intersects the refracting portion 46 of the linear unit cutting portion 38 constituting the connection region 42.
  • the refracting portion 46 extends outward in the width direction B. As a result, it is possible to prevent the end portion of the electrode plate 10 from being cut out by the refracting portion 46.
  • the refracting portion 46 extends inward in the width direction B. As a result, it is possible to prevent the waste material portion 28 from being cut by the refracting portion 46. By avoiding cutting of the waste material portion 28, it is possible to prevent the waste material portion 28 from being transported together with the product portion 26 without being separated from the product portion 26.
  • the width of the refracting portion 46 located at the top of the tab portion 12 is widened. It may be directed to the outside of direction B.
  • the first part is the product part 26 and the second part is the waste material part 28, but the present invention is not limited to this, and for example, the first part and the second part may be electrode plates 10, respectively.
  • the continuum 8 may be in a state in which the electrode plate 10 and the separator are laminated. Further, the non-applied portion 16 may be provided only on one side of the continuum 8.
  • a continuum (8) of a plurality of electrode plates (10) is conveyed, By scanning the continuum (8) while intermittently irradiating the laser beam (L), a plurality of continuous unit cutting portions (38) are formed, and the continuum (8) is divided into the first portion and the second portion.
  • Including dividing into The unit cutting portion (38) has a main line portion (44) extending along the boundary between the first portion and the second portion, and a refracting portion (46) extending by refracting from the end portion of the main line portion (44). , Cutting method.
  • This disclosure can be used for cutting devices and cutting methods.

Abstract

切断装置は、複数の電極板10の連続体8を搬送する搬送部と、レーザ光で連続体8を走査するレーザ走査部と、レーザ走査部を制御する制御部と、を備える。制御部は、レーザ光を間欠的に照射しながら連続体8を走査することで、連続する複数の単位切断部38を形成して、連続体8を第1部分と第2部分とに分断するようにレーザ走査部4を制御する。単位切断部38は、第1部分および第2部分の境界に沿って延びる主線部44と、主線部44の端部から屈折して延びる屈折部46と、を有する。

Description

切断装置および切断方法
 本開示は、切断装置および切断方法に関する。
 近年、電気自動車(EV)、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)等の普及にともない、車載用の二次電池の出荷が増えている。特にリチウムイオン二次電池の出荷が増えている。また、車載用に限らず、例えばノート型パソコン等の携帯端末用の電源としても二次電池の普及が進んでいる。このような二次電池について、例えば特許文献1には、切断対象である電極板をロールtoロール方式で連続搬送しながら、レーザ光で電極板を切断加工することが開示されている。
特開2016-33912号公報
 電極板の切断方法としては、レーザ光で連続的に電極板を走査して一続きの切断部で電極板を切断する、いわゆる一筆書き方式と、レーザ光で間欠的に電極板を走査して複数の単位切断部(切断セグメント)をつなぎ合わせて電極板を切断する、いわゆるオンザフライ(On the FLY)方式と、が挙げられる。
 一筆書き方式によれば、確実に電極板を切断することができるが、レーザ光の出力条件が搬送速度に大きく依存するという課題があった。例えば、電極板の搬送速度が遅いときに電極板への入熱量が過大となって、電極板に焦げ等が発生するおそれがあった。このため、一筆書き方式では、電極板の搬送速度に合わせてレーザ光の強度を細かく調整する必要があり、そのためにレーザ光の出力制御プログラムが非常に複雑で、作成が困難であった。
 これに対し、オンザフライ方式によれば、レーザ光の出力制御を簡略化することができる。しかしながら、オンザフライ方式には、切断品質が搬送速度に大きく依存するという課題があった。例えば、電極板の搬送速度が速いと複数の単位切断部のつなぎ合わせが困難になり、切断部が不連続となった位置にバリが生じるおそれがあった。電極板に生じたバリはショートの原因になるため、二次電池の品質低下につながる。特に近年は、二次電池の生産リードタイムやスループットの向上が求められており、電極板の搬送速度が高速化する傾向にある。このため、電極板の切断品質がより低下しやすい状況にある。
 本開示はこうした状況に鑑みてなされたものであり、その目的の1つは、電極板を切断する際の切断品質の低下を抑制する技術を提供することにある。
 本開示のある態様は、切断装置である。この切断装置は、複数の電極板の連続体を搬送する搬送部と、レーザ光で連続体を走査するレーザ走査部と、レーザ走査部を制御する制御部と、を備える。制御部は、レーザ光を間欠的に照射しながら連続体を走査することで、連続する複数の単位切断部を形成して、連続体を第1部分と第2部分とに分断するようにレーザ走査部を制御する。単位切断部は、第1部分および第2部分の境界に沿って延びる主線部と、主線部の端部から屈折して延びる屈折部と、を有する。
 本開示の他の態様は、切断方法である。この切断方法は、複数の電極板の連続体を搬送し、レーザ光を間欠的に照射しながら連続体を走査することで、連続する複数の単位切断部を形成して、連続体を第1部分と第2部分とに分断することを含む。単位切断部は、第1部分および第2部分の境界に沿って延びる主線部と、主線部の端部から屈折して延びる屈折部と、を有する。
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、電極板を切断する際の切断品質の低下を抑制することができる。
実施の形態1に係る切断装置を模式的に示す斜視図である。 図2(A)は、レーザ光の軌跡を示す模式図である。図2(B)は、参考例における単位切断部の形状を示す模式図である。図2(C)は、実施の形態1における単位切断部の形状を示す模式図である。 実施の形態2における単位切断部の形状を示す模式図である。
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも本開示の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
(実施の形態1)
 図1は、実施の形態1に係る切断装置を模式的に示す斜視図である。切断装置1は、搬送部2と、レーザ走査部4と、制御部6と、を備える。搬送部2は、連続体8を搬送する機構である。搬送速度は、例えば1m/分~100m/分である。レーザ走査部4は、レーザ光Lで連続体8を走査して、連続体8に切断加工を施す機構である。制御部6は、レーザ走査部4を制御する機構である。本実施の形態では、レーザ走査部4によって連続体8が切断される位置において連続体8が流れる方向を連続体8の搬送方向Aとする。例えば、搬送方向Aは鉛直方向下方である。
 本実施の形態の連続体8は、搬送方向Aに長い帯状の部材であり、複数の電極板10が連なった構造を有する。例えば、連続体8は、電極板10が2行複数列に配列された構造を有する。各電極板10は、集電板に電極活物質層が積層された構造を有する。一般的なリチウムイオン二次電池の場合、集電板は正極であればアルミニウム箔等で構成され、負極であれば銅箔等で構成される。また、一般的なリチウムイオン二次電池の場合、電極活物質は、正極であればコバルト酸リチウムやリン酸鉄リチウム等であり、負極であれば黒鉛等である。レーザ走査部4による切断加工が連続体8に施された後の状態で、各電極板10にはタブ部12が設けられる。タブ部12は、電極板10の集電板から連続体8の幅方向Bに突出する。幅方向Bは、搬送方向Aと直交する方向である。
 連続体8は、電極活物質の塗布部14と、電極活物質の非塗布部16と、を有する。電極活物質の塗布部14は、連続体8における幅方向Bの中央部に配置される。塗布部14は、電極活物質層に相当する。塗布部14は、公知の塗工装置を用いて、集電板を構成する板材の表面に電極活物質を含む電極スラリーを塗布することで得られる。電極活物質の非塗布部16は、連続体8における幅方向Bの両端部に配置される。非塗布部16は、集電板を構成する板材が露出した部分であり、レーザ走査部4による切断加工によってタブ部12となる。なお、塗布部14と非塗布部16との境界には、例えば塗布部14を保護するための酸化物層などが設けられてもよい。この酸化物層は、好ましくは正極を構成する電極板10に設けられる。
 搬送部2は、図示しないフィードロールによって連続体8をレーザ走査部4と対向する位置に連続搬送する。本実施の形態の切断装置1は、幅方向Bに並ぶ2つのレーザ走査部4を備える。一方のレーザ走査部4は、搬送中の連続体8における一端側の非塗布部16にレーザ光Lを照射する。他方のレーザ走査部4は、搬送中の連続体8における他端側の非塗布部16にレーザ光Lを照射する。これにより、両側の非塗布部16に切断加工が施されてタブ部12が形成される。なお、連続体8が負極板の配列されたものである場合、レーザ走査部4による切断加工の際に、塗布部14の一部も切断され得る。また、連続体8が正極板の配列されたものである場合、塗布部14と非塗布部16との境界には、図示しない保護層が設けられる。保護層は、例えば集電板を構成する金属の酸化物層である。この場合、レーザ走査部4による切断加工の際に、非塗布部16に加えて保護層の一部も切断され得る。あるいは非塗布部16に加えて塗布部14の一部および保護層の一部も切断され得る。
 搬送部2は、チャンバー18を有する。チャンバー18は、レーザ光Lでの切断加工によって生じるスパッタやヒュームが連続体8や切断装置1に付着したり、雰囲気中に浮遊したりすることを抑制する。なお、チャンバー18は省略することもできる。
 レーザ走査部4で切断加工が施された連続体8は、製品部26と、廃材部28とに分けられる。製品部26は、連続する複数の電極板10と、非塗布部16の一部分で構成される複数のタブ部12と、を含む。各タブ部12は、各電極板10に対して1対1で設けられる。廃材部28は、非塗布部16のうちタブ部12として製品部26側に残らなかった部分である。製品部26は、次工程のラインに搬送される。廃材部28は、製品部26とは異なる方向に搬送されて、製品部26から切り離される。
 レーザ走査部4は、レーザ発振器34と、走査機構36と、を有する。レーザ発振器34は、公知のファイバーレーザー等を採用することができる。なお、レーザ発振器34は、パルスレーザー発振器であってもよい。走査機構36は、レーザ発振器34からレーザ光Lが入射される。走査機構36は、公知のものを採用可能であり、例えばガルバノスキャナーを使用することができる。走査機構36は、2方向の軸をもつ2つのモータに回動可能に支持された図示しないミラーを有し、X軸方向およびY軸方向にミラーを回転運動させて、XY平面上をレーザ光Lで走査することができる。走査機構36は、このような2Dスキャナに限定されず、焦点(Z軸)方向への走査を加えた3Dスキャナであってもよい。この場合、Z軸方向への走査は、コリメータレンズのZ軸方向への移動によって実現される。走査機構36は、連続体8に向けてレーザ光Lを照射するとともに、ミラーの回動によってレーザ光Lの照射方向を変位させることができる。レーザ発振器34および走査機構36の駆動は、制御部6によって制御される。
 制御部6は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図1では、それらの連携によって実現される機能ブロックとして描いている。この機能ブロックがハードウェアおよびソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には当然に理解されるところである。
 図2(A)は、レーザ光Lの軌跡を示す模式図である。図2(B)は、参考例における単位切断部の形状を示す模式図である。図2(C)は、実施の形態1における単位切断部の形状を示す模式図である。
 制御部6は、レーザ光Lを間欠的に照射しながら連続体8を走査することで、連続する複数の単位切断部38を形成して、連続体8を第1部分と第2部分とに分断するようにレーザ走査部4を制御する。つまり、制御部6は、オンザフライ方式で連続体8に切断加工を施すようにレーザ走査部4を制御する。
 レーザ走査部4は、レーザ光Lの間欠照射における各照射区分において、レーザ光Lの照射位置を連続体8における所定の照射開始点に合わせて、レーザ光Lによる連続体8の走査を開始する。レーザ走査部4は、走査機構36のミラーを回動させて、搬送方向Aの上流側に向かってレーザ光Lの照射位置を変位させる。レーザ走査部4は、レーザ光Lの照射位置が所定の照射終了点に到達すると、レーザ光Lの照射を停止する。これにより、1つの単位切断部38が形成される。
 連続体8の搬送は継続されるため、形成された単位切断部38は搬送方向Aの下流側に流れていく。レーザ走査部4は、連続体8の搬送速度よりも速い速度で、レーザ光Lの照射位置を照射開始点に戻す。その後、前回の照射区分で形成された単位切断部38の搬送方向上流側の端部、つまり前回の照射区分におけるレーザ光Lの照射終了位置が照射開始点に到達すると、レーザ走査部4は、次の照射区分におけるレーザ光Lの照射を開始する。制御部6は、前回の照射区分の照射終了位置が照射開始点に到達したことを連続体8の搬送速度や経過時間から把握することができる。
 以上の動作が繰り返されることにより、図2(A)に示すように断片的なレーザ光Lの軌跡40、言い換えれば単位切断部38が連続して、連続体8が第1部分としての製品部26と第2部分としての廃材部28とに切り分けられる。連続体8においてタブ部12に対応する部分では、タブ部12の輪郭に沿うように幅方向Bの外側に湾曲する軌跡40が描かれる。これにより、電極板10から幅方向Bに突出するタブ部12が形成される。各タブ部12は、1つの軌跡40(単位切断部38)で形成される。連続体8において、搬送方向Aで隣り合う2つのタブ部12をつなぐ接続領域42に対応する部分では、複数の直線状の軌跡40が描かれる。これにより、複数の直線状の単位切断部38がつなぎ合わされて、直線状の接続領域42が形成される。接続領域42は、搬送方向Aに対し平行に延びる。
 図2(B)に示す参考例のように、各単位切断部38が製品部26と廃材部28との境界に沿って延びる主線部44のみで構成される場合、隣り合う単位切断部38が幅方向Bにずれたときに、単位切断部38が不連続になってしまうおそれがある。これに対し図2(C)に示すように、本実施の形態の単位切断部38は、製品部26と廃材部28との境界に沿って延びる主線部44と、主線部44の端部から屈折して延びる屈折部46と、を有する。各屈折部46は、主線部44の端部から幅方向Bの外側に向かって延びる。これにより、たとえ隣り合う単位切断部38が幅方向Bにずれたとしても、各単位切断部38の屈折部46どうしを交差させることができる。この結果、隣り合う単位切断部38を連続させることができる。
 例えば、接続領域42を構成する直線状の単位切断部38では、主線部44は、搬送方向Aに対し平行に延びる直線状である。屈折部46は、この主線部44の両端から、主線部44の延びる方向と交わる方向、つまり搬送方向Aと交わる方向に延びる。タブ部12を構成する湾曲状の単位切断部38では、主線部44は、幅方向Bに突出する湾曲状の部分と、湾曲の裾に位置して搬送方向Aに対し平行に延びる直線状の部分と、を有する。この直線状の部分は、接続領域42の一部を構成する。屈折部46は、主線部44の直線状部分の端部から搬送方向Aと交わる方向に延びる。なお、屈折部46は、直線状であっても曲線状であってもよい。
 タブ部12は、非塗布部16を切断することで形成される。また、図2(C)に示す接続領域42は、非塗布部16を切断することで形成されている。ただし、接続領域42が設けられる位置は非塗布部16に限らない。連続体8が負極板の配列体である場合、接続領域42は、塗布部14の幅方向Bにおける端部の切断によって形成されてもよい。つまり、接続領域42を形成する単位切断部38は、塗布部14に配置されてもよい。この場合、単位切断部38の少なくとも主線部44が塗布部14に配置される。また、連続体8が正極板の配列体である場合、接続領域42は、保護層の切断によって形成されてもよいし、塗布部14の幅方向Bにおける端部の切断によって形成されてもよい。つまり、接続領域42を形成する単位切断部38は、保護層または塗布部14に配置されてもよい。この場合、単位切断部38の少なくとも主線部44が保護層または塗布部14に配置される。
 以上説明したように、本実施の形態に係る切断装置1は、複数の電極板10の連続体8を搬送する搬送部2と、レーザ光Lで連続体8を走査するレーザ走査部4と、レーザ走査部4を制御する制御部6と、を備える。制御部6は、レーザ光Lを間欠的に照射しながら連続体8を走査することで、連続する複数の単位切断部38を形成して、連続体8を第1部分と第2部分とに分断するようにレーザ走査部4を制御する。各単位切断部38は、第1部分と第2部分との境界に沿って延びる主線部44と、主線部44の端部から屈折して延びる屈折部46と、を有する。
 単位切断部38に屈折部46を設けることで、隣り合う2つの単位切断部38が隣接方向と交わる方向にずれた場合であっても、屈折部46どうしを交差させることで2つの単位切断部38を連続させることができる。これにより、第1部分および第2部分の切断部におけるバリの発生を抑制することができるため、電極板の切断品質の低下を抑制することができる。よって、二次電池の品質を維持しながら、生産リードタイムやスループットの向上を図ることができる。
 また、本実施の形態の連続体8は、搬送方向Aに長い帯状であり、連続体8における搬送方向Aと直交する幅方向Bの中央部に設けられる電極活物質の塗布部14と、連続体8における幅方向Bの端部に配置される電極活物質の非塗布部16と、を有する。制御部6は、少なくとも非塗布部16を切断して搬送方向Aに所定の間隔をあけて配置される複数のタブ部12を形成するようレーザ走査部4を制御する。そして、少なくとも一部の屈折部46は、幅方向Bの外側に向かって延びる。これにより、屈折部46によって電極板10の端部が切り欠かれることを抑制することができる。
(実施の形態2)
 実施の形態2は、タブ部12が複数の単位切断部38で形成される点を除き、実施の形態1と共通の構成を有する。以下、本実施の形態について実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 図3は、実施の形態2における単位切断部38の形状を示す模式図である。図3に示すように、本実施の形態では、タブ部12が複数の単位切断部38によって縁取りされている。具体的には、2つの略L字状の単位切断部38と、1つの直線状の単位切断部38とによってタブ部12が形成される。L字状の単位切断部38は、搬送方向Aに延在する部分と幅方向Bに延在する部分とを有し、幅方向Bに延在する部分がタブ部12の側部を構成する。搬送方向Aに延在する部分は、接続領域42の一部を構成する。また、直線状の単位切断部38によって、タブ部12の搬送方向Aに延在する頂部が形成される。
 L字状の単位切断部38と直線状の単位切断部38とは、それぞれ両端部に屈折部46を有する。そして、L字状の単位切断部38における幅方向外側の端部に設けられた屈折部46と、直線状の単位切断部38の屈折部46とが交差することで、これらの単位切断部38が連続する。L字状の単位切断部38における反対側の端部に設けられた屈折部46は、接続領域42を構成する直線状の単位切断部38の屈折部46と交差する。
 搬送方向Aで隣り合う2つのタブ部12をつなぐ接続領域42に位置する単位切断部38では、屈折部46が幅方向Bの外側に向かって延びる。これにより、屈折部46によって電極板10の端部が切り欠かれることを抑制できる。一方、タブ部12の幅方向Bの頂部に位置する単位切断部38では、屈折部46が幅方向Bの内側に向かって延びる。これにより、屈折部46によって廃材部28が切断されてしまうことを回避することができる。廃材部28の切断を回避できることで、廃材部28が製品部26から分離されずに製品部26とともに搬送されてしまうことを回避することができる。なお、例えば廃材部28の幅や厚みが大きい、強度が高い材質であるといった理由で、廃材部28が切断されない状態が得られるのであれば、タブ部12の頂部に位置する屈折部46を幅方向Bの外側に向けてもよい。
 以上、本開示の実施の形態について詳細に説明した。前述した実施の形態は、本開示を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本開示の技術的範囲を限定するものではなく、請求の範囲に規定された本開示の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本開示の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
 各実施の形態では、第1部分は製品部26であり第2部分は廃材部28であるが、これに限らず、例えば第1部分および第2部分はそれぞれ電極板10であってもよい。また、連続体8は、電極板10とセパレータとが積層された状態のものであってもよい。また、非塗布部16は、連続体8の片側のみに設けられてもよい。
 上述した実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 複数の電極板(10)の連続体(8)を搬送し、
 レーザ光(L)を間欠的に照射しながら連続体(8)を走査することで、連続する複数の単位切断部(38)を形成して連続体(8)を第1部分と第2部分とに分断することを含み、
 単位切断部(38)は、第1部分および第2部分の境界に沿って延びる主線部(44)と、主線部(44)の端部から屈折して延びる屈折部(46)と、を有する、
切断方法。
 本開示は、切断装置および切断方法に利用することができる。
 1 切断装置、 2 搬送部、 4 レーザ走査部、 6 制御部、 8 連続体、 10 電極板、 12 タブ部、 14 塗布部、 16 非塗布部、 38 単位切断部、 42 接続領域、 44 主線部、 46 屈折部。

Claims (5)

  1.  複数の電極板の連続体を搬送する搬送部と、
     レーザ光で前記連続体を走査するレーザ走査部と、
     前記レーザ走査部を制御する制御部と、を備え、
     前記制御部は、レーザ光を間欠的に照射しながら前記連続体を走査することで、連続する複数の単位切断部を形成して、前記連続体を第1部分と第2部分とに分断するように前記レーザ走査部を制御し、
     前記単位切断部は、前記第1部分および前記第2部分の境界に沿って延びる主線部と、前記主線部の端部から屈折して延びる屈折部と、を有する、
    切断装置。
  2.  前記主線部は直線状であり、
     前記屈折部は、前記主線部が延びる方向と交わる方向に延びる、
    請求項1に記載の切断装置。
  3.  前記連続体は、搬送方向に長い帯状であり、前記連続体における前記搬送方向と直交する幅方向の中央部に配置される電極活物質の塗布部と、前記連続体における前記幅方向の端部に配置される前記電極活物質の非塗布部と、を有し、
     前記制御部は、少なくとも前記非塗布部を切断して前記搬送方向に所定の間隔をあけて配置される複数のタブ部を形成するよう前記レーザ走査部を制御し、
     少なくとも一部の前記屈折部は、前記幅方向の外側に向かって延びる、
    請求項1または2に記載の切断装置。
  4.  前記搬送方向で隣り合う2つの前記タブ部をつなぐ接続領域に位置する前記単位切断部では、前記屈折部が前記幅方向の外側に向かって延び、
     前記タブ部の前記幅方向の頂部に位置する前記単位切断部では、前記屈折部が前記幅方向の内側に向かって延びる、
    請求項3に記載の切断装置。
  5.  複数の電極板の連続体を搬送し、
     レーザ光を間欠的に照射しながら前記連続体を走査することで、連続する複数の単位切断部を形成して、前記連続体を第1部分と第2部分とに分断することを含み、
     前記単位切断部は、前記第1部分および前記第2部分の境界に沿って延びる主線部と、前記主線部の端部から屈折して延びる屈折部と、を有する、
    切断方法。
PCT/JP2021/009540 2020-03-11 2021-03-10 切断装置および切断方法 WO2021182515A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/911,005 US20230088137A1 (en) 2020-03-11 2021-03-10 Cutting device and cutting method
CN202180019663.6A CN115280542A (zh) 2020-03-11 2021-03-10 切断装置以及切断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041883A JP7153682B2 (ja) 2020-03-11 2020-03-11 切断装置および切断方法
JP2020-041883 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182515A1 true WO2021182515A1 (ja) 2021-09-16

Family

ID=77672071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009540 WO2021182515A1 (ja) 2020-03-11 2021-03-10 切断装置および切断方法

Country Status (4)

Country Link
US (1) US20230088137A1 (ja)
JP (1) JP7153682B2 (ja)
CN (1) CN115280542A (ja)
WO (1) WO2021182515A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230294211A1 (en) * 2021-09-30 2023-09-21 Contemporary Amperex Technology Co., Limited Die-cutting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555852B (zh) 2021-06-30 2023-06-30 宁德时代新能源科技股份有限公司 极片成型方法及设备
CN116160129A (zh) * 2023-04-25 2023-05-26 深圳吉阳智能科技有限公司 一种多激光极耳成型装置及工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316152A (ja) * 1997-05-19 1998-12-02 Kishimoto Akira 易引き裂き部を有する軟包材の製法
JP2002263876A (ja) * 1993-06-04 2002-09-17 Seiko Epson Corp レーザ加工装置及びレーザ加工方法
JP2007507870A (ja) * 2003-09-30 2007-03-29 日立ビアメカニクス株式会社 ガスレーザー装置の動作方法
WO2017119011A1 (ja) * 2016-01-06 2017-07-13 オー・エム・シー株式会社 タブ付き電極シートの製造方法とその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263876A (ja) * 1993-06-04 2002-09-17 Seiko Epson Corp レーザ加工装置及びレーザ加工方法
JPH10316152A (ja) * 1997-05-19 1998-12-02 Kishimoto Akira 易引き裂き部を有する軟包材の製法
JP2007507870A (ja) * 2003-09-30 2007-03-29 日立ビアメカニクス株式会社 ガスレーザー装置の動作方法
WO2017119011A1 (ja) * 2016-01-06 2017-07-13 オー・エム・シー株式会社 タブ付き電極シートの製造方法とその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230294211A1 (en) * 2021-09-30 2023-09-21 Contemporary Amperex Technology Co., Limited Die-cutting device

Also Published As

Publication number Publication date
US20230088137A1 (en) 2023-03-23
CN115280542A (zh) 2022-11-01
JP7153682B2 (ja) 2022-10-14
JP2021144824A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021182515A1 (ja) 切断装置および切断方法
US20200406401A1 (en) Method for producing battery electrodes
CN110730702B (zh) 用于将特别用于电池的电极的带类型基底高生产量切割成分离的块的方法和装置
JP2017084691A (ja) 電極シートの製造方法、及び電極シート
JP6690486B2 (ja) 電極製造装置
CN112955275B (zh) 切割连续电池电极材料以制造电池电极的方法和电池电极
US20180277816A1 (en) Electrode assembly and method of manufacturing electrode assembly
WO2010095671A1 (ja) 太陽電池パネルのレーザ加工方法
JP6806057B2 (ja) 切断装置
JP2015188908A (ja) 切断装置及び電極の製造方法
US20160288261A1 (en) Welding method
US20210210788A1 (en) Electric storage device and method of manufacturing electrode unit
KR101429854B1 (ko) 벌크화 공정을 이용한 알루미늄 시트의 마찰교반 용접방법
US20170012262A1 (en) Cutting method
JP6191646B2 (ja) 溶接方法
JP6848876B2 (ja) 電極シート製造装置、及び電極シートの製造方法
WO2021261254A1 (ja) 切断装置および切断方法
CN115483367A (zh) 用于制造电池电极的方法
JP7452092B2 (ja) レーザ加工装置、レーザ加工方法、およびレーザ加工装置の制御方法
US20230364710A1 (en) Laser processing device
US20240009767A1 (en) Laser processing device
JP2008130590A (ja) 複合処理装置、及び、複合処理方法
US20230216018A1 (en) Method and system for manufacturing electrode
KR102649478B1 (ko) 2차전지 전극판의 디버링 장치 및 그 방법
JP6565637B2 (ja) 電極製造装置及び電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766855

Country of ref document: EP

Kind code of ref document: A1