WO2021181885A1 - 眼鏡レンズ - Google Patents

眼鏡レンズ Download PDF

Info

Publication number
WO2021181885A1
WO2021181885A1 PCT/JP2021/001521 JP2021001521W WO2021181885A1 WO 2021181885 A1 WO2021181885 A1 WO 2021181885A1 JP 2021001521 W JP2021001521 W JP 2021001521W WO 2021181885 A1 WO2021181885 A1 WO 2021181885A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light
convex
refractive power
convex region
Prior art date
Application number
PCT/JP2021/001521
Other languages
English (en)
French (fr)
Inventor
祁 華
Original Assignee
ホヤ レンズ タイランド リミテッド
祁 華
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 祁 華 filed Critical ホヤ レンズ タイランド リミテッド
Priority to CN202180009068.4A priority Critical patent/CN115053171B/zh
Priority to EP21768553.6A priority patent/EP4120007A4/en
Priority to US17/909,082 priority patent/US20230083468A1/en
Priority to JP2022505804A priority patent/JP7488328B2/ja
Priority to KR1020227021697A priority patent/KR20220100074A/ko
Publication of WO2021181885A1 publication Critical patent/WO2021181885A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the present invention relates to a spectacle lens.
  • a spectacle lens that suppresses the progress of refractive error such as myopia
  • a lens having a convex surface that is a surface on the object side and having a curved surface different from the convex surface and having a plurality of convex regions protruding from the convex surface.
  • the luminous flux incident from the surface on the object side and emitted from the surface on the eyeball side basically focuses on the retina of the wearer, but the luminous flux passing through the convex region portion. Is focused at a position closer to the object than on the retina, which suppresses the progression of myopia.
  • the invention described in Patent Document 1 is to suppress the progression of myopia by concentrating the light flux passing through a plurality of convex regions, which is the second refraction region, in front of the retina.
  • the present inventor has reexamined the mechanism by which the invention described in Patent Document 1 exerts the effect of suppressing the progression of myopia.
  • accommodation lag theory As a mechanism of myopia progression. In near vision, the accommodation power that the eyeball actually exerts may be insufficient where the accommodation power that the eyeball should normally exert is insufficient. This lack of accommodation power is the accommodation lag.
  • the eye does not have a sensor that directly detects whether the image is in the back or in front of the retina.
  • the accommodation lag theory there must be some mechanism in humans to detect changes in the image on the retina.
  • One possibility of the mechanism is to detect a change in the image due to accommodation tremor.
  • the luminous flux from the object is incident on the retina as a convergent luminous flux.
  • the accommodation of the crystalline lens in the eyeball is loosened (the ciliary body is loosened and the crystalline lens becomes thin)
  • the image moves further back and the size of the photospot on the retina increases.
  • the regulation is strengthened (the ciliary body becomes tense and the crystalline lens becomes thicker), the size of the light spot on the retina becomes smaller. It is considered that there is a mechanism in which myopia progresses by detecting changes in the size of the light spot due to accommodative tremor by information processing by the optic nerve and the subsequent cortex, and issuing a signal that promotes eyeball growth.
  • the "light spot” in the present specification is an image in which the light of an object point is formed on the retina through a part of the spectacle lens and the eyeball optical system. (In the case of defocus) is the distribution of light with magnitude.
  • Another possibility of the mechanism for detecting changes in the image on the retina is the detection of the light density of light spots.
  • the progression of myopia is suppressed by utilizing the perception of the change in the size (or the change in the amount of light density) of the light spot on the retina at the object point due to the accommodation tremor. doing. That is, it is considered that the larger the amount of change in the size of the light spot or the amount of change in the light amount density per predetermined eyeball adjustment amount, the higher the effect of suppressing the progression of myopia (viewpoint 1).
  • the luminous flux from the object is incident on the retina as a convergent luminous flux.
  • the wave plane of light formed by the convergent luminous flux is called the convergent wave plane. That is, according to the above accommodation lag theory, myopia progresses when the wave plane incident on the retina is a convergent wave plane.
  • a second refraction region is provided in the spectacle lens, and a light flux passing through the second refraction region is placed in front of the retina in addition to the focal point at which the light flux passing through the first refraction region converges. It is converging.
  • the fact that the luminous flux passing through the second refraction region converges in front of the retina means that the divergent wave plane is incident on the retina.
  • the radiant light flux is increased in order to increase the change in the size (or light intensity density) of the light spot per predetermined eyeball adjustment amount while incident the radiant luminous flux on the retina. This leads to an improvement in the effect of suppressing the progression of myopia.
  • the size (example: diameter) or the refractive power (power) of the convex region referred to in Patent Document 1 may be increased.
  • An embodiment of the present invention aims to provide a technique for improving the effect of suppressing the progression of myopia while maintaining the wearing feeling of a spectacle lens.
  • the present inventor has made diligent studies to solve the above problems. The following is a discussion of the diligent study.
  • the spectacle lens of the prescription power and the eyeball are considered as one optical system.
  • the luminous flux passing through the base region is focused on the position A on the retina.
  • the luminous flux that passes through the convex region in the incident luminous flux is incident as divergent light at the position A on the retina and forms a light spot on the retina.
  • the convex region (more broadly referred to as a defocus region, which will be described in detail later) refers to a protruding portion on the lens surface and divergent light at a position A on the retina even if there is no protrusion on the surface. This includes the case where the light spot is formed on the retina when the light is incident on the retina.
  • FIG. 1 shows that when the spectacle lens of the prescribed power and the eyeball are considered as one optical system, the incident luminous flux from an infinite object passes through one convex region of the spectacle lens and is incident on the retina. It is a schematic side view which shows the state.
  • the larger the declination ⁇ 0 the larger the absolute value of the height h 1.
  • the upper declination ⁇ 0 is not a constant value.
  • the maximum value of the declination ⁇ 0 ie, ⁇ 0 max ) provided by the convex region determines the radius of the light spot on the retina. In order to increase ⁇ 0max, it is effective to increase the degree of defocusing from the position A on the retina to the front side, and for that purpose, it is effective to increase the refractive power.
  • the first aspect of the present invention is A base region in which the luminous flux incident from the surface on the object side is emitted from the surface on the eyeball side and converges to the position A on the retina via the eye.
  • a plurality of defocus regions that are in contact with the base region and have a property that a light flux passing through at least a part of the defocus region is incident on the position A as divergent light.
  • a spectacle lens in which the refractive power increases in the direction from the central portion to the peripheral portion in at least a part of the defocus region.
  • the second aspect of the present invention is the aspect described in the first aspect.
  • the light emitted from the spectacle lens that has passed through the defocus region is the light that has passed through a virtual lens in which positive spherical aberration is added to a spherical lens having a focal length equivalent to that of the central portion of the defocus region. It is in the same state.
  • a third aspect of the present invention is the aspect described in the first or second aspect.
  • the maximum light density of the light spot when it is incident on the position A as divergent light is higher at the position on the object side than at the position A than at the position A.
  • a fourth aspect of the present invention is the aspect described in any one of the first to third aspects.
  • the refractive power in the central portion of the defocus region is a positive value from the refractive power in the base region.
  • a fifth aspect of the present invention is the aspect described in any one of the first to fourth aspects.
  • the spectacle lens is a myopia progression suppressing lens.
  • the defocus area is a convex area.
  • the convex regions are arranged independently and discretely so that the center of each convex region becomes the apex of an equilateral triangle (the center of each convex region is arranged at the apex of the honeycomb structure). For example.
  • the refractive power When increasing the refractive power in the direction from the central portion to the peripheral portion, the refractive power may be increased from the center of the convex region in a plan view to the peripheral portion (root), or off the center (that is, predetermined from the center).
  • the refractive power may be increased (from a distance). Further, the mode of increase may or may not be monotonous increase.
  • the amount of increase in the refractive power is not limited, but may be in the range of 1.0 to 8.0D, for example, or the refractive power is increased to 1.1 to 3.0 times the refractive power in the central portion. You may.
  • the diameter of the convex region is preferably about 0.6 to 2.0 mm.
  • the protruding height (protruding amount) of the convex region is preferably about 0.1 to 10 ⁇ m, preferably about 0.7 to 0.9 ⁇ m. It is preferable that the refractive power of the central portion of the convex region is set to be about 2.00 to 5.00 diopters larger than the refractive power of the region where the convex region is not formed. It is preferable that the portion having the largest refractive power in the peripheral portion of the convex region is set to be about 3.50 to 20 diopters larger than the refractive power of the region in which the convex region is not formed.
  • FIG. 1 shows that when the spectacle lens of the prescribed power and the eyeball are considered as one optical system, the incident luminous flux from an infinite object passes through one convex region of the spectacle lens and is incident on the retina.
  • FIG. 2 shows that when the spectacle lens having a prescription power and the eyeball are considered as one optical system, the incident luminous flux from an object at infinity covers each of a plurality of convex regions of the spectacle lens of one aspect of the present invention.
  • FIG. 3A is a schematic plan view showing how the convex regions are discretely arranged in the pupil diameter in a honeycomb structure
  • FIG. 3B is a schematic plan view in which three of the convex regions are enlarged. It is a figure.
  • FIG. 4 is a plot of Example 1 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 5 is a plot of Example 1 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 6 is a plot of Example 1 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • FIG. 4 is a plot of Example 1 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 5 is a plot of Example 1 when
  • FIG. 7 is a plot of Example 2 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 8 is a plot of Example 2 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 9 is a plot of Example 2 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • FIG. 10 (a) is a schematic plan view showing how the convex regions are discretely arranged in the pupil diameter in a honeycomb structure, and FIG.
  • FIG. 10 (b) is a schematic plan view in which three of the convex regions are enlarged. It is a figure.
  • FIG. 11 is a plot of Example 3 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 12 is a plot of Example 3 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 13 is a plot of Example 3 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • FIG. 11 is a plot of Example 3 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 12 is a plot of Example
  • FIG. 14 is a plot of Example 4 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 15 is a plot of Example 4 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 16 is a plot of Example 4 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • FIG. 17 is an explanatory diagram of PSF calculation.
  • the spectacle lens mentioned in the present specification has a surface on the object side and a surface on the eyeball side.
  • the "object-side surface” is the surface located on the object side when the spectacles equipped with the spectacle lens are worn by the wearer, and the "eyeball-side surface” is the opposite, that is, the spectacle lens is provided. This is the surface located on the eyeball side when the spectacles are worn by the wearer.
  • This relationship also applies to the lens substrate on which the spectacle lens is based. That is, the lens base material also has a surface on the object side and a surface on the eyeball side.
  • the spectacle lens according to one aspect of the present invention is as follows. "A base region in which the luminous flux incident from the surface on the object side is emitted from the surface on the eyeball side and converges to the position A on the retina via the eye. A plurality of defocus regions that are in contact with the base region and have a property that a light flux passing through at least a part of the defocus region is incident on the position A as divergent light. An spectacle lens in which the refractive power increases in the direction from the central portion to the peripheral portion in at least a part of the defocus region. "
  • the base region is a portion having a shape capable of realizing the prescription power of the wearer, and is a portion corresponding to the first refraction region of Patent Document 1.
  • the defocus area is an area in which at least a part of the area is not focused at the focusing position by the base region.
  • the convex region in one aspect of the present invention is included in the defocus region.
  • the convex region is a portion corresponding to the minute convex portion of Patent Document 1.
  • the spectacle lens according to one aspect of the present invention is a myopia progression suppressing lens like the spectacle lens described in Patent Document 1. Similar to the micro-convex portion of Patent Document 1, the plurality of convex regions according to one aspect of the present invention may be formed on at least one of the object-side surface and the eyeball-side surface of the spectacle lens. In the present specification, a case where a plurality of convex regions are provided only on the surface of the spectacle lens on the object side is mainly illustrated.
  • the defocus power exerted by the defocus region refers to the difference between the refractive power of each defocus region and the refractive power of the portion other than each defocus region.
  • the "defocus power” is the difference obtained by subtracting the refractive power of the base portion from the average value of the minimum refractive power and the maximum refractive power of a predetermined portion of the defocus region.
  • the convex region in one aspect of the present invention has a property that a light flux passing through at least a part of the convex region is incident on the position A on the retina as divergent light.
  • the "divergent light” is a divergent luminous flux (a luminous flux having a divergent wave surface) described in the section of the subject of the present invention. No matter which part of the convex region the luminous flux passes through, the luminous flux may be incident on the position A on the retina as divergent light, or when the luminous flux passes through a part of the convex region, the luminous flux is divergent light on the retina. It may be incident on the upper position A.
  • the refractive power is increased in the direction from the central portion to the peripheral portion.
  • ⁇ 0max it is effective to increase the refractive power in the convex region.
  • one aspect of the present invention adopts a configuration in which the refractive power is increased in the direction from the central portion to the peripheral portion.
  • the "refractive power" in the present specification is an average value of the refractive power in the direction a where the refractive power is the minimum and the refractive power in the direction b (the direction perpendicular to the direction a) where the refractive power is maximum.
  • the refractive power of the central portion refers to the apex refractive power at the center of the plan view, for example, when the convex region is a small ball-shaped segment as in one aspect of the present invention.
  • the central portion refers to the center of the convex region in a plan view (or the center of gravity; hereinafter, the description of the center of gravity is omitted) or a portion near the center.
  • plan view is omitted in the convex region, and unless otherwise specified, it means a plan view shape.
  • the peripheral portion refers to a portion in the convex region near the boundary with the base region (the root of the convex region). That is, the closer to the root portion of the convex region of one aspect of the present invention, the greater the curvature of the convex region. Thereby, ⁇ 0max can be increased.
  • the "direction from the central portion to the peripheral portion” refers to the direction from the center to the root of the convex region in a plan view, that is, the radial direction.
  • the radiant light flux can be increased while the divergent luminous flux is incident on the retina without increasing the size of the convex region.
  • the effect of suppressing the progression of myopia can be improved while maintaining the wearing feeling of the spectacle lens.
  • the circular region is mentioned as the plan view shape of the convex region, but the present invention is not limited to this, and an elliptical region may be used.
  • a region having another shape for example, a rectangle
  • a circular region or an elliptical region is preferable because an unintended aberration or stray light may occur due to the shape.
  • the refractive power When increasing the refractive power in the direction from the central portion to the peripheral portion, the refractive power may be increased from the center of the convex region in a plan view to the peripheral portion (root), or off the center (that is, predetermined from the center).
  • the refractive power may be increased (from a distance). Further, the mode of increase may or may not be monotonous increase.
  • the amount of increase in the refractive power is not limited, but may be in the range of 1.0 to 8.0D, for example, or the refractive power is increased to 1.1 to 3.0 times the refractive power in the central portion. You may.
  • the light emitted from the spectacle lens through the convex region is in the same state as the light passing through the virtual lens to which positive spherical aberration is added to the spherical lens having the same focal length as the central part of the convex region. Is preferable.
  • the degree of radiant light flux incident on the position A on the retina can be increased, so that the change in the size (or light intensity density) of the light spot per predetermined eyeball adjustment amount is large. can. From this point of view, it is preferable to adopt the following configuration.
  • the maximum light density of the light spot when it is incident on the position A as divergent light is higher at the position on the object side than at the position A than at the position A. This means that the luminous flux passing through the convex region is divergent light.
  • the refractive power in the central part of the convex region may be the same as the refractive power in the base region, but is preferably a positive value than the refractive power in the base region.
  • the refractive power at the center of the convex region is a positive value from the refractive power of the base region. Is preferable.
  • the refractive power in the central portion is originally set high, so that the refractive power can be further increased in the peripheral portion.
  • ⁇ 0max can be increased, the height h 1 can be increased, and the radiant emission degree of the divergent luminous flux can be increased.
  • the refractive power increases in the direction from the central portion to the peripheral portion may be the entire convex region or only a part of the convex region. In the case of only a part of the convex region, it may be a peripheral portion surrounding the central portion of the convex region, or may be only a part of the peripheral portion.
  • the refractive power may be increased at the peripheral portion of the annulus up to the front of the root of the convex region, while the refractive power may be constant or decreased at the peripheral portion of the annulus near the root.
  • ⁇ 0 max can be increased, the height h 1 can be increased, and the radiant light flux can be increased. You can make it bigger.
  • ⁇ 0max is naturally likely to be increased as compared with the case where the refractive power is increased in only a part of the peripheral portion, which is preferable.
  • the boundary between the peripheral portion and the base region is the portion where the dioptric power starts to change from the base region.
  • the three-dimensional shape of the convex region is not limited as long as it adopts an aspherical shape that increases the refractive power at least at the root. Furthermore, there is no limitation on the three-dimensional shape of the convex region as long as the situation where the divergent wave surface is incident on the retina can be generated. As in one aspect of the present invention, the convex region may be composed of a curved surface, or may be composed of a discontinuous surface other than the curved surface.
  • the central portion of the convex region may have a spherical shape, while the other portion may have an aspherical curved surface shape.
  • the portion where the spherical shape changes to the aspherical curved surface shape becomes the boundary between the central portion and the peripheral portion.
  • the entire convex region may have an aspherical curved surface shape.
  • a boundary between the central portion and the peripheral portion may be provided at a portion of 1/3 to 2/3 of the radius in a plan view.
  • the rate of change in the area or radius of the light spot on the retina with respect to the change in the amount of regulation, or the rate of change in the (average or maximum) light density of the light spot on the retina with respect to the change in the amount of regulation. Can be considered. From [Equation 1] mentioned in the column of the means of the present invention, the diameter R PSF of the light spot on the retina and the area S PSF of the light spot can be obtained as follows.
  • PSF is a point spread function (Point Spread Function), which is a parameter obtained by adopting the ray tracing method.
  • the PSF is obtained by tracing a large number of rays emitted from a point light source and calculating the light density of light spots on any surface. Then, the PSFs of the plurality of arbitrary surfaces are compared to specify the position (plane) where the light beam is most focused among the plurality of arbitrary surfaces.
  • the diameter of the light beam may be set based on the pupil diameter, and may be, for example, 4 mm ⁇ .
  • the refractive power of the human eye is not constant, and it constantly adjusts and finely moves to find the optimum focus position.
  • the size of the light spots in the convex region also changes due to accommodation fine movements.
  • the refractive power of the optical system combined spectacle lens and the eyeball assuming that becomes a value obtained by adding the amount of power A of adjusted P eye, [Expression 2] [Equation 3] is It is expressed as the following [Equation 4] and [Equation 5].
  • the formula for the above area is a formula when the light spots due to the convex region are circular.
  • the light spots may be distributed in a ring shape or another shape, but the formula in that case may be set according to the shape of the light spots.
  • the formula for the light intensity density may also be set individually according to the shape design of the convex region.
  • the maximum declination ⁇ 0max differs depending on the individual shape design, and the size and light amount distribution on the retinal light spot also differ.
  • the shape of the minute convex portion is spherical and the aberration is not considered, the light spot on the retina is circular and the light amount is evenly distributed, so that the light amount density can be easily calculated.
  • the shape of the light spot on the retina may change as compared with the case of Patent Document 1, and the amount of light may not be evenly distributed.
  • the rate of change with respect to the adjustment of the light spot area can be obtained as it is.
  • the light intensity density for example, the average light intensity density of the entire light spot or the maximum light intensity density in the light spot may be obtained, and the rate of change with respect to the adjustment may be used as an evaluation index of the myopia progression suppressing effect.
  • FIG. 2 shows that when the spectacle lens having a prescription power and the eyeball are considered as one optical system, the incident luminous flux from an object at infinity covers each of a plurality of convex regions of the spectacle lens of one aspect of the present invention. It is a schematic side view which shows the state of passing through and incident on the retina.
  • the center positions of the light spots in all the convex regions match, and the compound image cannot be seen.
  • the surface shapes of all the convex regions are the same, the light spots are completely aligned and overlapped on the retina.
  • the refractive power A for adjustment is applied, the centers of the light spots are offset and overlap along each main ray.
  • the amount of deviation is proportional to the spacing of the convex regions.
  • the effect of suppressing myopia is calculated by calculating the size of the light spots formed by adding up the light spots of all the convex regions while shifting, the rate of change due to the adjustment of the area, or the rate of change due to the adjustment of the average value or the maximum value of the light intensity density. You can evaluate it.
  • the mode of arranging the plurality of convex regions is not particularly limited, and for example, from the viewpoint of visibility from the outside of the convex region, designability given by the convex region, refractive power adjustment by the convex region, and the like. Can be decided.
  • Approximately circular convex regions may be arranged in an island shape (that is, separated from each other without being adjacent to each other) at equal intervals in the circumferential direction and the radial direction around the center of the lens.
  • the convex regions are arranged independently and discretely so that the center of each convex region becomes the apex of an equilateral triangle (the center of each convex region is arranged at the apex of the honeycomb structure). For example.
  • one aspect of the present invention is not limited to the content described in Patent Document 1. That is, the convex regions are not limited to being separated from each other without being adjacent to each other, and may be in contact with each other, or a non-independent arrangement such as a string of beads may be adopted.
  • Each convex region is configured as follows, for example.
  • the diameter of the convex region is preferably about 0.6 to 2.0 mm.
  • the protruding height (protruding amount) of the convex region is preferably about 0.1 to 10 ⁇ m, preferably about 0.7 to 0.9 ⁇ m.
  • the refractive power of the central portion of the convex region is set to be about 2.00 to 5.00 diopters larger than the refractive power of the region where the convex region is not formed.
  • the portion having the largest refractive power in the peripheral portion of the convex region is set to be about 3.50 to 20 diopters larger than the refractive power of the region in which the convex region is not formed.
  • the lens base material is formed of, for example, a thermosetting resin material such as thiourethane, allyl, acrylic, or epithio.
  • a thermosetting resin material such as thiourethane, allyl, acrylic, or epithio.
  • the resin material constituting the lens base material another resin material capable of obtaining a desired refractive index may be selected.
  • the lens base material may be made of inorganic glass instead of the resin material.
  • the hard coat film is formed by using, for example, a thermoplastic resin or a UV curable resin.
  • the hard coat film can be formed by immersing the lens base material in the hard coat liquid, or by using a spin coat or the like. The coating of such a hard coat film makes it possible to improve the durability of the spectacle lens.
  • the antireflection film is formed by, for example, forming an antireflection agent such as ZrO 2 , MgF 2 , Al 2 O 3 by vacuum vapor deposition. By covering with such an antireflection film, the visibility of the image through the spectacle lens can be improved.
  • a plurality of convex regions are formed on the object-side surface of the lens base material. Therefore, when the surface is covered with the hard coat film and the antireflection film, a plurality of convex regions are formed by the hard coat film and the antireflection film as well as the convex regions in the lens base material.
  • the lens base material is molded by a known molding method such as cast polymerization.
  • a lens base material having a convex region on at least one surface can be obtained by molding by casting polymerization using a molding mold having a molding surface provided with a plurality of concave portions.
  • a hard coat film is formed on the surface of the lens base material.
  • the hard coat film can be formed by immersing the lens base material in the hard coat liquid, or by using a spin coat or the like.
  • an antireflection film is further formed on the surface of the hard coat film.
  • the hard coat film can be formed by forming an antireflection agent by vacuum vapor deposition.
  • the film thickness of the coating film formed through the above steps may be, for example, in the range of 0.1 to 100 ⁇ m (preferably 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m).
  • the film thickness of the coating film is determined according to the function required for the coating film, and is not limited to the range illustrated in.
  • coatings on the coating.
  • examples of such a coating include various coatings such as an antireflection film, a water-repellent or hydrophilic antifouling film, and an anti-fog film.
  • Known techniques can be applied to the method of forming these coatings.
  • the following spectacle lenses were produced.
  • the spectacle lens is composed of only the lens base material, and is not laminated with other substances on the lens base material.
  • S spherical power
  • C astigmatism power
  • -Diameter of the lens base material in a plan view 100 mm -Type of lens base material: PC (polycarbonate) -Refractive index of lens base material: 1.589 -Refractive power in the base region of the lens substrate: 0.00D -Convex region formation surface: Surface on the object side-Convex region formation range: Within a circle with a radius of 20 mm from the center of the lens (however, a regular hexagonal shape with a circle with a radius of 3.8 mm from the center of the lens as the inscribed circle) Excludes the area of) -Shape of convex region in plan view: Perfect circle (1.2 mm in diameter) -Diameter of the central part of the convex region: 0.3 mm -Refractive power at the center of the convex region: Same as the refractive power of the base region-Declination at the base of the convex region (near the boundary with the base region): 7.22 minutes (refraction when the convex region is sp
  • FIG. 3A is a schematic plan view showing how the convex regions are discretely arranged in the pupil diameter in a honeycomb structure
  • FIG. 3B is a schematic plan view in which three of the convex regions are enlarged. It is a figure.
  • FIG. 4 is a plot of Example 1 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 5 is a plot of Example 1 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 6 is a plot of Example 1 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • the visual angle is the angle between the gaze line and the straight line connecting the object points other than the gaze line and the entrance pupil of the eyeball.
  • the distance between the image of the object point on the retina and the fovea centralis on the retina is proportional to the viewing angle. Therefore, the horizontal axis of the PSF is often the viewing angle instead of the position on the retina.
  • the plot shown in FIG. 4 is an argument curve.
  • the central portion of the convex region is set to 0.00D, which is the same as the refractive power of the base region, and the gradient of the declination curve is zero within the region having a diameter of 0.3 mm, which is the central portion.
  • the declination gradually increases and reaches ⁇ 0max at the boundary with the base region.
  • the function is represented by the following [Equation 8].
  • the plot shown in FIG. 5 is the cross-sectional power. This is the gradient (derivative) of the declination curve and is represented by the following [Equation 9].
  • [Equation 8] and [Equation 9] indicate that the refractive power increases from the boundary between the central portion and the peripheral portion to the boundary between the peripheral portion and the base region.
  • the light intensity density is very high when the viewing angle is zero within 14.44 minutes between the viewing angles.
  • the light intensity density at zero viewing angle is formed by the luminous flux in the central portion of the convex region having a diameter of 0.3 mm. This region, together with the base region other than the convex region, realizes the prescription power and forms an image at position A on the retina.
  • Example 2 An spectacle lens different from that of Example 1 was produced in the following points. The same applies to Example 1 except for the following points. -Diameter of the central part of the convex region: 0.6 mm -Refractive power at the center of the convex region: Refractive power in the base region + 2.50D
  • FIG. 7 is a plot of Example 2 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 8 is a plot of Example 2 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 9 is a plot of Example 2 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • the central portion of the convex region has a refractive power of + 2.50D in the base region, and the gradient increases in the peripheral portion.
  • the argument change function and the cross-sectional power change function are represented by the following [Equation 10] and [Equation 11], respectively.
  • [Equation 10] and [Equation 11] indicate that the refractive power increases from the boundary between the central portion and the peripheral portion to the boundary between the peripheral portion and the base region.
  • the light intensity density is uniformly distributed between the viewing angles of 14.44 minutes and the central portion of 5.16 minutes, and the outer light intensity density is slightly reduced.
  • the convex region an aspherical surface in which the refractive power increases from the center to the periphery, light is greatly dispersed in the periphery and the light spots become large, and the size of the light spots changes significantly during adjustment fine movement, which suppresses the progression of myopia. The effect is brought about.
  • Example 1 When Example 1 and Example 2 are compared, the central portion of the convex region of Example 1 has the same power as the base region and does not have the myopia progression suppressing function, and the other portions exhibit the myopia progression suppressing function. On the other hand, in Example 2, the function of suppressing the progression of myopia is exhibited in the entire convex region.
  • Example 3 An spectacle lens different from that of Example 1 was produced in the following points. The same applies to Example 1 except for the following points.
  • FIG. 10 (a) is a schematic plan view showing how the convex regions are discretely arranged in the pupil diameter in a honeycomb structure
  • FIG. 10 (b) is a schematic plan view in which three of the convex regions are enlarged. It is a figure.
  • FIG. 11 is a plot of Example 3 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 12 is a plot of Example 3 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 13 is a plot of Example 3 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • the central portion of the convex region has a refractive power (zero) of the base region, and the gradient increases outside the central portion.
  • the argument change function and the cross-sectional power change function are represented by the following [Equation 12] and [Equation 13], respectively.
  • the light intensity density is very high when the viewing angle is zero during the viewing angle of 14.44 minutes, and the spectacle lens of Example 3 can satisfactorily visually recognize the object.
  • the light intensity density increases even in the portion where the absolute value of the viewing angle is large. This is the light intensity due to the divergent light.
  • the effect of suppressing the progression of myopia is brought about.
  • the convex region is small and the interval is narrow, many of them enter the pupil, so that there is little fluctuation due to the movement of the line of sight, and the wearing feeling of the spectacles is good.
  • ⁇ Example 4> -Shape of convex region in plan view: Perfect circle (diameter 0.7 mm) -Diameter of the central part of the convex region: 0.2 mm -Declination ⁇ 0max at the base of the convex region (near the boundary with the base region): 7.22 minutes (equivalent to refractive power + 6.00D when the convex region is spherical) -Pitch between each convex region (distance between the centers of the convex regions): 0.825 mm -Number of convex regions within the pupil diameter: 19
  • FIG. 14 is a plot of Example 4 when the radial position [mm] from the center of the convex region is the X-axis and the declination ⁇ [minute] is the Y-axis.
  • FIG. 15 is a plot of Example 4 when the radial position [mm] from the center of the convex region is the X-axis and the cross-sectional power P [D] is the Y-axis.
  • FIG. 16 is a plot of Example 4 when the viewing angle [minutes] is on the X-axis and the PSF value (light density) is on the Y-axis.
  • the gradient continuously increases from the center of the convex region toward the periphery.
  • the argument change function and the cross-sectional power change function are represented by the following [Equation 14] and [Equation 15], respectively.
  • the light intensity density decreases from the center to the periphery during the 14.44 minutes between viewing angles.
  • the effect of suppressing the progression of myopia is brought about.
  • the convex region is small and the interval is narrow, many of them enter the pupil, so that there is little fluctuation due to the movement of the line of sight, and the wearing feeling of the spectacles is good.
  • the spectacles and the eyeball model are treated as one ideal optical system, and all the light rays are also calculated by paraxial approximation.
  • the actual eye optics have aberrations, which makes the situation more complicated, but the basic relationship, for example, when divergent light is incident on the retina, the direction of change in magnitude due to adjustment tremor, etc. Does not change much.
  • FIG. 17 is an explanatory diagram of PSF calculation. More specifically, in FIG. 17A, ⁇ is monotonous with respect to r increase when the radial position r from the center of the entrance pupil (that is, the center on the spectacle lens) is the X-axis and the declination ⁇ is the Y-axis.
  • An increasing explanatory plot. 17 (b) and 17 (c) are diagrams for deriving the relationship between the light density incident on the convex region and the light spot density on the retina.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Lenses (AREA)

Abstract

物体側の面から入射した光束を眼球側の面から出射させ、眼を介して網膜上の位置Aに収束させるベース領域と、ベース領域と接するデフォーカス領域であって、デフォーカス領域の少なくとも一部を通過する光束が発散光として位置Aに入射する性質を持つ複数のデフォーカス領域と、を備え、デフォーカス領域においては、中央部から周辺部に向かう方向に屈折力が増加する、眼鏡レンズ及びその関連技術を提供する。

Description

眼鏡レンズ
 本発明は、眼鏡レンズに関する。
 近視等の屈折異常の進行を抑制する眼鏡レンズとして、物体側の面である凸面に、当該凸面とは異なる曲面を有して当該凸面から突出する複数の凸状領域が形成されたものがある(例えば、特許文献1参照)。この構成の眼鏡レンズによれば、物体側の面から入射し眼球側の面から出射する光束が、原則的には装用者の網膜上に焦点を結ぶが、凸状領域の部分を通過した光束は網膜上よりも物体側寄りの位置で焦点を結ぶようになっており、これにより近視の進行が抑制されることになる。
米国出願公開第2017/0131567号
 特許文献1に記載の発明は、第2の屈折領域である複数の凸状領域を通過した光束が網膜の手前に集光することにより近視進行を抑制する、というものである。特許文献1に記載の発明が近視進行抑制効果を発揮する際のメカニズムに関し、本発明者は再度検討した。
 近視進行抑制効果のメカニズムを理解するためには、近視進行のメカニズムを理解するのが近道である。
 近視進行のメカニズムとして、調節ラグ説がある。近方視の際、本来だと眼球が所定の調節力を発揮すべきところ実際に眼球が発揮する調節力が不足する場合がある。この調節力の不足分が、調節ラグである。
 調節ラグが存在する場合、眼球(詳しく言うと瞳孔)を通過する光束が収束してなる像が網膜の奥に存在する状態が発生する。この状態だと、眼軸長の伸び(眼球成長)が促され、近視が進む。この仮説を調節ラグ説という。
 該像が網膜の奥に存在するか手前に存在するかを直接検知するセンサーは眼には無いと考えられている。その一方、調節ラグ説に則ると、網膜上の像の変化を検知する何らかの仕組みが人間に存在するはずである。
 その仕組みの一つの可能性として、調節微動による該像の変化を検知することが考えられる。
 例えば、該像が網膜の奥に存在する場合、物体からの光束が網膜において収束光束として入射している。眼球内の水晶体の調節力が緩められる(毛様体が緩められて水晶体が薄くなる)と像が更に奥に移動し、網膜の光斑のサイズが大きくなる。逆に調節が強まる(毛様体が緊張して水晶体が厚くなる)と網膜の光斑のサイズが小さくなる。調節微動による光斑の大きさの変化が視神経やその後の皮質による情報処理により検知され、眼球成長を促す信号が出され、近視が進む仕組みがあると考えられる。
 本明細書の「光斑」とは、物体点の光が眼鏡レンズの一部と眼球光学系を通して網膜にできた像のことで、ピントが合っている場合は一点になり、ピントが合わない場合(デフォーカスの場合)は大きさを持つ光の分布となる。
 網膜上の像の変化を検知する仕組みのもう一つの可能性として、光斑の光量密度の検知が挙げられる。
 照射する光量が一定の場合、光斑の面積が小さいほど、光量密度が大きい。眼球内の水晶体の調節力が緩められると像が更に奥に移動し、網膜の光斑の光量密度が低くなる。逆に調節が強まると網膜の光斑の光量密度が高くなる。調節微動による光斑光量密度の変化が視神経やその後の皮質による情報処理により検知され、眼球成長を促す信号が出され、近視が進む仕組みがあると考えられる。
 いずれの仕組みにしても、特許文献1に記載の発明のメカニズムとしては、眼球調節微動による物体点の網膜上の光斑のサイズの変化(又は光量密度変化)の知覚を利用して近視進行を抑制している。つまり、所定の眼球調節量当たりの光斑のサイズの変化量又は光量密度変化量が大きいほど、近視進行抑制効果が高いと考えられる(観点1)。
 上記調節微動で例示したように、該像が網膜の奥に存在する場合、物体からの光束が網膜において収束光束として入射している。収束光束が形成する光の波面を収束波面という。つまり、上記調節ラグ説に則れば、網膜に入射する波面が収束波面の時に近視が進行する。
 もしそうならば、逆に発散波面が網膜に入射する状況を作れば、近視進行を抑制することができる(観点2)。実際に特許文献1では、眼鏡レンズに第2の屈折領域を設け、第1の屈折領域を通過する光束が収束する焦点とは別に、第2の屈折領域を通過する光束を網膜の手前にて収束させている。第2の屈折領域を通過する光束が網膜の手前にて収束するということは、網膜に対しては発散波面が入射されることを意味する。
 上記観点1及び観点2に基づけば、網膜に発散光束を入射させつつ、所定の眼球調節量当たりの光斑の大きさ(又は光量密度)の変化を大きくすべく、該発散光束の発散度を大きくすることが、近視進行抑制効果の向上につながる。
 発散光束の発散度を大きくするには、特許文献1でいうところの凸状領域のサイズ(例:直径)又は屈折力(パワー)を大きくすればよい。
 その一方、凸状領域のサイズを大きくすると、その分、特許文献1でいうところの第1の屈折領域(処方度数を実現するベース領域)が占める面積が小さくなる。これは、眼鏡レンズの装用感の低下につながる。
 本発明の一実施例は、眼鏡レンズの装用感は維持しつつ近視進行抑制効果を向上させる技術を提供することを目的とする。
 本発明者は上記の課題を解決すべく鋭意検討を行った。以下、鋭意検討の際の考察を述べる。
 処方度数の眼鏡レンズと眼球を合わせて一つの光学系と考える。
 無限遠方物体からの入射光束においてベース領域を通過する光束は、網膜上の位置Aに集光する。
 該入射光束において凸状領域を通過する光束は、網膜上の位置Aに発散光として入射し、網膜上にて光斑を形成する。
 なお、凸状領域(更に広義にはデフォーカス領域という。詳しくは後述。)は、レンズ表面上の突起する部分を指す場合と、表面上突起がなくても、網膜上の位置Aに発散光として入射し網膜上にて光斑を形成する場合とを含む。
 図1は、処方度数の眼鏡レンズと眼球を合わせて一つの光学系と考えた場合において、無限遠方物体からの入射光束が、眼鏡レンズの1つの凸状領域を通過して網膜上に入射する様子を示す概略側面図である。
 仮に処方度数の眼鏡レンズと眼球を合わせた光学系の屈折力[単位:D]をPeyeとすると、その焦点距離はfeye=1/Peyeである。そのうえで、仮に凸状領域が平面視で円形領域且つ軸回転対称の形状とし、円形領域の中心からhだけ離れた点Bでのプリズム偏角[単位:ラジアン](以降、単に「偏角」とも称する。)をδとすると、凸状領域上の点Bを通過して網膜に入射する光束の像面上の高さhは、収差を考慮しない近軸計算(近軸近似)で以下の[数1]の通りとなる。hが大きいということは、図1に示すように、網膜上の光斑が大きいことを意味し、発散光束の発散度が大きいことを意味する。
Figure JPOXMLDOC01-appb-M000001
 つまり、偏角δが大きいほど高さhの絶対値が大きい。凸状領域の少なくとも一部において屈折力の変動がある場合、すなわち少なくとも一部が非球面形状である場合、上の偏角δは一定値ではない。その場合、凸状領域によりもたらされる偏角δの最大値(すなわちδ0max)が網膜上の光斑の半径を決める。δ0maxを大きくするには、網膜上の位置Aから手前側にデフォーカスさせる度合いを大きくするのが効果的であり、そのためには屈折力を増加させるのが効果的である。
 上記考察の内容を基に、本発明者は凸状領域について鋭意検討し、凸状領域を包含する概念としてデフォーカス領域という表現を採用し、以下の各態様を想到した。
 本発明の第1の態様は、
 物体側の面から入射した光束を眼球側の面から出射させ、眼を介して網膜上の位置Aに収束させるベース領域と、
 前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として位置Aに入射する性質を持つ複数のデフォーカス領域と、を備え、
 前記デフォーカス領域の少なくとも一部においては、中央部から周辺部に向かう方向に屈折力が増加する、眼鏡レンズである。
 本発明の第2の態様は、第1の態様に記載の態様であって、
 前記デフォーカス領域を通過して眼鏡レンズから射出する光は、前記デフォーカス領域の中央部と同等の焦点距離を有する球面レンズに対して正の球面収差が付加された仮想レンズを通過した光と同じ状態である。
 本発明の第3の態様は、第1又は第2の態様に記載の態様であって、
 発散光として位置Aに入射する際の光斑の最大光量密度は、位置Aに比べ、位置Aよりも物体側の位置の方が高くなる。
 本発明の第4の態様は、第1~第3のいずれかの態様に記載の態様であって、
 前記デフォーカス領域の中央部の屈折力は、前記ベース領域の屈折力よりプラスの値である。
 本発明の第5の態様は、第1~第4のいずれかの態様に記載の態様であって、
 前記眼鏡レンズは近視進行抑制レンズである。
 上記の態様に対して組み合わせ可能な本発明の他の態様は以下の通りである。
 デフォーカス領域は凸状領域である。
 凸状領域の平面視での配置の一例としては、各凸部領域の中心が正三角形の頂点となるよう各々独立して離散配置(ハニカム構造の頂点に各凸状領域の中心が配置)する例が挙げられる。
 中央部から周辺部に向かう方向に屈折力を増加させる際、凸状領域の平面視の中心から周辺部(根元)まで屈折力を増加させてもよいし、中心を外して(即ち中心から所定距離離れたところから)屈折力を増加させてもよい。また、増加の態様は、単調増加でもよいし、そうでなくともよい。屈折力の増加量には限定は無いが、例えば1.0~8.0Dの範囲であってもよいし、中央部の屈折力の1.1~3.0倍にまで屈折力を増加させてもよい。
 凸状領域の直径は、0.6~2.0mm程度が好適である。凸状領域の突出高さ(突出量)は、0.1~10μm程度、好ましくは0.7~0.9μm程度が好適である。凸状領域の中央部の屈折力は、凸状領域が形成されていない領域の屈折力よりも、2.00~5.00ディオプター程度大きくなるように設定されることが好適である。凸状領域の周辺部の最も屈折力の大きい部分は、凸状領域が形成されていない領域の屈折力よりも3.50~20ディオプター程度大きくなるように設定されることが好適である。
 本発明の一実施例によれば、眼鏡レンズの装用感は維持しつつ近視進行抑制効果を向上させる技術を提供できる。
図1は、処方度数の眼鏡レンズと眼球を合わせて一つの光学系と考えた場合において、無限遠方物体からの入射光束が、眼鏡レンズの1つの凸状領域を通過して網膜上に入射する様子を示す概略側面図である。 図2は、処方度数の眼鏡レンズと眼球を合わせて一つの光学系と考えた場合において、無限遠方物体からの入射光束が、本発明の一態様の眼鏡レンズの複数の凸状領域の各々を通過して網膜上に入射する様子を示す概略側面図である。 図3(a)は、瞳孔径内に凸状領域がハニカム構造で離散配置された様子を示す概略平面図であり、図3(b)は、そのうち3個の凸状領域を拡大した概略平面図である。 図4は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例1のプロットである。 図5は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例1のプロットである。 図6は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例1のプロットである。 図7は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例2のプロットである。 図8は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例2のプロットである。 図9は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例2のプロットである。 図10(a)は、瞳孔径内に凸状領域がハニカム構造で離散配置された様子を示す概略平面図であり、図10(b)は、そのうち3個の凸状領域を拡大した概略平面図である。 図11は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例3のプロットである。 図12は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例3のプロットである。 図13は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例3のプロットである。 図14は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例4のプロットである。 図15は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例4のプロットである。 図16は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例4のプロットである。 図17は、PSF計算の説明図である。
 以下、本発明の実施形態について述べる。以下における図面に基づく説明は例示であって、本発明は例示された態様に限定されるものではない。本明細書に記載の無い内容は、特許文献1、特許文献1に記載の無い内容(特に製造方法に関する内容)はWO2020/004551号公報の記載が全て記載されているものとする。特許文献1の記載内容と該公報の記載内容に齟齬がある場合は該公報の記載を優先する。
 本明細書で挙げる眼鏡レンズは、物体側の面と眼球側の面とを有する。「物体側の面」とは、眼鏡レンズを備えた眼鏡が装用者に装用された際に物体側に位置する表面であり、「眼球側の面」とは、その反対、すなわち眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に位置する表面である。この関係は、眼鏡レンズの基礎となるレンズ基材においても当てはまる。つまり、レンズ基材も物体側の面と眼球側の面とを有する。
<眼鏡レンズ>
 本発明の一態様に係る眼鏡レンズは、以下の通りである。「物体側の面から入射した光束を眼球側の面から出射させ、眼を介して網膜上の位置Aに収束させるベース領域と、
 前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として位置Aに入射する性質を持つ複数のデフォーカス領域と、を備え、
 前記デフォーカス領域の少なくとも一部においては、中央部から周辺部に向かう方向に屈折力が増加する、眼鏡レンズ。」
 ベース領域とは、装用者の処方度数を実現可能な形状の部分であり、特許文献1の第1の屈折領域に対応する部分である。
 デフォーカス領域とは、その領域の中の少なくとも一部がベース領域による集光位置には集光させない領域である。本発明の一態様における凸状領域は、デフォーカス領域に包含される。凸状領域とは、特許文献1の微小凸部に該当する部分である。本発明の一態様に係る眼鏡レンズは、特許文献1に記載の眼鏡レンズと同様、近視進行抑制レンズである。特許文献1の微小凸部と同様、本発明の一態様に係る複数の凸状領域は、眼鏡レンズの物体側の面及び眼球側の面の少なくともいずれかに形成されればよい。本明細書においては、眼鏡レンズの物体側の面のみに複数の凸状領域を設けた場合を主に例示する。
 デフォーカス領域が発揮するデフォーカスパワーは、各デフォーカス領域の屈折力と、各デフォーカス領域以外の部分の屈折力との差を指す。別の言い方をすると、『デフォーカスパワー』とは、デフォーカス領域の所定箇所の最小屈折力と最大屈折力の平均値からベース部分の屈折力を差し引いた差分である。
 本発明の一態様における凸状領域は、凸状領域の少なくとも一部を通過する光束が発散光として網膜上の位置Aに入射する性質を持つ。「発散光」とは、本発明の課題の欄で述べた発散光束(発散波面を有する光束)のことである。凸状領域のどの部分を光束が通過しても光束が発散光として網膜上の位置Aに入射してもよいし、凸状領域の一部を光束が通過した場合に光束が発散光として網膜上の位置Aに入射してもよい。
 そのうえで、凸状領域においては、中央部から周辺部に向かう方向に屈折力を増加させる。手段の欄で述べたように、δ0maxを大きくするには、凸状領域において屈折力を増加させるのが効果的である。そして、凸状領域を無理のない形状としたまま本発明の課題を解決すべく、中央部から周辺部に向かう方向に屈折力を増加させる構成を採用したのが本発明の一態様である。
 本明細書における「屈折力」は、屈折力が最小となる方向aの屈折力と、屈折力が最大となる方向b(方向aに対して垂直方向)の屈折力との平均値である平均屈折力を指す。中央部の屈折力とは、例えば、本発明の一態様のように凸状領域が小玉状のセグメントである場合、平面視の中心における頂点屈折力のことを指す。
 なお、中央部とは、凸状領域の平面視の中心(若しくは重心。以降、重心の記載は省略。)又はその近傍の部分を指す。以降、凸状領域において「平面視」の記載は省略し、特記しない場合は平面視形状を意味する。周辺部とは、凸状領域におけるベース領域との境界(凸状領域の根元)の近傍の部分を指す。つまり、本発明の一態様の凸状領域の根元部分に近づくほど凸状領域の曲率が大きくなる。これにより、δ0maxを大きくできる。
 本明細書において「中央部から周辺部に向かう方向」とは、凸状領域の平面視の中心から根元に向かう方向すなわち径方向のことを指す。
 以上の各構成を採用することにより、凸状領域のサイズを大きくせずとも、網膜に発散光束を入射させつつ、該発散光束の発散度を大きくできる。その結果、眼鏡レンズの装用感は維持しつつ近視進行抑制効果を向上させられる。
<眼鏡レンズの好適例及び変形例>
 本発明の一態様における眼鏡レンズの好適例及び変形例について、以下に述べる。
 凸状領域の平面視形状としては円形領域を挙げたが、本発明はそれに限定されず、楕円領域でも構わない。その他の形状の領域(例えば矩形)でも構わないが、該形状に起因して意図しない収差が生じたり迷光が生じたりする可能性もあるため、円形領域又は楕円領域が好ましい。
 中央部から周辺部に向かう方向に屈折力を増加させる際、凸状領域の平面視の中心から周辺部(根元)まで屈折力を増加させてもよいし、中心を外して(即ち中心から所定距離離れたところから)屈折力を増加させてもよい。また、増加の態様は、単調増加でもよいし、そうでなくともよい。屈折力の増加量には限定は無いが、例えば1.0~8.0Dの範囲であってもよいし、中央部の屈折力の1.1~3.0倍にまで屈折力を増加させてもよい。
 中央部から周辺部に向かう方向に屈折力を増加させることは、該方向に進むに従って正の球面収差の付加量を大きくするとも言える。この観点から、以下の構成を採用するのが好ましい。
 凸状領域を通過して眼鏡レンズから射出する光は、凸状領域の中央部と同等の焦点距離を有する球面レンズに対して正の球面収差が付加された仮想レンズを通過した光と同じ状態であるのが好ましい。
 本発明の一態様における眼鏡レンズならば、網膜上の位置Aに入射される発散光束の発散度を大きくできるため、所定の眼球調節量当たりの光斑の大きさ(又は光量密度)の変化を大きくできる。この観点から、以下の構成を採用するのが好ましい。
 発散光として位置Aに入射する際の光斑の最大光量密度は、位置Aに比べ、位置Aよりも物体側の位置の方が高くなるのが好ましい。これは、凸状領域を通過する光束が発散光であることを意味する。
 凸状領域の中央部の屈折力には限定は無い。凸状領域の中央部の屈折力は、ベース領域の屈折力と同じであってもよいが、ベース領域の屈折力よりプラスの値であるのが好ましい。なお、凸状領域全体が非球面の曲面形状である場合、凸状領域の中心における屈折力(最小屈折力と最大屈折力の平均値)が、ベース領域の屈折力よりプラスの値であるのが好ましい。
 この構成を採用したうえで中央部から周辺部に向かう方向に屈折力を増加させれば、中央部の屈折力がもともと高く設定されているため、周辺部だと屈折力をより大きくできる。その結果、δ0maxを大きくでき、高さhを大きくでき、発散光束の発散度を大きくできる。
 中央部から周辺部に向かう方向に屈折力が増加するのは凸状領域全体であってもよいし、凸状領域の一部のみでもよい。凸状領域の一部のみの場合、凸状領域の中央部を包囲する周辺部であってもよいし、該周辺部の一部のみであってもよい。例えば、凸状領域の根元の手前までの円環状の周辺部では屈折力を増加させる一方で、根元近傍の円環状の周辺部では屈折力を一定又は減少させてもよい。
 いずれにせよ、凸状領域の少なくとも一部にて中央部から周辺部に向かう方向に屈折力を増加させれば、δ0maxを大きくでき、高さhを大きくでき、発散光束の発散度を大きくできる。但し、周辺部全体において屈折力を増加させれば、周辺部の一部のみで屈折力を増加させる場合に比べ、自ずとδ0maxは大きくしやすいので好ましい。周辺部全体において屈折力を増加させる場合、周辺部とベース領域との間の境界は、ベース領域から度数が変化開始した部分とする。
 凸状領域の立体形状は、少なくとも根元において屈折力が増加する非球面形状を採用していれば限定は無い。更に言うと、発散波面を網膜に入射する状況を発生させられれば、凸状領域の立体形状に限定は無い。本発明の一態様のように凸状領域が曲面で構成されてもよいし、曲面以外の不連続な面により構成されてもよい。
 例えば、凸状領域の中央部を球面形状としつつそれ以外の部分を非球面の曲面形状としてもよい。この場合、球面形状から非球面の曲面形状に変化する箇所が中央部と周辺部との境界になる。
 もちろん、凸状領域全体を非球面の曲面形状としてもよい。凸状領域全体を非球面の曲面形状にする場合、平面視の半径の1/3~2/3の部分に中央部と周辺部との境界を設けても構わない。
 但し、本発明は上記各形状には限定されない。その理由について、以下、説明する。
 発散波面を網膜に入射する状況を発生させるのは球面の凸状領域に限らず、様々な面形状の凸状領域があり得る。近視抑制効果が最適になる表面を設計すればよい。但し、そのためには、適切な近視進行抑制効果の評価方法が必要になる。
 近視進行抑制効果の評価方法として、調節量の変化に対する網膜上の光斑の面積又は半径の変化率、及び又は調節量の変化に対する網膜上の光斑の(平均又は最大)光量密度の変化率とすることが考えられる。本発明の手段の欄で挙げた[数1]から、網膜上の光斑の直径RPSF、光斑の面積SPSFは以下のように求まる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、PSFは、点拡がり関数(Point Spread Function)のことであり、光線追跡法を採用することにより得られるパラメータである。PSFは点光源から発射した多数の光線を追跡し、任意の面上の光斑の光量密度を計算することで得られる。そして、複数の任意の面のPSFを比較して、複数の任意の面の内、最も光線が集光する位置(面)を特定する。なお、光線の直径は瞳孔径に基づいて設定すればよく、例えば4mmφとしてもよい。
 物体を見るとき人間の眼の屈折力は一定ではなく、絶えず調節微動して最適なピント位置を探している。凸状領域の光斑も調節微動によってサイズが変化する。例えば眼球が調節して、眼鏡レンズと眼球を合わせた光学系の屈折力が、Peyeに調節の分の屈折力Aを足し合わせた値になったとすると、[数2][数3]は以下の[数4][数5]のように表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 光斑の半径の変化率は、[数4]の導関数を求め、A=0を代入すると、以下の式として得られる。
Figure JPOXMLDOC01-appb-M000006
 光斑の面積の変化率は、[数5]の導関数を求め、A=0を代入すると、以下の式として得られる。
Figure JPOXMLDOC01-appb-M000007
 上記面積に関する式は、凸状領域による光斑が円形の場合の式である。凸状領域の形状によって、光斑がリング状や他の形状に分布することもあり得るが、その場合の式は光斑の形状に応じて設定すればよい。光量密度の式も、凸状領域の形状設計に応じ、個別に設定すればよい。
 個々の形状設計によって、最大偏角δ0maxが異なるし、網膜上光斑の大きさ、光量分布も異なる。光量密度も様々な考え方がある。特許文献1の場合、微小凸部の形状が球面で、収差を考えない場合、網膜上光斑は円形で光量は均等分布するため、光量密度を算出しやすい。他の表面形状の凸状領域だと、特許文献1の場合に比べ、網膜上の光斑形状が変わるし、光量が均等分布でなくなることもあり得る。その一方、光斑面積の調節に対する変化率はそのまま求められる。そして、光量密度に関しては、例えば光斑全体の平均光量密度、又は光斑内の最大光量密度などを求め、その調節に対する変化率を近視進行抑制効果の評価指数としてもよい。
 上記の近視進行抑制効果の評価方法を採用すれば、近視抑制効果が最適になる表面を設計できる。これは、様々な面形状の凸状領域を採用したうえで、そのときの近視進行抑制効果を適切に評価できることを意味する。その結果、凸状領域の面形状の限定は無くなる。
 また、発散波面が網膜に入射する状況を発生させる際、瞳孔径の範囲内に配置される凸状領域の数や配置には限定は無い。その理由について、以下、説明する。
 図2は、処方度数の眼鏡レンズと眼球を合わせて一つの光学系と考えた場合において、無限遠方物体からの入射光束が、本発明の一態様の眼鏡レンズの複数の凸状領域の各々を通過して網膜上に入射する様子を示す概略側面図である。
 図2に示すように、瞳孔径の範囲内に凸状領域が複数配置される場合、それぞれ網膜上に有限サイズの光斑を形成する。個々の凸状領域が眼鏡レンズの表面に沿って配置する場合、全体的にプリズムが生じることなく、配置位置を通過する主光線は凸領域がない場合の眼鏡レンズの該当位置の光線に一致し、網膜上の像に集まる。
 従って、この場合は全ての凸状領域の光斑の中心位置が一致し、複像が見えることはない。また、全ての凸状領域の表面形状が同一であれば、光斑が網膜上完全に一致して重なる。調節のための屈折力Aを加えた場合、各光斑の中心が各主光線に沿ってずれて重なる。ずれ量は凸領域の間隔に比例する。
 全ての凸領域の光斑がずれながら足し合わせて形成した光斑のサイズ、面積の調節による変化率、及び又は光量密度の平均値又は最大値などの調節による変化率を計算して、近視抑制効果の評価をすればよい。
<眼鏡レンズの一具体例>
 複数の凸状領域の配置の態様は、特に限定されるものではなく、例えば、凸状領域の外部からの視認性、凸状領域によるデザイン性付与、凸状領域による屈折力調整等の観点から決定できる。
 レンズ中心の周囲に周方向及び径方向に等間隔に、略円形状の凸状領域が島状に(すなわち、互いに隣接することなく離間した状態で)配置されてもよい。凸状領域の平面視での配置の一例としては、各凸部領域の中心が正三角形の頂点となるよう各々独立して離散配置(ハニカム構造の頂点に各凸状領域の中心が配置)する例が挙げられる。
 但し、本発明の一態様は特許文献1に記載の内容に限定されない。つまり、凸状領域が互いに隣接することなく離間した状態であることに限定されず、互いに接触しても構わないし、数珠つなぎのように非独立での配置を採用してもよい。
 各々の凸状領域は、例えば、以下のように構成される。凸状領域の直径は、0.6~2.0mm程度が好適である。凸状領域の突出高さ(突出量)は、0.1~10μm程度、好ましくは0.7~0.9μm程度が好適である。凸状領域の中央部の屈折力は、凸状領域が形成されていない領域の屈折力よりも、2.00~5.00ディオプター程度大きくなるように設定されることが好適である。凸状領域の周辺部の最も屈折力の大きい部分は、凸状領域が形成されていない領域の屈折力よりも3.50~20ディオプター程度大きくなるように設定されることが好適である。
 レンズ基材は、例えば、チオウレタン、アリル、アクリル、エピチオ等の熱硬化性樹脂材料によって形成されている。なお、レンズ基材を構成する樹脂材料としては、所望の屈折度が得られる他の樹脂材料を選択してもよい。また、樹脂材料ではなく、無機ガラス製のレンズ基材としてもよい。
 ハードコート膜は、例えば、熱可塑性樹脂又はUV硬化性樹脂を用いて形成されている。ハードコート膜は、ハードコート液にレンズ基材を浸漬させる方法や、スピンコート等を使用することにより、形成することができる。このようなハードコート膜の被覆によって、眼鏡レンズの耐久性向上が図れるようになる。
 反射防止膜は、例えば、ZrO、MgF、Al等の反射防止剤を真空蒸着により成膜することにより、形成されている。このような反射防止膜の被覆によって、眼鏡レンズを透した像の視認性向上が図れるようになる。
 上述したように、レンズ基材の物体側の面には、複数の凸状領域が形成されている。従って、その面をハードコート膜及び反射防止膜によって被覆すると、レンズ基材における凸状領域に倣って、ハードコート膜及び反射防止膜によっても複数の凸状領域が形成されることになる。
 眼鏡レンズの製造にあたっては、まず、レンズ基材を、注型重合等の公知の成形法により成形する。例えば、複数の凹部が備わった成形面を有する成形型を用い、注型重合による成形を行うことにより、少なくとも一方の表面に凸状領域を有するレンズ基材が得られる。
 そして、レンズ基材を得たら、次いで、そのレンズ基材の表面に、ハードコート膜を成膜する。ハードコート膜は、ハードコート液にレンズ基材を浸漬させる方法や、スピンコート等を使用することにより、形成することができる。
 ハードコート膜を成膜したら、更に、そのハードコート膜の表面に、反射防止膜を成膜する。ハードコート膜は、反射防止剤を真空蒸着により成膜することにより、形成することができる。
 このような手順の製造方法により、物体側に向けて突出する複数の凸状領域を物体側の面に有する眼鏡レンズが得られる。
 以上の工程を経て形成される被膜の膜厚は、例えば0.1~100μm(好ましくは0.5~5.0μm、更に好ましくは1.0~3.0μm)の範囲としてもよい。ただし、被膜の膜厚は、被膜に求められる機能に応じて決定されるものであり、の例示した範囲に限定されるものではない。
 被膜の上には、更に一層以上の被膜を形成することもできる。そのような被膜の一例としては、反射防止膜、撥水性又は親水性の防汚膜、防曇膜等の各種被膜が挙げられる。これら被膜の形成方法については、公知技術を適用できる。
 次に実施例を示し、本発明について具体的に説明する。もちろん本発明は、以下の実施例に限定されるものではない。
<実施例1>
 以下の眼鏡レンズを作製した。なお、眼鏡レンズはレンズ基材のみからなり、レンズ基材に対する他物質による積層は行っていない。処方度数としてS(球面度数)は0.00Dとし、C(乱視度数)は0.00Dとした。
 ・レンズ基材の平面視での直径:100mm
 ・レンズ基材の種類:PC(ポリカーボネート)
 ・レンズ基材の屈折率:1.589
 ・レンズ基材のベース領域の屈折力:0.00D
 ・凸状領域の形成面:物体側の面
 ・凸状領域が形成された範囲:レンズ中心から半径20mmの円内(但しレンズ中心から半径3.8mmの円を内接円とする正六角形状の領域は除く)
 ・凸状領域の平面視での形状:正円(直径1.2mm)
 ・凸状領域の中央部の直径:0.3mm
 ・凸状領域の中心での屈折力:ベース領域の屈折力と同じ
 ・凸状領域の根元(ベース領域との境界近傍)での偏角:7.22分(凸状領域が球面の場合屈折力3.5D相当)。なお、この偏角に対応する屈折力Pは、P=dδ/dr[δの単位はラジアン(但し以降は単位を省略することもある。図中は分で表示。)]で求めることができる。
 ・凸状領域の平面視での配置:各凸状領域の中心が正三角形の頂点となるよう各々独立して離散配置(ハニカム構造の頂点に各凸状領域の中心が配置)
 ・各凸状領域間のピッチ(凸状領域の中心間の距離):1.4mm
 ・瞳孔径内の凸状領域の数:7個
 なお、ここでのPSFでは近軸近似を採用しているため眼球モデルは使用しなかった。
 以降、特記無い限り、上記条件を採用する。但し、本発明は上記各条件に限定されない。
 図3(a)は、瞳孔径内に凸状領域がハニカム構造で離散配置された様子を示す概略平面図であり、図3(b)は、そのうち3個の凸状領域を拡大した概略平面図である。
 図4は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例1のプロットである。
 図5は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例1のプロットである。
 図6は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例1のプロットである。
 視角は、注視線以外の物体点と眼球入射瞳をつなぐ直線と注視線との角度である。その物体点の網膜上の像と網膜上中心窩からの距離は、視角に比例する。従って、PSFの横軸は、網膜上位置の代わりに視角とすることがよくある。
 図4に示すプロットは偏角曲線である。実施例1では凸状領域の中央部はベース領域の屈折力と同じ0.00Dとしており、中央部である直径0.3mmの領域内では偏角曲線の勾配はゼロである。その一方、0.3mm半径以上の領域は、偏角が徐々に増加し、ベース領域との境界部でδ0maxに達する。その関数は以下の[数8]で表される。
Figure JPOXMLDOC01-appb-M000008
である。
 図5に示すプロットは断面パワーである。これは偏角曲線の勾配(導関数)であり、以下の[数9]で表される。
Figure JPOXMLDOC01-appb-M000009
 [数8][数9]は、中央部と周辺部との境界から、周辺部とベース領域との境界にかけて屈折力が増加していることを示している。境界部(r=0.6mm)のパワーは9.33Dである。
 図6に示すように、視角間14.44分の間にて、視角ゼロだと光量密度が非常に高くなっている。視角ゼロでの光量密度は、直径0.3mmの凸状領域の中央部における光束により形成される。この領域は、凸部領域以外のベース領域と共に、処方度数を実現し、網膜上の位置Aに像を形成している。
<実施例2>
 以下の点で実施例1とは異なる眼鏡レンズを作製した。以下の点以外は実施例1と同様とした。
 ・凸状領域の中央部の直径:0.6mm
 ・凸状領域の中心での屈折力:ベース領域の屈折力+2.50D
 図7は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例2のプロットである。
 図8は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例2のプロットである。
 図9は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例2のプロットである。
 図7と図8に示すように、実施例2では凸状領域の中央部はベース領域の屈折力+2.50Dとしており、周辺部では勾配が増加している。偏角の変化関数と断面パワーの変化関数は、それぞれ以下の[数10][数11]で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 [数10][数11]は、中央部と周辺部との境界から、周辺部とベース領域との境界にかけて屈折力が増加していることを示している。境界部(r=0.6mm)のパワーは8.72Dである。
 図9に示すように、視角間14.44分の間にて、中央部5.16分の間は、光量密度が均一に分布していて、その外側光量密度が多少低下している。凸状領域を中心から周辺に向かい屈折力が増加する非球面にすることで、周辺部で大きく光が分散され光斑が大きくなり、調節微動の際に光斑のサイズが大きく変化し、近視進行抑制効果がもたらされる。
 なお、実施例1と実施例2を比べたとき、実施例1の凸状領域中央部がベース領域と同じ度数で、近視進行抑制機能がなく、それ以外の部分が近視進行抑制機能を発揮しているのに対し、実施例2では凸状領域の全領域で近視進行抑制機能を発揮している。
<実施例3>
 以下の点で実施例1とは異なる眼鏡レンズを作製した。以下の点以外は実施例1と同様とした。
 ・凸状領域の平面視での形状:正円(直径0.7mm)
 ・凸状領域の中央部の直径:0.2mm
 ・凸状領域の根元(ベース領域との境界近傍)での偏角δ0max:7.22分(凸状領域が球面の場合屈折力+6.00D相当)
 ・各凸状領域間のピッチ(凸状領域の中心間の距離):0.825mm
 ・瞳孔径内の凸状領域の数:19個
 図10(a)は、瞳孔径内に凸状領域がハニカム構造で離散配置された様子を示す概略平面図であり、図10(b)は、そのうち3個の凸状領域を拡大した概略平面図である。
 図11は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例3のプロットである。
 図12は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例3のプロットである。
 図13は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例3のプロットである。
 図11、図12に示すように、実施例3では凸状領域の中央部はベース領域の屈折力(ゼロ)としており、中央部の外側では勾配が増加している。偏角の変化関数と断面パワーの変化関数は、それぞれ以下の[数12][数13]で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 境界部(r=0.6mm)のパワーは16.8Dである。
 図13に示すように、視角間14.44分の間にて、視角ゼロだと光量密度が非常に高くなっており、実施例3の眼鏡レンズならば物体を良好に視認できる。それと共に、図10に示すように、視角の絶対値が大きい部分でも光量密度が増加している。これは、発散光に起因する光量密度である。視角ゼロ以外の視角にて光量密度を確保することにより、近視進行抑制効果がもたらされる。
 実施例3では、凸状領域が小さく、間隔の狭いので、瞳孔内に数多く入るため、視線移動による揺らぎが少なく、眼鏡の装用感がいい。
<実施例4>
 ・凸状領域の平面視での形状:正円(直径0.7mm)
 ・凸状領域の中央部の直径:0.2mm
 ・凸状領域の根元(ベース領域との境界近傍)での偏角δ0max:7.22分(凸状領域が球面の場合屈折力+6.00D相当)
 ・各凸状領域間のピッチ(凸状領域の中心間の距離):0.825mm
 ・瞳孔径内の凸状領域の数:19個 
 図14は、凸状領域の中心からの半径位置[mm]をX軸、偏角δ[分]をY軸としたときの実施例4のプロットである。
 図15は、凸状領域の中心からの半径位置[mm]をX軸、断面パワーP[D]をY軸としたときの実施例4のプロットである。
 図16は、視角[分]をX軸、PSFの値(光量密度)をY軸としたときの実施例4のプロットである。
 図14、図15に示すように、実施例4では凸状領域の中心から周辺に向けて持続的に勾配が増加している。偏角の変化関数と断面パワーの変化関数は、それぞれ以下の[数14][数15]で表される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 境界部(r=0.6mm)のパワーは9.5Dである。
 図16に示すように、視角間14.44分の間にて、光量密度(PSF)は中心から周辺に向けて減少している。大きな視角範囲にて光量密度を確保することにより、近視進行抑制効果がもたらされる。
 実施例4では、凸状領域が小さく、間隔の狭いので、瞳孔内に数多く入るため、視線移動による揺らぎが少なく、眼鏡の装用感がいい。
 以上の実施例のPSF計算は、眼鏡と眼球モデルを一つの理想光学系として扱い、光線もすべて近軸近似で計算している。実際の眼球光学系は収差を持っていて、状況がより複雑になっているが、基本的な関係、例えば、網膜に発散光が入射されている場合、調節微動で大きさの変化方向など、は大きく変わらない。
 図17は、PSF計算の説明図である。
 詳しく言うと、図17(a)は、入射瞳の中心(すなわち眼鏡レンズ上の中心)からの半径位置rをX軸、偏角δをY軸としたときにr増加に対してδが単調増加する説明用プロットである。図17(b)と図17(c)は凸状領域に入射する光量密度と網膜上光斑の光量密度の関係を導き出すための図である。
 図17(b)において、仮に入射瞳(凸状領域)の均等分布光量の光量密度がeとすると、位置rにおけるdr範囲の環状領域の面積は2πrdrとなり、その領域内の光量は2πredrとなる。
 図17(c)において、位置rにおける偏角座標系で位置δにおけるdδ範囲のリングの面積は2πδdδなので、光量密度は(2πredr)/(2πδdδ)=e×r/(δ(dδ/dr))となる。
 その結果、PSFは以下の式で表される。
Figure JPOXMLDOC01-appb-M000016

Claims (5)

  1.  物体側の面から入射した光束を眼球側の面から出射させ、眼を介して網膜上の位置Aに収束させるベース領域と、
     前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として位置Aに入射する性質を持つ複数のデフォーカス領域と、を備え、
     前記デフォーカス領域の少なくとも一部においては、中央部から周辺部に向かう方向に屈折力が増加する、眼鏡レンズ。
  2.  前記デフォーカス領域を通過して眼鏡レンズから射出する光は、前記デフォーカス領域の中央部と同等の焦点距離を有する球面レンズに対して正の球面収差が付加された仮想レンズを通過した光と同じ状態である、請求項1に記載の眼鏡レンズ。
  3.  前記発散光として位置Aに入射する際の光斑の最大光量密度は、位置Aに比べ、位置Aよりも物体側の位置の方が高くなる、請求項1に記載の眼鏡レンズ。
  4.  前記デフォーカス領域の中央部の屈折力は、前記ベース領域の屈折力よりプラスの値である、請求項1に記載の眼鏡レンズ。
  5.  前記眼鏡レンズは近視進行抑制レンズである、請求項1~4のいずれかに記載の眼鏡レンズ。
PCT/JP2021/001521 2020-03-09 2021-01-18 眼鏡レンズ WO2021181885A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180009068.4A CN115053171B (zh) 2020-03-09 2021-01-18 眼镜镜片
EP21768553.6A EP4120007A4 (en) 2020-03-09 2021-01-18 LENSES
US17/909,082 US20230083468A1 (en) 2020-03-09 2021-01-18 Eyeglass lens
JP2022505804A JP7488328B2 (ja) 2020-03-09 2021-01-18 眼鏡レンズ
KR1020227021697A KR20220100074A (ko) 2020-03-09 2021-01-18 안경 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039581 2020-03-09
JP2020039581 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021181885A1 true WO2021181885A1 (ja) 2021-09-16

Family

ID=77670612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001521 WO2021181885A1 (ja) 2020-03-09 2021-01-18 眼鏡レンズ

Country Status (6)

Country Link
US (1) US20230083468A1 (ja)
EP (1) EP4120007A4 (ja)
JP (1) JP7488328B2 (ja)
KR (1) KR20220100074A (ja)
TW (1) TWI847010B (ja)
WO (1) WO2021181885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171061A1 (ja) * 2022-03-07 2023-09-14 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、および眼鏡レンズの設計方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900275B (zh) * 2021-10-22 2022-07-19 温州医科大学 一种眼镜片及框架眼镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045495A (ja) * 2014-08-20 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 近視の進行を予防及び/又は遅延するための高プラス処置ゾーンレンズ設計及び方法
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
WO2019166657A1 (en) * 2018-03-01 2019-09-06 Essilor International Lens element
JP2019529968A (ja) * 2016-08-01 2019-10-17 ユニバーシティ オブ ワシントンUniversity of Washington 近視治療のための眼用レンズ
JP2019211772A (ja) * 2018-05-30 2019-12-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 近視の進行を予防及び/又は鈍化するための小型レンズを含む眼用レンズ
WO2020004551A1 (ja) 2018-06-29 2020-01-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1976455T (pt) * 2006-01-12 2018-04-26 Holden Brien Vision Inst Método e aparelho para o controlo da posição da imagem periférica para reduzir a progressão da miopia
CA2653286C (en) * 2006-06-08 2016-01-05 Vision Crc Limited Means for controlling the progression of myopia
JP7109190B2 (ja) 2015-03-27 2022-07-29 アジレント・テクノロジーズ・インク 生細胞の統合された代謝ベースラインおよび代謝能を決定するための方法およびシステム
US20210341751A1 (en) * 2018-08-31 2021-11-04 Hoya Lens Thailand Ltd. Eyeglass lens, method for manufacturing eyeglass lens, and lens coating
WO2020261213A1 (en) * 2019-06-28 2020-12-30 Brien Holden Vision Institute Limited Ophthalmic lenses and methods for correcting, slowing, reducing, and/or controlling the progression of myopia

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045495A (ja) * 2014-08-20 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 近視の進行を予防及び/又は遅延するための高プラス処置ゾーンレンズ設計及び方法
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
JP2019529968A (ja) * 2016-08-01 2019-10-17 ユニバーシティ オブ ワシントンUniversity of Washington 近視治療のための眼用レンズ
WO2019166657A1 (en) * 2018-03-01 2019-09-06 Essilor International Lens element
JP2019211772A (ja) * 2018-05-30 2019-12-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 近視の進行を予防及び/又は鈍化するための小型レンズを含む眼用レンズ
WO2020004551A1 (ja) 2018-06-29 2020-01-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120007A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171061A1 (ja) * 2022-03-07 2023-09-14 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、および眼鏡レンズの設計方法

Also Published As

Publication number Publication date
EP4120007A4 (en) 2024-04-03
US20230083468A1 (en) 2023-03-16
KR20220100074A (ko) 2022-07-14
EP4120007A1 (en) 2023-01-18
TWI847010B (zh) 2024-07-01
JPWO2021181885A1 (ja) 2021-09-16
CN115053171A (zh) 2022-09-13
JP7488328B2 (ja) 2024-05-21
TW202146981A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2021229889A1 (ja) 眼鏡レンズ
JP2021005081A (ja) 眼鏡レンズおよびその設計方法
WO2021181885A1 (ja) 眼鏡レンズ
TW202138877A (zh) 具有輔助光學元件之眼鏡鏡片
WO2021186878A1 (ja) 眼鏡レンズ
JP2021157126A (ja) 眼鏡レンズ
WO2021186873A1 (ja) 眼鏡レンズ
CN115053171B (zh) 眼镜镜片
TWI856237B (zh) 眼鏡鏡片
WO2023171061A1 (ja) 眼鏡レンズ、および眼鏡レンズの設計方法
WO2022190610A1 (ja) 眼鏡レンズ及びその設計方法
JP7177959B1 (ja) 眼鏡レンズ
TWI854093B (zh) 眼鏡鏡片
WO2023042572A1 (ja) 眼鏡レンズ
KR102557131B1 (ko) 안경 렌즈 및 안경 렌즈 설계 방법
WO2023166822A1 (ja) 眼鏡レンズ、眼鏡レンズの製造方法、眼鏡レンズの設計方法、眼鏡及び眼鏡の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505804

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021697

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768553

Country of ref document: EP

Effective date: 20221010