WO2023042572A1 - 眼鏡レンズ - Google Patents

眼鏡レンズ Download PDF

Info

Publication number
WO2023042572A1
WO2023042572A1 PCT/JP2022/030171 JP2022030171W WO2023042572A1 WO 2023042572 A1 WO2023042572 A1 WO 2023042572A1 JP 2022030171 W JP2022030171 W JP 2022030171W WO 2023042572 A1 WO2023042572 A1 WO 2023042572A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
region
center
eye point
spectacle lens
Prior art date
Application number
PCT/JP2022/030171
Other languages
English (en)
French (fr)
Inventor
華 祁
Original Assignee
ホヤ レンズ タイランド リミテッド
華 祁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 華 祁 filed Critical ホヤ レンズ タイランド リミテッド
Priority to CN202280060224.4A priority Critical patent/CN117916651A/zh
Priority to KR1020247001613A priority patent/KR20240021301A/ko
Publication of WO2023042572A1 publication Critical patent/WO2023042572A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present invention relates to spectacle lenses.
  • the spectacle lens of this configuration of the light beams incident from the object-side surface and emitted from the eyeball-side surface, the light beams that have passed through areas other than the defocus area are focused on the retina of the wearer.
  • the luminous flux passing through the portion is focused at a position in front of the retina, thereby suppressing the progression of myopia.
  • FIG. 1 of Patent Document 1 exemplifies a case where the island-shaped region is not provided at the geometric center of the lens and its vicinity.
  • Patent Documents 2 and 3 disclose spectacle lenses in which a predetermined structure is provided on the outer edge side of the geometric center of the spectacle lens and its vicinity in order to suppress the progression of myopic refractive error.
  • a predetermined structure is provided on the outer edge side of the geometric center of the spectacle lens and its vicinity in order to suppress the progression of myopic refractive error.
  • no structure that exerts an effect of suppressing progression of myopia is provided at or near the geometric center in plan view (Fig. 1 of Patent Document 2, Fig. 5A of Patent Document 3). .
  • Patent Document 4 discloses a base portion that emits a light beam incident from the object-side surface from the eyeball-side surface and converges to a position A on the retina of the eyeball, and defocuses the transmitted light beam in the plus or minus direction.
  • a spectacle lens is described that includes a defocus region that acts to focus light to a different position than light passing through the base portion.
  • the myopia progression suppressing structure (as an example, the island-shaped region described in Patent Document 1) is not provided at the lens center, the light naturally passes through the region where the island-shaped region is not provided and enters the pupil of the wearer. It is considered that the above-mentioned effect of suppressing progression of myopia cannot be obtained with a luminous flux that Instead, the prescription power is realized in the clear area, so good visibility is obtained.
  • the area where the structure for suppressing progression of myopia or hyperopia is not provided is also referred to as a clear area. The clear area will be described later.
  • An object of one aspect of the present invention is to provide a technique that enables good visibility even in near vision when wearing spectacle lenses having a clear region and a functional region.
  • a first aspect of the present invention is A center-side clear area, which is an area including an eye point, in which a luminous flux incident from the object-side surface is emitted from the eyeball-side surface, enters the pupil of the wearer, and converges on the retina;
  • the maximum width in the horizontal direction of a rectangular portion within the central clear area, within the range between d [mm] above and d [mm] below the horizontal line passing through the eye point. is a spectacle lens in which the nose side from the eye point is larger than the ear side from the eye point when d is at least one value in the range of 1.00 to 2.00.
  • a second aspect of the present invention is A spectacle lens according to the first aspect, wherein d is 1.50.
  • a third aspect of the present invention is The spectacle lens according to the first or second aspect, wherein the rectangular portion has a maximum width of 3.60 mm or more on the nose side in the horizontal direction from the eye point.
  • a fourth aspect of the present invention is A center-side clear area, which is an area including an eye point, in which a luminous flux incident from the object-side surface is emitted from the eyeball-side surface, enters the pupil of the wearer, and converges on the retina;
  • a part having a shape that does not converge the light beam incident on the pupil of the wearer in the functional area can be circumscribed on the central side clear area side without including the other part.
  • the central clear area When the aggregate of all circles with a radius of 2.00 mm is taken as the shape of the central clear area, the central clear area has a shape on the ear side and a shape on the nose side with respect to a vertical line passing through the eye point. is asymmetrical, and the maximum distance from the eye point to the nasal side in the horizontal direction is 3.60 mm or more.
  • a fifth aspect of the present invention is At least one of the center of gravity of the shape of the center-side clear region and the midpoint of a horizontal line segment passing through the eye point in the shape of the center-side clear region is arranged on the nose side of the eye point.
  • a sixth aspect of the present invention is A center-side clear area, which is an area including an eye point, in which a luminous flux incident from the object-side surface is emitted from the eyeball-side surface, enters the pupil of the wearer, and converges on the retina;
  • the center-side clear area is a spectacle lens projecting more toward the nose side than toward the ear side in the horizontal direction when viewed from the eye point.
  • a seventh aspect of the present invention is A region in contact with the functional region on the outer edge side of the spectacle lens, in which the light flux incident from the object-side surface is emitted from the eyeball-side surface, enters the pupil of the wearer, and converges on the retina.
  • An eighth aspect of the present invention is The spectacle lens according to any one of the first to seventh aspects, wherein the functional area does not converge 30% or more of the luminous flux incident on the pupil of the wearer on the retina.
  • a ninth aspect of the present invention is The spectacle lens according to any one of the first to eighth aspects, wherein the center side clear area is sized to fit within a circle with a diameter of 10.00 mm centered on the eye point in plan view.
  • the central clear area (and the base area within the functional area, and further the outer clear area) of one aspect of the present invention functions as a so-called single focus lens.
  • the maximum width of the rectangular portion on the nose side from the eye point may preferably be 4.00 mm or more.
  • the maximum distance from the eye point to the nose side in the horizontal direction in the shape may preferably be 4.00 mm or more.
  • the aggregate may be read as the envelope of the aggregate.
  • the size of the center side clear area As a guideline for the lower limit of the size of the center side clear area, if it is a size that can include a circle with a diameter of 3.00 mm (or a diameter of 4.00 mm, or a diameter of 5.00 mm) centering on the eye point good. As one guideline for the upper limit of the size of the center-side clear area, the size should be within a circle with a diameter of 10.00 mm centered on the eye point.
  • the minimum value of the horizontal distance from the eyepoint to the edge of the center-side clear area may be 3.60 mm or less.
  • the area of the center side clear area may be 80 mm 2 or less.
  • the shape of the center side clear area 2 may be circular, rectangular, elliptical, or the like in plan view.
  • the size of the functional region should be a size that can encompass a circle with a diameter of 12.50 mm centered on the eye point.
  • the size should be such that it can encompass a circle with a diameter of 50.00 mm centered on the eye point.
  • the shape of the functional area is annular in plan view, and the ring is circular on the inner side (that is, the boundary between the central clear area and the functional area) and/or on the outer side (that is, the boundary between the outer clear area and the functional area).
  • the shape may be rectangular, elliptical, or a combination thereof.
  • the functional area it may be defined that 30% or more (or 40% or more, 50% or more, or 60% or more) of the luminous flux entering the wearer's pupil is not converged on the retina. If the % value is large, the effect of suppressing progression of myopia or hyperopia is expected to be large, but the visibility is lowered. The value of the % may be appropriately determined in consideration of the effect of suppressing progression of myopia or hyperopia and visibility. The upper limit may be, for example, 70%.
  • the area in plan view of the structure (convex region, embedded structure) that has the effect of suppressing the progression of myopia or hyperopia is 30% or more (or 40% or more, 50% or more, 60%) of the entire functional region. above).
  • the technical concept of the present invention is also reflected in a spectacle lens pair in which one aspect of the present invention is applied to each of the lens for the right eye and the lens for the left eye.
  • the technical idea of the present invention is also reflected in spectacles in which the vicinity of the peripheral edge of the spectacle lens is cut based on a predetermined frame shape and fitted into the frame.
  • FIG. 1 is a schematic enlarged plan view for explaining (Rule 1) regarding the central clear region of the spectacle lens according to one aspect of the present invention.
  • FIG. 2 is a schematic enlarged plan view for explaining (Rule 2) regarding the center-side clear region of the spectacle lens according to one aspect of the present invention.
  • FIG. 3 is a schematic plan view before applying one aspect of the present invention to ⁇ Specific Example 1> of the spectacle lens according to one aspect of the present invention.
  • FIG. 4 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 1> of the spectacle lens according to one aspect of the present invention.
  • FIG. 5 is a schematic plan view before applying one aspect of the present invention to ⁇ Specific Example 2> of the spectacle lens according to one aspect of the present invention.
  • FIG. 1 is a schematic enlarged plan view for explaining (Rule 1) regarding the central clear region of the spectacle lens according to one aspect of the present invention.
  • FIG. 2 is a schematic enlarged plan view for explaining (Rule 2) regarding the center-
  • FIG. 6 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 2> of the spectacle lens according to one aspect of the present invention.
  • FIG. 7 is a schematic plan view before applying one aspect of the present invention to ⁇ Specific Example 3> of the spectacle lens according to one aspect of the present invention.
  • FIG. 8 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 3> of the spectacle lens according to one aspect of the present invention.
  • FIG. 9 is a schematic plan view before applying one aspect of the present invention to ⁇ Specific Example 4> of the spectacle lens according to one aspect of the present invention.
  • FIG. 10 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 4> of the spectacle lens according to one aspect of the present invention.
  • the spectacle lenses mentioned in this specification have an object-side surface and an eyeball-side surface.
  • the "object-side surface” is the surface that is located on the object side when the spectacles with the spectacle lenses are worn by the wearer, and the "eye-side surface” is the opposite, i.e. the surface with the spectacle lenses. It is the surface positioned on the eyeball side when the spectacles are worn by the wearer.
  • This relationship also applies to the lens substrate that forms the basis of the spectacle lens. That is, the lens substrate also has an object-side surface and an eyeball-side surface.
  • the horizontal direction when the spectacle lens is worn is the X direction
  • the vertical (vertical) direction is the Y direction
  • the thickness direction of the spectacle lens and perpendicular to the X and Y directions is the Z direction. do.
  • the Z direction is also the optical axis direction of the spectacle lens.
  • the right side is the +X direction
  • the left side is the -X direction
  • the upper side is the +Y direction
  • the lower side is the -Y direction
  • the object side direction is the +Z direction
  • the opposite direction (back side direction) is the -Z direction.
  • plane view refers to a state when viewed from the +Z direction to the -Z direction.
  • the right-eye lens is shown as a plan view, and the nose-side direction when the right-eye lens is worn is the +X direction, and the ear-side direction is the -X direction.
  • the functional area is provided only on the outermost surface on the eyeball side
  • the state when viewed from the -Z direction to the +Z direction may be regarded as a plan view.
  • positions such as eyepoints and geometric centers of spectacle lenses, they refer to positions in plan view unless otherwise specified.
  • refers to a predetermined value or more and a predetermined value or less.
  • a spectacle lens according to an aspect of the present invention includes a central clear region and a functional region.
  • the center-side clear area is a portion that has a smooth surface shape that can achieve the wearer's prescribed refractive power in terms of geometric optics.
  • the center-side clear area is a portion corresponding to the first refraction area of Patent Document 1, and may be a base area provided at the lens center and its vicinity of the spectacle lens described in FIG. 5 of Patent Document 4.
  • the central clear area is an area including the eye point, in which the light flux incident from the object side surface is emitted from the eyeball side surface, entered into the pupil of the wearer, and converged on the retina. is.
  • Prescription power can be realized by the center side clear region of one aspect of the present invention.
  • This spherical power may be the power to be corrected when viewed from the front (the distance to the object is about infinity to 1 m) (for example, the power for distant use, hereinafter, the power for far use will be exemplified), It may be the power to be corrected for intermediate vision (1 m to 40 cm) or near vision (40 cm to 10 cm).
  • center-side clear area is not provided with a structure (eg, a defocus area, a convex area and/or a concave area, an embedded structure, etc.) intended to provide an effect of suppressing progression of myopia or hyperopia.
  • a structure eg, a defocus area, a convex area and/or a concave area, an embedded structure, etc.
  • the central clear area (and the base area within the functional area, and further the outer clear area) of one aspect of the present invention functions as a so-called single focus lens.
  • the prescription data of the wearer's information is written on the lens bag of the spectacle lens.
  • the spectacle lens attached with the lens bag also reflects the technical idea of the present invention, and the same applies to the set of the lens bag and the spectacle lens.
  • Eye point (EP) is the position through which the line of sight passes when facing straight ahead when wearing spectacle lenses.
  • a case where the geometric center of the spectacle lens before framing to the frame coincides with the eye point and also coincides with the prism reference point will be exemplified.
  • a spectacle lens before framing to a frame will be exemplified, but the present invention is not limited to this aspect.
  • the position of the eye point can be specified by referring to the remark chart or the centration chart issued by the lens manufacturer.
  • the functional area is an area in which the light flux entering from the object side surface is emitted from the eyeball side surface, while at least part of the light flux entering the wearer's pupil is not converged on the retina.
  • the functional area is an annular area surrounding the central clear area in plan view.
  • the entire annular functional area does not necessarily have a spectacle lens surface shape different from that of the central clear area (for example, one that has been processed to make it opaque, such as frosted glass) or an internal embedded structure.
  • the convex region is provided in an island shape like the first refraction region of Patent Document 1, the second refraction region (the base region that performs the same function as the center side clear region) that achieves the prescription power is provided.
  • an annular region including the base region and the convex region may be regarded as the functional region.
  • a convex region is formed in a circular beaded manner, and a plurality of the beaded circular rings are arranged in the radial direction, and the convex region is formed.
  • the region between the beaded ring with the smallest diameter and the beaded ring with the largest diameter may be set as the functional region.
  • the portion closest to the eye point and the portion farthest from the eye point EP An annular region between them may be set as a functional region.
  • FIG. 1 is a schematic enlarged plan view for explaining (Rule 1) regarding the center side clear region 2 of the spectacle lens 1 according to one aspect of the present invention. Note that FIG. 1 employs the structure of the functional area 3 employed in ⁇ Concrete Example 2> described later.
  • One of the characteristics of one aspect of the present invention is that, in a plan view, the portion within the central clear region 2 is between d [mm] above and d [mm] below the horizontal line passing through the eye point EP.
  • d is at least one value in the range of 1.00 or more and 2.00 or less, the maximum width in the horizontal direction of the rectangular portion in the range of The nose side is larger.
  • d is a definition related to the line of sight, taking into account the radius of the pupil size PS.
  • d [mm] is 2.00 [mm]
  • the pupil radius is assumed to be 2.00 [mm]
  • the pupil diameter is assumed to be 4.00 [mm].
  • the movable distance of the line of sight is greater on the nose side in the horizontal direction than on the ear side in the horizontal direction from the eye point EP.
  • the value of d may be at least one value in the range of 1.00 or more and 2.00 or less, and may be 2.00 as exemplified in the above paragraph, or 1.50 good too.
  • the maximum horizontal width of the rectangular portion on the nose side from the eye point EP may be 3.60 mm or more (preferably 4.00 mm or more), and there is no upper limit. When defining the upper limit, it is sufficient to apply the upper limit of the size of the center side clear area 2, which will be described later.
  • the distance from the eye point EP to the nose side should be larger than the distance from the eye point EP to the ear side, but the difference between the two distances may be a value in the range of 0.40 to 3.00 mm, for example.
  • the difference between the two distances may be defined as a relative value.
  • a relative value For example, when the maximum horizontal width of the rectangular portion on the ear side from the eye point EP is the denominator and the maximum width on the nose side from the eye point EP is the numerator, the values are greater than 1.00 and 2.00. 00 or less.
  • the lower limit of this value may be 1.20, 1.40 and the upper limit of this value may be 1.80, 1.60.
  • a circle may be adopted instead of a rectangle in (Regulation 1) (another aspect of Regulation 1).
  • the r is set to 1.50 or more. Even if we adopt the rule that the maximum distance from the eye point EP to the center of the circle in the horizontal direction is greater on the nose side than on the ear side when at least one value in the range of 0.50 or less is set. good.
  • a circle whose center lies on a horizontal line passing through the eye point EP and which can be arranged in the central clear area 2 closest to the ear in the horizontal direction, and a circle ⁇ in the central clear area 2 Assuming a circle ⁇ that can be placed closest to the nose side in the horizontal direction, the distance ⁇ ' between the center of the circle ⁇ and the eye point EP is greater than the distance ⁇ ' between the center of the circle ⁇ and the eye point EP. You may adopt the rule that .
  • the value of r may be 2.00 or 1.50.
  • Each of these circles is also referred to herein as a clear pupil circle, since the value of 2r assumes the diameter of the pupil.
  • the maximum distance on the nose side from the eye point EP to the center of the circle in the horizontal direction shall be 1.60 mm or more (preferably 2.00 mm or more). good too. Also, the maximum distance in the horizontal direction from the eye point EP to the nose-side end of the circle may be 3.60 mm or more (preferably 4.00 mm or more). There is no upper limit for any of them. When defining the upper limit, it is sufficient to apply the upper limit of the size of the center side clear area 2, which will be described later.
  • the difference between the maximum distance on the ear side and the maximum distance on the nose side from the eye point EP to the center of the circle in the horizontal direction is, for example, 1. Values in the range of 00 to 3.00 mm are possible.
  • the difference between the two distances may be defined as a relative value.
  • a relative value For example, when the maximum distance on the ear side from the eye point EP to the center of the circle in the horizontal direction is the denominator, and the maximum distance on the nose side is the numerator, the value is greater than 1.00 and less than or equal to 2.00. good.
  • the lower limit of this value may be 1.20, 1.40 and the upper limit of this value may be 1.80, 1.60.
  • Provision 1 may be adopted in combination with (Another aspect of Provision 1).
  • FIG. 2 is a schematic enlarged plan view for explaining (Regulation 2) regarding the central clear region 2 of the spectacle lens 1 according to one aspect of the present invention. Note that FIG. 2 employs the structure of the functional area 3 employed in ⁇ Specific Example 2> described later.
  • the center-side clear region 2 side of the functional region 3 has a shape that does not converge the luminous flux incident on the pupil of the wearer on the retina.
  • Envelope curve (Fig. 2 symbol EL1) may be the shape of the central clear area 2 (that is, the boundary line between the central clear area 2 and the functional area 3).
  • an envelope will be exemplified, but the shape of the center side clear area 2 may be a "collection of clear pupil circles” instead of an envelope of a collection of clear pupil circles. That is, the center-side clear area 2 may include the eyepoint EP and be configured by an aggregate of clear pupil circles.
  • the center of gravity GVC of the shape of the center-side clear region 2 may be arranged on the nose side of the eye point EP.
  • the above (Regulation 2) is also one aspect of specifying the shape of the center side clear area 2 .
  • the center of gravity GVC of the shape of the central clear area 2 is arranged closer to the nose than the eye point EP, so that the line of sight can easily pass through the central clear area 2 when the eyes are converged. If the center of gravity GVC of the shape of the central clear area 2 is arranged on the nose side in the horizontal direction when viewed from the eye point EP, the line of sight can more reliably pass through the central clear area 2 when the eyes are converged.
  • the horizontal distance from the eyepoint EP to the center of gravity GVC or the midpoint is, for example, 0.10 (or 1.00). ) to 3.00 mm.
  • the shape on the ear side and the shape on the nose side are asymmetric with respect to the vertical line passing through the eye point EP.
  • the shape of the center-side clear region 2 is half a shape A with rounded corners of a polygon (or a perfect circle or ellipse) on the ear side, while shape A on the nose side.
  • the shape of the other half has a flared (in other words, expanded) shape from the center of gravity GVC of the body to the horizontal nasal side.
  • Provision 3 One of the characteristics of one aspect of the present invention is that, in plan view, the central clear region 2 protrudes further toward the nose side than toward the ear side in the horizontal direction when viewed from the eye point EP.
  • the wearer of the spectacle lens 1 for suppressing progression of myopia or hyperopia has near vision.
  • the luminous flux entering the pupil of the wearer passes through the center-side clear area 2, converges on the retina, and good visibility is obtained.
  • FIG. 1 Each figure of the present application illustrates a case where the lens for the right eye is viewed from above, but one aspect of the present invention can also be applied to the spectacle lens 1 for the left eye.
  • a spectacle lens pair to which one aspect of the present invention is applied to each of them provides good visibility while obtaining a myopia progression suppressing function.
  • the surface shape of the spectacle lens that is different from the central clear region in the entire annular functional region (for example, processed to partially scatter light, such as frosted glass) or the internal embedding structure does not necessarily have
  • the convex region is provided in an island shape like the first refraction region of Patent Document 1
  • the second refraction region (the base region that performs the same function as the center side clear region) that achieves the prescription power is provided.
  • an annular region including the base region and the convex region may be regarded as the functional region.
  • the rotation angle in the +Y direction as viewed from the eye point EP is zero degrees
  • no convex region or the like is provided over a rotation angle range of several degrees to ten-odd degrees around 90 degrees clockwise (nose side in the horizontal direction).
  • the size and shape of the central clear area 2 are not limited. As one guideline for the lower limit of the size of the center-side clear area 2, it should be a size that can encompass a circle with a diameter of 5.00 mm centered on the eye point EP. As one guideline for the upper limit of the size of the center side clear area 2, the size should be within a circle with a diameter of 10.00 mm centered on the eye point EP.
  • the minimum value of the horizontal distance from the eyepoint EP to the edge of the center-side clear area 2 may be 3.60 mm or less.
  • the area of the center side clear region 2 may be 80 mm 2 or less.
  • the shape of the center side clear area 2 may be circular, rectangular, elliptical, or the like in plan view.
  • the size and shape of the functional area 3 are not limited. As one guideline for the lower limit of the size of the functional region 3, it should be a size that can encompass a circle with a diameter of 15 mm centered on the eye point EP. As one guideline for the upper limit of the size of the functional region 3, a size that can encompass a circle with a diameter of 50.00 mm centered on the eye point EP is sufficient.
  • the shape of the functional region 3 is annular in plan view, and the ring is formed inside (that is, the boundary between the central clear region 2 and the functional region 3) and/or outside (that is, between the outer clear region 4 and the functional region 3). boundary) may be circular, rectangular, elliptical, or a combination thereof.
  • 30% or more (or 40% or more, 50% or more, or 60% or more) of the light flux incident on the pupil of the wearer may be defined as not converging on the retina. good. If the % value is large, the effect of suppressing progression of myopia or hyperopia is expected to be large, but the visibility is lowered. The value of the % may be appropriately determined in consideration of the effect of suppressing progression of myopia or hyperopia and visibility.
  • the area of the structure (convex region 3a, embedded structure) that exhibits the effect of suppressing the progression of myopia or hyperopia in plan view is 30% or more (or 40% or more, 50% or more) of the entire functional region 3. % or more, 60% or more).
  • the upper limit may be, for example, 70%.
  • An outer clear area 4 may be provided to allow the In that case, the functional area 3 becomes an annular area existing between the outer clear area 4 and the central clear area 2 .
  • the aspect of specifying the shape of the center side clear region 2 may be used.
  • the outer clear region 4 does not include the eye point EP and is configured by an aggregate of clear pupil circles in plan view.
  • the area other than the central clear area 2 and the outer clear area 4 may be defined as the functional area 3 .
  • a specific aspect of specifying the shape of the outer clear area 4 is as follows. In a plan view, attention is paid to the portion located closest to the outer edge side of the spectacle lens 1 and having a shape that does not converge the luminous flux entering the pupil of the wearer in the functional region 3 on the retina.
  • the part located closest to the outer edge of the spectacle lens 1 refers to each part that is radially farthest in each range of 0 to 360 degrees in the circumferential direction when viewed from the eye point EP.
  • the shape of the area sandwiched between the outer edge may be the shape of the outer clear area 4 .
  • the shape of the outer clear region 4 may be a "collection of clear pupil circles" instead of the envelope of the collection of clear pupil circles.
  • the outer clear area 4 may be annular or may have a shape that constitutes only a part of the ring.
  • part of the functional region 3 may be in contact with the outer edge of the spectacle lens 1 and the other part of the functional region 3 may be in contact with the outer clear region 4 .
  • the spectacle lens 1 according to one aspect of the present invention may be the spectacle lens 1 after being framed in a frame, and a part of the functional region 3 in the spectacle lens 1 is in contact with the outer edge of the spectacle lens 1 to form a functor. Other parts of the national region 3 may be in contact with the outer clear region 4 .
  • the entire outer edge side of the functional area 3 is the outer clear area 4, that is, the outer edge side of the functional area 3.
  • there is no structure eg, defocus region, convex region 3a and/or concave region, embedded structure, etc.
  • the mode of arrangement of the plurality of defocus areas is not particularly limited. For example, from the viewpoint of visibility from the outside of the defocus area, designability provided by the defocus area, refractive power adjustment by the defocus area, etc. can decide.
  • substantially circular defocus regions are arranged in an island shape (that is, without adjoining each other) at equal intervals in the circumferential direction and the radial direction. spaced apart).
  • each convex area 3a is independently arranged discretely so that the center thereof becomes the vertex of an equilateral triangle (the center of each defocus area is arranged at the vertex of the honeycomb structure: hexagonal arrangement).
  • the distance between the defocus areas may be 1.0 to 2.0 mm.
  • the number of defocus areas may be 100 to 100,000.
  • a defocus area is an example of a configuration in the functional area 3 that has the effect of suppressing the progression of myopia or hyperopia.
  • a defocus area is an area in which at least part of the area does not condense light at the condensing position of the base area 3b from the viewpoint of geometrical optics.
  • the defocus area is a portion corresponding to the minute projections of Patent Document 1.
  • the spectacle lens 1 according to one aspect of the present invention is a lens for suppressing progression of myopia, like the spectacle lens described in Patent Document 1.
  • the plurality of defocus areas according to one aspect of the present invention may be formed on at least one of the object-side surface and the eyeball-side surface of the spectacle lens 1 .
  • a case where a plurality of defocus areas are provided only on the object-side surface of the spectacle lens 1 is mainly exemplified.
  • the case where the defocus area has a curved surface shape protruding toward the outside of the lens will be exemplified.
  • half or more of the plurality of defocus areas are arranged with the same period in plan view.
  • An example of a pattern having the same period is an equilateral triangle arrangement in plan view (the center of the defocus area is arranged at the vertex of an equilateral triangle; hexagonal arrangement is also possible).
  • the direction of the period may be circumferential and/or radial. It is preferably 80% or higher, more preferably 90% or higher, even more preferably 95% or higher.
  • preferred examples of "the number of half or more of all defocus areas in the functional area (or the number of 80% or more)" are 80% or more, 90% or more, and 95% or more in the same order as above. , repetitive descriptions are omitted.
  • the defocus area may have a spherical shape, an aspherical shape, a toric surface shape, or a shape in which these are mixed (for example, the central part of each defocused area has a spherical shape, and the peripheral parts outside the central part have an aspherical shape).
  • a boundary between the central portion and the peripheral portion may be provided in a portion of 1/3 to 2/3 of the radius of the defocus area (or convex area 3a) in plan view.
  • it is preferable that at least the central portion of the defocus area (or convex area 3a) has a convex curved shape that protrudes toward the outside of the lens.
  • it is preferable that half or more of the plurality of defocus areas (all defocus areas in the functional area) are arranged with the same period in a plan view, so the defocus areas are spherical. is preferred.
  • Each defocus area is configured, for example, as follows.
  • the diameter of the defocus area in plan view is preferably about 0.6 to 2.0 mm.
  • Each surface area may be about 0.50 to 3.14 mm 2 .
  • the convex region 3a has a radius of curvature of 50 to 250 mm, preferably about 86 mm.
  • the ratio of the total area of the defocus area to the total area of the defocus area and the base area 3b may be 20 to 60%.
  • the minimum value of the defocus power provided by the defocus area on the spectacle lens 1 is in the range of 0.50 to 4.50D, and the maximum Preferably the value is in the range 3.00-10.00D.
  • the difference between the maximum and minimum values is preferably within the range of 1.00-5.00D.
  • Defocus power refers to the difference between the refractive power of each defocus area and the refractive power of a portion other than each defocus area.
  • the “defocus power” is the difference between the average minimum and maximum power at a given location in the defocus area minus the power at the base.
  • the defocus area is the convex area 3a.
  • Refractive power in the present specification is the average refractive power in the direction in which the refractive power is minimum and the refractive power in the direction in which the refractive power is maximum (perpendicular to the direction). Average refractive power point to
  • the lens substrate is made of thermosetting resin material such as thiourethane, allyl, acryl, epithio.
  • resin material constituting the lens base material other resin material that can obtain a desired refractive power may be selected.
  • a lens base material made of inorganic glass may be used instead of a resin material.
  • the hard coat film is formed using, for example, thermoplastic resin or UV curable resin.
  • the hard coat film can be formed by a method of immersing the lens substrate in a hard coat liquid, spin coating, or the like. By coating with such a hard coat film, the durability of the spectacle lens 1 can be improved.
  • the antireflection film is formed by depositing an antireflection agent such as ZrO 2 , MgF 2 , Al 2 O 3 or the like by vacuum deposition.
  • an antireflection agent such as ZrO 2 , MgF 2 , Al 2 O 3 or the like by vacuum deposition.
  • the visibility of an image seen through the spectacle lens 1 can be improved by coating with such an antireflection film.
  • a plurality of defocus areas are formed on the object-side surface of the lens substrate. Therefore, when the surface is coated with a hard coat film and an antireflection film, a plurality of defocus regions are formed by the hard coat film and the antireflection film following the defocus regions on the lens substrate.
  • a lens substrate is molded by a known molding method such as casting polymerization.
  • a lens substrate having a defocus region on at least one surface can be obtained by molding by cast polymerization using a mold having a molding surface provided with a plurality of recesses.
  • a hard coat film is formed on the surface of the lens substrate.
  • the hard coat film can be formed by a method of immersing the lens substrate in a hard coat liquid, spin coating, or the like.
  • an antireflection film is formed on the surface of the hard coat film.
  • the antireflection film can be formed by depositing a raw material for the film by vacuum deposition.
  • a spectacle lens 1 having a plurality of defocus regions protruding toward the object side on the object side surface is obtained by the manufacturing method of such procedures.
  • the film thickness of the coating formed through the above steps may be in the range of, for example, 0.1 to 100 ⁇ m (preferably 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m).
  • the film thickness of the coating is determined according to the functions required of the coating, and is not limited to the exemplified range.
  • More than one layer of coating can be formed on the coating.
  • coatings include various coatings such as antireflection coatings, water-repellent or hydrophilic antifouling coatings, and antifogging coatings.
  • a known technique can be applied to the method of forming these coatings.
  • the technical idea of the present invention is also reflected in spectacles in which the spectacle lens 1 is cut in the vicinity of the peripheral edge based on a predetermined frame shape and fitted into the frame.
  • the type, shape, etc. of the frame There are no restrictions on the type, shape, etc. of the frame, and it may be full-rim, half-rim, under-rim, or rimless.
  • FIG. 3 is a schematic plan view of spectacle lens 1 according to one aspect of the present invention before applying one aspect of the present invention to ⁇ Specific Example 1>.
  • FIG. 4 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 1> of the spectacle lens 1 according to one aspect of the present invention.
  • the spectacle lens 1 below was produced. Note that the spectacle lens 1 is composed of only the lens base material, and no other material is laminated on the lens base material.
  • S spherical refractive power
  • C astigmatic refractive power
  • Refractive index of lens substrate 1.589 Since the above contents are common to each specific example, description thereof will be omitted.
  • the range of the center side clear area 2 is a circular area with a radius of 3.50 mm from the eye point EP, and the range of the functional area 3 is the lens center. , within a circle with a radius of 20.00 mm (excluding the central clear area 2).
  • An outer clear region 4 is provided on the outer edge side of the spectacle lens 1 with respect to the functional region 3 .
  • the functional region 3 of this specific example is processed to make the entire functional region 3 opaque like frosted glass.
  • the functional region 3 includes a structure (eg, a defocus region, a convex region 3a and/or a concave region, an embedded structure, etc.) intended to provide an effect of suppressing progression of myopia or hyperopia, and a base region 3b. It may be an annular region containing.
  • the center side clear region 2 is expanded horizontally toward the nose side, and the shape of the center side clear region 2 is elongated into an ellipse.
  • the center side clear region 2 was elongated 1.00 mm toward the nose.
  • the center side clear region 2 protruded 1.00 mm toward the nose side from the ear side.
  • the center side clear area 2 was a perfect circle with a radius of 3.50 mm (diameter 7.00 mm) before applying one aspect of the present invention, but after applying one aspect of the present invention, the center side clear area 2
  • the clear area 2 was an ellipse with a vertical axis (short axis) of 7.00 mm and a horizontal axis (long axis) of 8.00 mm.
  • the center of gravity GVC is on the horizontal line passing through the eye point EP, and the distance from the eye point EP to the center of gravity GVC in the horizontal direction. was 0.50 mm, and the horizontal distance to the midpoint of the horizontal line segment passing through the eyepoint EP was 0.50 mm.
  • the maximum amount of inward shift (the distance that can be moved toward the nose side) in the central clear region 2 was increased from 1.50 mm to 2.00 mm.
  • the center side clear area 2 can include not only the distance pupil position PS1 but also the near pupil position PS2.
  • FIG. 5 is a schematic plan view of ⁇ Specific Example 2> of the spectacle lens 1 according to one aspect of the present invention before applying one aspect of the present invention.
  • FIG. 6 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 2> of the spectacle lens 1 according to one aspect of the present invention.
  • Configuration of the functional area 3 The convex areas 3a are discretely arranged as defocus areas.
  • a base region 3b other than the convex region 3a a base region 3b other than the convex region 3a.
  • ⁇ Shape of convex region 3a spherical
  • ⁇ Refractive power of convex region 3a 3.50D
  • ⁇ Formation surface of the convex regions 3a the surface on the object side
  • arrangement of the convex regions 3a in a plan view Each convex region 3a is arranged independently and discretely so that the center of each convex region 3a becomes the vertex of an equilateral triangle (honeycomb structure) The center of each convex region 3a is arranged at the vertex) - Shape of convex region 3a in plan view: perfect circle (diameter 1.00 mm) ⁇ Pitch between each convex region 3a (distance between centers of convex regions 3a): 1.50 mm
  • the range of the center side clear region 2 is a circular region with a radius of approximately 3.45 mm from the eye point EP
  • the range of the functional region 3 is the lens It was set within a circle with a radius of 20.00 mm from the center (excluding the center side clear area 2).
  • An outer clear region 4 is provided on the outer edge side of the spectacle lens 1 with respect to the functional region 3 .
  • the center-side clear region 2 is an envelope of a collection of circumscribed circles with respect to the convex region 3a of the functional region 3 (For example, the envelope EL1 in FIG. 2) is obtained as a contour (the same applies to the following specific examples).
  • the functional region 3 is the circle described in the above paragraph.
  • a shape very close to an annular region can be obtained (the same applies to the following specific examples).
  • the outer boundary line (the dashed envelope EL2) of the functional region 3 shown in the drawings relating to specific examples 2 and 3 is not circular, but is slightly circular in the portion where the convex region 3a does not exist.
  • the envelope EL2 is shown as a circle as a schematic diagram in each figure.
  • the center side clear region 2 was expanded horizontally to the nasal side. Specifically, one upper and lower convex region 3a closest to the horizontal line passing through the eyepoint EP and closest to the eyepoint EP (the geometric center GC of the spectacle lens 1) before applying one aspect of the present invention. was not provided. As a result, the shape of the center side clear area 2 is extended horizontally toward the nose side.
  • the center of gravity GVC is on the horizontal line passing through the eye point EP, and the distance from the eye point EP to the center of gravity GVC in the horizontal direction. was about 0.4 mm, and the horizontal distance to the midpoint of the horizontal line segment passing through the eyepoint EP was 0.59 mm.
  • the maximum amount of inward shift (distance that can be moved toward the nose side) in the center side clear area increased from 1.51 mm to 2.70 mm.
  • the center side clear area 2 can include not only the distance pupil position PS1 but also the near pupil position PS2.
  • FIG. 7 is a schematic plan view of ⁇ Specific Example 3> of the spectacle lens 1 according to one aspect of the present invention before applying one aspect of the present invention.
  • FIG. 8 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 3> of the spectacle lens 1 according to one aspect of the present invention.
  • the arrangement of the convex region 3a in plan view has been changed. Specifically, the convex regions 3a were aligned horizontally and vertically. The pitch between the convex regions 3a (the distance between the centers of the convex regions 3a) was 1.25 mm.
  • the range of the center side clear area 2 is a circular area with a radius of 3.25 mm from the eye point EP, and the range of the functional area 3 is the lens center. , within a circle with a radius of 20.00 mm (excluding the central clear area 2).
  • An outer clear region 4 is provided on the outer edge side of the spectacle lens 1 with respect to the functional region 3 .
  • the center side clear region 2 was expanded horizontally to the nasal side. Specifically, before applying one aspect of the present invention, one above and below the horizontal line closest to the eyepoint EP (the geometric center GC of the spectacle lens 1) and the horizontal line pass through. In addition, one convex region 3a in the adjacent row (arranged in the Y direction) was not provided. As a result, the shape of the center side clear area 2 is extended horizontally toward the nose side.
  • This specific example satisfies the above (Rule 1). Specifically, when d is set to 1.50 mm, the maximum width in the horizontal direction of the rectangular portion of (Regulation 1) is 1.5 mm on the nose side from the eye point EP than on the ear side from the eye point EP. 25 mm larger. This specific example also satisfies the above (another aspect of Regulation 1).
  • the center of gravity GVC is on the horizontal line passing through the eye point EP, and the distance from the eye point EP to the center of gravity GVC in the horizontal direction. was about 0.4 mm, and the horizontal distance to the midpoint of the horizontal line segment passing through the eyepoint EP was 0.63 mm.
  • the maximum amount of inward shift (distance that can be moved toward the nose side) in the center side clear area increased from 1.25 mm to 2.50 mm.
  • the center side clear area 2 can include not only the distance pupil position PS1 but also the near pupil position PS2.
  • FIG. 9 is a schematic plan view of ⁇ Specific Example 4> of the spectacle lens 1 according to one aspect of the present invention before applying one aspect of the present invention.
  • FIG. 10 is a schematic plan view after applying one aspect of the present invention to ⁇ Specific Example 4> of the spectacle lens 1 according to one aspect of the present invention.
  • the arrangement of the convex regions 3a in plan view has been changed. Specifically, the convex regions 3a were aligned in the circumferential direction. This alignment was done by diameter (by distance from eyepoint EP). Alignment status is shown in the table below. In the table below, the ring number is the number assigned to the circumferentially aligned group of convex regions 3a in order of proximity from the eye point EP, the radius is the radius of the ring, and the number of convex regions 3a and is the number of convex regions 3a arranged on the ring.
  • the range of the center side clear area 2 is a circular area with a radius of 3.35 mm from the eye point EP, and the range of the functional area 3 is the lens center. , within a circle with a radius of 20.00 mm (excluding the central clear area 2).
  • An outer clear region 4 is provided on the outer edge side of the spectacle lens 1 with respect to the functional region 3 .
  • the center side clear region 2 was expanded horizontally to the nasal side.
  • the horizontal line passing through the eyepoint EP is closest and closest to the eyepoint EP (the geometric center GC of the spectacle lens 1).
  • a total of three convex regions 3a were not provided, one each on the upper and lower sides and one through which the horizontal line passes.
  • the shape of the center side clear area 2 is extended horizontally toward the nose side.
  • the center of gravity GVC is on the horizontal line passing through the eye point EP, and the distance from the eye point EP to the center of gravity GVC in the horizontal direction. was about 0.5 mm, and the horizontal distance to the midpoint of the horizontal line segment passing through the eyepoint EP was 0.72 mm.
  • the maximum amount of inward shift (distance that can be moved toward the nose side) in the center side clear area increased from 1.34 mm to 2.47 mm.
  • the center side clear area 2 can include not only the distance pupil position PS1 but also the near pupil position PS2.
  • Reference Signs List 1 Spectacle lens 2 Central clear area 3 Functional area 3 a Convex area 3 b Base area 4 Outer clear area EP Eye point GC Geometric center GVC Center of gravity PS Pupil size PS1 Distance pupil position PS2 Near pupil position EL1 Envelope line EL2 (which forms the shape of the center-side clear area) Envelope (which forms the boundary between the outer clear region and the functional region)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

アイポイントEPを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域2と、中心側クリア領域2を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域3と、を備え、平面視において、中心側クリア領域2は、アイポイントEPから見て水平方向の耳側よりも鼻側に張り出した、眼鏡レンズ1及びその関連技術を提供する。

Description

眼鏡レンズ
 本発明は、眼鏡レンズに関する。
 近視等の屈折異常の進行を抑制する眼鏡レンズとして、レンズ上に複数の処方屈折力よりプラスの屈折力を持つ島状領域が形成されたものがある(例えば、特許文献1参照)。
 この構成の眼鏡レンズによれば、物体側の面から入射し眼球側の面から出射する光束のうち、デフォーカス領域以外を通過した光束では装用者の網膜上に焦点を結ぶが、デフォーカス領域の部分を通過した光束は網膜上よりも手前の位置で焦点を結ぶようになっており、これにより近視の進行が抑制されることになる。
 特許文献1の図1では、レンズの幾何中心及びその近傍において上記島状領域が設けられない場合が例示されている。
 特許文献2、3には近視の屈折異常の進行を抑制すべく、眼鏡レンズの幾何中心及びその近傍よりも外縁側に所定の構造を設けた眼鏡レンズが開示されている。特許文献2、3に記載の眼鏡レンズでは、平面視において、幾何中心及びその近傍では、近視進行抑制効果を奏する構造は設けられていない(特許文献2の図1、特許文献3の図5A)。
 特許文献4には、物体側の面から入射した光束を眼球側の面から出射させて、眼球の網膜上における位置Aに収束させるベース部分と、透過する光束にプラス又はマイナス方向のデフォーカスを与え、ベース部分を透過する光とは異なる位置に収束させる作用を有するデフォーカス領域とを備える眼鏡レンズが記載されている。
 特許文献4の段落0102には、眼鏡レンズの基材凸部を凹部に変更することにより遠視進行抑制機能を奏することが記載されている。特許文献4に記載の眼鏡レンズの一例(特許文献4の図5)では、平面視において、幾何中心及びその近傍では、近視又は遠視進行抑制効果を奏する構造は設けられていない。
米国出願公開第2017/0131567号 国際公開公報WO2019/166657号 米国特許第10884264号 国際公開公報WO2020/045567号
 レンズ中心において上記近視進行抑制構造(一例として特許文献1に記載の島状領域)が設けられない場合、当然ながら、該島状領域が設けられない領域を通過して装用者の瞳孔内に入射する光束では、上記近視進行抑制効果が得られないと考えられる。その代わりに、クリア領域では処方度数が実現されるため、良好な視認性が得られる。本明細書では、近視又は遠視進行抑制構造が設けられない領域のことをクリア領域ともいう。クリア領域については後掲する。
 本発明者の調べにより、近視進行抑制用の眼鏡レンズの装用者が近方視して眼を輻輳させたとき、装用者の瞳孔内に入射する光束が、クリア領域ではなく上記島状領域を通過することにより、光束が網膜に収束しない、即ち良好な視認性が得られないおそれがあることが明らかになった。
 この問題に関しては、上記島状領域のみならず、近視又は遠視進行抑制効果を奏する構成(眼鏡レンズの表面に何らかの凹状領域及び/又は凸状領域を形成又は眼鏡レンズの内部に屈折率の異なる部材を埋め込む構成等、例えば特許文献2~4に記載の眼鏡レンズ)であっても同様の問題が生じることが、本発明者の調べにより明らかになった。平面視にて、該近視又は遠視進行抑制効果を奏する構成を有する領域のことをファンクショナル領域ともいう。ファンクショナル領域については後掲する。
 上記近視進行抑制効果を得やすくするには、クリア領域を小さく設計し、その分、ファンクショナル領域を大きく設計することが考えられる。但し、クリア領域を小さく設計すると、装用者が近方視して眼を輻輳させたとき、上記の通り、良好な視認性が得られないおそれがある。つまり、近視又は遠視進行抑制効果を奏すべくクリア領域とファンクショナル領域とを備えた眼鏡レンズにおいては、本段落に記載の手法とは別のアプローチを検討する必要があるということを、本発明者は知見した。
 本発明の一態様は、クリア領域とファンクショナル領域とを備えた眼鏡レンズを装用する際に近方視しても良好な視認性が得られる技術を提供することを目的とする。
 本発明の第1の態様は、
 アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
 前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
 平面視において、前記中心側クリア領域内の部分であって、アイポイントを通過する水平線から上方d[mm]と下方d[mm]との間の範囲の矩形状の部分の水平方向の最大幅は、dを1.00以上2.00以下の範囲の少なくともいずれか一つの値としたとき、アイポイントから耳側よりもアイポイントから鼻側の方が大きい、眼鏡レンズである。
 本発明の第2の態様は、
 dは1.50である、第1の態様に記載の眼鏡レンズである。
 本発明の第3の態様は、
 前記矩形状の部分において、アイポイントから水平方向鼻側の最大幅は3.60mm以上である、第1又は第2の態様に記載の眼鏡レンズである。
 本発明の第4の態様は、
 アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
 前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
 平面視において、前記ファンクショナル領域内での装用者の瞳孔内に入射させた光束を網膜上に収束させない形状の部分に対して前記中心側クリア領域側で他の該部分を含まずに外接可能な半径2.00mmの全ての円の集合体を前記中心側クリア領域の形状としたとき、前記中心側クリア領域において、アイポイントを通過する垂直線に対して耳側の形状と鼻側の形状とが非対称であり、且つ、アイポイントから水平方向鼻側の最大距離は3.60mm以上である、眼鏡レンズである。
 本発明の第5の態様は、
 前記中心側クリア領域の形状の重心、及び、前記中心側クリア領域の形状においてアイポイントを通過する水平線分の中点の少なくともいずれかが、アイポイントよりも鼻側に配置された、第4の態様に記載の眼鏡レンズである。
 本発明の第6の態様は、
 アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
 前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
 平面視において、前記中心側クリア領域は、アイポイントから見て水平方向の耳側よりも鼻側に張り出した、眼鏡レンズである。
 本発明の第7の態様は、
 眼鏡レンズの外縁側にて前記ファンクショナル領域と接する領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる外側クリア領域を備える、第1~第6のいずれか一つの態様に記載の眼鏡レンズである。
 本発明の第8の態様は、
 前記ファンクショナル領域では、前記装用者の瞳孔内に入射させた光束の30%以上は網膜上に収束させない、第1~第7のいずれか一つの態様に記載の眼鏡レンズである。
 本発明の第9の態様は、
 平面視において、前記中心側クリア領域は、アイポイントを中心とした直径10.00mmの円内に収まる大きさである、第1~第8のいずれか一つの態様に記載の眼鏡レンズである。
 上記の態様に対して組み合わせ可能な本発明の他の態様は以下の通りである。
 本発明の一態様の中心側クリア領域(及びファンクショナル領域内のベース領域、更には外側クリア領域)は、いわゆる単焦点レンズとしての機能を奏する。
 アイポイントから鼻側における上記矩形状の部分の最大幅は好適には4.00mm以上としてもよい。
 前記集合体の包絡線を中心側クリア領域の形状としたとき、該形状内でのアイポイントから水平方向鼻側における最大距離は好適には4.00mm以上としてもよい。
 前記集合体を、集合体の包絡線と読み替えてもよい。
 中心側クリア領域の大きさの下限の一つの目安としては、アイポイントを中心とした直径3.00mm(或いは直径4.00mm、又は直径5.00mm)の円を包含可能な大きさであればよい。中心側クリア領域の大きさの上限の一つの目安としては、アイポイントを中心とした直径10.00mmの円内に収まる大きさであればよい。アイポイントからの中心側クリア領域の縁までの水平距離の最小値(クリア領域が平面視円状の場合は最小半径)が3.60mm以下であってもよい。中心側クリア領域の面積は80mm以下であってもよい。中心側クリア領域2の形状は、平面視で円形状、矩形状、楕円状等であってもよい。
 ファンクショナル領域の大きさの下限の一つの目安としては、アイポイントを中心とした直径12.50mmの円周を包含可能な大きさであればよい。ファンクショナル領域の大きさの上限の一つの目安としては、アイポイントを中心とした直径50.00mmの円周を包含可能な大きさであればよい。
 ファンクショナル領域の形状は平面視で環状であり、その環は内側(即ち中心側クリア領域とファンクショナル領域との境界)及び/又は外側(即ち外側クリア領域とファンクショナル領域との境界)において円形状、矩形状、楕円状等又はその組み合わせでも構わない。
 ファンクショナル領域では、装用者の瞳孔内に入射させた光束の30%以上(或いは40%以上、50%以上、60%以上)は網膜上に収束させないと定義してもよい。該%の値が大きければ近視又は遠視進行抑制効果も大きくなると期待される一方、視認性は低下する。該%の値は、近視又は遠視進行抑制効果と視認性との兼ね合いで適宜決定すればよい。上限は例えば70%としてもよい。
 ファンクショナル領域において、近視又は遠視進行抑制効果を奏する構成(凸状領域、埋め込み構造)の平面視での面積が、ファンクショナル領域全体の30%以上(或いは40%以上、50%以上、60%以上)と規定してもよい。
 右眼用レンズと左眼用レンズの各々に本発明の一態様を適用した眼鏡レンズ対にも本発明の技術的思想が反映されている。
 所定のフレーム形状に基づいて眼鏡レンズの周縁近傍をカットし、フレームに嵌め入れた眼鏡にも本発明の技術的思想が反映されている。
 本発明の一態様によれば、クリア領域とファンクショナル領域とを備えた眼鏡レンズを装用する際に近方視しても良好な視認性が得られる技術を提供できる。
図1は、本発明の一態様に係る眼鏡レンズの中心側クリア領域に関する(規定1)を説明するための概略拡大平面図である。 図2は、本発明の一態様に係る眼鏡レンズの中心側クリア領域に関する(規定2)を説明するための概略拡大平面図である。 図3は、本発明の一態様に係る眼鏡レンズの<具体例1>において本発明の一態様を適用する前の概略平面図である。 図4は、本発明の一態様に係る眼鏡レンズの<具体例1>において本発明の一態様を適用した後の概略平面図である。 図5は、本発明の一態様に係る眼鏡レンズの<具体例2>において本発明の一態様を適用する前の概略平面図である。 図6は、本発明の一態様に係る眼鏡レンズの<具体例2>において本発明の一態様を適用した後の概略平面図である。 図7は、本発明の一態様に係る眼鏡レンズの<具体例3>において本発明の一態様を適用する前の概略平面図である。 図8は、本発明の一態様に係る眼鏡レンズの<具体例3>において本発明の一態様を適用した後の概略平面図である。 図9は、本発明の一態様に係る眼鏡レンズの<具体例4>において本発明の一態様を適用する前の概略平面図である。 図10は、本発明の一態様に係る眼鏡レンズの<具体例4>において本発明の一態様を適用した後の概略平面図である。
 以下、本発明の実施形態について述べる。以下における図面に基づく説明は例示であって、本発明は例示された態様に限定されるものではない。
 本明細書で挙げる眼鏡レンズは、物体側の面と眼球側の面とを有する。「物体側の面」とは、眼鏡レンズを備えた眼鏡が装用者に装用された際に物体側に位置する表面であり、「眼球側の面」とは、その反対、すなわち眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に位置する表面である。この関係は、眼鏡レンズの基礎となるレンズ基材においても当てはまる。つまり、レンズ基材も物体側の面と眼球側の面とを有する。
 本明細書では、眼鏡レンズを装用した状態での水平方向をX方向、天地(上下)方向をY方向、眼鏡レンズの厚さ方向であってX方向及びY方向に垂直な方向をZ方向とする。Z方向は眼鏡レンズの光軸方向でもある。
 装用者に向かって右方を+X方向、左方を-X方向、上方を+Y方向、下方を-Y方向、物体側方向を+Z方向、その逆方向(奥側方向)を-Z方向とする。本明細書において、「平面視」とは+Z方向から-Z方向へと見たときの状態を指す。
 本願各図では右眼用レンズを平面視した場合を例示しており、該右眼用レンズを装用した時の鼻側方向を+X方向、耳側方向を-X方向としている。
 なお、眼球側の最表面のみにファンクショナル領域が設けられる場合は、-Z方向から+Z方向へと見たときの状態を平面視としても差し支えない。以降、眼鏡レンズにおけるアイポイント及び幾何中心等のような「位置」を論ずる際は、特記無い限り平面視での位置のことを指す。
 本明細書において「~」は所定の値以上且つ所定の値以下を指す。
<眼鏡レンズ>
 本発明の一態様に係る眼鏡レンズは中心側クリア領域とファンクショナル領域とを備える。
 中心側クリア領域は、幾何光学的な観点において装用者の処方屈折力を実現可能な平滑表面形状を有する部分である。中心側クリア領域は、特許文献1の第1の屈折領域に対応する部分であり、特許文献4の図5に記載の眼鏡レンズのレンズ中心及びその近傍に設けられたベース領域としてもよい。また、中心側クリア領域は、アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる領域である。
 本発明の一態様の中心側クリア領域により処方度数(球面度数、乱視度数、乱視軸等)が実現できる。この球面度数は、正面視した時(物体との距離は無限遠~1m程度)に矯正されるべき度数(例えば遠用度数であり、以降、遠用度数を例示)であってもよいし、中間視(1m~40cm)又は近方視(40cm~10cm)したときに矯正されるべき度数であってもよい。
 また、中心側クリア領域には、近視又は遠視進行抑制効果をもたらすことを意図した構成(例:デフォーカス領域、凸状領域及び/又は凹状領域、埋め込み構造等)は設けられていない。
 本発明の一態様の中心側クリア領域(及びファンクショナル領域内のベース領域、更には外側クリア領域)は、いわゆる単焦点レンズとしての機能を奏する。
 ちなみに、装用者情報の処方データは、眼鏡レンズのレンズ袋に記載されている。つまり、レンズ袋があれば、装用者情報の処方データに基づいた眼鏡レンズの物としての特定が可能である。そして、眼鏡レンズはレンズ袋とセットになっていることが通常である。そのため、レンズ袋が付属した眼鏡レンズも本発明の技術的思想が反映されているし、レンズ袋と眼鏡レンズとのセットについても同様である。
 「アイポイント(EP)」は、眼鏡レンズを装用した際に、真正面に向いたときに視線が通る位置である。本発明の一態様においては、フレームへの枠入れ加工前の眼鏡レンズの幾何中心はアイポイントと一致し、且つ、プリズム参照点とも一致する場合を例示する。以降、本発明の一態様の眼鏡レンズとして、フレームへの枠入れ加工前の眼鏡レンズを例示するが、本発明はこの態様に限定されない。
 アイポイントは、レンズ製造業者が発行するリマークチャート(Remark chart)又はセントレーションチャート(Centration chart)を参照することにより、位置の特定は可能となる。
 ファンクショナル領域は、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させない領域である。ファンクショナル領域は、平面視において、中心側クリア領域を包囲する環状の領域である。
 環状のファンクショナル領域全体において中心側クリア領域と異なる眼鏡レンズの表面形状(例えばすりガラスのような不透明化の加工が成されたもの)や内部埋め込み構造を有するとは限らない。例えば、特許文献1の第1の屈折領域のように凸状領域が島状に設けられる一方で、処方度数を実現する第2の屈折領域(中心側クリア領域と同機能を奏するベース領域)が凸状領域の周囲に設けられる場合、ベース領域と凸状領域とを含む環状の領域をファンクショナル領域とみなしてもよい。
 また、ファンクショナル領域に関しては、特許文献2の図1に示すように、円環状に数珠つなぎに凸状領域を形成して径方向にその数珠つなぎの円環を複数配置すると共に凸状領域が形成されない領域はベース領域とした眼鏡レンズにおいて、最小径の数珠つなぎの円環と最大径の数珠繋ぎとの円環との間の領域をファンクショナル領域と設定してもよい。
 また、ファンクショナル領域に関しては、特許文献3の図3Bに示すように、眼鏡レンズの内部に屈折率の異なる部材を埋め込んだときに最もアイポイントに近い部分と最もアイポイントEPから遠い部分との間の環状の領域をファンクショナル領域と設定してもよい。
(規定1)
 図1は、本発明の一態様に係る眼鏡レンズ1の中心側クリア領域2に関する(規定1)を説明するための概略拡大平面図である。なお、図1では、後掲の<具体例2>で採用したファンクショナル領域3の構造を採用している。
 本発明の一態様の特徴の一つは、平面視において、中心側クリア領域2内の部分であって、アイポイントEPを通過する水平線から上方d[mm]と下方d[mm]との間の範囲の矩形状の部分の水平方向の最大幅は、dを1.00以上2.00以下の範囲の少なくともいずれか一つの値としたとき、アイポイントEPから耳側よりもアイポイントEPから鼻側の方が大きいことにある。
 上段落に記載の規定は、本発明の一態様に係る眼鏡レンズ1を装用した状態で近方視したとき、視線がアイポイントEPの水平方向鼻側を通過することを考慮している。dは該視線に関係する規定であり、瞳孔サイズPSの半径を考慮している。例えば、d[mm]が2.00[mm]である場合、瞳孔半径は2.00[mm]即ち瞳孔径は4.00[mm]が想定されることを意味する。そして、上段落に記載の規定は、中心側クリア領域2内の範囲で視線を移動させる場合、視線の移動可能距離は、アイポイントEPから水平方向耳側よりも水平方向鼻側の方が大きいことを意味する。
 dの値は、1.00以上2.00以下の範囲の少なくともいずれか一つの値であればよく、上段落で例示したように2.00であってもよいし、1.50であってもよい。
 アイポイントEPから鼻側における上記矩形状の部分の水平方向の最大幅は、3.60mm以上(好適には4.00mm以上)としてもよく、上限には限定は無い。上限を規定する場合、後掲の中心側クリア領域2の大きさの上限を適用すれば足りる。
 アイポイントEPから耳側よりもアイポイントEPから鼻側の方が大きければよいが、両距離の差は例えば0.40~3.00mmの範囲の値であってもよい。
 該両距離の差を相対値で規定してもよい。例えば、アイポイントEPから耳側における上記矩形状の部分の水平方向の最大幅を分母、アイポイントEPから鼻側における該最大幅を分子としたときの値は、1.00より大きく且つ2.00以下としてもよい。この値の下限は1.20、1.40でもよく、この値の上限は1.80、1.60であってもよい。
 (規定1)において矩形に代えて円を採用してもよい(規定1の別態様)。具体的には、平面視において、中心側クリア領域2内の部分であって、アイポイントEPを通過する水平線上に中心が存在する半径r[mm]の円において、rを1.50以上2.50以下の範囲の少なくともいずれか一つの値としたとき、水平方向におけるアイポイントEPからの該円の中心までの最大距離が耳側よりも鼻側の方が大きいという規定を採用してもよい。詳しく言うと、アイポイントEPを通過する水平線上に中心が存在する円であって、中心側クリア領域2内において水平方向の最も耳側に配置可能な円αと、中心側クリア領域2内において水平方向の最も鼻側に配置可能な円βとを想定し、円βの中心とアイポイントEPとの間の距離β´が、円αの中心とアイポイントEPとの間の距離α´よりも大きいという規定を採用してもよい。rの値は、2.00であってもよいし、1.50であってもよい。2rの値は瞳孔径を想定していることから、本明細書では、これらの円の各々のことをクリア瞳孔円ともいう。
 (規定1)において矩形に代えて円を採用したときの、水平方向におけるアイポイントEPからの該円の中心までの鼻側の最大距離は1.60mm以上(好適には2.00mm以上)としてもよい。また、水平方向におけるアイポイントEPからの該円の鼻側端までの最大距離は3.60mm以上(好適には4.00mm以上)としてもよい。いずれも、上限には限定は無い。上限を規定する場合、後掲の中心側クリア領域2の大きさの上限を適用すれば足りる。
 (規定1)において矩形に代えて円を採用したときの、水平方向におけるアイポイントEPからの該円の中心までの耳側の最大距離と鼻側の最大距離との間の差は例えば1.00~3.00mmの範囲の値であってもよい。
 該両距離の差を相対値で規定してもよい。例えば、水平方向におけるアイポイントEPからの該円の中心までの耳側の最大距離を分母、鼻側の最大距離を分子としたときの値は、1.00より大きく且つ2.00以下としてもよい。この値の下限は1.20、1.40でもよく、この値の上限は1.80、1.60であってもよい。
 (規定1)を(規定1の別態様)と組み合わせて採用しても構わない。
(規定2)
 図2は、本発明の一態様に係る眼鏡レンズ1の中心側クリア領域2に関する(規定2)を説明するための概略拡大平面図である。なお、図2では、後掲の<具体例2>で採用したファンクショナル領域3の構造を採用している。
 本発明の一態様においては、平面視において、ファンクショナル領域3内での装用者の瞳孔内に入射させた光束を網膜上に収束させない形状の部分に対して中心側クリア領域2側で他の該部分を含まずに外接可能な半径2.00mmの全ての円(いずれも同じ半径)(そのうち一つの円が、図2の符号PSが付された円)の集合体の包絡線(図2の符号EL1)を中心側クリア領域2の形状(即ち中心側クリア領域2とファンクショナル領域3との境界線)としてもよい。以降、包絡線を例示するが、クリア瞳孔円の集合体の包絡線ではなく「クリア瞳孔円の集合体」を中心側クリア領域2の形状としてもよい。つまり、中心側クリア領域2は、アイポイントEPを含み且つクリア瞳孔円の集合体により構成されてもよい。
 (規定2)において上記集合体の包絡線を中心側クリア領域2の形状としたとき、該形状内でのアイポイントEPから水平方向鼻側における最大距離は、3.60mm以上(好適には4.00mm以上)としてもよく、上限には限定は無い。上限を規定する場合、後掲の中心側クリア領域2の大きさの上限を適用すれば足りる。
 (規定2)において上記集合体の包絡線を中心側クリア領域2の形状としたとき、中心側クリア領域2の形状の重心GVCは、アイポイントEPよりも鼻側に配置されてもよい。
 上記(規定2)は、中心側クリア領域2の形状を特定する一態様でもある。そのうえで、中心側クリア領域2の形状の重心GVCが、アイポイントEPよりも鼻側に配置されることにより、眼を輻輳させたときに視線が中心側クリア領域2を通過しやすくなる。中心側クリア領域2の形状の重心GVCは、アイポイントEPから見て水平方向鼻側に配置されれば、より確実に、眼を輻輳させたときに視線が中心側クリア領域2を通過できる。
 なお、中心側クリア領域2の形状において、アイポイントEPを通過する水平線分の中点がアイポイントEPよりも鼻側に配置される状態であれば、更に確実に、眼を輻輳させたときに視線が中心側クリア領域2を通過できる。
 上記重心GVCを採用する場合も、上記水平線分の中点を採用する場合も、アイポイントEPから見て上記重心GVC又は中点までの水平方向の距離は、例えば0.10(或いは1.00)~3.00mmの範囲の値であってもよい。
 (規定2)で規定した中心側クリア領域2は、アイポイントEPを通過する垂直線に対し、耳側の形状と鼻側の形状とが非対称となる。一例としては、該中心側クリア領域2の形状が、耳側では、多角形の角を丸めた(或いは正円、楕円の)形状Aを半分にした形状である一方、鼻側では、形状Aの重心GVCから水平方向鼻側へと該残りの半分の形状が張り出した(別の言い方だと拡張した)形状を有する。
 上記の諸々の内容を包含し、且つ、機能的な表現で本発明の一態様を表現したのが以下の規定である。
(規定3)
 本発明の一態様の特徴の一つは、平面視において、中心側クリア領域2は、アイポイントEPから見て水平方向の耳側よりも鼻側に張り出すことである。
 本発明の一態様の眼鏡レンズ1において(規定1)(規定2)(規定3)の少なくともいずれかを採用することにより、近視又は遠視進行抑制用の眼鏡レンズ1の装用者が近方視して眼を輻輳させたとき、装用者の瞳孔内に入射する光束が中心側クリア領域2を通過することにより、光束が網膜に収束し、良好な視認性が得られる。
 本願各図では右眼用レンズを平面視した場合を例示したが、左眼用の眼鏡レンズ1に対しても本発明の一態様を適用可能であり、右眼用レンズと左眼用レンズの各々に本発明の一態様を適用した眼鏡レンズ対により、近視進行抑制機能を得ながら、良好な視認性も得られる。
<眼鏡レンズ1の好適例及び変形例>
 本発明の一態様における眼鏡レンズ1の好適例及び変形例について、以下に述べる。
 上記(規定1)において、環状のファンクショナル領域全体において中心側クリア領域と異なる眼鏡レンズの表面形状(例えばすりガラスのような一部光を散乱させるように加工が成されたもの)や内部埋め込み構造を有するとは限らない。例えば、特許文献1の第1の屈折領域のように凸状領域が島状に設けられる一方で、処方度数を実現する第2の屈折領域(中心側クリア領域と同機能を奏するベース領域)が凸状領域の周囲に設けられる場合、ベース領域と凸状領域とを含む環状の領域をファンクショナル領域とみなしてもよい。
 環状のファンクショナル領域において、アイポイントEPから見て+Y方向を回転角ゼロ度としたとき所定の回転角範囲にわたって凸状領域等が設けられない構成もあり得る。その場合、例えば右眼用レンズの場合だと時計回り90度(水平方向鼻側)を中心とした数度~10数度の回転角の範囲にわたって凸状領域等を設けない構成もあり得る。その場合であっても、上記(規定1)において、中心側クリア領域内の部分であって、アイポイントを通過する水平線から上方d[mm]と下方d[mm]との間の範囲の矩形状の部分の水平方向の最大幅は、アイポイントから耳側よりもアイポイントから鼻側の方が大きいことに変わりはない。また、中心側クリア領域は、アイポイントから見て水平方向の耳側よりも鼻側に張り出していることに変わりはない。
 中心側クリア領域2の大きさ及び形状には限定は無い。中心側クリア領域2の大きさの下限の一つの目安としては、アイポイントEPを中心とした直径5.00mmの円を包含可能な大きさであればよい。中心側クリア領域2の大きさの上限の一つの目安としては、アイポイントEPを中心とした直径10.00mmの円内に収まる大きさであればよい。アイポイントEPからの中心側クリア領域2の縁までの水平距離の最小値(クリア領域が平面視円状の場合は最小半径)が3.60mm以下であってもよい。中心側クリア領域2の面積は80mm以下であってもよい。中心側クリア領域2の形状は、平面視で円形状、矩形状、楕円状等であってもよい。
 ファンクショナル領域3の大きさ及び形状には限定は無い。ファンクショナル領域3の大きさの下限の一つの目安としては、アイポイントEPを中心とした直径15mmの円周を包含可能な大きさであればよい。ファンクショナル領域3の大きさの上限の一つの目安としては、アイポイントEPを中心とした直径50.00mmの円周を包含可能な大きさであればよい。ファンクショナル領域3の形状は平面視で環状であり、その環は内側(即ち中心側クリア領域2とファンクショナル領域3との境界)及び/又は外側(即ち外側クリア領域4とファンクショナル領域3との境界)において円形状、矩形状、楕円状等又はその組み合わせでも構わない。
 一つの目安として、ファンクショナル領域3では、装用者の瞳孔内に入射させた光束の30%以上(或いは40%以上、50%以上、60%以上)は網膜上に収束させないと定義してもよい。該%の値が大きければ近視又は遠視進行抑制効果も大きくなると期待される一方、視認性は低下する。該%の値は、近視又は遠視進行抑制効果と視認性との兼ね合いで適宜決定すればよい。
 なお、ファンクショナル領域3において、近視又は遠視進行抑制効果を奏する構成(凸状領域3a、埋め込み構造)の平面視での面積が、ファンクショナル領域3全体の30%以上(或いは40%以上、50%以上、60%以上)と規定してもよい。上限は例えば70%としてもよい。
 眼鏡レンズ1の外縁側にてファンクショナル領域3と接する領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる外側クリア領域4を備えてもよい。その場合、ファンクショナル領域3は、外側クリア領域4と中心側クリア領域2との間に存在する環状の領域となる。
 外側クリア領域4の形状を特定する一態様として、上記中心側クリア領域2の形状を特定する態様(規定2)を援用してもよい。つまり、平面視において、外側クリア領域4は、アイポイントEPを含まず且つクリア瞳孔円の集合体により構成される、と定義してもよい。そして、眼鏡レンズ1において、中心側クリア領域2と外側クリア領域4以外の領域をファンクショナル領域3と定義してもよい。
 外側クリア領域4の形状を特定する具体的な一態様は以下の通りである。平面視において、ファンクショナル領域3内での装用者の瞳孔内に入射させた光束を網膜上に収束させない形状の部分であって最も眼鏡レンズ1の外縁側に配置された該部分に着目する。ここで言う「最も眼鏡レンズ1の外縁側に配置された該部分」とは、アイポイントEPから見て周方向0~360度の各々の範囲において径方向に最も離れた各該部分を指す。各該部分に対し、眼鏡レンズ1の外縁側で他の該部分を含まずに外接可能な半径2.00mmの全ての円(いずれも同じ半径)の集合体の包絡線EL2と眼鏡レンズ1の外縁との間に挟まれる領域の形状を外側クリア領域4の形状としてもよい。クリア瞳孔円の集合体の包絡線ではなく「クリア瞳孔円の集合体」を外側クリア領域4の形状としてもよい。
 外側クリア領域4は環状であってもよいし、環の一部のみを構成する形状であってもよい。つまり、ファンクショナル領域3の一部が眼鏡レンズ1の外縁と接し、ファンクショナル領域3の他の部分は外側クリア領域4と接してもよい。また、本発明の一態様の眼鏡レンズ1はフレームへの枠入れ後の眼鏡レンズ1であってもよく、該眼鏡レンズ1におけるファンクショナル領域3の一部が眼鏡レンズ1の外縁と接し、ファンクショナル領域3の他の部分は外側クリア領域4と接してもよい。また、外側クリア領域4の更に外縁側に別のファンクショナル領域3を設けることは妨げないが、ファンクショナル領域3の外縁側全体が外側クリア領域4である、即ち、ファンクショナル領域3の外縁側においては、近視又は遠視進行抑制効果をもたらすことを意図した構成(例:デフォーカス領域、凸状領域3a及び/又は凹状領域、埋め込み構造等)が設けられていないのが好ましい。
<眼鏡レンズ1の一具体例>
 複数のデフォーカス領域の配置の態様は、特に限定されるものではなく、例えば、デフォーカス領域の外部からの視認性、デフォーカス領域によるデザイン性付与、デフォーカス領域による屈折力調整等の観点から決定できる。
 眼鏡レンズ1の中心側クリア領域2の周囲に配置されたファンクショナル領域3において、周方向及び径方向に等間隔に、略円形状のデフォーカス領域が島状に(すなわち、互いに隣接することなく離間した状態で)配置されてもよい。デフォーカス領域の平面視での配置の一例としては、各凸状領域3aの中心が正三角形の頂点となるよう各々独立して離散配置(ハニカム構造の頂点に各デフォーカス領域の中心が配置:六方配置)する例が挙げられる。その場合、デフォーカス領域同士の間隔は1.0~2.0mmであってもよい。また、デフォーカス領域の個数は100~100000であってもよい。
 ファンクショナル領域3において、近視又は遠視進行抑制効果を奏する構成の一例がデフォーカス領域である。
 デフォーカス領域とは、幾何光学的な観点においてその領域の中の少なくとも一部がベース領域3bによる集光位置には集光させない領域である。デフォーカス領域とは、特許文献1の微小凸部に該当する部分である。本発明の一態様に係る眼鏡レンズ1は、特許文献1に記載の眼鏡レンズと同様、近視進行抑制レンズである。特許文献1の微小凸部と同様、本発明の一態様に係る複数のデフォーカス領域は、眼鏡レンズ1の物体側の面及び眼球側の面の少なくともいずれかに形成されればよい。本明細書においては、眼鏡レンズ1の物体側の面のみに複数のデフォーカス領域を設けた場合を主に例示する。以降、特記無い限り、デフォーカス領域は、レンズ外部に向かって突出する曲面形状である場合を例示する。
 複数のデフォーカス領域(ファンクショナル領域内の全デフォーカス領域)のうち半分以上の個数は平面視にて同じ周期で配置されるのが好ましい。同じ周期であるパターンの一例としては平面視にて正三角形配置(デフォーカス領域の中心が正三角形の頂点に配置、六方配置も可能)が挙げられる。周期の方向は周方向及び/又は径方向であればよい。好適には80%以上、より好適には90%以上、更に好適には95%以上である。以降、「ファンクショナル領域内の全デフォーカス領域の半分以上の数(又は80%以上の数)」の好適例は、上記と同様に好適な順に80%以上、90%以上、95%以上とし、繰り返しの記載を省略する。
 デフォーカス領域は球面形状、非球面形状、トーリック面形状又はそれらが混在した形状(例えば各デフォーカス領域の中心箇所が球面形状、中心箇所の外側の周辺箇所が非球面形状)であってもよい。デフォーカス領域(或いは凸状領域3a)の平面視の半径の1/3~2/3の部分に中心箇所と周辺箇所との境界を設けても構わない。但し、デフォーカス領域(或いは凸状領域3a)の少なくとも中心箇所は、レンズ外部に向かって突出する凸の曲面形状であるのが好ましい。また、複数のデフォーカス領域(ファンクショナル領域内の全デフォーカス領域)のうち半分以上の個数は平面視にて同じ周期で配置されるのが好ましいことに伴い、デフォーカス領域は球面であるのが好ましい。
 各々のデフォーカス領域は、例えば、以下のように構成される。デフォーカス領域の平面視での直径は、0.6~2.0mm程度が好適である。それぞれ表面の面積では0.50~3.14mm程度であってもよい。凸状領域3aの曲率半径は、50~250mm、好ましくは86mm程度の球面状である。
 ファンクショナル領域3において、デフォーカス領域及びベース領域3bの面積の合計に対して、デフォーカス領域の面積の合計が占める割合が20~60%であってもよい。
 各デフォーカス領域におけるデフォーカスパワーの具体的な数値に限定は無いが、例えば、眼鏡レンズ1上のデフォーカス領域がもたらすデフォーカスパワーの最小値は0.50~4.50Dの範囲内、最大値は3.00~10.00Dの範囲内であるのが好ましい。最大値と最小値の差は1.00~5.00Dの範囲内であるのが好ましい。
 「デフォーカスパワー」は、各デフォーカス領域の屈折力と、各デフォーカス領域以外の部分の屈折力との差を指す。別の言い方をすると、「デフォーカスパワー」とは、デフォーカス領域の所定箇所の最小屈折力と最大屈折力の平均値からベース部分の屈折力を差し引いた差分である。本明細書においては、デフォーカス領域が凸状領域3aである場合を例示している。
 本明細書における「屈折力」は、屈折力が最小となる方向の屈折力と、屈折力が最大となる方向(該方向に対して垂直方向)の屈折力との平均値である平均屈折力を指す。
 レンズ基材は、例えば、チオウレタン、アリル、アクリル、エピチオ等の熱硬化性樹脂材料によって形成されている。なお、レンズ基材を構成する樹脂材料としては、所望の屈折度が得られる他の樹脂材料を選択してもよい。また、樹脂材料ではなく、無機ガラス製のレンズ基材としてもよい。
 ハードコート膜は、例えば、熱可塑性樹脂又はUV硬化性樹脂を用いて形成されている。ハードコート膜は、ハードコート液にレンズ基材を浸漬させる方法や、スピンコート等を使用することにより、形成することができる。このようなハードコート膜の被覆によって、眼鏡レンズ1の耐久性向上が図れるようになる。
 反射防止膜は、例えば、ZrO、MgF、Al等の反射防止剤を真空蒸着により成膜することにより、形成されている。このような反射防止膜の被覆によって、眼鏡レンズ1を透した像の視認性向上が図れるようになる。
 上述したように、レンズ基材の物体側の面には、複数のデフォーカス領域が形成されている。従って、その面をハードコート膜及び反射防止膜によって被覆すると、レンズ基材におけるデフォーカス領域に倣って、ハードコート膜及び反射防止膜によっても複数のデフォーカス領域が形成されることになる。
 眼鏡レンズ1の製造にあたっては、まず、レンズ基材を、注型重合等の公知の成形法により成形する。例えば、複数の凹部が備わった成形面を有する成形型を用い、注型重合による成形を行うことにより、少なくとも一方の表面にデフォーカス領域を有するレンズ基材が得られる。
 そして、レンズ基材を得たら、次いで、そのレンズ基材の表面に、ハードコート膜を成膜する。ハードコート膜は、ハードコート液にレンズ基材を浸漬させる方法や、スピンコート等を使用することにより、形成することができる。
 ハードコート膜を成膜したら、更に、そのハードコート膜の表面に、反射防止膜を成膜する。反射防止膜は、該膜のための原料を真空蒸着により成膜することにより、形成することができる。
 このような手順の製造方法により、物体側に向けて突出する複数のデフォーカス領域を物体側の面に有する眼鏡レンズ1が得られる。
 以上の工程を経て形成される被膜の膜厚は、例えば0.1~100μm(好ましくは0.5~5.0μm、更に好ましくは1.0~3.0μm)の範囲としてもよい。ただし、被膜の膜厚は、被膜に求められる機能に応じて決定されるものであり、例示した範囲に限定されるものではない。
 被膜の上には、更に一層以上の被膜を形成することもできる。そのような被膜の一例としては、反射防止膜、撥水性又は親水性の防汚膜、防曇膜等の各種被膜が挙げられる。これら被膜の形成方法については、公知技術を適用できる。
<眼鏡>
 所定のフレーム形状に基づいて上記眼鏡レンズ1の周縁近傍をカットし、フレームに嵌め入れた眼鏡にも本発明の技術的思想が反映されている。フレームの種類、形状等には限定は無く、フルリム、ハーフリム、アンダーリム、リムレスであってもよい。
 以下、本発明の一態様に係る眼鏡レンズ1の具体例を示す。本発明は、以下の具体例に限定されるものではない。
<具体例1>
 図3は、本発明の一態様に係る眼鏡レンズ1の<具体例1>において本発明の一態様を適用する前の概略平面図である。
 図4は、本発明の一態様に係る眼鏡レンズ1の<具体例1>において本発明の一態様を適用した後の概略平面図である。
 以下の眼鏡レンズ1を作製した。なお、眼鏡レンズ1はレンズ基材のみからなり、レンズ基材に対する他物質による積層は行っていない。処方屈折力としてS(球面屈折力)は0.00Dとし、C(乱視屈折力)は0.00Dとした。
 ・レンズ基材の平面視での直径:60.00mm
 ・レンズ基材の種類:PC(ポリカーボネート)
 ・レンズ基材の屈折率:1.589
 上記の内容は、各具体例に共通の内容であるため、以降は記載を省略する。
 本具体例では、本発明の一態様を適用する前だと、中心側クリア領域2の範囲を、アイポイントEPから半径3.50mmの円の領域とし、ファンクショナル領域3の範囲を、レンズ中心から半径20.00mmの円内(但し中心側クリア領域2は除く)と設定した。なお、ファンクショナル領域3よりも眼鏡レンズ1の外縁側に外側クリア領域4を設けた。
 本具体例のファンクショナル領域3は、すりガラスのような不透明化の加工がファンクショナル領域3全体に亘って成されたものを想定している。その一方、該ファンクショナル領域3は、近視又は遠視進行抑制効果をもたらすことを意図した構成(例:デフォーカス領域、凸状領域3a及び/又は凹状領域、埋め込み構造等)とベース領域3bとを含む環状の領域であってもよい。
 そして、本発明の一態様を適用することにより、中心側クリア領域2を水平方向鼻側へと拡張し、中心側クリア領域2の形状を楕円に引き延ばした。本発明の一態様を適用する前に比べ、中心側クリア領域2を1.00mm鼻側に引き延ばした。その結果、中心側クリア領域2は、耳側よりも鼻側に1.00mm張り出した。その結果、本発明の一態様を適用する前だと中心側クリア領域2は半径3.50mm(直径7.00mm)の正円だったが、本発明の一態様を適用した後だと中心側クリア領域2は縦軸(短軸)7.00mm、横軸(長軸)8.00mmの楕円になった。
 本具体例は、上記(規定1)を満たした。具体的には、dを1.00以上2.00以下の範囲のいずれの値に設定しても、(規定1)の矩形状の部分の水平方向の最大幅は、アイポイントEPから耳側よりもアイポイントEPから鼻側の方が1.00mm大きかった。本具体例は、上記(規定1の別態様)も満たした。
 上記(規定2)を採用した場合の中心側クリア領域2の形状において、上記重心GVCはアイポイントEPを通過する水平線上にあり、アイポイントEPから見て、上記重心GVCまでの水平方向の距離は0.50mmであり、上記アイポイントEPを通過する水平線分の中点までの水平方向の距離は0.50mmであった。瞳孔径4.00mmの場合、中心側クリア領域2での最大内寄せ量(鼻側へ移動可能な距離)は1.50mmから2.00mmに拡大した。
 本具体例において、本発明の一態様を適用することにより、中心側クリア領域2は、遠用瞳孔位置PS1のみならず、近用瞳孔位置PS2も包含可能となった。
<具体例2>
 図5は、本発明の一態様に係る眼鏡レンズ1の<具体例2>において本発明の一態様を適用する前の概略平面図である。
 図6は、本発明の一態様に係る眼鏡レンズ1の<具体例2>において本発明の一態様を適用した後の概略平面図である。
 本具体例では以下の構成を採用した。
 ・ファンクショナル領域3の構成:デフォーカス領域として凸状領域3aを離散配置。
ファンクショナル領域3内において、凸状領域3a以外はベース領域3b。
 ・凸状領域3aの形状:球面
 ・凸状領域3aの屈折力:3.50D
 ・凸状領域3aの形成面:物体側の面
 ・凸状領域3aの平面視での配置:各凸状領域3aの中心が正三角形の頂点となるよう各々独立して離散配置(ハニカム構造の頂点に各凸状領域3aの中心が配置)
 ・凸状領域3aの平面視での形状:正円(直径1.00mm)
 ・各凸状領域3a間のピッチ(凸状領域3aの中心間の距離):1.50mm
 ・装用者の瞳孔径:4.00mmと想定
 本具体例では、本発明の一態様を適用する前だと、中心側クリア領域2の範囲を、おおよそアイポイントEPから半径3.45mmの円の領域とし、ファンクショナル領域3の範囲を、レンズ中心から半径20.00mmの円内(但し中心側クリア領域2は除く)と設定した。なお、ファンクショナル領域3よりも眼鏡レンズ1の外縁側に外側クリア領域4を設けた。
 なお、上記中心側クリア領域2の形状を特定する態様(規定2)を適用しても、中心側クリア領域2としては、ファンクショナル領域3の凸状領域3aに対する外接円の集合体の包絡線(例えば図2の包絡線EL1)を輪郭とする形状が得られる(以降の具体例でも同様)。
 また、上記中心側クリア領域2の形状を特定する態様(規定2)を援用した外側クリア領域4の形状を特定する一態様を適用しても、ファンクショナル領域3としては上段落に記載の円環状領域に極めて近い形状が得られる(以降の具体例でも同様)。厳密には、具体例2、3に係る各図に記載のファンクショナル領域3の外側の境界線(破線である包絡線EL2)は円形ではなく、凸状領域3aが存在しない部分においてわずかに円の中心側に向けて凸の形状(ファンクショナル領域3がへこむ形状)となるが、該各図では概略図として該包絡線EL2を円形で示している。
 そして、本発明の一態様を適用することにより、中心側クリア領域2を水平方向鼻側へと拡張した。具体的には、本発明の一態様を適用する前においてアイポイントEPを通過する水平線から最も近く且つ最もアイポイントEP(眼鏡レンズ1の幾何中心GC)に近い上下各1個の凸状領域3aを設けなかった。これにより、中心側クリア領域2の形状を水平方向鼻側へと引き延ばした。
 本具体例は、上記(規定1)を満たした。具体的には、dを1.50に設定すると、(規定1)の矩形状の部分の水平方向の最大幅は、アイポイントEPから耳側よりもアイポイントEPから鼻側の方が1.30mm大きかった。本具体例は、上記(規定1の別態様)も満たした。
 上記(規定2)を採用した場合の中心側クリア領域2の形状において、上記重心GVCはアイポイントEPを通過する水平線上にあり、アイポイントEPから見て、上記重心GVCまでの水平方向の距離は約0.4mmであり、上記アイポイントEPを通過する水平線分の中点までの水平方向の距離は0.59mmであった。瞳孔径4mmの場合、中心側クリア領域での最大内寄せ量(鼻側へ移動可能な距離)は1.51mmから2.70mmに拡大した。
 本具体例において、本発明の一態様を適用することにより、中心側クリア領域2は、遠用瞳孔位置PS1のみならず、近用瞳孔位置PS2も包含可能となった。
<具体例3>
 図7は、本発明の一態様に係る眼鏡レンズ1の<具体例3>において本発明の一態様を適用する前の概略平面図である。
 図8は、本発明の一態様に係る眼鏡レンズ1の<具体例3>において本発明の一態様を適用した後の概略平面図である。
 本具体例では、具体例2に対して以下のように変更した。
 凸状領域3aの平面視での配置を変更した。具体的には、凸状領域3aを水平方向及び垂直方向に整列させた。各凸状領域3a間のピッチ(凸状領域3aの中心間の距離)は1.25mmとした。
 本具体例では、本発明の一態様を適用する前だと、中心側クリア領域2の範囲を、アイポイントEPから半径3.25mmの円の領域とし、ファンクショナル領域3の範囲を、レンズ中心から半径20.00mmの円内(但し中心側クリア領域2は除く)と設定した。なお、ファンクショナル領域3よりも眼鏡レンズ1の外縁側に外側クリア領域4を設けた。
 そして、本発明の一態様を適用することにより、中心側クリア領域2を水平方向鼻側へと拡張した。具体的には、本発明の一態様を適用する前においてアイポイントEPを通過する水平線から最も近く且つ最もアイポイントEP(眼鏡レンズ1の幾何中心GC)に近い上下各1個及び水平線が通過する1個、それらに加え、その隣の列(Y方向に配列)の凸状領域3aにおいて最も該水平線に近い上下各1個の計5個の凸状領域3aを設けなかった。これにより、中心側クリア領域2の形状を水平方向鼻側へと引き延ばした。
 本具体例は、上記(規定1)を満たした。具体的には、dを1.50mmに設定すると、(規定1)の矩形状の部分の水平方向の最大幅は、アイポイントEPから耳側よりもアイポイントEPから鼻側の方が1.25mm大きかった。本具体例は、上記(規定1の別態様)も満たした。
 上記(規定2)を採用した場合の中心側クリア領域2の形状において、上記重心GVCはアイポイントEPを通過する水平線上にあり、アイポイントEPから見て、上記重心GVCまでの水平方向の距離は約0.4mmであり、上記アイポイントEPを通過する水平線分の中点までの水平方向の距離は0.63mmであった。瞳孔径4mmの場合、中心側クリア領域での最大内寄せ量(鼻側へ移動可能な距離)は1.25mmから2.50mmに拡大した。
 本具体例において、本発明の一態様を適用することにより、中心側クリア領域2は、遠用瞳孔位置PS1のみならず、近用瞳孔位置PS2も包含可能となった。
<具体例4>
 図9は、本発明の一態様に係る眼鏡レンズ1の<具体例4>において本発明の一態様を適用する前の概略平面図である。
 図10は、本発明の一態様に係る眼鏡レンズ1の<具体例4>において本発明の一態様を適用した後の概略平面図である。
 本具体例では、具体例2に対して以下のように変更した。
 凸状領域3aの平面視での配置を変更した。具体的には、凸状領域3aを周方向に整列させた。この整列を、径ごとに(アイポイントEPからの距離ごとに)行った。整列状況を以下の表に示す。以下の表において、リング番号とは、アイポイントEPから近い順に凸状領域3aの周方向の整列集団に付した番号であり、半径とは該リングの半径であり、凸状領域3aの数とは該リング上に配置された凸状領域3aの数である。
Figure JPOXMLDOC01-appb-T000001
 本具体例では、本発明の一態様を適用する前だと、中心側クリア領域2の範囲を、アイポイントEPから半径3.35mmの円の領域とし、ファンクショナル領域3の範囲を、レンズ中心から半径20.00mmの円内(但し中心側クリア領域2は除く)と設定した。なお、ファンクショナル領域3よりも眼鏡レンズ1の外縁側に外側クリア領域4を設けた。
 そして、本発明の一態様を適用することにより、中心側クリア領域2を水平方向鼻側へと拡張した。具体的には、本発明の一態様を適用する前のリング番号1上の凸状領域3aにおいてアイポイントEPを通過する水平線から最も近く且つ最もアイポイントEP(眼鏡レンズ1の幾何中心GC)に近い上下各1個及び水平線が通過する1個の計3個の凸状領域3aを設けなかった。これにより、中心側クリア領域2の形状を水平方向鼻側へと引き延ばした。
 本具体例は、上記(規定1)を満たした。具体的には、dを1.50に設定すると、(規定1)の矩形状の部分の水平方向の最大幅は、アイポイントEPから耳側よりもアイポイントEPから鼻側の方が1.54mm大きかった。本具体例は、上記(規定1の別態様)も満たした。
 上記(規定2)を採用した場合の中心側クリア領域2の形状において、上記重心GVCはアイポイントEPを通過する水平線上にあり、アイポイントEPから見て、上記重心GVCまでの水平方向の距離は約0.5mmであり、上記アイポイントEPを通過する水平線分の中点までの水平方向の距離は0.72mmであった。瞳孔径4mmの場合、中心側クリア領域での最大内寄せ量(鼻側へ移動可能な距離)は1.34mmから2.47mmに拡大した。
 本具体例において、本発明の一態様を適用することにより、中心側クリア領域2は、遠用瞳孔位置PS1のみならず、近用瞳孔位置PS2も包含可能となった。
 本発明の技術的範囲は上記実施形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
1・・・眼鏡レンズ
2・・・中心側クリア領域
3・・・ファンクショナル領域
3a・・・凸状領域
3b・・・ベース領域
4・・・外側クリア領域
EP・・・アイポイント
GC・・・幾何中心
GVC・・・重心
PS・・・瞳孔サイズ
PS1・・・遠用瞳孔位置
PS2・・・近用瞳孔位置
EL1・・・(中心側クリア領域の形状となる)包絡線
EL2・・・(外側クリア領域とファンクショナル領域との境界の形状となる)包絡線

Claims (9)

  1.  アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
     前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
     平面視において、前記中心側クリア領域内の部分であって、アイポイントを通過する水平線から上方d[mm]と下方d[mm]との間の範囲の矩形状の部分の水平方向の最大幅は、dを1.00以上2.00以下の範囲の少なくともいずれか一つの値としたとき、アイポイントから耳側よりもアイポイントから鼻側の方が大きい、眼鏡レンズ。
  2.  dは1.50である、請求項1に記載の眼鏡レンズ。
  3.  前記矩形状の部分において、アイポイントから水平方向鼻側の最大幅は3.60mm以上である、請求項1又は2に記載の眼鏡レンズ。
  4.  アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
     前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
     平面視において、前記ファンクショナル領域内での装用者の瞳孔内に入射させた光束を網膜上に収束させない形状の部分に対して前記中心側クリア領域側で他の該部分を含まずに外接可能な半径2.00mmの全ての円の集合体を前記中心側クリア領域の形状としたとき、前記中心側クリア領域において、アイポイントを通過する垂直線に対して耳側の形状と鼻側の形状とが非対称であり、且つ、アイポイントから水平方向鼻側の最大距離は3.60mm以上である、眼鏡レンズ。
  5.  前記中心側クリア領域の形状の重心、及び、前記中心側クリア領域の形状においてアイポイントを通過する水平線分の中点の少なくともいずれかが、アイポイントよりも鼻側に配置された、請求項4に記載の眼鏡レンズ。
  6.  アイポイントを含む領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる中心側クリア領域と、
     前記中心側クリア領域を包囲する環状の領域であって、物体側の面から入射した光束を、眼球側の面から出射させる一方、装用者の瞳孔内に入射させた光束の少なくとも一部は網膜上に収束させないファンクショナル領域と、を備え、
     平面視において、前記中心側クリア領域は、アイポイントから見て水平方向の耳側よりも鼻側に張り出した、眼鏡レンズ。
  7.  眼鏡レンズの外縁側にて前記ファンクショナル領域と接する領域であって、物体側の面から入射した光束を、眼球側の面から出射させ、装用者の瞳孔内に入射させ、網膜上に収束させる外側クリア領域を備える、請求項1~6のいずれか一つ記載の眼鏡レンズ。
  8.  前記ファンクショナル領域では、前記装用者の瞳孔内に入射させた光束の30%以上は網膜上に収束させない、請求項1~7のいずれか一つに記載の眼鏡レンズ。
  9.  平面視において、前記中心側クリア領域は、アイポイントを中心とした直径10.00mmの円内に収まる大きさである、請求項1~8のいずれか一つに記載の眼鏡レンズ。
PCT/JP2022/030171 2021-09-15 2022-08-05 眼鏡レンズ WO2023042572A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280060224.4A CN117916651A (zh) 2021-09-15 2022-08-05 眼镜镜片
KR1020247001613A KR20240021301A (ko) 2021-09-15 2022-08-05 안경 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150384A JP2023042948A (ja) 2021-09-15 2021-09-15 眼鏡レンズ
JP2021-150384 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042572A1 true WO2023042572A1 (ja) 2023-03-23

Family

ID=85602750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030171 WO2023042572A1 (ja) 2021-09-15 2022-08-05 眼鏡レンズ

Country Status (4)

Country Link
JP (1) JP2023042948A (ja)
KR (1) KR20240021301A (ja)
CN (1) CN117916651A (ja)
WO (1) WO2023042572A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501222A (ja) * 2007-10-23 2011-01-06 ビジョン シーアールシー リミテッド 眼用レンズ素子
JP2013533044A (ja) * 2010-07-26 2013-08-22 ヴィジョン・シーアールシー・リミテッド 眼の屈折異常の治療
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
WO2019166657A1 (en) 2018-03-01 2019-09-06 Essilor International Lens element
WO2020014613A1 (en) * 2018-07-12 2020-01-16 Sightglass Vision, Inc. Methods and devices for reducing myopia in children
WO2020045567A1 (ja) 2018-08-31 2020-03-05 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造方法および眼鏡レンズ用被膜
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693737B1 (en) 2015-03-27 2022-03-30 Agilent Technologies, Inc. Method and system for determining integrated metabolic baseline and potential of living cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501222A (ja) * 2007-10-23 2011-01-06 ビジョン シーアールシー リミテッド 眼用レンズ素子
JP2013533044A (ja) * 2010-07-26 2013-08-22 ヴィジョン・シーアールシー・リミテッド 眼の屈折異常の治療
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
WO2019166657A1 (en) 2018-03-01 2019-09-06 Essilor International Lens element
WO2020014613A1 (en) * 2018-07-12 2020-01-16 Sightglass Vision, Inc. Methods and devices for reducing myopia in children
WO2020045567A1 (ja) 2018-08-31 2020-03-05 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、眼鏡レンズの製造方法および眼鏡レンズ用被膜

Also Published As

Publication number Publication date
CN117916651A (zh) 2024-04-19
JP2023042948A (ja) 2023-03-28
KR20240021301A (ko) 2024-02-16

Similar Documents

Publication Publication Date Title
CN113366377B (zh) 眼镜镜片及其设计方法
JP5512535B2 (ja) 光学部品における度数を修正するための湾曲円盤
CN218956952U (zh) 一种离焦眼镜片及眼镜
CN217718323U (zh) 一种眼镜片及眼镜
WO2023042572A1 (ja) 眼鏡レンズ
WO2021186878A1 (ja) 眼鏡レンズ
WO2021181885A1 (ja) 眼鏡レンズ
JP7177959B1 (ja) 眼鏡レンズ
US20230229018A1 (en) Eyeglass lens
US20220244573A1 (en) Ophthalmic lens
JP7217676B2 (ja) 眼鏡レンズおよびその設計方法
WO2022190610A1 (ja) 眼鏡レンズ及びその設計方法
WO2023166822A1 (ja) 眼鏡レンズ、眼鏡レンズの製造方法、眼鏡レンズの設計方法、眼鏡及び眼鏡の製造方法
WO2024019071A1 (ja) 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ及び眼鏡
WO2024019070A1 (ja) 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ及び眼鏡
WO2023171061A1 (ja) 眼鏡レンズ、および眼鏡レンズの設計方法
CN218068482U (zh) 一种散光离焦眼镜片及眼镜
JP2009069462A (ja) 眼鏡レンズ及び眼鏡レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247001613

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001613

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401000966

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280060224.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022869720

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869720

Country of ref document: EP

Effective date: 20240415