WO2021181611A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2021181611A1
WO2021181611A1 PCT/JP2020/010851 JP2020010851W WO2021181611A1 WO 2021181611 A1 WO2021181611 A1 WO 2021181611A1 JP 2020010851 W JP2020010851 W JP 2020010851W WO 2021181611 A1 WO2021181611 A1 WO 2021181611A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
cell module
power generation
light
Prior art date
Application number
PCT/JP2020/010851
Other languages
French (fr)
Japanese (ja)
Inventor
染井秀徳
福島岳行
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to PCT/JP2020/010851 priority Critical patent/WO2021181611A1/en
Priority to JP2022507119A priority patent/JPWO2021181611A1/ja
Publication of WO2021181611A1 publication Critical patent/WO2021181611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a solar cell module.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve power generation efficiency.
  • the solar cell module according to the present invention includes a transparent substrate having a first side surface, a second side surface, and a main surface, a power generation layer provided on the main surface of the transparent substrate, and at least the first side surface.
  • a second side surface and a sealing portion provided so as to cover the side surface of the power generation layer are provided, and a plurality of the transparent substrates are provided, and the plurality of transparent substrates are the first side surface and the said. It is characterized in that it is arranged so as to face the second side surface.
  • a light reflecting portion having a refractive index different from that of the transparent substrate may be provided between the first side surface and the second side surface.
  • the light reflecting portion may contain a resin.
  • the resin may be any of acrylic resin, polycarbonate, epoxy resin, silicon resin, fluororesin, and engineering plastic.
  • a silane coupling layer may be provided on the first side surface, and the light reflecting portion may be provided on the silane coupling layer.
  • the light reflecting portion may include a light reflecting filler.
  • a reflective layer may be provided on the first side surface.
  • the reflective layer may be a metal oxide layer.
  • the sealing portion may contain a resin.
  • the power generation layer may be a layer of a plurality of semiconductor particles having a dye adsorbed on the surface.
  • FIG. 1 It is sectional drawing of the solar cell used for examination. It is sectional drawing of the solar cell module which can obtain the higher voltage than the example of FIG. (A) and (b) are sectional views for explaining a problem.
  • (A) and (b) are perspective views (No. 1) during the manufacturing of the solar cell according to the first embodiment.
  • (A) and (b) are perspective views (No. 2) during the manufacturing of the solar cell according to the first embodiment.
  • (A) and (b) are perspective views (No. 3) during the manufacturing of the solar cell according to the first embodiment.
  • (A) and (b) are perspective views (No. 4) during the manufacturing of the solar cell according to the first embodiment. It is an enlarged sectional view of the edge part of the solar cell which concerns on 1st Embodiment.
  • FIG. 1 is a cross-sectional view of the solar cell used in the study.
  • the solar cell 1 is a dye-sensitized solar cell in which a transparent electrode layer 3, a reverse electron transfer prevention layer 4, a power generation layer 5, a solid electrolyte layer 6, and a counter electrode layer 7 are arranged in this order on a transparent substrate 2. It is formed.
  • the transparent substrate 2 is a glass substrate, on which an ITO (Indium Tin Oxide) layer is formed as a transparent electrode layer 3.
  • the reverse electron transfer prevention layer 4 is, for example, a titanium oxide layer made from a titanium alkoxide precursor.
  • the power generation layer 5 is a layer in which a dye is adsorbed on a plurality of titanium oxide fine particles. Examples of the dye include CYC-B11.
  • the solid electrolyte layer 6 is a layer containing, for example, iodine and 1,3-dimethylimidazolium iodide (DMII), and a platinum layer, for example, is provided as a counter electrode layer 7 on the layer. Further, a resin sealing portion 8 for preventing the power generation layer 5 and the solid electrolyte layer 6 from being exposed to the atmosphere is provided on the side surface of the solar cell 1.
  • DMII 1,3-dimethylimidazolium iodide
  • the region where the transparent electrode layer 3, the reverse electron transfer prevention layer 4, the power generation layer 5, the solid electrolyte layer 6, and the counter electrode layer 7 overlap each other is the light transmitted through the transparent substrate 2. It becomes the cell area Rc that generates electricity in.
  • this solar cell 1 has only one cell region Rc, a high voltage cannot be obtained. Although it depends on the type of dye-sensitized solar cell, the generated voltage of the solar cell 1 is only about 0.5 V in this example.
  • FIG. 2 is a cross-sectional view of the solar cell module 11 capable of obtaining a higher voltage than the example of FIG.
  • the same elements as described in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted below.
  • a plurality of cell regions Rc are formed by separating each layer 3 to 7 on the transparent substrate 2 into a plurality of layers. Further, a sealing portion 8 is provided between the cell regions Rc, and the sealing portion 8 prevents the power generation layers 5 of the cell regions Rc from being connected to each other.
  • the solar cell module 11 has the following problems.
  • 3 (a) and 3 (b) are cross-sectional views for explaining the problem.
  • the light L passes through the gaps between the power generation layers 5. Therefore, the light L cannot be fully utilized effectively, and the power generation efficiency of the solar cell module 11 is lowered.
  • the transparent substrate 2 is provided large so as to cover each of the plurality of power generation layers 5, the transparent substrate 2 is cracked during the manufacturing of the solar cell module 11. 2x may occur.
  • a dye-sensitized solar cell is manufactured as a solar cell as follows. 4 (a) to 7 (b) are perspective views of the solar cell according to the present embodiment during manufacturing.
  • a transparent substrate 20 having a first main surface 20a and a second main surface 20b facing each other is prepared.
  • the first main surface 20a is an incident surface on which light is incident under actual use.
  • an ITO layer is formed in advance as a transparent electrode layer 21 to a thickness of about 0.1 ⁇ m to 0.5 ⁇ m.
  • any one of the FTO (Fluorine doped Tin Oxide) layer, the zinc oxide layer, the laminated film of the indium-tin composite oxide layer and the silver layer, and the tin oxide layer doped with antimony is transparent. It may be formed as the electrode layer 21.
  • the transparent substrate 20 is a glass substrate having a substantially square shape in a plan view, and the lengths Ax and Ay of one side thereof are 5 mm to 40 mm, for example, 15 mm.
  • the thickness Az of the transparent substrate 20 is 0.1 mm to 3 mm, for example, 1.1 mm.
  • a transparent plastic plate may be used as the transparent substrate 20 instead of the glass substrate.
  • an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region Rc, and then the alcohol solution is heated and dried to cause reverse electrons.
  • the movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 ⁇ m.
  • the drying temperature in this step is not particularly limited, and drying may be performed at a temperature of 450 ° C. to 650 ° C., for example, about 550 ° C.
  • the right-angled triangular region at the corner portion 20h of the rectangular transparent substrate 20 is referred to as the first electrode region R1
  • the pentagonal region excluding the corner portion 20h is referred to as the cell region Rc.
  • the length Cx of one side sandwiching the right angle is 0.5 mm to 5 mm, for example, 3 mm
  • the length Cy of the other side is 0.5 mm to. It is 5 mm, for example 3 mm.
  • the area of the cell region Rc excluding the first electrode region R1 on the second main surface 20b of the transparent substrate 20 becomes about 2.21 cm 2.
  • the reverse electron transfer prevention layer 22 is formed only in the cell region Rc, and the transparent electrode layer 21 is exposed in the first electrode region R1.
  • a titanium paste containing titanium oxide particles having a particle size of 5 nm to 50 nm, for example, 40 nm is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 ⁇ m to 10 ⁇ m. Then, for example, it is applied to 5 ⁇ m and heated to remove organic components to form a power generation layer 25.
  • the heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes.
  • the slurry is not particularly limited, but in this example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used as the slurry.
  • the semiconductor particles constituting the power generation layer 25 are not limited to titanium oxide particles, and Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn. , Zr, Sr, Ga, Si, Cr, and Nb oxide particles may form the power generation layer 25.
  • the power generation layer 25 may be formed of particles of perovskite-type oxide such as SrTiO 3 and CaTiO 3.
  • the power generation layer 25 is formed only in the cell region Rc, the power generation layer 25 is not formed in the first electrode region R1, and the transparent electrode layer 21 of the first electrode region R1 is exposed.
  • the area on which the titanium paste is printed is 2.21 cm 2 .
  • the transparent substrate 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25.
  • an organic solution prepared by adding CYC-B11 (K) as a dye to an organic solvent obtained by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is used as the organic solution.
  • the concentration of the dye in the organic solution is 0.1 mM to 1 mM, for example, 0.2 mM.
  • the dye is adsorbed on the power generation layer 25 by allowing the transparent substrate 20 to stand in the organic solution for 1 to 12 hours, for example, 4 hours while keeping the organic solution at 0 ° C. to 80 ° C., for example, 50 ° C. Just let me do it.
  • the dye is not limited to the above, and the metal complex dye or the organic dye may be adsorbed on the power generation layer 25.
  • the metal complex dye include transition metal complexes such as ruthenium-cis-diaqua-bipyridyl complex, ruthenium-tris complex, ruthenium-bis complex, osmium-tris complex, and osmium-bis complex.
  • Zinc-tetra (4-carboxyphenyl) porphyrin and iron-hexacianide complex are also examples of metal complex dyes.
  • organic dyes examples include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, and cyanine dyes.
  • pigments, merocyanine pigments, xanthene pigments, carbazole compound pigments and the like are examples of organic dyes.
  • the process shown in FIG. 5 (b) will be described.
  • the solid electrolyte precursor 26 iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are mixed so as to be uniform.
  • the solid electrolyte precursor 26 is dropped onto the power generation layer 25 by 0.1 ⁇ L to 50 ⁇ L, for example, 20 ⁇ L, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26. Then, the power generation layer 25 is heated to 50 ° C.
  • the solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27. After that, the power generation layer 25 is returned to room temperature.
  • the electrolyte contained in the solid electrolyte precursor 26 is not limited to DMII.
  • iodine salts such as pyridinium salt, imidazolium salt, and triazolium salt, which are in a solid state near room temperature or in a molten state, can be used as an ionic liquid.
  • room temperature molten salt examples include 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide (BMII), 1-ethyl-pyridinium iodide and the like 4
  • BMII 1-ethyl-pyridinium iodide
  • the material of the solid electrolyte layer 27 is not limited to the above, and an organic semiconductor material such as a molten salt containing an oxidation-reduction pair, an oxadiazole compound, and a pyrazoline compound may be used as the material of the solid electrolyte layer 27. .. Further, the solid electrolyte layer 27 may be formed of a metal halide material such as copper iodide or copper bromide.
  • the counter electrode layer 33 is arranged above the solid electrolyte layer 27.
  • the outer shape of the counter electrode layer 33 has the same pentagonal shape as the cell region Rc by cutting off one corner of a square having a side length of about 15 mm.
  • the counter electrode layer 33 is formed by forming a catalyst layer 32 on a metal foil 31 having a thickness of 5 ⁇ m to 200 ⁇ m, for example, 100 ⁇ m, to a thickness of about 0.01 ⁇ m to 0.1 ⁇ m, for example, 0.05 ⁇ m.
  • the metal foil 31 is, for example, a titanium foil
  • the catalyst layer 32 is, for example, a platinum layer.
  • the material of the catalyst layer 32 in addition to the above platinum, there are also metals having a catalytic function such as palladium, rhodium, and indium. Further, the catalyst layer 32 may be formed of graphite. Further, the catalyst layer 32 may be formed of carbon supporting platinum, an indium-tin composite oxide, antimony-doped tin oxide, and fluorine-doped tin oxide. Other materials include organic semiconductors such as poly (3,4-ethylenedioxythiophene) (PEDOT) and polythiophene.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT polythiophene
  • the counter electrode layer 33 is brought into close contact with the solid electrolyte layer 27 while removing air bubbles from between the solid electrolyte layer 27 and the counter electrode layer 33.
  • air bubbles are less likely to remain between the solid electrolyte layer 27 and the counter electrode layer 33.
  • the transparent electrode layer 21, the power generation layer 25, the solid electrolyte layer 27, and the counter electrode layer 33 each overlap each other in a plan view, and are generated in the power generation layer 25 in the cell region Rc by the incident of light. Electricity will be generated.
  • a liquid obtained by diluting the silane coupling material with alcohol is applied onto each side surface of the transparent substrate 20 and each of the counter electrode layers 33 excluding the second electrode region R2.
  • a silane coupling layer having a thickness of 0.1 ⁇ m to 10 ⁇ m is formed as the adhesion layer 40.
  • the silane coupling material for example, there is KR-516 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the close contact layer 40 is not formed on the counter electrode layer 33 in the second electrode region R2, and the counter electrode layer 33 is exposed in the second electrode region R2.
  • an ultraviolet curable resin is applied onto the adhesion layer 40 and cured with ultraviolet rays to form a sealing portion 41 having a thickness of about 10 ⁇ m to 500 ⁇ m.
  • the ultraviolet curable resin ThreeBond 3035B manufactured by ThreeBond Co., Ltd. is used here.
  • the UV curable resin is applied and left as it is, the UV curable resin is immersed in the solid electrolyte layer 27, and the surface of the power generation layer 25 is covered with the UV curable resin. In order to prevent this, it is preferable to cure the ultraviolet curable resin within about 10 minutes after applying the ultraviolet curable resin.
  • FIG. 8 is an enlarged cross-sectional view of the edge of the solar cell 50.
  • the above-mentioned adhesion layer 40 is formed on the side surface 20s of the transparent substrate 20, and the sealing portion 41 is formed on the adhesion layer 40.
  • the adhesion layer 40 enhances the adhesion between the transparent substrate 20 and the sealing portion 41, and can prevent the sealing portion 41 from peeling off from the side surface 20s.
  • the sealing portion 41 is provided so as to cover at least the side surface 20a of the transparent substrate 20 and the side surface of the power generation layer 25.
  • the adhesion layer 40 is also formed on the side surface and the back surface of the counter electrode layer 33, and the sealing portion 41 is also formed on the adhesion layer 40.
  • the adhesion layer 40 enhances the adhesion between the counter electrode layer 33 and the sealing portion 41, and can prevent the sealing portion 41 from peeling off from the counter electrode layer 33. If the adhesion between the side surface 20s and the sealing portion 41 and the adhesion between the counter electrode layer 33 and the sealing portion 41 are not a problem, the adhesion layer 40 may be omitted.
  • FIG. 9 is a plan view of the solar cell module according to the present embodiment.
  • each of the eight solar cells 50 as the solar cell module 52 is arranged on the wiring board 51 with the transparent substrate 20 facing up.
  • a silver paste (not shown) is provided between each of the solar cells 50 and the wiring substrate 51, and the silver paste is cured by heating to cure the silver paste with the electrode regions R1 and R2 of the solar cell 50 and the wiring substrate. 51 is electrically connected.
  • the silver paste is not particularly limited, but for example, DD-1630L-885 manufactured by Kyoto Elex Co., Ltd. can be used as the silver paste.
  • the wiring board 51 is provided with a secondary battery 53, a wireless circuit 54, and a sensor 55.
  • the secondary battery 53 is, for example, a lithium ion battery or a lithium ion capacitor, and is stored by the electric power generated by the solar cell module 52.
  • the wireless circuit 54 and the sensor 55 are driven by the electric power of the secondary battery 53.
  • the sensor 55 is a temperature sensor or a humidity sensor, and transmits sensor information including the measured temperature and humidity to the wireless circuit 54.
  • the wireless circuit 54 is a circuit that wirelessly transmits sensor information by, for example, BLE (Bluetooth (registered trademark) Low Energy).
  • FIG. 10 is a cross-sectional view of the solar cell module 52.
  • the transparent substrate 20 is provided for each solar cell 50, and one transparent substrate common to the plurality of solar cells 50 is not used. Therefore, the transparent substrate 20 is less likely to crack, and the durability of the solar cell module 52 is improved.
  • each solar cell 50 is not particularly limited.
  • 11 (a) to 11 (c) are plan views showing an example of the arrangement of the solar cells 50.
  • each of the solar cells 50 can be arranged on the wiring board 51 in any shape that shares one side in a plan view.
  • the shape of the cell can be determined according to the shape of the wiring board 51, so that the solar cell The degree of freedom of arrangement of 50 is improved.
  • FIG. 12 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment. As shown in FIG. 12, in the present embodiment, the solar cells 50 are arranged so that the side surfaces 20s of the adjacent transparent substrates 20 face each other.
  • the refracted light L is incident on the power generation layer 25 of the adjacent solar cell 50, which also increases the amount of light incident on the power generation layer 25 and the solar cell module 52. Power generation efficiency is improved. Further, when the light L is scattered on the side surface 20s of the transparent substrate 20, the scattered light L is incident on each power generation layer 25 of the two adjacent solar cells 50, so that the light L is incident on each power generation layer 25. The amount of light increases and the power generation efficiency of the solar cell module 52 improves.
  • the sealing portion 41 when the sealing portion 41 is transparent, the light refracted or scattered on the side surface 20s of the transparent substrate 20 passes through the sealing portion 41, so that the amount of light incident on the power generation layer 25 of the adjacent solar cell 50 increases. , The power generation efficiency in the solar cell module 52 is improved.
  • the power generation layer 25 of the dye-sensitized solar cell has a thickness of about 1 ⁇ m to 10 ⁇ m, which is thicker than the thickness of the silicon layer of the silicon solar cell (100 nm). Therefore, the volume of the power generation layer 25 becomes large, and the light L is easily affected by reflection, refraction, and scattering.
  • the area of the side surface 25s of the power generation layer 25 is larger than that of the silicon solar cell, and the light reflected by the side surface 20s is incident on the wide side surface 25s to further improve the power generation efficiency of the power generation layer 25.
  • the distance t between the adjacent side surfaces 20s is not particularly limited, but in the present embodiment, the distance t between the side surfaces 20s is 2 mm or less. As a result, it is possible to suppress the area of the power generation layer 25 per one solar cell module 52 from becoming small, and it is possible to prevent the power generation efficiency of the solar cell module 52 from decreasing.
  • FIG. 13 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment.
  • the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
  • the gap between the adjacent solar cells 50 is filled with a silicone resin as a light reflecting portion 61.
  • a silicone resin for example, there is a silicone sealant (clear) manufactured by Cainz Corporation.
  • the refractive index of this silicone resin is 1.41.
  • each of the transparent substrate 20 and the sealing resin 41 and the light reflecting portion 61 having a different refractive index are provided. It will be provided between the solar cells 50. Due to the difference in refractive index between the transparent substrate 20 and the light reflecting portion 61, the reflectance of the light L on the side surface 20s is increased in the present embodiment. As a result, more light reflected by the side surface 20s of the transparent substrate 20 is incident on the power generation layer 25, so that the intensity of the light incident on the power generation layer 25 is increased and the power generation efficiency in the solar cell module 52 is further improved.
  • the resin which is the material of the light reflecting portion 61
  • the glass which is the material of the transparent substrate 20
  • it functions as a stress relaxation layer that relieves the stress applied to the transparent substrate 20. Therefore, it is possible to prevent the transparent substrate 20 from cracking during manufacturing or use of the solar cell module 52, and it is possible to improve the durability of the solar cell module 52.
  • the material of the light reflecting portion 61 is not limited to the silicone resin.
  • the light reflecting portion 61 may be formed of any of polycarbonate, epoxy resin, fluororesin, and engineering plastic.
  • an acrylic resin is used as the material of the light reflecting portion 61 (see FIG. 13).
  • the acrylic resin SS-101 Super Clear manufactured by Epoch Co., Ltd. was used.
  • the refractive index of this acrylic resin is 1.51.
  • FIG. 14 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment.
  • the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
  • a material in which the light reflecting filler 62 is mixed with the light reflecting portion 61 is used.
  • a metal or glass light-reflecting filler 62 may be used.
  • a POS seal white
  • the refractive index of this silicone resin is 1.41. Other than this, it is the same as that of the second embodiment.
  • the light reflecting filler 62 By mixing the light reflecting filler 62 with the light reflecting unit 61 in this way, the light L that has entered the light reflecting unit 61 is reflected inside the light reflecting unit 61 and is incident on the power generation layer 25. Therefore, the light L can be efficiently guided to the power generation layer 25, and the power generation efficiency of the solar cell module 52 can be further improved.
  • the light scattered inside the light reflecting unit 61 is incident on the power generation layer 25 of the solar cell 50 adjacent to the light reflecting unit 61, the amount of light incident on the power generation layer 25 increases, and the solar cell The power generation efficiency in the module 52 is improved.
  • silicone rubber is used as the material of the light reflecting portion 61 (see FIG. 13).
  • silicone rubber a one-component RTV rubber (clear) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the refractive index of the silicone rubber is 1.41. Other than this, it is the same as that of the second embodiment.
  • Silicone rubber has a very small elastic modulus compared to other resins. Therefore, the light reflecting portion 61 is flexibly deformed with respect to the stress applied to the transparent substrate 20, and the light reflecting portion 61 can function as a stress relaxation layer for relaxing the stress.
  • FIG. 15 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment.
  • the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
  • the reflective layer 59 is provided on the side surface 20s of the transparent substrate 20.
  • the reflective layer 59 is a metal oxide layer such as titanium oxide having a thickness of about 0.1 ⁇ m.
  • the reflectance on the side surface 20s is increased as compared with the case where the reflection layer 59 is not provided, so that the light L can be almost certainly reflected on the side surface 20s and led to the power generation layer 25, and the power generation efficiency of the solar cell module 52 can be increased. Can be further enhanced.
  • the metal oxide layer does not have the luster of the metal layer, light can be scattered. As a result, the scattered light is incident on each power generation layer 25 of the plurality of solar cells 50 in a wide range, and the light can be effectively used in each solar cell 50.
  • FIG. 16 is an enlarged cross-sectional view of the solar cell module 52 according to still another example of the present embodiment. Also in this example, as in the second embodiment, the gap between the adjacent solar cells 50 is filled with the resin as the light reflecting portion 61. As a result, the light reflecting portion 61 functions as a stress relaxation layer, so that the stress applied to the transparent substrate 20 can be relaxed by the light reflecting portion 61, and the transparent substrate 20 can be prevented from cracking due to the stress.
  • the inventor of the present application produced the solar cell module 52 according to the first to fifth embodiments described above, and investigated the amount of power generation of the solar cell module 52 by experiments.
  • the experiment will be described below.
  • the solar cell 50 was manufactured according to the first embodiment.
  • the lengths Ax and Ay of one side of the transparent substrate 20 were 15 mm, and the thickness Az was 1.1 mm.
  • the thickness of the transparent electrode layer 21 was set to 0.3 ⁇ m.
  • an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region Rc, and then the alcohol solution is heated to 550 ° C. and dried to make the reverse electron transfer prevention layer 22 0.005 ⁇ m. It was formed to a thickness of ⁇ 0.01 ⁇ m.
  • a titanium paste containing titanium oxide particles of 40 nm is applied on the reverse electron transfer prevention layer 22 to a thickness of 5 ⁇ m to 10 ⁇ m, and the power generation layer 25 is removed by heating it to 550 ° C. to remove organic components. Formed. Further, CYC-B11 (K) was added as a dye to an organic solvent in which acetonitrile and t-butanol were mixed at a volume ratio of 1: 1. Then, while keeping the organic solvent at 50 ° C., the transparent substrate 20 was immersed in the organic solution for 4 hours to adsorb the dye on the power generation layer 25. The concentration of the dye in the organic solvent was 0.2 mM.
  • a solid electrolyte precursor 26 iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million were mixed so as to be uniform to prepare a solid electrolyte precursor 26.
  • the power generation layer 25 was heated to 100 ° C.
  • the heating time was 100 ° C. and the heating time was 5 minutes.
  • the excess acetonitrile contained in the solid electrolyte precursor 26 was volatilized, and the solid electrolyte layer 27 was obtained.
  • the power generation layer 25 was returned to room temperature.
  • the counter electrode layer 33 formed by forming a platinum layer having a thickness of 0.05 ⁇ m on a titanium foil having a thickness of 100 ⁇ m was brought into close contact with the solid electrolyte layer 27.
  • a silane coupling layer having a thickness of 0.5 ⁇ m was formed as an adhesion layer 40 on each side surface of the transparent substrate 20 and each of the counter electrode layers 33 excluding the second electrode region R2.
  • the solar cell 50 was manufactured by forming a sealing portion 41 having a thickness of 150 ⁇ m on the adhesion layer 40.
  • the solar cell module 52 was manufactured by connecting eight solar cells 50 in series.
  • the inventor of the present application conducted the following investigation in order to confirm the amount of power generated by the solar cell module 52.
  • the solar cell module 52 was installed in a dark room, and the solar cell module 52 was irradiated with the light of a standard LED (Light Emitting Diode) light source in the dark room.
  • a standard LED light source BLD-100 manufactured by Spectrometer Co., Ltd. was used.
  • a light receiving part of HD2102.1 manufactured by Delta Ohmsha was placed as a portable illuminance meter directly under the standard LED light source.
  • the solar cell module 52 in which eight solar cells 50 were connected in series was irradiated with 200 Lux of light
  • the amount of power generated by the solar cell module 52 was 53.7 ⁇ W.
  • the amount of power generated for 1000 Lux of light was 268.2 ⁇ W.
  • the solar cell module 52 was manufactured according to the second embodiment.
  • a silicone sealant (clear) manufactured by Cainz Corporation having a refractive index of 1.41 was used as the silicone resin used as the material of the light reflecting portion 61 .
  • the inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.0 ⁇ W. The amount of power generated for 1000 Lux of light was 270.2 ⁇ W.
  • the solar cell module 52 was manufactured according to the third embodiment.
  • the acrylic resin used as the material of the light reflecting portion 61 SS-101 Super Clear manufactured by Epoch Co., Ltd. having a refractive index of 1.51 was used.
  • the inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.1 ⁇ W. The amount of power generated for 1000 Lux of light was 272.9 ⁇ W.
  • the solar cell module 52 was manufactured according to the fourth embodiment. Titanium oxide particles were used as the light-reflecting filler 62 to be mixed with the light-reflecting portion 61. Further, as the silicone resin which is the material of the light reflecting portion 61, a POS seal (white) of Cemedine Co., Ltd. having a refractive index of 1.41 was used.
  • the inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.5 ⁇ W. The amount of power generated for 1000 Lux of light was 274.3 ⁇ W.
  • the solar cell module 52 was manufactured according to the fifth embodiment.
  • silicone rubber used as the material of the light reflecting portion 61 a one-component RTV rubber (clear) manufactured by Shin-Etsu Chemical Co., Ltd. having a refractive index of 1.41 was used.
  • the inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.2 ⁇ W. The amount of power generated for 1000 Lux of light was 272.4 ⁇ W.
  • the length Ax of the long side of the transparent substrate 20 is 60 mm, and the length Ay of the short side is 30 mm, so that the cell region Rc is larger than that of the first experimental example.
  • the power generation area in this comparative example is substantially equal to the power generation area of the solar cell module 52 in which eight solar cells 50 are connected in series as in the first experimental example. Then, the amount of power generated by the solar cell 50 alone according to this comparative example was measured. The measurement conditions are the same as in the first experimental example.
  • the amount of power generated for 200 Lux of light was 48.4 ⁇ W
  • the amount of power generated for 1000 Lux of light was 243.5 ⁇ W.
  • the present invention is not limited to the above.
  • the dye-sensitized solar cell is manufactured as the solar cell 50, but the silicon solar cell may be manufactured as the solar cell 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

This solar cell module is characterized by including: a transparent substrate provided with a first side surface, a second side surface, and a main surface; a power generation layer provided on the main surface of the transparent substrate; a sealing part provided so as to cover at least the first side surface, the second side surface, and a side surface of the power generation layer, wherein the transparent substrate is provided in plurality, and the plurality of transparent substrates are arranged so that the first side surface and the second side surface face each other. 

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 再生可能エネルギへの関心の高まりに伴い、結晶性シリコン太陽電池や色素増感太陽電池等の太陽電池が普及しつつある。これらの太陽電池は、発電面積を広くすることにより大きな電力を得ることができる。そこで、一枚のガラス基板の表面に複数の発電層を並べて形成し、ガラス基板を透過した光でこれらの発電層が発電を行う構造が提案されている(特許文献1)。 With the growing interest in renewable energy, solar cells such as crystalline silicon solar cells and dye-sensitized solar cells are becoming widespread. These solar cells can obtain a large amount of electric power by increasing the power generation area. Therefore, a structure has been proposed in which a plurality of power generation layers are arranged side by side on the surface of one glass substrate, and these power generation layers generate power with light transmitted through the glass substrate (Patent Document 1).
 しかしながら、この構造では、隣接する発電層の間に隙間が形成されてしまうため、ガラス基板へ照射された光のうちその隙間を通る光が発電層に照射されず、発電効率が低下してしまう。 However, in this structure, since a gap is formed between the adjacent power generation layers, the light that passes through the gap among the light irradiated to the glass substrate is not irradiated to the power generation layer, and the power generation efficiency is lowered. ..
国際公開第2017/022817号International Publication No. 2017/022817
 本発明は、上記課題に鑑みてなされたものであり、発電効率を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve power generation efficiency.
 本発明に係る太陽電池モジュールは、第1の側面、第2の側面、及び主面を備えた透明基板と、前記透明基板の主面に設けられた発電層と、少なくとも前記第1の側面と、第2の側面と、前記発電層の側面を覆うように設けられた封止部と、を有し、前記透明基板が複数設けられ、前記複数の透明基板が、前記第1の側面と前記第2の側面とが相対するように配列されたことを特徴とする。 The solar cell module according to the present invention includes a transparent substrate having a first side surface, a second side surface, and a main surface, a power generation layer provided on the main surface of the transparent substrate, and at least the first side surface. A second side surface and a sealing portion provided so as to cover the side surface of the power generation layer are provided, and a plurality of the transparent substrates are provided, and the plurality of transparent substrates are the first side surface and the said. It is characterized in that it is arranged so as to face the second side surface.
 上記太陽電池モジュールにおいて、前記第1の側面と前記第2の側面との間に、前記透明基板と屈折率が異なる光反射部が設けられてもよい。 In the solar cell module, a light reflecting portion having a refractive index different from that of the transparent substrate may be provided between the first side surface and the second side surface.
 上記太陽電池モジュールにおいて、前記光反射部は樹脂を含んでもよい。 In the solar cell module, the light reflecting portion may contain a resin.
 上記太陽電池モジュールにおいて、前記樹脂は、アクリル樹脂、ポリカーボネート、エポキシ樹脂、シリコン樹脂、フッ素樹脂、及びエンジニアリングプラスチックのいずれかでもよい。 In the solar cell module, the resin may be any of acrylic resin, polycarbonate, epoxy resin, silicon resin, fluororesin, and engineering plastic.
 上記太陽電池モジュールにおいて、前記第1の側面にシランカップリング層が設けられ、前記シランカップリング層に前記光反射部が設けられてもよい。 In the solar cell module, a silane coupling layer may be provided on the first side surface, and the light reflecting portion may be provided on the silane coupling layer.
 上記太陽電池モジュールにおいて、前記光反射部は光反射フィラーを含んでもよい。 In the solar cell module, the light reflecting portion may include a light reflecting filler.
 上記太陽電池モジュールにおいて、前記第1の側面に反射層が設けられてもよい。 In the solar cell module, a reflective layer may be provided on the first side surface.
 上記太陽電池モジュールにおいて、前記反射層は、金属酸化物層でもよい。 In the solar cell module, the reflective layer may be a metal oxide layer.
 上記太陽電池モジュールにおいて、前記封止部は樹脂を含んでもよい。 In the solar cell module, the sealing portion may contain a resin.
 上記太陽電池モジュールにおいて、前記発電層は、表面に色素が吸着した複数の半導体粒子の層でもよい。 In the solar cell module, the power generation layer may be a layer of a plurality of semiconductor particles having a dye adsorbed on the surface.
 本発明によれば、発電効率を向上させることができる。 According to the present invention, power generation efficiency can be improved.
検討に使用した太陽電池の断面図である。It is sectional drawing of the solar cell used for examination. 図1の例よりも高電圧を得ることが可能な太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which can obtain the higher voltage than the example of FIG. (a)、(b)は、問題について説明するための断面図である。(A) and (b) are sectional views for explaining a problem. (a)、(b)は、第1実施形態に係る太陽電池の製造途中の斜視図(その1)である。(A) and (b) are perspective views (No. 1) during the manufacturing of the solar cell according to the first embodiment. (a)、(b)は、第1実施形態に係る太陽電池の製造途中の斜視図(その2)である。(A) and (b) are perspective views (No. 2) during the manufacturing of the solar cell according to the first embodiment. (a)、(b)は、第1実施形態に係る太陽電池の製造途中の斜視図(その3)である。(A) and (b) are perspective views (No. 3) during the manufacturing of the solar cell according to the first embodiment. (a)、(b)は、第1実施形態に係る太陽電池の製造途中の斜視図(その4)である。(A) and (b) are perspective views (No. 4) during the manufacturing of the solar cell according to the first embodiment. 第1実施形態に係る太陽電池の縁部の拡大断面図である。It is an enlarged sectional view of the edge part of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池モジュールの平面図である。It is a top view of the solar cell module which concerns on 1st Embodiment. 第1実施形態に係る太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which concerns on 1st Embodiment. (a)、(b)、(c)は、第1実施形態に係る太陽電池の配列の例について示す平面図である。(A), (b), and (c) are plan views showing an example of the arrangement of solar cells according to the first embodiment. 第1実施形態に係る太陽電池モジュールの拡大断面図である。It is an enlarged sectional view of the solar cell module which concerns on 1st Embodiment. 第2実施形態に係る太陽電池モジュールの拡大断面図である。It is an enlarged sectional view of the solar cell module which concerns on 2nd Embodiment. 第4実施形態に係る太陽電池モジュールの拡大断面図である。It is an enlarged sectional view of the solar cell module which concerns on 4th Embodiment. その他の実施形態に係る太陽電池モジュールの拡大断面図である。It is an enlarged sectional view of the solar cell module which concerns on other embodiments. その他の実施形態の更に別の例に係る太陽電池モジュールの拡大断面図である。It is an enlarged sectional view of the solar cell module which concerns on still another example of another embodiment.
 本実施形態の説明に先立ち、本願発明者が検討した事項について説明する。
 図1は、検討に使用した太陽電池の断面図である。この太陽電池1は、色素増感太陽電池であって、透明基板2の上に透明電極層3、逆電子移動防止層4、発電層5、固体電解質層6、及び対向電極層7をこの順に形成してなる。
Prior to the description of the present embodiment, the matters examined by the inventor of the present application will be described.
FIG. 1 is a cross-sectional view of the solar cell used in the study. The solar cell 1 is a dye-sensitized solar cell in which a transparent electrode layer 3, a reverse electron transfer prevention layer 4, a power generation layer 5, a solid electrolyte layer 6, and a counter electrode layer 7 are arranged in this order on a transparent substrate 2. It is formed.
 このうち、透明基板2はガラス基板であって、その上に透明電極層3としてITO(Indium Tin Oxide)層が形成される。また、逆電子移動防止層4は例えばチタンアルコキシド前駆体から作製された酸化チタン層である。更に、発電層5は、複数の酸化チタンの微粒子に色素を吸着させた層である。その色素としては例えばCYC-B11がある。 Of these, the transparent substrate 2 is a glass substrate, on which an ITO (Indium Tin Oxide) layer is formed as a transparent electrode layer 3. Further, the reverse electron transfer prevention layer 4 is, for example, a titanium oxide layer made from a titanium alkoxide precursor. Further, the power generation layer 5 is a layer in which a dye is adsorbed on a plurality of titanium oxide fine particles. Examples of the dye include CYC-B11.
 また、固体電解質層6は、例えばヨウ素と1,3-ジメチルイミダゾリウムヨージド(DMII)とを含む層であり、その上に対向電極層7として例えば白金層が設けられる。更に、太陽電池1の側面には、発電層5と固体電解質層6が大気に曝されるのを防止するための樹脂の封止部8が設けられる。 Further, the solid electrolyte layer 6 is a layer containing, for example, iodine and 1,3-dimethylimidazolium iodide (DMII), and a platinum layer, for example, is provided as a counter electrode layer 7 on the layer. Further, a resin sealing portion 8 for preventing the power generation layer 5 and the solid electrolyte layer 6 from being exposed to the atmosphere is provided on the side surface of the solar cell 1.
 このような太陽電池1によれば、透明電極層3、逆電子移動防止層4、発電層5、固体電解質層6、及び対向電極層7が相互に重なる領域が、透明基板2を透過した光で発電を行うセル領域Rcとなる。 According to such a solar cell 1, the region where the transparent electrode layer 3, the reverse electron transfer prevention layer 4, the power generation layer 5, the solid electrolyte layer 6, and the counter electrode layer 7 overlap each other is the light transmitted through the transparent substrate 2. It becomes the cell area Rc that generates electricity in.
 但し、この太陽電池1ではセル領域Rcが一つしかないため高電圧を得ることができない。色素増感太陽電池の種類にもよるが、この例では太陽電池1の発電電圧は0.5V程度しかない。 However, since this solar cell 1 has only one cell region Rc, a high voltage cannot be obtained. Although it depends on the type of dye-sensitized solar cell, the generated voltage of the solar cell 1 is only about 0.5 V in this example.
 図2は、図1の例よりも高電圧を得ることが可能な太陽電池モジュール11の断面図である。なお、図2において、図1で説明したのと同じ要素には同じ符号を付し、以下ではその説明を省略する。 FIG. 2 is a cross-sectional view of the solar cell module 11 capable of obtaining a higher voltage than the example of FIG. In FIG. 2, the same elements as described in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted below.
 図2に示すように、この太陽電池モジュール11においては、透明基板2の上の各層3~7を複数個に分離することにより複数のセル領域Rcを形成する。また、各々のセル領域Rcの間に封止部8を設け、各セル領域Rcの発電層5が相互に接続されるのを封止部8で防止する。 As shown in FIG. 2, in the solar cell module 11, a plurality of cell regions Rc are formed by separating each layer 3 to 7 on the transparent substrate 2 into a plurality of layers. Further, a sealing portion 8 is provided between the cell regions Rc, and the sealing portion 8 prevents the power generation layers 5 of the cell regions Rc from being connected to each other.
 これによれば、不図示の配線によってセル領域Rcにおける電池同士を直列に接続することで図1におけるよりも高い電圧を得ることができる。 According to this, it is possible to obtain a higher voltage than in FIG. 1 by connecting the batteries in the cell region Rc in series by wiring (not shown).
 しかしながら、本願発明者が検討したところ、この太陽電池モジュール11には次のような問題があることが明らかとなった。 However, as a result of the examination by the inventor of the present application, it became clear that the solar cell module 11 has the following problems.
 図3(a)、(b)は、その問題について説明するための断面図である。図3(a)に示すように、太陽電池モジュール11においては、発電層5を複数に分離したため、これらの発電層5の隙間を光Lが素通りしてしまう。そのため、光Lを十分に有効活用できず、太陽電池モジュール11の発電効率が低下してしまう。 3 (a) and 3 (b) are cross-sectional views for explaining the problem. As shown in FIG. 3A, in the solar cell module 11, since the power generation layers 5 are separated into a plurality of layers, the light L passes through the gaps between the power generation layers 5. Therefore, the light L cannot be fully utilized effectively, and the power generation efficiency of the solar cell module 11 is lowered.
 また、図3(b)に示すように、この例では透明基板2が複数の発電層5の各々を覆うように大きく設けられているため、太陽電池モジュール11の製造途中に透明基板2に割れ2xが発生するおそれもある。 Further, as shown in FIG. 3B, in this example, since the transparent substrate 2 is provided large so as to cover each of the plurality of power generation layers 5, the transparent substrate 2 is cracked during the manufacturing of the solar cell module 11. 2x may occur.
 (第1実施形態)
 本実施形態では、太陽電池として以下のように色素増感太陽電池を製造する。図4(a)~図7(b)は、本実施形態に係る太陽電池の製造途中の斜視図である。
(First Embodiment)
In the present embodiment, a dye-sensitized solar cell is manufactured as a solar cell as follows. 4 (a) to 7 (b) are perspective views of the solar cell according to the present embodiment during manufacturing.
 まず、図4(a)に示すように、相対する第1の主面20aと第2の主面20bとを備えた透明基板20を用意する。これらの面のうち、第1の主面20aは、実使用下において光が入射する入射面となる。一方、第2の主面20bには予め透明電極層21としてITO層が0.1μm~0.5μm程度の厚さに形成される。なお、ITO層に代えて、FTO(Fluorine doped Tin Oxide)層、酸化亜鉛層、インジウム-錫複合酸化物層と銀層との積層膜、及びアンチモンがドープされた酸化錫層のいずれかを透明電極層21として形成してもよい。 First, as shown in FIG. 4A, a transparent substrate 20 having a first main surface 20a and a second main surface 20b facing each other is prepared. Of these surfaces, the first main surface 20a is an incident surface on which light is incident under actual use. On the other hand, on the second main surface 20b, an ITO layer is formed in advance as a transparent electrode layer 21 to a thickness of about 0.1 μm to 0.5 μm. Instead of the ITO layer, any one of the FTO (Fluorine doped Tin Oxide) layer, the zinc oxide layer, the laminated film of the indium-tin composite oxide layer and the silver layer, and the tin oxide layer doped with antimony is transparent. It may be formed as the electrode layer 21.
 また、透明基板20は平面視で概略正方形状のガラス基板であって、その一辺の長さAx、Ayは5mm~40mm、例えば15mmである。また、透明基板20の厚さAzは、0.1mm~3mm、例えば1.1mmである。なお、ガラス基板に代えて透明なプラスチック板を透明基板20として使用してもよい。 Further, the transparent substrate 20 is a glass substrate having a substantially square shape in a plan view, and the lengths Ax and Ay of one side thereof are 5 mm to 40 mm, for example, 15 mm. The thickness Az of the transparent substrate 20 is 0.1 mm to 3 mm, for example, 1.1 mm. A transparent plastic plate may be used as the transparent substrate 20 instead of the glass substrate.
 次に、図4(b)に示すように、チタンアルコキシドから調整したアルコール溶液をセル領域Rcにおける透明電極層21の上に塗布した後、そのアルコール溶液を加熱して乾燥させることにより、逆電子移動防止層22を5nm~0.1μm程度の厚さに形成する。本工程における乾燥温度は特に限定されず、450℃~650℃、例えば550℃程度の温度で乾燥を行えばよい。 Next, as shown in FIG. 4 (b), an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region Rc, and then the alcohol solution is heated and dried to cause reverse electrons. The movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 μm. The drying temperature in this step is not particularly limited, and drying may be performed at a temperature of 450 ° C. to 650 ° C., for example, about 550 ° C.
 また、本実施形態では、矩形状の透明基板20の角部20hにおける直角三角形状の領域を第1の電極領域R1とし、その角部20hを除いた五角形状の領域をセル領域Rcとする。 Further, in the present embodiment, the right-angled triangular region at the corner portion 20h of the rectangular transparent substrate 20 is referred to as the first electrode region R1, and the pentagonal region excluding the corner portion 20h is referred to as the cell region Rc.
 直角三角形状の第1の電極領域R1の各辺のうち、直角を挟む一方の辺の長さCxは0.5mm~5mm、例えば3mmであり、他方の辺の長さCyは0.5mm~5mm、例えば3mmである。これにより、透明基板20の第2の主面20bにおいて第1の電極領域R1を除いたセル領域Rcの面積は約2.21cmとなる。 Of each side of the first electrode region R1 having a right angle triangle, the length Cx of one side sandwiching the right angle is 0.5 mm to 5 mm, for example, 3 mm, and the length Cy of the other side is 0.5 mm to. It is 5 mm, for example 3 mm. As a result, the area of the cell region Rc excluding the first electrode region R1 on the second main surface 20b of the transparent substrate 20 becomes about 2.21 cm 2.
 なお、逆電子移動防止層22はセル領域Rcのみに形成され、第1の電極領域R1には透明電極層21が露出する。 The reverse electron transfer prevention layer 22 is formed only in the cell region Rc, and the transparent electrode layer 21 is exposed in the first electrode region R1.
 次に、図5(a)に示すように、粒径が5nm~50nm、例えば40nmの酸化チタン粒子を含むチタンペーストを逆電子移動防止層22の上にスクリーン印刷法で1μm~10μm程度の厚さ、例えば5μmに塗布し、それを加熱して有機物成分を除去することにより発電層25を形成する。スラリの加熱温度は450℃~650℃、例えば550℃であり、その乾燥時間は10分~120分、例えば30分程度である。なお、スラリは特に限定されないが、この例では、日揮触媒化成製の酸化チタンペーストであるPST-30NRDをそのスラリとして使用する。 Next, as shown in FIG. 5A, a titanium paste containing titanium oxide particles having a particle size of 5 nm to 50 nm, for example, 40 nm is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 μm to 10 μm. Then, for example, it is applied to 5 μm and heated to remove organic components to form a power generation layer 25. The heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes. The slurry is not particularly limited, but in this example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used as the slurry.
 また、発電層25を構成する半導体粒子は酸化チタン粒子に限定されず、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Cr、及びNbのいずれかの酸化物の粒子で発電層25を構成してもよい。更に、SrTiOやCaTiO等のペロブスカイト型酸化物の粒子で発電層25を形成してもよい。 Further, the semiconductor particles constituting the power generation layer 25 are not limited to titanium oxide particles, and Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn. , Zr, Sr, Ga, Si, Cr, and Nb oxide particles may form the power generation layer 25. Further, the power generation layer 25 may be formed of particles of perovskite-type oxide such as SrTiO 3 and CaTiO 3.
 なお、発電層25はセル領域Rcのみに形成し、第1の電極領域R1には発電層25は形成せずに、第1の電極領域R1の透明電極層21が露出した状態とする。この場合、チタンペーストが印刷される面積は2.21cmとなる。 The power generation layer 25 is formed only in the cell region Rc, the power generation layer 25 is not formed in the first electrode region R1, and the transparent electrode layer 21 of the first electrode region R1 is exposed. In this case, the area on which the titanium paste is printed is 2.21 cm 2 .
 その後に、色素を含有する有機溶液に透明基板20を浸漬し、発電層25を構成する半導体粒子の表面に色素を吸着させる。その有機溶液として、アセトニトリルとt-ブタノールとを1:1の体積比率で混合した有機溶媒に色素としてCYC-B11(K)を添加してなる有機溶液を使用する。なお、有機溶液における色素の濃度は、0.1mM~1mM、例えば0.2mMである。そして、その有機溶液を0℃~80℃、例えば50℃に保温しつつ、有機溶液内において透明基板20を1時間~12時間、例えば4時間だけ静置することで発電層25に色素を吸着させればよい。 After that, the transparent substrate 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25. As the organic solution, an organic solution prepared by adding CYC-B11 (K) as a dye to an organic solvent obtained by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is used. The concentration of the dye in the organic solution is 0.1 mM to 1 mM, for example, 0.2 mM. Then, the dye is adsorbed on the power generation layer 25 by allowing the transparent substrate 20 to stand in the organic solution for 1 to 12 hours, for example, 4 hours while keeping the organic solution at 0 ° C. to 80 ° C., for example, 50 ° C. Just let me do it.
 更に、色素も上記に限定されず、金属錯体色素や有機色素を発電層25に吸着させればよい。このうち、金属錯体色素としては、例えば、ルテニウム-シス-ジアクア-ビピリジル錯体、ルテニウム-トリス錯体、ルテニウム-ビス錯体、オスミウム-トリス錯体、オスミウム-ビス錯体等の遷移金属錯体がある。また、亜鉛-テトラ(4-カルボキシフェニル)ポルフィリン、鉄-ヘキサシアニド錯体も金属錯体色素の一例である。 Further, the dye is not limited to the above, and the metal complex dye or the organic dye may be adsorbed on the power generation layer 25. Among these, examples of the metal complex dye include transition metal complexes such as ruthenium-cis-diaqua-bipyridyl complex, ruthenium-tris complex, ruthenium-bis complex, osmium-tris complex, and osmium-bis complex. Zinc-tetra (4-carboxyphenyl) porphyrin and iron-hexacianide complex are also examples of metal complex dyes.
 また、有機色素としては、例えば、9-フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素、及びカルバゾール化合物系色素等がある。 Examples of organic dyes include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, and cyanine dyes. There are pigments, merocyanine pigments, xanthene pigments, carbazole compound pigments and the like.
 次に、図5(b)に示す工程について説明する。まず、固体電解質前駆体26として、ヨウ素、1,3-ジメチルイミダゾリウムヨージド(DMII)、アセトニトリル、及び分子量が100万のポリエチレンオキシドの各々を均一になるように混合する。次いで、この固体電解質前駆体26を発電層25の上に0.1μL~50μL、例えば20μLだけ滴下し、発電層25に固体電解質前駆体26を含浸させる。そして、発電層25を50℃~150℃、例えば100℃に加熱し、この状態を1分~60分、例えば5分間維持することにより、固体電解質前駆体26に含まれる余剰のアセトニトリルを揮発させ、発電層25の上の固体電解質前駆体26を固体電解質層27とする。その後に、発電層25を室温に戻す。 Next, the process shown in FIG. 5 (b) will be described. First, as the solid electrolyte precursor 26, iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are mixed so as to be uniform. Next, the solid electrolyte precursor 26 is dropped onto the power generation layer 25 by 0.1 μL to 50 μL, for example, 20 μL, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26. Then, the power generation layer 25 is heated to 50 ° C. to 150 ° C., for example, 100 ° C., and this state is maintained for 1 minute to 60 minutes, for example, 5 minutes to volatilize the excess acetonitrile contained in the solid electrolyte precursor 26. The solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27. After that, the power generation layer 25 is returned to room temperature.
 なお、固体電解質前駆体26に含まれる電解質はDMIIに限定されない。例えば、ピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩であって、室温付近で固体状態にある塩や溶融状態にある常温溶融塩をイオン液体として使用し得る。そのような常温溶融塩としては、例えば、1-メチル-3-プロピルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムヨージド(BMII)、1-エチル-ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物等がある。 The electrolyte contained in the solid electrolyte precursor 26 is not limited to DMII. For example, iodine salts such as pyridinium salt, imidazolium salt, and triazolium salt, which are in a solid state near room temperature or in a molten state, can be used as an ionic liquid. Examples of such a room temperature molten salt include 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide (BMII), 1-ethyl-pyridinium iodide and the like 4 There are quaternary ammonium salt compounds and the like.
 更に、固体電解質層27の材料は上記に限定されず、酸化還元対を含有する溶融塩、オキサジアゾール化合物、及びピラゾリン化合物等の有機半導体材料を固体電解質層27の材料として使用してもよい。また、ヨウ化銅や臭化銅等の金属ハロゲン化物材料で固体電解質層27を形成してもよい。 Further, the material of the solid electrolyte layer 27 is not limited to the above, and an organic semiconductor material such as a molten salt containing an oxidation-reduction pair, an oxadiazole compound, and a pyrazoline compound may be used as the material of the solid electrolyte layer 27. .. Further, the solid electrolyte layer 27 may be formed of a metal halide material such as copper iodide or copper bromide.
 次に、図6(a)に示すように、対向電極層33を固体電解質層27の上方に配する。その対向電極層33の外形は、一辺の長さが約15mmの正方形の一つの角を切り落とすことにより、セル領域Rcと同じ五角形状とされる。 Next, as shown in FIG. 6A, the counter electrode layer 33 is arranged above the solid electrolyte layer 27. The outer shape of the counter electrode layer 33 has the same pentagonal shape as the cell region Rc by cutting off one corner of a square having a side length of about 15 mm.
 また、対向電極層33は、厚さが5μm~200μm、例えば100μmの金属箔31の上に触媒層32を0.01μm~0.1μm程度、例えば0.05μmの厚さに形成してなる。その金属箔31は例えばチタン箔であり、触媒層32は例えば白金層である。 Further, the counter electrode layer 33 is formed by forming a catalyst layer 32 on a metal foil 31 having a thickness of 5 μm to 200 μm, for example, 100 μm, to a thickness of about 0.01 μm to 0.1 μm, for example, 0.05 μm. The metal foil 31 is, for example, a titanium foil, and the catalyst layer 32 is, for example, a platinum layer.
 なお、触媒層32の材料としては、上記の白金の他に、パラジウム、ロジウム、及びインジウム等の触媒機能を有する金属もある。また、グラファイトで触媒層32を形成してもよい。更に、白金を担持したカーボン、インジウム-錫複合酸化物、アンチモンがドープされた酸化錫、及びフッ素がドープされた酸化錫で触媒層32を形成してもよい。その他の材料としては、ポリ(3、4-エチレンジオキシチオフエン)(PEDOT)、及びポリチオフェン等の有機半導体がある。 As the material of the catalyst layer 32, in addition to the above platinum, there are also metals having a catalytic function such as palladium, rhodium, and indium. Further, the catalyst layer 32 may be formed of graphite. Further, the catalyst layer 32 may be formed of carbon supporting platinum, an indium-tin composite oxide, antimony-doped tin oxide, and fluorine-doped tin oxide. Other materials include organic semiconductors such as poly (3,4-ethylenedioxythiophene) (PEDOT) and polythiophene.
 次に、図6(b)に示すように、固体電解質層27と対向電極層33との間から気泡を排除しつつ、固体電解質層27に対向電極層33を密着させる。なお、本工程を減圧雰囲気中や真空中で行うことで、固体電解質層27と対向電極層33との間に気泡が残留し難くなる。 Next, as shown in FIG. 6B, the counter electrode layer 33 is brought into close contact with the solid electrolyte layer 27 while removing air bubbles from between the solid electrolyte layer 27 and the counter electrode layer 33. By performing this step in a reduced pressure atmosphere or in a vacuum, air bubbles are less likely to remain between the solid electrolyte layer 27 and the counter electrode layer 33.
 また、セル領域Rcにおいては透明電極層21、発電層25、固体電解質層27、及び対向電極層33の各々が平面視で相互に重なり、光の入射によってそのセル領域Rcにおける発電層25に起電力が生じるようになる。 Further, in the cell region Rc, the transparent electrode layer 21, the power generation layer 25, the solid electrolyte layer 27, and the counter electrode layer 33 each overlap each other in a plan view, and are generated in the power generation layer 25 in the cell region Rc by the incident of light. Electricity will be generated.
 続いて、図7(a)に示すように、透明基板20の各側面と、第2の電極領域R2を除いた対向電極層33の各々の上にシランカップリング材をアルコールで希釈した液を塗布し、それを乾燥させることにより密着層40としてシランカップリング層を0.1μm~10μmの厚さに形成する。そのシランカップリング材としては、例えば信越化学工業株式会社性のKR-516がある。 Subsequently, as shown in FIG. 7A, a liquid obtained by diluting the silane coupling material with alcohol is applied onto each side surface of the transparent substrate 20 and each of the counter electrode layers 33 excluding the second electrode region R2. By applying and drying it, a silane coupling layer having a thickness of 0.1 μm to 10 μm is formed as the adhesion layer 40. As the silane coupling material, for example, there is KR-516 manufactured by Shin-Etsu Chemical Co., Ltd.
 なお、第2の電極領域R2における対向電極層33の上には密着層40は形成されず、第2の電極領域R2には対向電極層33が露出する。 The close contact layer 40 is not formed on the counter electrode layer 33 in the second electrode region R2, and the counter electrode layer 33 is exposed in the second electrode region R2.
 次に、図7(b)に示すように、密着層40の上に紫外線硬化樹脂を塗布し、それを紫外線で硬化させることにより厚さが10μm~500μm程度の封止部41を形成する。その紫外線硬化樹脂として、ここでは株式会社スリーボンド製のThreeBond 3035Bを使用する。 Next, as shown in FIG. 7B, an ultraviolet curable resin is applied onto the adhesion layer 40 and cured with ultraviolet rays to form a sealing portion 41 having a thickness of about 10 μm to 500 μm. As the ultraviolet curable resin, ThreeBond 3035B manufactured by ThreeBond Co., Ltd. is used here.
 なお、紫外線硬化樹脂を塗布してそのままに放置すると、固体電解質層27に紫外線硬化樹脂が浸漬し、発電層25の表面が紫外線硬化樹脂で被覆されてしまう。これを防ぐために、紫外線硬化樹脂を塗布してから約10分以内に紫外線硬化樹脂を硬化するのが好ましい。 If the UV curable resin is applied and left as it is, the UV curable resin is immersed in the solid electrolyte layer 27, and the surface of the power generation layer 25 is covered with the UV curable resin. In order to prevent this, it is preferable to cure the ultraviolet curable resin within about 10 minutes after applying the ultraviolet curable resin.
 以上により、本実施形態に係る太陽電池50の基本構造が完成する。
 図8は、その太陽電池50の縁部の拡大断面図である。図8に示すように、透明基板20の側面20sには前述の密着層40が形成されており、その密着層40の上に封止部41が形成される。その密着層40によって透明基板20と封止部41との間の密着力が高まり、側面20sから封止部41が剥がれるのを防止することができる。そして、その封止部41は、少なくとも透明基板20の側面20aと発電層25の側面とを覆うように設けられる。
As described above, the basic structure of the solar cell 50 according to the present embodiment is completed.
FIG. 8 is an enlarged cross-sectional view of the edge of the solar cell 50. As shown in FIG. 8, the above-mentioned adhesion layer 40 is formed on the side surface 20s of the transparent substrate 20, and the sealing portion 41 is formed on the adhesion layer 40. The adhesion layer 40 enhances the adhesion between the transparent substrate 20 and the sealing portion 41, and can prevent the sealing portion 41 from peeling off from the side surface 20s. The sealing portion 41 is provided so as to cover at least the side surface 20a of the transparent substrate 20 and the side surface of the power generation layer 25.
 また、対向電極層33の側面と裏面にも密着層40が形成されており、その密着層40の上にも封止部41が形成される。その密着層40によって対向電極層33と封止部41との密着力が高まり、対向電極層33から封止部41が剥がれるのを防止できる。なお、側面20sと封止部41との密着性や、対向電極層33と封止部41との密着性が問題にならない場合には密着層40を省いてもよい。 Further, the adhesion layer 40 is also formed on the side surface and the back surface of the counter electrode layer 33, and the sealing portion 41 is also formed on the adhesion layer 40. The adhesion layer 40 enhances the adhesion between the counter electrode layer 33 and the sealing portion 41, and can prevent the sealing portion 41 from peeling off from the counter electrode layer 33. If the adhesion between the side surface 20s and the sealing portion 41 and the adhesion between the counter electrode layer 33 and the sealing portion 41 are not a problem, the adhesion layer 40 may be omitted.
 次に、この太陽電池50を用いた太陽電池モジュールについて説明する。
 図9は、本実施形態に係る太陽電池モジュールの平面図である。図9に示すように、本実施形態では、配線基板51の上に太陽電池モジュール52として8個の太陽電池50の各々を透明基板20を上にして並べる。また、各々の太陽電池50と配線基板51との間には不図示の銀ペーストが設けられており、その銀ペーストを加熱により硬化させることで太陽電池50の各電極領域R1、R2と配線基板51とが電気的に接続される。銀ペーストは特に限定されないが、例えば京都エレックス株式会社性のDD-1630L-885を銀ペーストとして使用し得る。
Next, a solar cell module using the solar cell 50 will be described.
FIG. 9 is a plan view of the solar cell module according to the present embodiment. As shown in FIG. 9, in the present embodiment, each of the eight solar cells 50 as the solar cell module 52 is arranged on the wiring board 51 with the transparent substrate 20 facing up. Further, a silver paste (not shown) is provided between each of the solar cells 50 and the wiring substrate 51, and the silver paste is cured by heating to cure the silver paste with the electrode regions R1 and R2 of the solar cell 50 and the wiring substrate. 51 is electrically connected. The silver paste is not particularly limited, but for example, DD-1630L-885 manufactured by Kyoto Elex Co., Ltd. can be used as the silver paste.
 また、この例では各太陽電池50を配線基板51の配線で直列に接続することにより、一つの太陽電池50の電圧の8倍の電圧が太陽電池モジュール52から出力されるようにする。 Further, in this example, by connecting each solar cell 50 in series with the wiring of the wiring board 51, a voltage eight times the voltage of one solar cell 50 is output from the solar cell module 52.
 その配線基板51には二次電池53、無線回路54、及びセンサ55が設けられる。このうち、二次電池53は、例えばリチウムイオン電池やリチウムイオンキャパシタであり、太陽電池モジュール52が発電した電力で蓄電される。また、無線回路54とセンサ55は二次電池53の電力で駆動する。例えば、センサ55は、温度センサや湿度センサであり、計測した温度や湿度を含むセンサ情報を無線回路54に送信する。無線回路54は、例えばBLE(Bluetooth (登録商標) Low Energy)によりセンサ情報を無線送信する回路である。 The wiring board 51 is provided with a secondary battery 53, a wireless circuit 54, and a sensor 55. Of these, the secondary battery 53 is, for example, a lithium ion battery or a lithium ion capacitor, and is stored by the electric power generated by the solar cell module 52. Further, the wireless circuit 54 and the sensor 55 are driven by the electric power of the secondary battery 53. For example, the sensor 55 is a temperature sensor or a humidity sensor, and transmits sensor information including the measured temperature and humidity to the wireless circuit 54. The wireless circuit 54 is a circuit that wirelessly transmits sensor information by, for example, BLE (Bluetooth (registered trademark) Low Energy).
 図10は、太陽電池モジュール52の断面図である。図10に示すように、本実施形態では太陽電池50ごとに透明基板20が設けられており、複数の太陽電池50に共通の一枚の透明基板を使用しない。そのため、透明基板20が割れ難くなり、太陽電池モジュール52の耐久性が向上する。 FIG. 10 is a cross-sectional view of the solar cell module 52. As shown in FIG. 10, in the present embodiment, the transparent substrate 20 is provided for each solar cell 50, and one transparent substrate common to the plurality of solar cells 50 is not used. Therefore, the transparent substrate 20 is less likely to crack, and the durability of the solar cell module 52 is improved.
 なお、各々の太陽電池50の配列は特に限定されない。図11(a)~(c)は、太陽電池50の配列の例について示す平面図である。 The arrangement of each solar cell 50 is not particularly limited. 11 (a) to 11 (c) are plan views showing an example of the arrangement of the solar cells 50.
 図11(a)~(c)に示すように、太陽電池50の各々は、配線基板51の上において、平面視で一辺を共有する任意の形状に配列し得る。従来の太陽電池モジュールではセルの形状に合わせて配線基板51の形状を決定する必要があるのに対し、本実施系形態では配線基板51の形状に合わせてセルの形状を決定できるので、太陽電池50の配置の自由度が向上する。 As shown in FIGS. 11A to 11C, each of the solar cells 50 can be arranged on the wiring board 51 in any shape that shares one side in a plan view. In the conventional solar cell module, it is necessary to determine the shape of the wiring board 51 according to the shape of the cell, whereas in the present embodiment, the shape of the cell can be determined according to the shape of the wiring board 51, so that the solar cell The degree of freedom of arrangement of 50 is improved.
 図12は、本実施形態に係る太陽電池モジュール52の拡大断面図である。図12に示すように、本実施形態では隣接する透明基板20の側面20s同士が相対するように太陽電池50を並べる。 FIG. 12 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment. As shown in FIG. 12, in the present embodiment, the solar cells 50 are arranged so that the side surfaces 20s of the adjacent transparent substrates 20 face each other.
 透明基板20の側面20sに斜めに光Lが入射したとき、透明基板20と封止部41の屈折率の違いに基づき、光Lの反射、屈折、及び散乱が発生する。例えば、透明基板20の側面20sで光Lが反射すると、その光Lが発電層25に入射するため発電層25に入射する光量が増え、太陽電池モジュール52における発電効率が向上する。 When light L is obliquely incident on the side surface 20s of the transparent substrate 20, reflection, refraction, and scattering of light L occur based on the difference in refractive index between the transparent substrate 20 and the sealing portion 41. For example, when the light L is reflected on the side surface 20s of the transparent substrate 20, the light L is incident on the power generation layer 25, so that the amount of light incident on the power generation layer 25 is increased and the power generation efficiency in the solar cell module 52 is improved.
 また、透明基板20の側面20sで光Lが屈折すると、屈折した光Lが隣接する太陽電池50の発電層25に入射し、これによっても発電層25に入射する光量が増えて太陽電池モジュール52における発電効率が向上する。更に、透明基板20の側面20sで光Lが散乱すると、散乱した光Lが隣接する二つの太陽電池50の各々の発電層25に入射するようになるため、これにより各発電層25に入射する光量が増えて太陽電池モジュール52における発電効率が向上する。 Further, when the light L is refracted on the side surface 20s of the transparent substrate 20, the refracted light L is incident on the power generation layer 25 of the adjacent solar cell 50, which also increases the amount of light incident on the power generation layer 25 and the solar cell module 52. Power generation efficiency is improved. Further, when the light L is scattered on the side surface 20s of the transparent substrate 20, the scattered light L is incident on each power generation layer 25 of the two adjacent solar cells 50, so that the light L is incident on each power generation layer 25. The amount of light increases and the power generation efficiency of the solar cell module 52 improves.
 しかも、封止部41が透明な場合には、透明基板20の側面20sで屈折又は散乱した光が封止部41を透過するため、隣接する太陽電池50の発電層25に入射する光量が増え、太陽電池モジュール52における発電効率が向上する。 Moreover, when the sealing portion 41 is transparent, the light refracted or scattered on the side surface 20s of the transparent substrate 20 passes through the sealing portion 41, so that the amount of light incident on the power generation layer 25 of the adjacent solar cell 50 increases. , The power generation efficiency in the solar cell module 52 is improved.
 特に、色素増感太陽電池の発電層25は厚みが1μm~10μm程度であり、シリコン太陽電池のシリコン層の厚さ(100nm)より厚い。よって、発電層25の体積が大きくなり、光Lの反射、屈折、及び散乱の影響を受けやすくなる。特に、シリコンの太陽電池よりも発電層25の側面25sの面積が広くなり、側面20sで反射した光が広い側面25sに入射して発電層25の発電効率が更に向上する。 In particular, the power generation layer 25 of the dye-sensitized solar cell has a thickness of about 1 μm to 10 μm, which is thicker than the thickness of the silicon layer of the silicon solar cell (100 nm). Therefore, the volume of the power generation layer 25 becomes large, and the light L is easily affected by reflection, refraction, and scattering. In particular, the area of the side surface 25s of the power generation layer 25 is larger than that of the silicon solar cell, and the light reflected by the side surface 20s is incident on the wide side surface 25s to further improve the power generation efficiency of the power generation layer 25.
 なお、隣接する側面20s同士の間隔tは特に限定されないが、本実施形態では各側面20s同士の間隔tを2mm以下とする。これにより一つの太陽電池モジュール52当たりの発電層25の面積が小さくなるのを抑制でき、太陽電池モジュール52の発電効率が低下するのを防止できる。 The distance t between the adjacent side surfaces 20s is not particularly limited, but in the present embodiment, the distance t between the side surfaces 20s is 2 mm or less. As a result, it is possible to suppress the area of the power generation layer 25 per one solar cell module 52 from becoming small, and it is possible to prevent the power generation efficiency of the solar cell module 52 from decreasing.
 (第2実施形態)
 図13は、本実施形態に係る太陽電池モジュール52の拡大断面図である。なお、図13において第1実施形態と同じ要素には第1実施形態と同じ符号を付し、以下ではその説明を省略する。
(Second Embodiment)
FIG. 13 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment. In FIG. 13, the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 図13に示すように、本実施形態では、隣接する太陽電池50の間の隙間に光反射部61としてシリコーン樹脂を充填する。そのシリコーン樹脂としては、例えば株式会社カインズ製のシリコーンシーラント(クリア)がある。また、このシリコーン樹脂の屈折率は1.41である。 As shown in FIG. 13, in the present embodiment, the gap between the adjacent solar cells 50 is filled with a silicone resin as a light reflecting portion 61. As the silicone resin, for example, there is a silicone sealant (clear) manufactured by Cainz Corporation. The refractive index of this silicone resin is 1.41.
 透明基板20の材料であるガラスや封止樹脂41の屈折率は1.5程度であるため、本実施形態では透明基板20と封止樹脂41の各々と屈折率が異なる光反射部61が各太陽電池50の間に設けられることになる。このような透明基板20と光反射部61との屈折率差に起因して、本実施形態では側面20sにおける光Lの反射率が高まる。その結果、透明基板20の側面20sで反射した光が発電層25により多く入射するようになるため、発電層25に入射する光の強度が増え、太陽電池モジュール52における発電効率がより向上する。 Since the refractive index of the glass or the sealing resin 41, which is the material of the transparent substrate 20, is about 1.5, in the present embodiment, each of the transparent substrate 20 and the sealing resin 41 and the light reflecting portion 61 having a different refractive index are provided. It will be provided between the solar cells 50. Due to the difference in refractive index between the transparent substrate 20 and the light reflecting portion 61, the reflectance of the light L on the side surface 20s is increased in the present embodiment. As a result, more light reflected by the side surface 20s of the transparent substrate 20 is incident on the power generation layer 25, so that the intensity of the light incident on the power generation layer 25 is increased and the power generation efficiency in the solar cell module 52 is further improved.
 しかも、光反射部61の材料である樹脂は、透明基板20の材料であるガラスと比較して弾性率が小さいため、透明基板20に印加された応力を緩和する応力緩和層として機能する。そのため、太陽電池モジュール52の製造時や使用時に透明基板20が割れるのを防止でき、太陽電池モジュール52の耐久性を高めることができる。 Moreover, since the resin, which is the material of the light reflecting portion 61, has a smaller elastic modulus than the glass, which is the material of the transparent substrate 20, it functions as a stress relaxation layer that relieves the stress applied to the transparent substrate 20. Therefore, it is possible to prevent the transparent substrate 20 from cracking during manufacturing or use of the solar cell module 52, and it is possible to improve the durability of the solar cell module 52.
 なお、光反射部61の材料はシリコーン樹脂に限定されない。ポリカーボネート、エポキシ樹脂、フッ素樹脂、及びエンジニアリングプラスチックのいずれかで光反射部61を形成してもよい。 The material of the light reflecting portion 61 is not limited to the silicone resin. The light reflecting portion 61 may be formed of any of polycarbonate, epoxy resin, fluororesin, and engineering plastic.
 (第3実施形態)
 本実施形態では、光反射部61(図13参照)の材料としてアクリル樹脂を使用した。そのアクリル樹脂として、株式会社エポック社製のSS-101スーパークリアを使用した。このアクリル樹脂の屈折率は1.51である。これ以外は第2実施形態と同様である。
(Third Embodiment)
In this embodiment, an acrylic resin is used as the material of the light reflecting portion 61 (see FIG. 13). As the acrylic resin, SS-101 Super Clear manufactured by Epoch Co., Ltd. was used. The refractive index of this acrylic resin is 1.51. Other than this, it is the same as that of the second embodiment.
 (第4実施形態)
 図14は、本実施形態に係る太陽電池モジュール52の拡大断面図である。なお、図14において第1実施形態と同じ要素には第1実施形態と同じ符号を付し、以下ではその説明を省略する。
(Fourth Embodiment)
FIG. 14 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment. In FIG. 14, the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 図14に示すように、本実施形態では、光反射部61に光反射フィラー62が混合された材料を使用した。なお、酸化チタンに代えて、金属又はガラスの光反射フィラー62を用いてもよい。また、光反射部61としては、セメダイン株式会社性のシリコーン樹脂であるPOSシール(ホワイト)を使用した。このシリコーン樹脂の屈折率は1.41である。これ以外は第2実施形態と同様である。 As shown in FIG. 14, in the present embodiment, a material in which the light reflecting filler 62 is mixed with the light reflecting portion 61 is used. Instead of titanium oxide, a metal or glass light-reflecting filler 62 may be used. Further, as the light reflecting portion 61, a POS seal (white), which is a silicone resin manufactured by Cemedine Co., Ltd., was used. The refractive index of this silicone resin is 1.41. Other than this, it is the same as that of the second embodiment.
 このように光反射部61に光反射フィラー62を混合することにより、光反射部61に侵入した光Lが光反射部61の内部で反射して発電層25に入射するようになる。そのため、発電層25に光Lを効率的に導くことができ、太陽電池モジュール52の発電効率を更に高めることができる。 By mixing the light reflecting filler 62 with the light reflecting unit 61 in this way, the light L that has entered the light reflecting unit 61 is reflected inside the light reflecting unit 61 and is incident on the power generation layer 25. Therefore, the light L can be efficiently guided to the power generation layer 25, and the power generation efficiency of the solar cell module 52 can be further improved.
 しかも、このように光反射部61の内部で散乱した光が光反射部61と隣接する太陽電池50の発電層25に入射するため、当該発電層25に入射する光の光量が増え、太陽電池モジュール52における発電効率が向上する。 Moreover, since the light scattered inside the light reflecting unit 61 is incident on the power generation layer 25 of the solar cell 50 adjacent to the light reflecting unit 61, the amount of light incident on the power generation layer 25 increases, and the solar cell The power generation efficiency in the module 52 is improved.
 (第5実施形態)
 本実施形態では、光反射部61(図13参照)の材料としてシリコーンゴムを使用した。そのシリコーンゴムとして、信越化学工業株式会社製の一液型RTVゴム(クリヤー)を使用した。そのシリコーンゴムの屈折率は1.41である。これ以外は第2実施形態と同様である。
(Fifth Embodiment)
In this embodiment, silicone rubber is used as the material of the light reflecting portion 61 (see FIG. 13). As the silicone rubber, a one-component RTV rubber (clear) manufactured by Shin-Etsu Chemical Co., Ltd. was used. The refractive index of the silicone rubber is 1.41. Other than this, it is the same as that of the second embodiment.
 シリコーンゴムは、他の樹脂と比較して弾性率が非常に小さい。そのため、透明基板20に印加された応力に対して光反射部61が柔軟に変形するようになり、その応力を緩和する応力緩和層として光反射部61を機能させることができる。 Silicone rubber has a very small elastic modulus compared to other resins. Therefore, the light reflecting portion 61 is flexibly deformed with respect to the stress applied to the transparent substrate 20, and the light reflecting portion 61 can function as a stress relaxation layer for relaxing the stress.
 (その他の実施形態)
 図15は、本実施形態に係る太陽電池モジュール52の拡大断面図である。なお、図15において第1実施形態と同じ要素には第1実施形態と同じ符号を付し、以下ではその説明を省略する。
(Other embodiments)
FIG. 15 is an enlarged cross-sectional view of the solar cell module 52 according to the present embodiment. In FIG. 15, the same elements as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 図15に示すように、本実施形態では透明基板20の側面20sに反射層59を設ける。反射層59は、厚さが0.1μm程度の酸化チタン等の金属酸化物層である。これにより、反射層59がない場合と比較して側面20sにおける反射率が高まるため、側面20sでほぼ確実に光Lを反射させて発電層25に導くことができ、太陽電池モジュール52の発電効率を一層高めることができる。しかも、金属酸化物層は、金属層のような光沢がないため光を散乱させることができる。その結果、広い範囲にある複数の太陽電池50の各々の発電層25に散乱された光が入射し、各太陽電池50において光を有効に利用することができる。 As shown in FIG. 15, in the present embodiment, the reflective layer 59 is provided on the side surface 20s of the transparent substrate 20. The reflective layer 59 is a metal oxide layer such as titanium oxide having a thickness of about 0.1 μm. As a result, the reflectance on the side surface 20s is increased as compared with the case where the reflection layer 59 is not provided, so that the light L can be almost certainly reflected on the side surface 20s and led to the power generation layer 25, and the power generation efficiency of the solar cell module 52 can be increased. Can be further enhanced. Moreover, since the metal oxide layer does not have the luster of the metal layer, light can be scattered. As a result, the scattered light is incident on each power generation layer 25 of the plurality of solar cells 50 in a wide range, and the light can be effectively used in each solar cell 50.
 図16は、本実施形態の更に別の例に係る太陽電池モジュール52の拡大断面図である。
 この例においても、第2実施形態と同様に隣接する太陽電池50の間の隙間に光反射部61として樹脂を充填する。これにより光反射部61が応力緩和層として機能するため、透明基板20に加わる応力を光反射部61で緩和でき、応力によって透明基板20が割れるのを防止できる。
FIG. 16 is an enlarged cross-sectional view of the solar cell module 52 according to still another example of the present embodiment.
Also in this example, as in the second embodiment, the gap between the adjacent solar cells 50 is filled with the resin as the light reflecting portion 61. As a result, the light reflecting portion 61 functions as a stress relaxation layer, so that the stress applied to the transparent substrate 20 can be relaxed by the light reflecting portion 61, and the transparent substrate 20 can be prevented from cracking due to the stress.
 本願発明者は、上記の第1~第5実施形態に従って太陽電池モジュール52を作製し、その太陽電池モジュール52の発電量を実験により調査した。以下に、その実験について説明する。
 (第1の実験例)
 本例では、第1実施形態に従って太陽電池50を作製した。なお、透明基板20の一辺の長さAx、Ayは15mmとし、その厚さAzは1.1mmとした。また、透明電極層21の厚さは0.3μmとした。そして、チタンアルコキシドから調整したアルコール溶液をセル領域Rcにおける透明電極層21の上に塗布した後、そのアルコール溶液を550℃に加熱して乾燥させることにより、逆電子移動防止層22を0.005μm~0.01μmの厚さに形成した。
The inventor of the present application produced the solar cell module 52 according to the first to fifth embodiments described above, and investigated the amount of power generation of the solar cell module 52 by experiments. The experiment will be described below.
(First experimental example)
In this example, the solar cell 50 was manufactured according to the first embodiment. The lengths Ax and Ay of one side of the transparent substrate 20 were 15 mm, and the thickness Az was 1.1 mm. The thickness of the transparent electrode layer 21 was set to 0.3 μm. Then, an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region Rc, and then the alcohol solution is heated to 550 ° C. and dried to make the reverse electron transfer prevention layer 22 0.005 μm. It was formed to a thickness of ~ 0.01 μm.
 更に、逆電子移動防止層22の上に40nmの酸化チタン粒子を含むチタンペーストを5μm~10μmの厚さに塗布し、それを550℃に加熱して有機物成分を除去することにより発電層25を形成した。更に、アセトニトリルとt-ブタノールとを1:1の体積比率で混合した有機溶媒に色素としてCYC-B11(K)を添加した。そして、その有機溶媒を50℃に保温しながら、当該有機溶液に透明基板20を4時間浸漬することにより発電層25に色素を吸着させた。なお、その有機溶媒における色素の濃度は0.2mMとした。 Further, a titanium paste containing titanium oxide particles of 40 nm is applied on the reverse electron transfer prevention layer 22 to a thickness of 5 μm to 10 μm, and the power generation layer 25 is removed by heating it to 550 ° C. to remove organic components. Formed. Further, CYC-B11 (K) was added as a dye to an organic solvent in which acetonitrile and t-butanol were mixed at a volume ratio of 1: 1. Then, while keeping the organic solvent at 50 ° C., the transparent substrate 20 was immersed in the organic solution for 4 hours to adsorb the dye on the power generation layer 25. The concentration of the dye in the organic solvent was 0.2 mM.
 そして、ヨウ素、1,3-ジメチルイミダゾリウムヨージド(DMII)、アセトニトリル、及び分子量が100万のポリエチレンオキシドの各々を均一になるように混合してなる固体電解質前駆体26を作製した。そして、発電層25の上に固体電解質前駆体26を20μLだけ滴下した後、発電層25を100℃に加熱した。加熱時間は100℃とし、加熱時間は5分とした。これにより固体電解質前駆体26に含まれる余剰のアセトニトリルが揮発し、固体電解質層27が得られた。その後に発電層25を室温に戻した。 Then, iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million were mixed so as to be uniform to prepare a solid electrolyte precursor 26. Then, after dropping 20 μL of the solid electrolyte precursor 26 onto the power generation layer 25, the power generation layer 25 was heated to 100 ° C. The heating time was 100 ° C. and the heating time was 5 minutes. As a result, the excess acetonitrile contained in the solid electrolyte precursor 26 was volatilized, and the solid electrolyte layer 27 was obtained. After that, the power generation layer 25 was returned to room temperature.
 次いで、厚さが100μmのチタン箔に厚さが0.05μmの白金層を形成してなる対向電極層33を固体電解質層27に密着させた。そして、透明基板20の各側面と、第2の電極領域R2を除いた対向電極層33の各々の上に密着層40としてシランカップリング層を0.5μmの厚さに形成した。更に、密着層40の上に厚さが150μmの封止部41を形成することにより太陽電池50を作製した。その太陽電池50を8個直列に接続することにより太陽電池モジュール52を作製した。 Next, the counter electrode layer 33 formed by forming a platinum layer having a thickness of 0.05 μm on a titanium foil having a thickness of 100 μm was brought into close contact with the solid electrolyte layer 27. Then, a silane coupling layer having a thickness of 0.5 μm was formed as an adhesion layer 40 on each side surface of the transparent substrate 20 and each of the counter electrode layers 33 excluding the second electrode region R2. Further, the solar cell 50 was manufactured by forming a sealing portion 41 having a thickness of 150 μm on the adhesion layer 40. The solar cell module 52 was manufactured by connecting eight solar cells 50 in series.
 本願発明者は、この太陽電池モジュール52の発電量を確認するために以下のような調査を行った。その調査では、暗室内に太陽電池モジュール52を設置し、暗室内において太陽電池モジュール52に標準LED(Light Emitting Diode)光源の光を照射した。その標準LED光源として、分光器株式会社性のBLD-100を使用した。更に、光の照度を確認するために、標準LED光源の直下にポータブル照度計としてデルタオーム社製のHD2102.1の受光部を載置した。 The inventor of the present application conducted the following investigation in order to confirm the amount of power generated by the solar cell module 52. In the investigation, the solar cell module 52 was installed in a dark room, and the solar cell module 52 was irradiated with the light of a standard LED (Light Emitting Diode) light source in the dark room. As the standard LED light source, BLD-100 manufactured by Spectrometer Co., Ltd. was used. Further, in order to confirm the illuminance of light, a light receiving part of HD2102.1 manufactured by Delta Ohmsha was placed as a portable illuminance meter directly under the standard LED light source.
 このような条件下で、8個の太陽電池50を直列に接続した太陽電池モジュール52に200Luxの光を照射したところ、太陽電池モジュール52の発電量は53.7μWであった。また、1000Luxの光に対する発電量は268.2μWであった。 Under such conditions, when the solar cell module 52 in which eight solar cells 50 were connected in series was irradiated with 200 Lux of light, the amount of power generated by the solar cell module 52 was 53.7 μW. The amount of power generated for 1000 Lux of light was 268.2 μW.
 (第2の実験例)
 本例では、第2実施形態に従って太陽電池モジュール52を作製した。なお、光反射部61の材料であるシリコーン樹脂として、屈折率が1.41の株式会社カインズ製のシリコーンシーラント(クリア)を使用した。
(Second experimental example)
In this example, the solar cell module 52 was manufactured according to the second embodiment. As the silicone resin used as the material of the light reflecting portion 61, a silicone sealant (clear) manufactured by Cainz Corporation having a refractive index of 1.41 was used.
 本願発明者は、第1の実験例と同じ条件で本例に係る太陽電池モジュール52の発電量を調査した。その結果、200Luxの光に対する発電量は54.0μWであった。また、1000Luxの光に対する発電量は270.2μWであった。 The inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.0 μW. The amount of power generated for 1000 Lux of light was 270.2 μW.
 (第3の実験例)
 本例では、第3実施形態に従って太陽電池モジュール52を作製した。なお、光反射部61の材料であるアクリル樹脂として、屈折率が1.51の株式会社エポック社製のSS-101スーパークリアを使用した。
(Third experimental example)
In this example, the solar cell module 52 was manufactured according to the third embodiment. As the acrylic resin used as the material of the light reflecting portion 61, SS-101 Super Clear manufactured by Epoch Co., Ltd. having a refractive index of 1.51 was used.
 本願発明者は、第1の実験例と同じ条件で本例に係る太陽電池モジュール52の発電量を調査した。その結果、200Luxの光に対する発電量は54.1μWであった。また、1000Luxの光に対する発電量は272.9μWであった。 The inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.1 μW. The amount of power generated for 1000 Lux of light was 272.9 μW.
 (第4の実験例)
 本例では、第4実施形態に従って太陽電池モジュール52を作製した。なお、光反射部61に混合する光反射フィラー62として酸化チタン粒を使用した。また、光反射部61の材料であるシリコーン樹脂として、屈折率が1.41のセメダイン株式会社性のPOSシール(ホワイト)を使用した。
(Fourth experimental example)
In this example, the solar cell module 52 was manufactured according to the fourth embodiment. Titanium oxide particles were used as the light-reflecting filler 62 to be mixed with the light-reflecting portion 61. Further, as the silicone resin which is the material of the light reflecting portion 61, a POS seal (white) of Cemedine Co., Ltd. having a refractive index of 1.41 was used.
 本願発明者は、第1の実験例と同じ条件で本例に係る太陽電池モジュール52の発電量を調査した。その結果、200Luxの光に対する発電量は54.5μWであった。また、1000Luxの光に対する発電量は274.3μWであった。 The inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.5 μW. The amount of power generated for 1000 Lux of light was 274.3 μW.
 (第5の実験例)
 本例では、第5実施形態に従って太陽電池モジュール52を作製した。なお、光反射部61の材料であるシリコーンゴムとして、屈折率が1.41の信越化学工業株式会社製の一液型RTVゴム(クリヤー)を使用した。
(Fifth experimental example)
In this example, the solar cell module 52 was manufactured according to the fifth embodiment. As the silicone rubber used as the material of the light reflecting portion 61, a one-component RTV rubber (clear) manufactured by Shin-Etsu Chemical Co., Ltd. having a refractive index of 1.41 was used.
 本願発明者は、第1の実験例と同じ条件で本例に係る太陽電池モジュール52の発電量を調査した。その結果、200Luxの光に対する発電量は54.2μWであった。また、1000Luxの光に対する発電量は272.4μWであった。 The inventor of the present application investigated the amount of power generated by the solar cell module 52 according to this example under the same conditions as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 54.2 μW. The amount of power generated for 1000 Lux of light was 272.4 μW.
 (比較例)
 本比較例では、透明基板20(図4(a)参照)の長辺の長さAxを60mmとし、短辺の長さAyを30mmとすることにより、第1の実験例よりもセル領域Rcが大きな太陽電池50を作製した。この場合、本比較例における発電面積は、第1の実験例のように8個の太陽電池50を直列に接続した太陽電池モジュール52の発電面積とほぼ等しくなる。そして、本比較例に係る太陽電池50の単体での発電量を測定した。なお、その測定条件は第1の実験例と同様である。その結果、200Luxの光に対する発電量は48.4μWであり、1000Luxの光に対する発電量は243.5μWであった。これらの値は、第1~第5の実験例の各々における値よりも小さい。これにより、第1~第5実施形態のように複数の透明基板20の各々の側面20s同士を相対させることが発電効率の向上に有効であることが確認できた。
(Comparison example)
In this comparative example, the length Ax of the long side of the transparent substrate 20 (see FIG. 4A) is 60 mm, and the length Ay of the short side is 30 mm, so that the cell region Rc is larger than that of the first experimental example. Made a large solar cell 50. In this case, the power generation area in this comparative example is substantially equal to the power generation area of the solar cell module 52 in which eight solar cells 50 are connected in series as in the first experimental example. Then, the amount of power generated by the solar cell 50 alone according to this comparative example was measured. The measurement conditions are the same as in the first experimental example. As a result, the amount of power generated for 200 Lux of light was 48.4 μW, and the amount of power generated for 1000 Lux of light was 243.5 μW. These values are smaller than the values in each of the first to fifth experimental examples. From this, it was confirmed that it is effective to improve the power generation efficiency by making the side surfaces 20s of the plurality of transparent substrates 20 face each other as in the first to fifth embodiments.
 以上、各実施形態について詳細に説明したが、本発明は上記に限定されない。例えば、上記では太陽電池50として色素増感太陽電池を製造したが、シリコン太陽電池を太陽電池50として製造してもよい。 Although each embodiment has been described in detail above, the present invention is not limited to the above. For example, in the above, the dye-sensitized solar cell is manufactured as the solar cell 50, but the silicon solar cell may be manufactured as the solar cell 50.
1、50 太陽電池
2、20 透明基板
3、21 透明電極層
4、22 逆電子移動防止層
5、25 発電層
6、27 固体電解質層
7、33 対向電極
8、41 封止部
11   太陽電池モジュール
20s  側面
31   金属箔
32   触媒層
40   密着層
51   配線基板
52   太陽電池モジュール
53   二次電池
54   無線回路
55   センサ
59   反射層
61   光反射部
62   光反射フィラー
 
1,50 Solar cell 2,20 Transparent substrate 3,21 Transparent electrode layer 4,22 Reverse electron movement prevention layer 5,25 Power generation layer 6,27 Solid electrolyte layer 7,33 Opposed electrode 8,41 Sealing part 11 Solar cell module 20s Side 31 Metal foil 32 Catalyst layer 40 Adhesive layer 51 Wiring board 52 Solar cell module 53 Secondary battery 54 Wireless circuit 55 Sensor 59 Reflection layer 61 Light reflection part 62 Light reflection filler

Claims (10)

  1.  第1の側面、第2の側面、及び主面を備えた透明基板と、
     前記透明基板の主面に設けられた発電層と、
     少なくとも前記第1の側面と、第2の側面と、前記発電層の側面を覆うように設けられた封止部と、
    を有し、
     前記透明基板が複数設けられ、
     前記複数の透明基板が、前記第1の側面と前記第2の側面とが相対するように配列された、
     ことを特徴とする太陽電池モジュール。
    A transparent substrate with a first side surface, a second side surface, and a main surface,
    A power generation layer provided on the main surface of the transparent substrate and
    At least the first side surface, the second side surface, and the sealing portion provided so as to cover the side surface of the power generation layer.
    Have,
    A plurality of the transparent substrates are provided,
    The plurality of transparent substrates are arranged so that the first side surface and the second side surface face each other.
    A solar cell module characterized by that.
  2.  前記第1の側面と前記第2の側面との間に、前記透明基板と屈折率が異なる光反射部が設けられたことを特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a light reflecting portion having a refractive index different from that of the transparent substrate is provided between the first side surface and the second side surface.
  3.  前記光反射部は樹脂を含むことを特徴とする請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the light reflecting portion contains a resin.
  4.  前記樹脂は、アクリル樹脂、ポリカーボネート、エポキシ樹脂、シリコン樹脂、フッ素樹脂、及びエンジニアリングプラスチックのいずれかであることを特徴とする請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the resin is any one of an acrylic resin, a polycarbonate, an epoxy resin, a silicon resin, a fluororesin, and an engineering plastic.
  5.  前記第1の側面にシランカップリング層が設けられ、前記シランカップリング層に前記光反射部が設けられたことを特徴とする請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein a silane coupling layer is provided on the first side surface, and the light reflecting portion is provided on the silane coupling layer.
  6.  前記光反射部は光反射フィラーを含むことを特徴とする請求項2乃至請求項5のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 2 to 5, wherein the light reflecting unit contains a light reflecting filler.
  7.  前記第1の側面に反射層が設けられたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 6, wherein a reflective layer is provided on the first side surface.
  8.  前記反射層は、金属酸化物層であることを特徴とする請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the reflective layer is a metal oxide layer.
  9.  前記封止部は樹脂を含むことを特徴とする請求項1乃至請求項8のいずれか1項に記載の電池モジュール。 The battery module according to any one of claims 1 to 8, wherein the sealing portion contains a resin.
  10.  前記発電層は、表面に色素が吸着した複数の半導体粒子の層であることを特徴とする請求項1乃至請求項9のいずれか1項に記載の太陽電池モジュール。
     
    The solar cell module according to any one of claims 1 to 9, wherein the power generation layer is a layer of a plurality of semiconductor particles in which a dye is adsorbed on the surface.
PCT/JP2020/010851 2020-03-12 2020-03-12 Solar cell module WO2021181611A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/010851 WO2021181611A1 (en) 2020-03-12 2020-03-12 Solar cell module
JP2022507119A JPWO2021181611A1 (en) 2020-03-12 2020-03-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010851 WO2021181611A1 (en) 2020-03-12 2020-03-12 Solar cell module

Publications (1)

Publication Number Publication Date
WO2021181611A1 true WO2021181611A1 (en) 2021-09-16

Family

ID=77670571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010851 WO2021181611A1 (en) 2020-03-12 2020-03-12 Solar cell module

Country Status (2)

Country Link
JP (1) JPWO2021181611A1 (en)
WO (1) WO2021181611A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324196A (en) * 2005-05-20 2006-11-30 Shin Etsu Polymer Co Ltd Electronic device structure
JP2008181688A (en) * 2007-01-23 2008-08-07 Toyota Motor Corp Solar cell device and building provided with the same
JP2015000916A (en) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 Imidazolidine-4-one compound having electron-withdrawing group, and photoelectric conversion element and solar battery comprising the compound
WO2015129608A1 (en) * 2014-02-26 2015-09-03 住友大阪セメント株式会社 Paste for porous light reflection insulating layer, porous light reflection insulating layer, and dye-sensitized solar cell
JP2015222785A (en) * 2014-05-23 2015-12-10 Nok株式会社 Gasket for electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324196A (en) * 2005-05-20 2006-11-30 Shin Etsu Polymer Co Ltd Electronic device structure
JP2008181688A (en) * 2007-01-23 2008-08-07 Toyota Motor Corp Solar cell device and building provided with the same
JP2015000916A (en) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 Imidazolidine-4-one compound having electron-withdrawing group, and photoelectric conversion element and solar battery comprising the compound
WO2015129608A1 (en) * 2014-02-26 2015-09-03 住友大阪セメント株式会社 Paste for porous light reflection insulating layer, porous light reflection insulating layer, and dye-sensitized solar cell
JP2015222785A (en) * 2014-05-23 2015-12-10 Nok株式会社 Gasket for electronic device

Also Published As

Publication number Publication date
JPWO2021181611A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US8148795B2 (en) Functional device
EP2043191B1 (en) Dye-sensitized solar cell module and method for fabricating same
JP5208974B2 (en) Dye-sensitized solar cell
JP5417304B2 (en) Photoelectric conversion module
US20090114277A1 (en) Production Process of Photoelectrode for Dye-Sensitized Solar Cell, Photoelectrode for Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell.
US20120240975A1 (en) Photoelectric conversion device, photoelectric conversion device array, fabrication method for photoelectric conversion device and electronic apparatus
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2004119306A (en) Photoelectric conversion element and its manufacturing method
JP4606777B2 (en) Wet solar cell
US20100132784A1 (en) Dye sensitized solar cell with separation membrane and method thereof
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2012064485A (en) Dye-sensitized photoelectric conversion device
WO2021181611A1 (en) Solar cell module
EP2453266A1 (en) Dye-sensitized solar cell
JP5019749B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP5577519B2 (en) Photoelectric conversion element
KR100984932B1 (en) Dye-sensitized solar cell and method of manufacturing the same
JP4606754B2 (en) Photoelectric conversion element
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
US20200136071A1 (en) Organic photovoltaic cell
JP2008235104A (en) Photoelectric conversion element and manufacturing method thereof
KR20130023920A (en) Method for forming grid electrode in dye-sensitized solar cell and dye-sensitized solar cell using thereof
JP4628728B2 (en) Transparent conductive substrate and dye-sensitized solar cell provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923818

Country of ref document: EP

Kind code of ref document: A1