WO2021180248A1 - 非 100 晶向单晶硅片的制备方法 - Google Patents

非 100 晶向单晶硅片的制备方法 Download PDF

Info

Publication number
WO2021180248A1
WO2021180248A1 PCT/CN2021/086424 CN2021086424W WO2021180248A1 WO 2021180248 A1 WO2021180248 A1 WO 2021180248A1 CN 2021086424 W CN2021086424 W CN 2021086424W WO 2021180248 A1 WO2021180248 A1 WO 2021180248A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
single crystal
block
silicon wafer
crystal orientation
Prior art date
Application number
PCT/CN2021/086424
Other languages
English (en)
French (fr)
Inventor
岳维维
孟祥熙
杨立功
曹育红
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2021180248A1 publication Critical patent/WO2021180248A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor

Definitions

  • the invention relates to a preparation method of a non-100 crystal orientation monocrystalline silicon wafer.
  • Monocrystalline silicon wafers are generally cut from single crystal silicon rods with 100 crystal orientations, and the resulting silicon wafers are generally single crystal silicon wafers with 100 crystal orientations.
  • the purpose of the present invention is to provide a method for preparing a non-100 crystal orientation monocrystalline silicon wafer, which includes the following steps:
  • the silicon block is in the shape of an oblique quadrangular prism, the bottom surface of the silicon block is perpendicular to the axis of the single crystal silicon rod, and the bottom surface is rectangular; the four sides of the silicon block are divided into two pairs: one pair First side surfaces that are parallel to each other and perpendicular to the bottom surface, and a pair of second side surfaces that are parallel to each other and inclined to the bottom surface;
  • the silicon block is cut into a silicon wafer; the silicon block is sliced in a direction parallel to the second side surface, and the sliced silicon wafer is a non-100 crystal orientation single crystal silicon wafer.
  • the single crystal silicon rod is a single crystal silicon rod with 100 crystal orientations.
  • the angle between the second side surface and the bottom surface is not greater than 60 degrees.
  • the bottom surface is rectangular, the first side surface is parallel to the wide side of the bottom surface, and the second side surface is parallel to the long side of the bottom surface.
  • the length of the side edge of the silicon block is the same as the length of the long side of the bottom surface.
  • the length of the side edge of the silicon block is one-half, one-third, one-quarter, one-fifth, or one-sixth of the length of the long side of the bottom surface.
  • the four edges of the silicon block located between the pair of second side surfaces are chamfered first, and then the silicon block is cut out of silicon wafers.
  • the outer diameter of the single crystal silicon rod is not greater than 240 mm.
  • the length of the long side of the bottom surface is 210 mm.
  • edge leather is produced; the edge leather is further cut into silicon wafers.
  • the invention cuts a silicon block with a 100 crystal orientation single crystal silicon rod, and the bottom surface of the silicon block is perpendicular to the axis of the single crystal silicon rod, so the bottom surface of the silicon block is also 100 crystal orientation, and the second side surface of the silicon block is inclined relative to the bottom surface Therefore, the second side surface of the silicon block is non-100 crystal orientation, and the silicon wafer is made by slicing the silicon block, and the slicing direction is parallel to the second side surface, so the monocrystalline silicon wafer obtained by slicing the silicon block is also non-100 crystal orientation.
  • the angle between the second side surface and the bottom surface is not more than 60 degrees, which is conducive to the flocking of non-100 crystal orientation monocrystalline silicon wafers to form an oblique pyramid suede structure.
  • the oblique pyramid suede structure is different from the existing regular pyramid suede structure. There is a certain application value.
  • the length of the side edge of the silicon block is the same as the length of the long side of the bottom surface, that is, the second side surface is a square, so the monocrystalline silicon wafer obtained by slicing the silicon block is a square slice.
  • the side edge length of the silicon block is one-half, one-third, one-quarter, one-fifth, or one-sixth of the length of the long side of the bottom surface, that is, the second side is rectangular, so the silicon block is sliced
  • the monocrystalline silicon wafer is rectangular, and the rectangular silicon wafer can be regarded as a segment of the above-mentioned square wafer.
  • the invention can use the single crystal silicon rod with a diameter of 240 mm as a raw material to prepare a 210 mm ⁇ 210 mm single crystal silicon wafer.
  • edge leather is produced; the edge leather can be further cut into silicon wafers to improve the utilization rate of the monocrystalline silicon rod.
  • Figure 1 is a schematic diagram of the present invention.
  • the present invention provides a method for preparing a non-100 crystal orientation monocrystalline silicon wafer 3, which includes the following steps:
  • a silicon block 2 is cut from a single crystal silicon rod 1 with 100 crystal orientations; the silicon block 2 is in the shape of an oblique quadrangular prism, the bottom surface 21 of the silicon block 2 is perpendicular to the axis of the single crystal silicon rod 1, and the bottom surface 21 is rectangular; the silicon block The four side surfaces of 2 are divided into two pairs: a pair of first side surfaces 22 that are parallel to each other and perpendicular to the bottom surface 21, and a pair of second side surfaces 23 that are parallel to each other and inclined to the bottom surface 21; the second side surfaces 23 and the bottom surface 21 The included angle of is not greater than 60 degrees; the bottom surface 21 is rectangular, the first side surface 22 is parallel to the wide side of the bottom surface 21, and the second side surface 23 is parallel to the long side of the bottom surface 21;
  • the silicon block 2 is cut into a silicon chip 3; the silicon block 2 is sliced in a direction parallel to the second side surface 23, and the sliced silicon chip 3 is a single crystal silicon chip.
  • a silicon block 2 is cut from a single crystal silicon rod 1 with 100 crystal orientations, and the bottom surface 21 of the silicon block 2 is perpendicular to the axis of the single crystal silicon rod 1, so the bottom surface 21 of the silicon block 2 is also 100 crystal orientation, and the silicon block
  • the second side surface 23 of the silicon block 2 is inclined with respect to the bottom surface 21, so the second side surface 23 of the silicon block 2 has a non-100 crystal orientation
  • the silicon chip 3 is made by slicing the silicon block 2, and the slicing direction is parallel to the second side surface 23, so the silicon block
  • the single crystal silicon wafer 3 obtained by 2 slices is also non-100 crystal orientation.
  • the angle between the second side surface 23 and the bottom surface 21 is not greater than 60 degrees, which is conducive to the non-100 crystal orientation monocrystalline silicon wafer 3 to form an oblique pyramid suede structure.
  • the oblique pyramid suede structure is different from the existing regular pyramid suede.
  • the surface structure has certain application value.
  • the second side surface 23 is square, and the single crystal silicon wafer 3 obtained by slicing the silicon block 2 is a square piece.
  • the second side surface 23 is rectangular, and the silicon
  • the monocrystalline silicon wafer obtained by slicing in block 2 is also rectangular, and the rectangular monocrystalline silicon wafer can be regarded as a slicing of the above-mentioned square wafer.
  • the present invention can use the single crystal silicon rod 1 with a diameter of 240mm as the raw material to prepare a 210mm ⁇ 210mm single crystal silicon wafer. It only needs to first cut the single crystal silicon rod 1 out of the silicon block 2 so that the bottom surface 21 of the silicon block 2 has a long side length.
  • the length of the side edge 24 of the silicon block 2 is the same as the length of the long side of the bottom surface 21, that is, the second side surface 23 is a square of 210mm ⁇ 210mm; the silicon block 2 can be sliced in a direction parallel to the second side surface 23.
  • the obtained silicon wafer 3 is a single crystal silicon wafer of 210 mm ⁇ 210 mm.
  • edge leather is produced; the edge leather can be further cut into silicon wafers to improve the utilization rate of the single crystal silicon rod 1.

Abstract

一种非100晶向单晶硅片(3)的制备方法,包括如下步骤:将单晶硅棒(1)切割出斜四棱柱状硅块(2);硅块的底面(21)与单晶硅棒的轴心垂直;硅块的四个侧面分为两对:一对相互平行、且与底面垂直的第一侧面(22),以及一对相互平行、且相对底面倾斜的第二侧面(23);以平行于第二侧面的方向对硅块进行切片,切片所得的硅片为非100晶向的单晶硅片。该方法能以直径240mm的单晶硅棒为原材料,制备210mm×210mm的非100晶向单晶硅片,拓宽了需求。

Description

非100晶向单晶硅片的制备方法 技术领域
本发明涉及非100晶向单晶硅片的制备方法。
背景技术
单晶硅片一般由100晶向的单晶硅棒切割而成,且所得的硅片一般为100晶向的单晶硅片。
而随着太阳能电池技术的发展,非100晶向的单晶硅片也有需求,故需要研发一种可以制备非100晶向单晶硅片的方法。
技术解决方案
本发明的目的在于提供一种非100晶向单晶硅片的制备方法,包括如下步骤:
将单晶硅棒切割出硅块;硅块为斜四棱柱状,硅块的底面与单晶硅棒的轴心垂直,且底面为矩形;硅块的四个侧面分为两对:一对相互平行、且与底面垂直的第一侧面,以及一对相互平行、且相对底面倾斜的第二侧面;
将硅块切割出硅片;以平行于第二侧面的方向对硅块进行切片,切片所得的硅片为非100晶向的单晶硅片。
优选的,所述单晶硅棒为100晶向的单晶硅棒。
优选的,所述第二侧面与底面的夹角不大于60度。
优选的,所述底面为长方形,第一侧面与底面的宽边平行,第二侧面与底面的长边平行。
优选的,所述硅块的侧棱长度与底面长边长度相同。
优选的,所述硅块的侧棱长度为底面长边长度的二分之一、三分之一、四分之一、五分之一或六分之一。
优选的,先对硅块位于一对第二侧面之间的四个边线进行倒角,再将硅块切割出硅片。
优选的,所述单晶硅棒的外径不大于240mm。
优选的,所述底面长边长度为210mm。
优选的,将单晶硅棒切割出硅块时,有产生边皮料;将边皮料进一步切割为硅片。
有益效果
本发明将100晶向的单晶硅棒切割出硅块,而硅块底面与单晶硅棒的轴心垂直,故硅块底面也为100晶向,且硅块的第二侧面相对底面倾斜,故硅块第二侧面为非100晶向,而硅片由硅块切片制得,且切片方向平行于第二侧面,故硅块切片所得的单晶硅片也为非100晶向。
第二侧面与底面的夹角不大于60度,有利于非100晶向单晶硅片制绒形成斜棱锥绒面结构,该斜棱锥绒面结构有别于现有的正棱锥绒面结构,有一定的应用价值。
硅块的侧棱长度与底面长边长度相同,即第二侧面是正方形,故硅块切片所得的单晶硅片为方片。
硅块的侧棱长度为底面长边长度的二分之一、三分之一、四分之一、五分之一或六分之一,即第二侧面是长方形,故硅块切片所得的单晶硅片为长方形,该长方形硅片可以被视为上述方片的分片。
先对硅块位于一对第二侧面之间的四个边线进行倒角,再将硅块切割出硅片,可制备四个角都是倒角的非100晶向单晶硅片。
本发明能以直径240mm的单晶硅棒为原材料,制备210mm×210mm的单晶硅片。
将单晶硅棒切割出硅块时,有产生边皮料;可将边皮料进一步切割为硅片,以提高单晶硅棒的利用率。
附图说明
图1是本发明的示意图。
本发明的最佳实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,本发明提供一种非100晶向单晶硅片3的制备方法,包括如下步骤:
将100晶向的单晶硅棒1切割出硅块2;硅块2为斜四棱柱状,硅块2的底面21与单晶硅棒1的轴心垂直,且底面21为矩形;硅块2的四个侧面分为两对:一对相互平行、且与底面21垂直的第一侧面22,以及一对相互平行、且相对底面21倾斜的第二侧面23;第二侧面23与底面21的夹角不大于60度;底面21为长方形,第一侧面22与底面21的宽边平行,第二侧面23与底面21的长边平行;
将硅块2切割出硅片3;以平行于第二侧面23的方向对硅块2进行切片,切片所得的硅片3为单晶硅片。
本发明将100晶向的单晶硅棒1切割出硅块2,而硅块2底面21与单晶硅棒1的轴心垂直,故硅块2底面21也为100晶向,且硅块2的第二侧面23相对底面21倾斜,故硅块2第二侧面23为非100晶向,而硅片3由硅块2切片制得,且切片方向平行于第二侧面23,故硅块2切片所得的单晶硅片3也为非100晶向。
第二侧面23与底面21的夹角不大于60度,有利于非100晶向单晶硅片3制绒形成斜棱锥绒面结构,该斜棱锥绒面结构有别于现有的正棱锥绒面结构,有一定的应用价值。
若硅块2的侧棱24长度与底面21长边长度相同,则第二侧面23是正方形,硅块2切片所得的单晶硅片3为方片。
若硅块2的侧棱24长度为底面21长边长度的二分之一、三分之一、四分之一、五分之一或六分之一,则第二侧面23是长方形,硅块2切片所得的单晶硅片也为长方形,该长方形单晶硅片可以被视为上述方片的分片。
先对硅块2位于一对第二侧面23之间的四个边线25进行倒角,再将硅块2切割出硅片3,可制备四个角都是倒角的非100晶向单晶硅片。
本发明能以直径240mm的单晶硅棒1为原材料,制备210mm×210mm的单晶硅片,只需先将单晶硅棒1切割出硅块2,使硅块2的底面21长边长度为210mm,且硅块2的侧棱24长度与底面21长边长度相同,即第二侧面23为210mm×210mm的正方形;再可以平行于第二侧面23的方向对硅块2进行切片,切片所得的硅片3即为210mm×210mm的单晶硅片。
另外,将单晶硅棒1切割出硅块2时,有产生边皮料;可将边皮料进一步切割为硅片,以提高单晶硅棒1的利用率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 非100晶向单晶硅片的制备方法,其特征在于,包括如下步骤:
    将单晶硅棒切割出硅块;硅块为斜四棱柱状,硅块的底面与单晶硅棒的轴心垂直,且底面为矩形;硅块的四个侧面分为两对:一对相互平行、且与底面垂直的第一侧面,以及一对相互平行、且相对底面倾斜的第二侧面;
    将硅块切割出硅片;以平行于第二侧面的方向对硅块进行切片,切片所得的硅片为非100晶向的单晶硅片。
  2. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,先对硅块位于一对第二侧面之间的四个边线进行倒角,再将硅块切割出硅片。
  3. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,所述单晶硅棒为100晶向的单晶硅棒。
  4. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,所述第二侧面与底面的夹角不大于60度。
  5. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,所述底面为长方形,第一侧面与底面的宽边平行,第二侧面与底面的长边平行。
  6. 根据权利要求5所述的非100晶向单晶硅片的制备方法,其特征在于,所述硅块的侧棱长度与底面长边长度相同。
  7. 根据权利要求5所述的非100晶向单晶硅片的制备方法,其特征在于,所述硅块的侧棱长度为底面长边长度的二分之一、三分之一、四分之一、五分之一或六分之一。
  8. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,所述单晶硅棒的外径不大于240mm。
  9. 根据权利要求8所述的非100晶向单晶硅片的制备方法,其特征在于,所述底面长边长度为210mm。
  10. 根据权利要求1所述的非100晶向单晶硅片的制备方法,其特征在于,将单晶硅棒切割出硅块时,有产生边皮料;将边皮料进一步切割为硅片。
PCT/CN2021/086424 2020-03-12 2021-04-12 非 100 晶向单晶硅片的制备方法 WO2021180248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010170383.2A CN111267248A (zh) 2020-03-12 2020-03-12 非100晶向单晶硅片的制备方法
CN202010170383.2 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021180248A1 true WO2021180248A1 (zh) 2021-09-16

Family

ID=70995728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086424 WO2021180248A1 (zh) 2020-03-12 2021-04-12 非 100 晶向单晶硅片的制备方法

Country Status (2)

Country Link
CN (1) CN111267248A (zh)
WO (1) WO2021180248A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267248A (zh) * 2020-03-12 2020-06-12 常州时创能源股份有限公司 非100晶向单晶硅片的制备方法
CN114290550A (zh) * 2022-01-18 2022-04-08 常州时创能源股份有限公司 一种硅片制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1955813A1 (en) * 2005-09-28 2008-08-13 Shin-Etsu Handotai Co., Ltd Method for manufacturing (110) silicon wafer
CN103203671A (zh) * 2007-06-25 2013-07-17 圣戈本陶瓷及塑料股份有限公司 对单晶体进行晶体再取向的方法
CN103545409A (zh) * 2012-07-11 2014-01-29 株式会社迪思科 光器件以及光器件的加工方法
CN103862584A (zh) * 2014-04-04 2014-06-18 常州时创能源科技有限公司 太阳能电池用单晶硅圆棒的开方工艺及应用
JP2018082001A (ja) * 2016-11-15 2018-05-24 株式会社Sumco シリコンウェーハの製造方法
CN109080012A (zh) * 2018-08-23 2018-12-25 中国工程物理研究院激光聚变研究中心 晶向角度校正方法
CN110854238A (zh) * 2019-11-26 2020-02-28 常州时创能源科技有限公司 单晶硅小片电池的制备方法
CN111267248A (zh) * 2020-03-12 2020-06-12 常州时创能源股份有限公司 非100晶向单晶硅片的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929908A (zh) * 2017-03-13 2017-07-07 江西旭阳雷迪高科技股份有限公司 一种类单晶籽晶的加工方法
CN108842179B (zh) * 2018-07-13 2020-04-14 浙江大学 一种设置σ3孪晶界制备双晶向多晶硅铸锭的方法
CN110341061A (zh) * 2019-08-06 2019-10-18 赛维Ldk太阳能高科技(新余)有限公司 一种单晶籽晶的切割方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1955813A1 (en) * 2005-09-28 2008-08-13 Shin-Etsu Handotai Co., Ltd Method for manufacturing (110) silicon wafer
CN103203671A (zh) * 2007-06-25 2013-07-17 圣戈本陶瓷及塑料股份有限公司 对单晶体进行晶体再取向的方法
CN103545409A (zh) * 2012-07-11 2014-01-29 株式会社迪思科 光器件以及光器件的加工方法
CN103862584A (zh) * 2014-04-04 2014-06-18 常州时创能源科技有限公司 太阳能电池用单晶硅圆棒的开方工艺及应用
JP2018082001A (ja) * 2016-11-15 2018-05-24 株式会社Sumco シリコンウェーハの製造方法
CN109080012A (zh) * 2018-08-23 2018-12-25 中国工程物理研究院激光聚变研究中心 晶向角度校正方法
CN110854238A (zh) * 2019-11-26 2020-02-28 常州时创能源科技有限公司 单晶硅小片电池的制备方法
CN111267248A (zh) * 2020-03-12 2020-06-12 常州时创能源股份有限公司 非100晶向单晶硅片的制备方法

Also Published As

Publication number Publication date
CN111267248A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021218656A1 (zh) 硅棒切割工艺
WO2021180248A1 (zh) 非 100 晶向单晶硅片的制备方法
CN113382835A (zh) 单晶硅片的制备方法和应用
WO2021180247A1 (zh) 硅棒的切割方法
CA2496710A1 (en) Single crystal diamond
WO2021082515A1 (zh) 晶硅边皮料的切割工艺
CN105522658A (zh) 一种a向蓝宝石窗口片的加工方法
WO2021082514A1 (zh) 晶硅边皮料的切割方法
CN108582527A (zh) 用于制备切割硅片的基础硅片及制备方法和用途
JP2001094127A (ja) 太陽電池用基板、太陽電池および太陽電池モジュールならびにこれらの製造方法
CN113665011A (zh) 一种硅片的制备方法、硅片及电池
WO2015043099A1 (zh) 形成截面为多边形的具有辨识或倒角的晶棒、衬底方法及晶棒和衬底
WO2021098227A1 (zh) 四倒角小片电池的制备方法
CN114193640A (zh) <100>偏晶向硅片的制备方法
CN110854236A (zh) 一种四倒角小片电池的制备方法
US11742453B2 (en) Method for manufacturing monocrystalline silicon wafer containing arced side, method for manufacturing monocrystalline silicon cell, and photovoltaic module
US10679898B2 (en) Semiconductor substrate die sawing singulation systems and methods
TW201338948A (zh) 無樑式晶錠切割
CN114619578A (zh) 硅棒的加工方法、硅片、电池及电池组件
US9111745B2 (en) Methods for producing rectangular seeds for ingot growth
CN112394073B (zh) 一种快速准确测定氧化镓单晶晶轴取向的方法
CN114179235A (zh) <110>偏晶向硅片的制备工艺
CN107093627B (zh) 一种低损伤层微倒角的多晶硅片及其加工工艺
US3917506A (en) Method of growing quartz crystals and seed plate therefor
JPH0342508B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766813

Country of ref document: EP

Kind code of ref document: A1