WO2021179816A1 - 一种磁浮列车直线电机及一种磁浮列车 - Google Patents

一种磁浮列车直线电机及一种磁浮列车 Download PDF

Info

Publication number
WO2021179816A1
WO2021179816A1 PCT/CN2021/073746 CN2021073746W WO2021179816A1 WO 2021179816 A1 WO2021179816 A1 WO 2021179816A1 CN 2021073746 W CN2021073746 W CN 2021073746W WO 2021179816 A1 WO2021179816 A1 WO 2021179816A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetically conductive
linear motor
conductive film
maglev train
primary
Prior art date
Application number
PCT/CN2021/073746
Other languages
English (en)
French (fr)
Inventor
梁建英
刘先恺
吴冬华
韩伟涛
栾瑾
姜付杰
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to US17/763,656 priority Critical patent/US20220340178A1/en
Priority to KR1020227017499A priority patent/KR102663562B1/ko
Priority to JP2022512814A priority patent/JP7217835B2/ja
Priority to CA3150402A priority patent/CA3150402A1/en
Priority to EP21768242.6A priority patent/EP4120527A4/en
Publication of WO2021179816A1 publication Critical patent/WO2021179816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/06Thin magnetic films, e.g. of one-domain structure characterised by the coupling or physical contact with connecting or interacting conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0236Magnetic suspension or levitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0247Orientating, locating, transporting arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of maglev trains, in particular to a maglev train linear motor and a maglev train.
  • the operation status of the suction maglev train is completely realized by linear motors and frequency converter systems.
  • Current maglev trains all use linear induction motors (LIM), which directly determine the operating performance of the maglev train.
  • LIM linear induction motors
  • the distance between the stator and the mover of the linear motor is called the air gap, and the value of the working air gap is a key parameter that affects the thrust of the linear motor.
  • the actual maglev train Due to the consideration of the construction error of the line and the structure of the maglev train, the actual maglev train has a large working air gap, which is the main reason for the large power consumption and low efficiency of the linear motor. Therefore, reducing the working air gap of the linear motor of the maglev train is an effective means to improve the driving efficiency of the whole vehicle system.
  • the line is not ideally smooth, the primary and secondary linear motors are rigid bodies and cannot be impacted, so the designed working air gap is relatively large. Therefore, how to improve the driving efficiency of the entire vehicle system on the premise of protecting the linear motor from being easily damaged is an urgent problem to be solved by those skilled in the art.
  • the purpose of the present invention is to provide a maglev train linear motor, which can improve the driving efficiency of the whole vehicle system on the premise of protecting the linear motor from being easily damaged; the present invention also provides a maglev train, which can improve the overall performance on the premise of protecting the linear motor from being easily damaged.
  • the driving efficiency of the vehicle system is to provide a maglev train linear motor, which can improve the driving efficiency of the whole vehicle system on the premise of protecting the linear motor from being easily damaged; the present invention also provides a maglev train, which can improve the overall performance on the premise of protecting the linear motor from being easily damaged.
  • the present invention provides a linear motor for a maglev train, which includes a primary and a secondary that are opposed to each other, and an air gap is left between the primary and the secondary; the air gap has A first distance, the air gap has a second distance when in working state;
  • a surface of the primary side facing the secondary side is provided with a magnetically conductive film, the magnetically conductive film is elastic in a thickness direction, and the thickness of the magnetically conductive film is greater than the first pitch and smaller than the second pitch;
  • the magnetically conductive film includes a magnetically conductive substrate and a non-magnetically conductive substrate that are alternately distributed along the surface of the magnetically conductive film.
  • the magnetically conductive substrate is filled with a magnetically conductive material;
  • the magnetic pole on one side surface of the stage, the non-magnetic base body shields the gap between the adjacent magnetic poles.
  • the magnetically conductive film is rigid in a direction parallel to the surface of the magnetically conductive film.
  • the non-magnetically conductive base protrudes from the surface toward the primary side of the magnetically conductive base toward the primary side surface.
  • the surface of the non-magnetically conductive base facing the secondary side and the surface of the magnetically conductive base facing the secondary side are flush with each other.
  • the height of the non-magnetically conductive substrate protruding from the surface toward the primary side of the magnetically conductive substrate toward the surface of the primary side ranges from 1.5 mm to 2.5 mm, inclusive.
  • the thickness of the magnetically permeable substrate ranges from 7 mm to 8 mm, including the endpoint value.
  • the magnetically conductive material includes granular iron material or wire iron material.
  • the present invention also provides a maglev train, which includes the linear motor of the maglev train as described in any one of the above.
  • the linear motor for a maglev train includes a primary and a secondary that are opposed to each other, and an air gap is left between the primary and the secondary; There is a second pitch; the primary side surface facing the secondary side is provided with a magnetically conductive film, the magnetically conductive film is elastic in the thickness direction, the thickness of the magnetically conductive film is greater than the first pitch and less than the second pitch; the magnetically conductive film includes the magnetically conductive film along the Magnetically permeable and non-permeable bases are alternately distributed on the surface.
  • the permeable base is filled with magnetically permeable materials; the permeable base covers the magnetic poles on the side of the primary facing the secondary, and the non-permeable base shields the gap between adjacent magnetic poles.
  • the magnetic pole facing the magnetic pole side surface in the primary is specifically covered with a magnetically conductive base body, and the gap between the magnetic poles is shielded by the non-magnetically conductive base body.
  • the magnetic field generated by the magnetic poles will be transmitted to the secondary through the magnetic base and the air gap, and the magnetic base has a certain thickness, which can reduce the air gap spacing, thereby reducing the power consumption of the linear motor, improving the efficiency of the linear motor, and improving the overall vehicle system Drive efficiency; and the magnetic film has elasticity in the thickness direction, so that when it is stopped, it can avoid direct collisions between the primary and the secondary, thereby protecting the linear motor from damage.
  • the present invention also provides a maglev train, which also has the above-mentioned beneficial effects, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a linear motor for a maglev train provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the structure of the linear motor of the maglev train at a standstill
  • FIG. 3 Schematic diagram of the structure of the linear motor of the maglev train when it is working
  • FIG. 4 is a schematic structural diagram of a specific magnetic conductive film provided by an embodiment of the present invention.
  • the core of the present invention is to provide a linear motor for a maglev train.
  • the actual maglev train has a large working air gap, and the large working air gap is the main reason for the large power consumption and low efficiency of the linear motor.
  • the linear motor for a maglev train includes a primary and a secondary that are opposed to each other, and an air gap is left between the primary and the secondary; There is a second pitch when the primary side faces the secondary side surface is provided with a magnetically conductive film, the magnetically conductive film is elastic in the thickness direction, the thickness of the magnetically conductive film is greater than the first pitch and less than the second pitch; the magnetically conductive film includes the magnetic Magnetically permeable and non-permeable substrates alternately distributed on the surface of the film.
  • the permeable base is filled with magnetically permeable materials; the permeable base covers the magnetic poles on the primary side facing the secondary side, and the non-permeable base shields the gap between adjacent magnetic poles. .
  • the magnetic pole facing the magnetic pole side surface in the primary is specifically covered with a magnetically conductive base body, and the gap between the magnetic poles is shielded by the non-magnetically conductive base body.
  • the magnetic field generated by the magnetic poles will be transmitted to the secondary through the magnetic substrate and the air gap.
  • the magnetic substrate has a certain thickness, which can reduce the air gap distance, thereby reducing the power consumption of the linear motor, improving the efficiency of the linear motor, and improving the overall vehicle system Drive efficiency; and the magnetic film has elasticity in the thickness direction, so that when it is stopped, it can avoid direct collisions between the primary and the secondary, thereby protecting the linear motor from damage.
  • Figure 1 is a schematic structural diagram of a linear motor for a maglev train provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a linear motor for a maglev train at rest
  • the maglev train linear motor includes a primary 1 and a secondary 2 opposed to each other, and an air gap is left between the primary 1 and the secondary 2; the air gap is not working The air gap has a first distance in the working state, and the air gap has a second distance in the working state; a magnetic conductive film 3 is provided on the surface of the primary 1 facing the secondary 2 in the thickness direction Elastic, the thickness of the magnetically conductive film 3 is greater than the first pitch and smaller than the second pitch; the magnetically conductive film 3 includes magnetically permeable substrates 31 and non-magnetically permeable substrates 31 alternately distributed along the surface of the magnetically permeable film 3
  • the base 32, the magnetically permeable base 31 is filled with magnetically permeable material; the magnetically permeable base 31 covers the magnetic poles on the side of the primary 1 facing the secondary 2, and the non-magnetically permeable base 32 shields the adjacent The gap between the magnetic poles.
  • the above-mentioned primary 1 is the stator in the linear motor, and the secondary 2 is the rotor in the linear motor.
  • the linear motor provided by the embodiment of the present invention usually adopts a short stator structure.
  • the surface of the primary 1 facing the secondary 2 is usually provided with cogging slots, and windings are provided in the cogging slots.
  • the protrusions between adjacent tooth grooves are equivalent to magnetic poles, and there is a gap between adjacent magnetic poles, which is the tooth groove.
  • the primary 1 and the secondary 2 When the linear motor is in a non-operating state, the primary 1 and the secondary 2 have a relatively small first distance; and when the linear motor is in the operating state, the primary 1 and the secondary There is a second distance between the secondary 2 with a larger distance.
  • the first distance of the air gap is usually about 5 mm; and in the working state, the second distance of the air gap is usually about 13 mm.
  • the surface of the primary 1 facing the secondary 2 is provided with a magnetic conductive film 3, and the magnetic conductive film 3 has elasticity in the thickness direction.
  • the thickness direction of the magnetic film 3 is the distance between the primary 1 and the secondary 2.
  • the magnetic film 3 is elastic in the thickness direction, which means that the primary 1 and the secondary 2 can compress the magnetic film 3; When the air gap between 1 and the secondary 2 becomes wider, the thickness of the magnetic conductive film 3 will return to the original state.
  • the thickness of the magnetically conductive film 3 needs to be greater than the first pitch and smaller than the second pitch, that is, the primary 1 and the secondary 2 will compress the magnetically conductive film 3 when in the non-operating state; while in the working state, the primary In addition to the magnetic conductive film 3 between the 1 and the secondary 2, there will also be a certain air gap. Since the magnetic conductive film 3 has certain elasticity in the thickness direction, when the primary 1 and the secondary 2 collide with each other, the force generated by the collision can be effectively absorbed, and the primary 1 and the secondary 2 are protected from damage.
  • the above-mentioned magnetically conductive film 3 includes magnetically conductive substrates 31 and non-magnetically conductive substrates 32 alternately distributed along the surface of the magnetically conductive film 3. That is, the magnetically conductive film 3 is not a multilayer structure in the thickness direction, but along the surface of the magnetically conductive film 3 The stripe structure, in which the magnetically permeable base 31 and the non-magnetically permeable base 32 are alternately distributed.
  • the above-mentioned magnetically permeable base 31 is compared with the non-magnetically permeable base 32, and the magnetically permeable base 31 is filled with a magnetically permeable material to make the magnetically permeable base 31 have magnetic permeability.
  • the magnetically permeable base 31 covers the magnetic poles on the side of the primary 1 facing the secondary 2, while the non-magnetically permeable base 32 shields the gap between adjacent magnetic poles.
  • the length and width of the magnetically permeable base 31 is generally approximately the same as the length and width of the magnetic poles.
  • the length and width of the non-magnetic base body 32 are generally equal to or slightly smaller than the gap between the magnetic poles, that is, the length and width of the cogging groove. Since the magnetically permeable base 31 is filled with a magnetically permeable material, its magnetic permeability is greater than that of air at a certain time, and by controlling the amount of filled magnetically permeable material, the permeability of the magnetically permeable thin film 3 can be controlled. When the lines of magnetic force pass through the magnetically permeable base 31, the energy loss can be greatly reduced. Since the relationship between air gap and suspension force is almost exponential, energy can be greatly saved by reducing the air gap.
  • the linear motor for a maglev train provided by an embodiment of the present invention includes a primary 1 and a secondary 2 oppositely arranged, and an air gap is left between the primary 1 and the secondary 2; the air gap has a first distance when it is not in operation, The air gap has a second gap in the working state; the primary 1 is provided with a magnetic film 3 on the side facing the secondary 2, and the magnetic film 3 is elastic in the thickness direction. The thickness of the magnetic film 3 is greater than the first gap and smaller than the first gap.
  • the magnetically permeable base 31 is filled with magnetically permeable material; the magnetically permeable base 31 covers the primary 1 toward the secondary 2
  • the magnetic poles on one side surface, the non-magnetic base body 32 shields the gap between adjacent magnetic poles.
  • the magnetic pole on the side surface of the primary 1 facing the magnetic pole is specifically covered with the magnetically permeable base 31, and the gap between the magnetic poles is shielded by the non-magnetically permeable base 32.
  • the magnetic field generated by the magnetic poles is transmitted to the secondary 2 through the magnetic base 31 and the air gap.
  • the magnetic base 31 has a certain thickness, which can reduce the air gap distance, thereby reducing the power consumption of the linear motor, improving the efficiency of the linear motor, and thereby improving The driving efficiency of the whole vehicle system; and the magnetic film 3 has elasticity in the thickness direction, so that in the stopped state, it avoids direct collision between the primary 1 and the secondary 2, thereby protecting the linear motor from being easily damaged.
  • FIG. 4 is a schematic structural diagram of a specific magnetic conductive film provided by an embodiment of the present invention.
  • the embodiment of the present invention further introduces the specific structure of the magnetically conductive film 3 in the linear motor of the maglev train on the basis of the above-mentioned embodiment of the invention.
  • the rest of the content has been described in detail in the above-mentioned embodiments of the invention, and will not be repeated here.
  • the magnetic conductive film 3 is rigid in a direction parallel to the surface of the magnetic conductive film 3. It should be noted that when the linear motor is energized, the magnetic conductive film 3 will receive a force along the direction of the train. In order to allow the magnetic conductive film 3 to overcome the horizontal force and avoid the deformation of the magnetic conductive film 3 in the horizontal direction, the magnetic conductive film 3 is rigid along the surface of the magnetic conductive film 3, that is, in the horizontal direction.
  • the surface of the non-magnetically conductive base 32 facing the primary 1 protrudes from the surface of the magnetically conductive base 31 facing the primary 1.
  • the protruding part of the non-magnetic base body 32 will be embedded in the cogging on the surface of the primary 1, that is, the gap between the magnetic poles. In the gap.
  • the protruding part of the non-magnetic substrate 32 will exert a certain force on the side wall of the magnetic pole, so as to ensure that the magnetic film will not slide or deform in the horizontal direction.
  • the height of the non-magnetic base body 32 protruding from the surface on the side facing the primary 1 side of the magnetically conductive base 31 on the side facing the primary 1 ranges from 1.5mm to 2.5mm, inclusive. . That is, the height of the protruding part of the non-magnetic base body 32 facing the primary 1 side is usually about 2 mm compared with the magnetically conductive base body 31 to ensure that the magnetic film will not slide or deform in the horizontal direction.
  • the thickness of the magnetically permeable substrate 31 ranges from 7 mm to 8 mm, including the endpoint value.
  • the corresponding magnetic film can reduce the air gap between the primary 1 and the secondary 2 by 7mm to 8mm in the working state. If the thickness of the air gap during operation is 13mm, after setting the magnetic conductive film 3 provided by the embodiment of the present invention, the thickness of the air gap during operation will be reduced to 5mm to 6mm, thereby greatly improving the driving of the vehicle system efficient.
  • the surface of the non-magnetic substrate 32 facing the secondary 2 and the surface of the magnetic substrate 31 facing the secondary 2 are generally flush with each other, that is, the magnetic film 3 faces
  • the side surface of the secondary 2 is usually a flat surface, so that when the secondary 2 squeezes the magnetic conductive film 3, the force on the magnetic conductive film 3 can be more uniform.
  • the magnetic conductive material includes granular iron material or wire iron material. That is, the magnetically permeable base 31 of the magnetically permeable thin film 3 is usually filled with a magnetic material, which is usually an iron material. Specifically, in order to ensure that the magnetic film has a certain elasticity in the thickness direction, the filled iron material is usually a granular iron material or a wire iron material.
  • the non-magnetically conductive base 32 faces the surface of the primary 1 side and protrudes the surface of the magnetically conductive base 31 facing the primary 1 side to ensure that the magnetic film There will be no sliding or deformation in the horizontal direction; by making the surface of the magnetic conductive film 3 facing the secondary 2 a flat surface, the force of the magnetic conductive film 3 can be more uniform when the secondary 2 squeezes the magnetic conductive film 3 .
  • the present invention also provides a maglev train.
  • the maglev train is specifically provided with the maglev train linear motor provided in any of the foregoing invention embodiments.
  • the maglev train linear motor provided in any of the foregoing invention embodiments.
  • the maglev train linear motor please refer to the foregoing invention embodiment.
  • the rest of the structure reference can be made to the prior art, which will not be repeated here.
  • the linear motor of the maglev train since the linear motor of the maglev train has a narrower air gap during operation, and the magnetic conductive film 3 is elastic in the thickness direction, the whole vehicle system can be improved on the premise that the linear motor is not easily damaged. Drive efficiency.
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

一种磁浮列车直线电机及一种磁浮列车,包括相对设置的初级和次级,初级和次级之间留有气隙; 气隙在非工作状态时具有第一间距,气隙在工作状态时具有第二间距; 初级朝向次级一侧表面设置有导磁薄膜,导磁薄膜在厚度方向具有弹性,导磁薄膜的厚度大于第一间距且小于第二间距; 导磁薄膜包括沿导磁薄膜表面交替分布的导磁基体和非导磁基体,导磁基体内填充有导磁材料; 导磁基体覆盖初级朝向次级一侧表面的磁极,非导磁基体遮蔽相邻磁极之间的间隙。通过导磁薄膜可以减少气隙间距,提高整车系统驱动效率。

Description

一种磁浮列车直线电机及一种磁浮列车
本申请要求于2020年03月11日提交中国专利局、申请号为202010168652.1、发明名称为“一种磁浮列车直线电机及一种磁浮列车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁浮列车技术领域,特别是涉及一种磁浮列车直线电机以及一种磁浮列车。
背景技术
吸力型磁浮列车的运行状态,如牵引、制动,正、反向运行等完全依靠直线电机以及变频器系统来实现。目前的磁浮列车均采用直线感应电机(LIM),直线感应电机直接决定了磁浮列车的运行性能。直线电机的定子和动子之间的距离称为气隙,工作气隙的值是影响直线电机推力的关键参数。
由于考虑线路施工误差和磁浮列车结构这两个原因,实际的磁浮列车工作气隙较大,工作气隙大是导致直线电机功耗大、效率低的主要原因。所以降低磁浮列车直线电机的工作气隙,是提高整车系统驱动效率的有效手段。但是考虑到线路并不是理想的平顺,直线电机初级和次级都是刚性体,不能撞击,所以设计的工作气隙较大。所以如何在保护直线电机不易损坏的前提下,提高整车系统驱动效率是本领域技术人员急需解决的问题。
发明内容
本发明的目的是提供一种磁浮列车直线电机,可以在保护直线电机不易损坏的前提提高整车系统驱动效率;本发明还提供了一种磁浮列车,可以在保护直线电机不易损坏的前提提高整车系统驱动效率。
为解决上述技术问题,本发明提供一种磁浮列车直线电机,包括相对设置的初级和次级,所述初级和所述次级之间留有气隙;所述气隙在非工作状态时具有第一间距,所述气隙在工作状态时具有第二间距;
所述初级朝向所述次级一侧表面设置有导磁薄膜,所述导磁薄膜在厚度方向具有弹性,所述导磁薄膜的厚度大于所述第一间距且小于所述第二间距;
所述导磁薄膜包括沿所述导磁薄膜表面交替分布的导磁基体和非导磁基体,所述导磁基体内填充有导磁材料;所述导磁基体覆盖所述初级朝向所述次级一侧表面的磁极,所述非导磁基体遮蔽相邻所述磁极之间的间隙。
可选的,所述导磁薄膜沿平行于所述导磁薄膜表面方向呈刚性。
可选的,所述非导磁基体朝向所述初级一侧表面凸出所述导磁基体朝向所述初级一侧表面。
可选的,所述非导磁基体朝向所述次级一侧表面与所述导磁基体朝向所述次级一侧表面相互平齐。
可选的,所述非导磁基体朝向所述初级一侧表面凸出所述导磁基体朝向所述初级一侧表面的高度取值范围为1.5mm至2.5mm,包括端点值。
可选的,所述导磁基体厚度的取值范围为7mm至8mm,包括端点值。
可选的,所述导磁材料包括颗粒状铁材料或丝状铁材料。
本发明还提供了一种磁浮列车,包括如上述任一项所述的磁浮列车直线电机。
本发明所提供的一种磁浮列车直线电机,包括相对设置的初级和次级,初级和次级之间留有气隙;气隙在非工作状态时具有第一间距,气隙在工作状态时具有第二间距;初级朝向次级一侧表面设置有导磁薄膜,导磁薄膜在厚度方向具有弹性,导磁薄膜的厚度大于第一间距且小于第二间距;导磁薄膜包括沿导磁薄膜表面交替分布的导磁基体和非导磁基体,导磁基体内填充有导磁材料;导磁基体覆盖初级朝向次级一侧表面的磁极,非导磁基体遮蔽相邻磁极之间的间隙。
在工作时,初级中朝向磁极一侧表面的磁极具体覆盖有导磁基体,而磁极之间间隙被非导磁基体遮蔽。磁极产生的磁场会以及通过导磁基体、气隙传递到次级,而导磁基体具有一定的厚度,可以减少气隙间距,从而降低直线电机功耗,提高直线电机效率,进而提高整车系统驱动效率;而导磁薄膜在厚度方向具有弹性,使得在停止状态时,避免初级与次级之间 直接的碰撞,从而保护直线电机不易损坏。
本发明还提供了一种磁浮列车,同样具有上述有益效果,在此不再进行赘述。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的一种磁浮列车直线电机的结构示意图;
图2为静止时磁浮列车直线电机的结构示意图;
图3位工作时磁浮列车直线电机的结构示意图;
图4为本发明实施例所提供的一种具体的导磁薄膜的结构示意图。
图中:1.初级、2.次级、3.导磁薄膜、31.导磁基体、32.非导磁基体。
具体实施方式
本发明的核心是提供一种磁浮列车直线电机。在现有技术中,考虑线路施工误差和磁浮列车结构这两个原因,实际的磁浮列车工作气隙较大,工作气隙大是导致直线电机功耗大、效率低的主要原因。
而本发明所提供的一种磁浮列车直线电机,包括相对设置的初级和次级,初级和次级之间留有气隙;气隙在非工作状态时具有第一间距,气隙在工作状态时具有第二间距;初级朝向次级一侧表面设置有导磁薄膜,导磁薄膜在厚度方向具有弹性,导磁薄膜的厚度大于第一间距且小于第二间距;导磁薄膜包括沿导磁薄膜表面交替分布的导磁基体和非导磁基体,导磁基体内填充有导磁材料;导磁基体覆盖初级朝向次级一侧表面的磁极,非导磁基体遮蔽相邻磁极之间的间隙。
在工作时,初级中朝向磁极一侧表面的磁极具体覆盖有导磁基体,而磁极之间间隙被非导磁基体遮蔽。磁极产生的磁场会以及通过导磁基体、 气隙传递到次级,而导磁基体具有一定的厚度,可以减少气隙间距,从而降低直线电机功耗,提高直线电机效率,进而提高整车系统驱动效率;而导磁薄膜在厚度方向具有弹性,使得在停止状态时,避免初级与次级之间直接的碰撞,从而保护直线电机不易损坏。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图2以及图3,图1为本发明实施例所提供的一种磁浮列车直线电机的结构示意图;图2为静止时磁浮列车直线电机的结构示意图;图3位工作时磁浮列车直线电机的结构示意图。
参见图1,在本发明实施例中,磁浮列车直线电机括相对设置的初级1和次级2,所述初级1和所述次级2之间留有气隙;所述气隙在非工作状态时具有第一间距,所述气隙在工作状态时具有第二间距;所述初级1朝向所述次级2一侧表面设置有导磁薄膜3,所述导磁薄膜3在厚度方向具有弹性,所述导磁薄膜3的厚度大于所述第一间距且小于所述第二间距;所述导磁薄膜3包括沿所述导磁薄膜3表面交替分布的导磁基体31和非导磁基体32,所述导磁基体31内填充有导磁材料;所述导磁基体31覆盖所述初级1朝向所述次级2一侧表面的磁极,所述非导磁基体32遮蔽相邻所述磁极之间的间隙。
上述初级1即直线电机中的定子,次级2即直线电机中的转子。本发明实施例所提供的直线电机通常选用短定子结构,在初级1朝向次级2一侧表面通常设置有齿槽,在齿槽中设置有绕组。此时,相邻齿槽之间的凸起相当于磁极,相邻磁极之间具有间隙,该间隙即齿槽。上述初级1以及次级2之间具有一气隙,当直线电机处于非工作状态时,初级1以及次级2之间具有间距较小的第一间距;而直线电机处于工作状态时,初级1以及次级2之间具有间距较大的第二间距。通常情况下,在非工作状态时, 上述气隙的第一间距通常在5mm左右;而在工作状态时,上述气隙的第二间距通常在13mm左右。有关上述初级1以及次级2的具体材质等可参考现有技术,在此不再进行赘述。
参见图2以及图3,上述初级1朝向次级2一侧表面设置有导磁薄膜3,该导磁薄膜3在厚度方向具有弹性。导磁薄膜3的厚度方向即初级1与次级2之间的间距方向,该导磁薄膜3在厚度方向具有弹性,意味着初级1以及次级2可以压缩该导磁薄膜3;而当初级1以及次级2之间气隙变宽时,该导磁薄膜3的厚度会恢复至初始状态。在本发明实施例中,导磁薄膜3的厚度需要大于第一间距且小于第二间距,即在非工作状态时初级1以及次级2会相互压缩导磁薄膜3;而在工作状态时初级1以及次级2之间除了具有该导磁薄膜3之外,还会具有一定的气隙。而由于导磁薄膜3在厚度方向具有一定的弹性,当初级1与次级2相互碰撞时可以有效吸收碰撞所产生的力,保护初级1以及次级2不易受到损坏。
上述导磁薄膜3包括沿导磁薄膜3表面交替分布的导磁基体31和非导磁基体32,即导磁薄膜3并非沿厚度方向的多层结构,而是沿导磁薄膜3表面方向的条纹结构,其中导磁基体31与非导磁基体32会相间交替分布。上述导磁基体31相比于非导磁基体32,该导磁基体31内填充有导磁材料以使导磁基体31具有导磁性。上述导磁基体31会覆盖初级1朝向次级2一侧表面的磁极,而非导磁基体32遮蔽相邻磁极之间的间隙,上述导磁基体31的长宽通常与磁极的长宽大体相等,而非导磁基体32的长宽通常也与磁极之间间隙,即齿槽的长宽大体相等或略小。由于导磁基体31中填充了导磁材料,其磁导率一定时大于空气的磁导率,而且通过控制填充导磁材料多少,可以实现对导磁薄膜3的导磁率的控制。当磁力线是通过导磁基体31的路径时,可以大大的减少能量的损耗。由于气隙和悬浮力的关系几乎会是指数关系,通过减小气隙会大大的节约能量。
本发明实施例所提供的一种磁浮列车直线电机,包括相对设置的初级1和次级2,初级1和次级2之间留有气隙;气隙在非工作状态时具有第一间距,气隙在工作状态时具有第二间距;初级1朝向次级2一侧表面设置有导磁薄膜3,导磁薄膜3在厚度方向具有弹性,导磁薄膜3的厚度大于 第一间距且小于第二间距;导磁薄膜3包括沿导磁薄膜3表面交替分布的导磁基体31和非导磁基体32,导磁基体31内填充有导磁材料;导磁基体31覆盖初级1朝向次级2一侧表面的磁极,非导磁基体32遮蔽相邻磁极之间的间隙。
在工作时,初级1中朝向磁极一侧表面的磁极具体覆盖有导磁基体31,而磁极之间间隙被非导磁基体32遮蔽。磁极产生的磁场会以及通过导磁基体31、气隙传递到次级2,而导磁基体31具有一定的厚度,可以减少气隙间距,从而降低直线电机功耗,提高直线电机效率,进而提高整车系统驱动效率;而导磁薄膜3在厚度方向具有弹性,使得在停止状态时,避免初级1与次级2之间直接的碰撞,从而保护直线电机不易损坏。
有关本发明所提供的一种磁浮列车直线电机的具体内容将在下述发明实施例中做详细介绍。
请参考图4,图4为本发明实施例所提供的一种具体的导磁薄膜的结构示意图。
区别于上述发明实施例,本发明实施例是在上述发明实施例的基础上,进一步介绍磁浮列车直线电机中导磁薄膜3的具体结构。其余内容已在上述发明实施例中进行了详细介绍,在此不再进行赘述。
参见图4,在本发明实施例中,所述导磁薄膜3沿平行于所述导磁薄膜3表面方向呈刚性。需要说明的是,在直线电机通电时,导磁薄膜3会受到沿列车前进方向的力。为了使导磁薄膜3可以克服水平方向的受力,避免导磁薄膜3沿水平方向的形变,该导磁薄膜3沿该导磁薄膜3表面方向,即水平方向呈刚性。
进一步的,在本发明实施例中,所述非导磁基体32朝向所述初级1一侧表面凸出所述导磁基体31朝向所述初级1一侧表面。当非导磁基体32朝向初级1一侧表面凸出导磁基体31朝向初级1一侧表面时,该非导磁基体32凸出的部分会嵌入初级1表面的齿槽,即磁极之间的间隙中。当导磁薄膜3受到水平方向的力时,该非导磁基体32凸出的部分会对磁极的侧壁产生一定的力,从而保证磁性薄膜在水平方向不会发生滑动或形变。 通常情况下,所述非导磁基体32朝向所述初级1一侧表面凸出所述导磁基体31朝向所述初级1一侧表面的高度取值范围为1.5mm至2.5mm,包括端点值。即上述非导磁基体32相比于导磁基体31,朝向初级1一侧表面凸出部分的高度通常在2mm左右,以保证磁性薄膜在水平方向不会发生滑动或形变。
通常情况下,在本发明实施例中所述导磁基体31厚度的取值范围为7mm至8mm,包括端点值。相应的磁性薄膜可将初级1以及次级2之间的气隙在工作状态时减少7mm至8mm。若工作时气隙的厚度为13mm,则设置完本发明实施例所提供的导磁薄膜3后,工作时该气隙的厚度会减少为5mm至6mm,从而极大的提高整车系统的驱动效率。
在本发明实施例中,所述非导磁基体32朝向所述次级2一侧表面与所述导磁基体31朝向所述次级2一侧表面通常相互平齐,即导磁薄膜3朝向次级2一侧表面通常为平整表面,从而使得次级2挤压导磁薄膜3时,导磁薄膜3的受力可以更加均匀。
在本发明实施例中,所述导磁材料包括颗粒状铁材料或丝状铁材料。即导磁薄膜3的导磁基体31中通常填充磁性材料通常为铁材料。具体的,为了保证磁性薄膜在厚度方向上具有一定的弹性,该填充的铁材料通常为颗粒状铁材料或丝状铁材料。
本发明实施例所提供的一种磁浮列车直线电机,通过使非导磁基体32朝向所述初级1一侧表面凸出所述导磁基体31朝向所述初级1一侧表面,可以保证磁性薄膜在水平方向不会发生滑动或形变;通过使导磁薄膜3朝向次级2一侧表面为平整表面,可以使得次级2挤压导磁薄膜3时,导磁薄膜3的受力可以更加均匀。
本发明还提供一种磁浮列车,该磁浮列车具体设置有上述任一种发明实施例中所提供的磁浮列车直线电机,有关磁浮列车直线电机的详细内容请参照上述发明实施例,有关磁浮列车的其余结构可以参考现有技术,在此不再进行赘述。
本发明实施例所提供的磁浮列车,由于磁浮列车直线电机在工作时具 有更窄的气隙,且导磁薄膜3在厚度方向具有弹性,从而可以在保护直线电机不易损坏的前提提高整车系统驱动效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种磁浮列车直线电机以及一种磁浮列车进行 了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

  1. 一种磁浮列车直线电机,其特征在于,包括相对设置的初级和次级,所述初级和所述次级之间留有气隙;所述气隙在非工作状态时具有第一间距,所述气隙在工作状态时具有第二间距;
    所述初级朝向所述次级一侧表面设置有导磁薄膜,所述导磁薄膜在厚度方向具有弹性,所述导磁薄膜的厚度大于所述第一间距且小于所述第二间距;
    所述导磁薄膜包括沿所述导磁薄膜表面交替分布的导磁基体和非导磁基体,所述导磁基体内填充有导磁材料;所述导磁基体覆盖所述初级朝向所述次级一侧表面的磁极,所述非导磁基体遮蔽相邻所述磁极之间的间隙。
  2. 根据权利要求1所述的磁浮列车直线电机,其特征在于,所述导磁薄膜沿平行于所述导磁薄膜表面方向呈刚性。
  3. 根据权利要求1所述的磁浮列车直线电机,其特征在于,所述非导磁基体朝向所述初级一侧表面凸出所述导磁基体朝向所述初级一侧表面。
  4. 根据权利要求3所述的磁浮列车直线电机,其特征在于,所述非导磁基体朝向所述次级一侧表面与所述导磁基体朝向所述次级一侧表面相互平齐。
  5. 根据权利要求4所述的磁浮列车直线电机,其特征在于,所述非导磁基体朝向所述初级一侧表面凸出所述导磁基体朝向所述初级一侧表面的高度取值范围为1.5mm至2.5mm,包括端点值。
  6. 根据权利要求5所述的磁浮列车直线电机,其特征在于,所述导磁基体厚度的取值范围为7mm至8mm,包括端点值。
  7. 根据权利要求1所述的磁浮列车直线电机,其特征在于,所述导磁材料包括颗粒状铁材料或丝状铁材料。
  8. 一种磁浮列车,其特征在于,包括如权利要求1至7任一项权利要求所述的磁浮列车直线电机。
PCT/CN2021/073746 2020-03-11 2021-01-26 一种磁浮列车直线电机及一种磁浮列车 WO2021179816A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/763,656 US20220340178A1 (en) 2020-03-11 2021-01-26 Linear motor for maglev train, and maglev train
KR1020227017499A KR102663562B1 (ko) 2020-03-11 2021-01-26 자기 부상 열차를 위한 선형 모터 및 자기 부상 열차
JP2022512814A JP7217835B2 (ja) 2020-03-11 2021-01-26 磁気浮上列車リニアモータ及び磁気浮上列車
CA3150402A CA3150402A1 (en) 2020-03-11 2021-01-26 Linear motor for maglev train, and maglev train
EP21768242.6A EP4120527A4 (en) 2020-03-11 2021-01-26 LINEAR MOTOR FOR MAGNETIC LEVITATION TRAIN AND MAGNETIC LEVITATION TRAIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010168652.1 2020-03-11
CN202010168652.1A CN111277109B (zh) 2020-03-11 2020-03-11 一种磁浮列车直线电机及一种磁浮列车

Publications (1)

Publication Number Publication Date
WO2021179816A1 true WO2021179816A1 (zh) 2021-09-16

Family

ID=71000585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073746 WO2021179816A1 (zh) 2020-03-11 2021-01-26 一种磁浮列车直线电机及一种磁浮列车

Country Status (7)

Country Link
US (1) US20220340178A1 (zh)
EP (1) EP4120527A4 (zh)
JP (1) JP7217835B2 (zh)
KR (1) KR102663562B1 (zh)
CN (1) CN111277109B (zh)
CA (1) CA3150402A1 (zh)
WO (1) WO2021179816A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277109B (zh) * 2020-03-11 2021-02-23 中车青岛四方机车车辆股份有限公司 一种磁浮列车直线电机及一种磁浮列车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195381A1 (en) * 2004-03-04 2005-09-08 Asml Netherlands B.V. Moveable object carrier, lithographic apparatus comprising the moveable object carrier and device manufacturing method
CN101888164A (zh) * 2010-07-26 2010-11-17 东南大学 低速大推力单气隙磁齿轮复合直线电机
CN108736592A (zh) * 2018-08-10 2018-11-02 北京九州动脉隧道技术有限公司 一种直线电机装置及磁悬浮列车
CN109617359A (zh) * 2018-11-01 2019-04-12 湖南高精特电装备有限公司 减少直线感应电机横向与纵向端部效应方法
CN111277109A (zh) * 2020-03-11 2020-06-12 中车青岛四方机车车辆股份有限公司 一种磁浮列车直线电机及一种磁浮列车

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490218A (en) * 1974-09-24 1977-10-26 Nat Res Dev Linear induction motors
JP2569374Y2 (ja) * 1992-04-28 1998-04-22 エヌティエヌ株式会社 磁気浮上スライダ
JPH07123345B2 (ja) * 1992-11-17 1995-12-25 株式会社精工舎 可動マグネット形リニア直流モータ
US5666883A (en) * 1994-05-24 1997-09-16 Power Superconductor Applications Co., Inc. Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields
DE19618518C1 (de) * 1996-05-08 1998-03-05 Schuster Heinz Peter Elektromagnetisches Antriebssystem für magnetische Schwebe- und Tragesysteme
IL120002A0 (en) 1997-01-13 1997-04-15 Amt Ltd Electrical coupler device
JP2001112119A (ja) 1999-10-05 2001-04-20 Toyota Autom Loom Works Ltd リニアモータ式搬送装置
JP3598279B2 (ja) 2001-07-16 2004-12-08 東海旅客鉄道株式会社 位置検知システム
US20060011093A1 (en) 2002-07-26 2006-01-19 Viggo Jensen Conveyor and a method of providing a driving force to a conveyor
DE10318207B4 (de) * 2003-04-22 2011-02-24 Siemens Ag Linearmotor, bzw. Sekundärteil bzw. Abdeckung desselbigen
JP5515433B2 (ja) 2009-06-03 2014-06-11 シンフォニアテクノロジー株式会社 モータ
GB2502084A (en) 2012-05-14 2013-11-20 Bombardier Transp Gmbh Arrangement for providing vehicles with energy comprising magnetisable material
PL227379B1 (pl) * 2013-10-29 2017-11-30 Centrum Badań Kosmicznych Polskiej Akademii Nauk Naped elektromagnetyczny oraz sposób wykonywania napedu elektromagnetycznego
CN104319976B (zh) * 2014-11-18 2017-01-18 南京航空航天大学 内电枢磁场增强型永磁磁通切换直线电机
CN109392303B (zh) * 2017-06-08 2020-09-15 应用材料公司 闭合装置、具有闭合装置的真空系统和操作闭合装置的方法
CN109245483B (zh) * 2018-09-19 2020-06-23 南京航空航天大学 一种次级无轭部的双边交替极永磁直线电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195381A1 (en) * 2004-03-04 2005-09-08 Asml Netherlands B.V. Moveable object carrier, lithographic apparatus comprising the moveable object carrier and device manufacturing method
CN101888164A (zh) * 2010-07-26 2010-11-17 东南大学 低速大推力单气隙磁齿轮复合直线电机
CN108736592A (zh) * 2018-08-10 2018-11-02 北京九州动脉隧道技术有限公司 一种直线电机装置及磁悬浮列车
CN109617359A (zh) * 2018-11-01 2019-04-12 湖南高精特电装备有限公司 减少直线感应电机横向与纵向端部效应方法
CN111277109A (zh) * 2020-03-11 2020-06-12 中车青岛四方机车车辆股份有限公司 一种磁浮列车直线电机及一种磁浮列车

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, YONGCHUN: "Study on the Relationship Between the Iinear Motor of Air Gap and the Energy Consumption of Train", TIEDAO JICHE CHELIANG = RAILWAY LOCOMOTIVE & CAR., vol. 35, no. 6, 25 December 2015 (2015-12-25), China, pages 69 - 72, XP055846606, ISSN: 1008-7842, DOI: 10.3969/j.issn.1008-7842.2015.06.18 *
See also references of EP4120527A4

Also Published As

Publication number Publication date
JP7217835B2 (ja) 2023-02-03
CA3150402A1 (en) 2021-09-16
CN111277109A (zh) 2020-06-12
CN111277109B (zh) 2021-02-23
JP2022546027A (ja) 2022-11-02
EP4120527A4 (en) 2024-03-06
EP4120527A1 (en) 2023-01-18
KR102663562B1 (ko) 2024-05-03
KR20220088760A (ko) 2022-06-28
US20220340178A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5863410B2 (ja) 回転子及びスポーク型ipm永久磁石式回転機
US20020171309A1 (en) Rotor and rotating electrical machine with embedded permanent magnet
US20140167549A1 (en) Motor rotor and motor having same
WO2019174328A1 (zh) 转子结构及具有其的电机
WO2021179816A1 (zh) 一种磁浮列车直线电机及一种磁浮列车
US10826368B2 (en) Linear flux switching permanent magnet motor
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
US11075572B2 (en) Linear flux switching permanent magnet motor
US10749423B2 (en) Linear flux switching permanent magnet motor
WO2024109062A1 (zh) 直流有刷电机的磁钢结构及直流有刷电机
CN116191723A (zh) 具有磁障的转子、电机及压缩机
JP2015223079A (ja) 回転子及びスポーク型ipm永久磁石式回転機
JP2000209798A (ja) 永久磁石電動機
WO2022116532A1 (zh) 转子和永磁电机
CN211405641U (zh) 一种永磁电机的转子结构
CN112003400A (zh) 转子、电机、压缩机及空调器、车辆
CN218387002U (zh) 具有磁障的转子、电机及压缩机
CN212784937U (zh) 一种盘式电机用钕铁硼磁钢
CN118249546B (zh) 一种转子冲片、转子和电机
CN218335463U (zh) 一种永磁同步电机的定子冲片
JP2000355764A (ja) マグネトロンカソードユニット
JP2000175394A (ja) 集中巻方式のブラシレスdcモータ
CN210898678U (zh) 电机转子、磁阻电机和电动汽车
CN117856487A (zh) 转子、电机和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3150402

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022512814

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017499

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768242

Country of ref document: EP

Effective date: 20221011