WO2021179724A1 - 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法 - Google Patents

一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法 Download PDF

Info

Publication number
WO2021179724A1
WO2021179724A1 PCT/CN2020/136863 CN2020136863W WO2021179724A1 WO 2021179724 A1 WO2021179724 A1 WO 2021179724A1 CN 2020136863 W CN2020136863 W CN 2020136863W WO 2021179724 A1 WO2021179724 A1 WO 2021179724A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
metal bipolar
plate substrate
axial end
graphene
Prior art date
Application number
PCT/CN2020/136863
Other languages
English (en)
French (fr)
Inventor
许琳媛
Original Assignee
浙江华熔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华熔科技有限公司 filed Critical 浙江华熔科技有限公司
Publication of WO2021179724A1 publication Critical patent/WO2021179724A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of material surface treatment, in particular to a preparation method of a graphene coating resistant to corrosion by acidic media in a fuel cell.
  • the 21st century will be the century of hydrogen energy. With the maturity of underground coal gasification hydrogen production and metal alloy hydrogen storage technologies, fuel cells, as high-efficiency and clean power generation devices that directly and continuously convert hydrogen energy into electrical energy, are about to enter the society on a large scale. It is estimated that by 2021, more than 30% of the electricity will be supplied by fuel cells.
  • the fuel cell is a power generation device that directly converts the chemical energy of the fuel into electrical energy through an electrochemical reaction without burning. It is a new technology that uses energy efficiently without polluting the environment.
  • fuel cells which are classified according to the different electrolytes used. There are mainly phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells ( PEMFC) and alkaline fuel cell (AFC).
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • PEMFC proton exchange membrane fuel cells
  • AFC alkaline fuel cell
  • Proton exchange membrane fuel cell has unique advantages such as high power density, high energy conversion efficiency, low temperature startup, no corrosion and electrolyte loss, low noise, and long life.
  • the current challenge for proton exchange membrane fuel cells is to reduce costs and reduce the quality of the cell stack.
  • the key component is the bipolar plate that separates the single cells in the cell stack.
  • Bipolar plates require low material and processing technology costs, light weight, thin plates, good mechanical properties, high surface and volume conductivity, low air permeability and corrosion resistance. Choosing the right bipolar plate material and preparation technology can greatly improve the performance of the battery.
  • the materials that can be used for the bipolar plates of proton exchange membrane fuel cells are mainly divided into three categories: graphite materials, composite materials and metal materials.
  • the traditional bipolar plate material is high-purity conductive graphite. This material has good electrical conductivity, thermal conductivity and corrosion resistance. However, the brittleness of graphite causes processing difficulties, which is not only time-consuming, but also costly and difficult to achieve mass production. .
  • Composite bipolar plates have low density, good gas barrier properties, high strength, excellent processing performance, electrical and thermal conductivity, and fully meet the requirements of PEMFC bipolar plates, but their manufacturing costs are still high, which limits their market applications.
  • Metal materials, especially stainless steel materials have low cost, high strength, easy processing and molding, and good electrical and thermal conductivity, but their corrosion resistance is relatively poor, which restricts their commercial applications.
  • the bipolar plate is the core component of PEMFC, accounting for 60% of the battery mass and 45% of the cost. Replacing graphite bipolar plates with metal bipolar plates shows good application prospects in terms of material cost, large-scale processing, or greatly improving battery specific power. The selection and surface treatment of metal bipolar plates is an important direction of current and future research.
  • the present invention proposes a method for preparing graphene coatings resistant to acidic media corrosion in fuel cells, so that the metal bipolar plate has higher hydrogen embrittlement resistance, superior corrosion resistance and better performance. Good electrical conductivity.
  • the technical solution adopted by the present invention to solve its technical problems is: a preparation method of graphene coating resistant to acidic media corrosion in fuel cells, including:
  • the graphene powder is uniformly adsorbed on the surface of the metal bipolar plate substrate through the graphene carbon powder spraying system;
  • the L1 is specifically:
  • the base of the metal bipolar plate is polished with sandpaper and nylon successively so that the surface roughness of the base of the metal bipolar plate is not greater than 0.5 ⁇ m.
  • the L2 is specifically:
  • the L4 is specifically that the metal bipolar plate substrate after glow discharge cleaning is submerged in a conductive glue solution bath and soaked for 1 to 2 minutes, and then placed on a tray to stand for 1 to 2 minutes.
  • the thickness of the graphene powder layer on the surface of the metal bipolar plate substrate is 280-320 microns.
  • the graphene carbon powder spraying system includes a transmission mechanism, and a first spraying mechanism, a first leveling mechanism, a second spraying mechanism, a second leveling mechanism, and a third spraying mechanism are sequentially arranged along the transmission direction of the transmission mechanism.
  • the L5 includes,
  • the tray moves with the conveyor belt to the first leveling mechanism, and the first leveling mechanism flattens the top surface of the metal bipolar plate base;
  • the tray moves with the conveyor belt to the second spraying mechanism, and the second spraying mechanism sprays the graphene powder layer with a thickness of 95-105 microns on the top surface of the metal bipolar plate substrate;
  • the tray moves with the conveyor belt to the second leveling mechanism, and the second leveling mechanism flattens the top surface of the metal bipolar plate base;
  • the tray moves with the conveyor belt to the third spraying mechanism, and the third spraying mechanism sprays the graphene powder layer with a thickness of 95-105 microns on the top surface of the metal bipolar plate substrate;
  • the tray moves to the position adjustment mechanism with the conveyor belt, and the position adjustment mechanism adjusts the position of the metal bipolar plate base;
  • the tray moves with the conveyor belt to the side leveling mechanism, and the side leveling mechanism performs leveling treatment on the four sides of the metal bipolar plate base;
  • the pallet moves with the conveyor belt to the first side spraying mechanism.
  • the first side spraying mechanism sprays a pair of sides of the metal bipolar plate with a graphene powder layer with a thickness of 280-320 microns; the pallet moves with the conveyor belt
  • the second side spraying mechanism sprays the graphene powder layer with a thickness of 285-315 microns on the other opposite side of the metal bipolar plate substrate.
  • the first leveling mechanism and the second leveling mechanism have the same structure; the first leveling mechanism includes
  • the flat plate includes a mounting body and a plate body, the mounting body is embedded in the mounting groove and connected to the flat plate mounting frame by bolts;
  • the pressure detector is arranged in the installation groove and is in contact with the installation body;
  • Rotating rod the bottom axial end is connected with the flat disk mounting frame, and is provided with radial perforations;
  • the rotating motor is connected with the top axial end of the rotating rod;
  • the lifting rod, the bottom axial end is connected with the housing of the rotating motor;
  • a lifting motor connected to the top axial end of the lifting rod
  • the transverse support rod is assembled and connected with the radial perforation, and is provided with radial fixing holes at both ends; the transverse support rod is provided with a top plane and a bottom plane along the axial direction;
  • a vertical support rod one axial end is provided with a limit opening that allows the end of the transverse support rod to be inserted, and the corresponding axial end surface is provided with a shaft communicating with the limit opening and connected with the radial fixing hole by bolts To the fixed hole; the other end of the axial direction is provided with a radial through hole;
  • the mounting seat is fixedly connected to the top of the flat plate mounting frame.
  • the top of the mounting seat is provided with a mounting slot that allows the other end of the vertical support rod to be inserted in the axial direction.
  • the radial through hole is matched with a mounting hole, and the seat body is provided with a screw mounting groove at one axial end of the mounting hole and a nut mounting groove at the other axial end of the mounting hole.
  • the position adjustment mechanism includes
  • Support ring, radial support rod is provided on the inner ring side;
  • the image acquisition processor is arranged at the bottom of the radial support rod;
  • the clamping components are symmetrically arranged at the bottom of the support ring;
  • a connecting rod, the bottom axial end is connected with the top of the radial support rod;
  • An angle adjustment motor connected to the top axial end of the connecting rod
  • a height adjustment rod is connected with the housing of the angle adjustment motor
  • a height adjustment motor connected to the top axial end of the height adjustment rod
  • the controller is connected with the image acquisition processor, the clamping assembly, the angle adjustment motor, and the height adjustment motor.
  • the clamping assembly includes
  • the guide rail is arranged at the bottom of the support ring along the radial direction;
  • the moving rod, the top axial end is slidably connected with the guide rail;
  • a driving motor for driving the moving rod to slide along the guide rail
  • the right-angle limiting piece is connected with the bottom axial end of the moving rod.
  • the side smoothing mechanism includes
  • the moving connecting rod driving motor is used to drive the moving connecting rod to slide along the sliding track
  • the side flat piece is connected with the bottom axial end of the movable connecting rod
  • a reinforcing ring connected to the top of the cross-shaped support frame
  • Lifting column the bottom axial end is connected with the top center of the cross-shaped support frame
  • the lifting control motor is connected with the top axial end of the lifting column.
  • the metal bipolar plate of the present application is soaked in glue and combined with graphene using the principle of electrostatic adsorption, sintered at a high temperature in an oxygen-free environment, and the graphene powder is firmly fixed on the surface of the metal bipolar plate through high-temperature sintering.
  • the method forms a multi-layer composite microstructure and a large amount of amorphous structure on the surface of the metal bipolar plate substrate, which not only improves the density of the coating, but also prevents the corrosive medium from immersing into the coating, which greatly improves the corrosion resistance of the coating; Moreover, the use of the high conductivity of graphene and the high adhesion of glue helps to reduce the contact resistance of the coating, improve the conductivity and firmness of the coating, and create good conditions for the application of bipolar plates;
  • the graphene carbon powder spraying system of the present application can quickly and effectively spray the metal bipolar plate substrate, and the spraying effect is good, and the connection firmness of the graphene powder and the surface of the metal bipolar plate is further improved.
  • Figure 1 is a diagram of the graphene coating preparation system of this application.
  • Figure 2 is a schematic diagram of the structure of the first leveling mechanism of the application
  • Figure 3 is a partial enlarged view of the first leveling mechanism in Figure 2;
  • Fig. 4 is a schematic diagram of the structure of the lateral support rod in Fig. 2;
  • Figure 5 is a schematic diagram of the structure of the position adjustment agency of the application.
  • Fig. 6 is a schematic diagram of the structure of the side leveling mechanism of the application.
  • a method for preparing graphene coatings resistant to corrosion by acidic media in fuel cells includes
  • polished metal bipolar plate substrate Specifically, the metal bipolar plate substrate is polished with sandpaper and nylon in sequence so that the surface roughness of the metal bipolar plate substrate is not greater than 0.5 ⁇ m. This application only needs sandpaper and nylon polishing, and the pretreatment operation is very simple. save time and energy.
  • the polished metal bipolar plate substrate into an ultrasonic cleaning tank for cleaning. Specifically, the polished metal bipolar plate substrate is placed in an ultrasonic cleaning bath containing acetone and alcohol for 15 minutes.
  • the graphene powder is uniformly adsorbed on the surface of the metal bipolar plate substrate through the graphene carbon powder spraying system, and the thickness of the graphene powder layer is 300 microns.
  • Steps L4 to L8 can be used.
  • the surface of the metal bipolar plate is formed with a multi-layer composite microstructure and a large amount of amorphous structure, which not only improves the density of the coating, but also prevents the corrosive medium from immersing into the coating, which greatly improves the corrosion resistance of the coating.
  • the use of the high conductivity of graphene and the high adhesion of glue helps to reduce the contact resistance of the coating, improve the conductivity of the coating and the firmness of the coating, and create good conditions for the application of bipolar plates. .
  • the protective coating in this application has a bonding strength exceeding 48N, the corrosion potential of the coating in a 10wt% H2SO4 solution is 0.437V, and the self-corrosion current is 2.029*10 A.cm, compared with the bipolar plate substrate, the corrosion potential is increased by 0.422V, and the protection efficiency of the graphene coating on the bipolar plate substrate is increased by 99.97%; while the coating contact resistance is only 0.6m ⁇ .cm, which is greatly improved
  • the conductivity of the fuel cell bipolar plate in the acid medium increases the output power of the fuel cell and contributes to the broader market development of the fuel cell.
  • the graphene carbon powder spraying system of the present application includes a transmission mechanism, and a first spraying mechanism, a first leveling mechanism, a second spraying mechanism, a second leveling mechanism, a third spraying mechanism, and a position adjustment are sequentially arranged along the transmission direction of the transmission mechanism.
  • L5 specifically includes,
  • L51 Put the glued metal bipolar plate base together with the tray on the conveyor belt of the conveyor mechanism.
  • the tray moves with the conveyor belt to the first spraying mechanism, and the first spraying mechanism sprays a graphene powder layer with a thickness of 100 microns on the top surface of the metal bipolar plate base.
  • L52. The tray moves with the conveyor belt to the first leveling mechanism, and the first leveling mechanism flattens the top surface of the metal bipolar plate base.
  • L53. The tray moves with the conveyor belt to the second spraying mechanism, and the second spraying mechanism sprays a graphene powder layer with a thickness of 100 microns on the top surface of the metal bipolar plate substrate.
  • L54 The tray moves with the conveyor belt to the second spraying mechanism, and the second spraying mechanism sprays a graphene powder layer with a thickness of 100 microns on the top surface of the metal bipolar plate substrate.
  • the tray moves with the conveyor belt to the second leveling mechanism, and the second leveling mechanism flattens the top surface of the metal bipolar plate base.
  • L55. The tray moves with the conveyor belt to the third spraying mechanism, and the third spraying mechanism sprays a graphene powder layer with a thickness of 100 microns on the top surface of the metal bipolar plate substrate.
  • L56. Turn over the metal bipolar plate base to another tray, and complete steps L51 to L56 again.
  • the first leveling mechanism includes a leveling plate mounting frame 11, a leveling plate 12, a pressure detector 13, a rotating rod 14, a rotating motor 15, a lifting rod 16, a lifting motor 17, a horizontal support rod 21, a vertical support rod 22 and mounting Block 23.
  • the flat plate mounting frame 11 is provided with a mounting groove at the bottom.
  • the flat plate 12 includes a mounting body and a plate body.
  • the mounting body is embedded in the mounting groove and connected to the flat plate mounting frame 11 by bolts.
  • the pressure detector 13 is arranged in the installation groove and is connected in contact with the installation body.
  • the bottom axial end of the rotating rod 14 is connected with the flat disk mounting frame 11, and is provided with radial perforations.
  • the rotating motor 15 is connected to the top axial end of the rotating rod 14.
  • the bottom axial end of the lifting rod 16 is connected to the housing of the rotating motor 15, and the lifting motor 17 is connected to the top axial end of the lifting rod 16.
  • the transverse support rod 21 is assembled and connected with the radial perforation, and is provided with radial fixing holes at both ends thereof, and the transverse support rod 21 is provided with a top plane and a bottom plane along the axial direction.
  • the axial end of the vertical support rod 22 is provided with a limit opening that allows the end of the transverse support rod 21 to be inserted, and the corresponding axial end surface is provided with a limit opening that communicates with the limit opening and is connected to the radial fixing hole by bolts.
  • the axial fixing hole is provided with a radial through hole at the other end of the axial direction.
  • the mounting seat 23 is fixedly connected to the top of the flat disk mounting frame 11, and its top is provided with a mounting notch that allows the other end of the vertical support rod 22 to be inserted in the axial direction.
  • the radial through hole is matched with a mounting hole connected, and the seat body is provided with a screw mounting groove at one axial end of the mounting hole and a nut mounting groove at the other axial end of the mounting hole.
  • the specific working principle is that the lifting motor 17 controls the lifting rod 16 to extend so that the flat plate 12 contacts the top surface of the metal bipolar plate substrate until the pressure detector 13 detects the set pressure value, the lifting motor 17 controls the lifting rod 16 to stop elongation. Then the rotating motor 15 controls the rotation of the rotating rod 14.
  • the rotating rod 14 combines with the horizontal support rod 21 and the vertical support rod 22 to drive the flattening plate 12 to rotate.
  • the flattening plate 12 smoothes the top surface of the metal bipolar plate by rotating and supports it horizontally.
  • the arrangement of the rod 21, the vertical support rod 22 and the mounting seat 23 can improve the stability of the entire first leveling mechanism.
  • the graphene powder layer is sprayed on the two main surfaces of the metal bipolar plate base by spraying, leveling, spraying, leveling, and spraying, so that the metal bipolar plate base and the graphene powder have a good combination effect.
  • the position adjustment mechanism includes a support ring 31, an image capture processor 33, a clamping assembly, a connecting rod 34, an angle adjustment motor 35, a height adjustment rod 36, a height adjustment motor 37 and a controller.
  • the inner ring side of the support ring 31 is provided with a radial support rod 32, and the image acquisition processor 33 is provided at the bottom of the radial support rod 32.
  • the clamping assembly is symmetrically arranged at the bottom of the support ring 31.
  • the clamping assembly specifically includes a guide rail 41 radially disposed at the bottom of the support ring 31, and a moving rod 42 slidably connected to the top axial end of the guide rail 41.
  • a drive motor 43 that drives the moving rod 42 to slide along the guide rail 41 is a right-angled stopper 44 connected to the bottom axial end of the moving rod 42.
  • the bottom axial end of the connecting rod 34 is connected to the top of the radial support rod 32, the angle adjusting motor 35 is connected to the top axial end of the connecting rod 34, and the bottom axial end of the height adjusting rod 36 is connected to the angle adjusting motor 35.
  • the height adjustment motor 37 is connected to the top axial end of the height adjustment rod 36, and the controller is connected to the image acquisition processor 33, the clamping assembly, the angle adjustment motor 35, and the height adjustment motor 37.
  • the specific working principle is that the image acquisition processor 33 first collects a picture of the metal bipolar plate base to obtain the position and angle of the metal bipolar plate base, and then the controller controls the angle adjustment motor 35 to rotate according to the detected position and angle to make the connecting rod 34 Drive the support ring 31 to rotate to a proper position (at this time, the right-angled stopper 44 is aligned with a diagonal line of the metal bipolar plate base), and then the height adjustment motor 37 controls the height adjustment rod 36 to extend to make the right-angled limiter
  • the positioning member 44 and the metal bipolar plate base are located on the same plane, and then the two moving rods 42 are moved toward each other along the guide rail 41 through the drive motor 43 until the right-angled limiting member 44 is clamped with the metal bipolar plate base, and finally adjusted by controlling the angle
  • the motor 35 rotates so that the connecting rod 34 drives the support ring 31 to rotate to a set angle position, so that the metal bipolar plate base is located in the set position area to facilitate subsequent side leveling operations.
  • the tray moves with the conveyor belt to the side leveling mechanism, and the side leveling mechanism performs leveling treatment on the four sides of the metal bipolar plate base.
  • the side leveling mechanism includes a cross-shaped support frame 51, a moving connecting rod 52, a moving connecting rod driving motor, a side flattening piece 53, a reinforcing ring 54, a lifting column 55 and a lifting control motor 56.
  • the cross-shaped support frame 51 is provided with a sliding track at the bottom of each end, and the top axial end of the moving connecting rod 52 is connected to the sliding track.
  • the moving connecting rod driving motor is used to drive the moving connecting rod to slide along the sliding track.
  • the side flat member 53 is connected to the bottom axial end of the moving connecting rod 52, the reinforcing ring 54 is connected to the top of the cross-shaped support frame 51, and the bottom axial end of the lifting column 55 is connected to the top center of the cross-shaped support frame 51 ,
  • the lifting control motor 56 is connected to the top axial end of the lifting column 55.
  • the specific working principle is that the metal bipolar plate base is first transported to the bottom of the cross-shaped support frame 51. At this time, the besieged area of the side flat member 53 is exactly opposite to the metal bipolar plate base. Then the lifting control motor 56 controls the lifting column 55 to extend, so that the side flat member 53 is aligned with the side of the metal bipolar plate base and moves downward to scrape off the magazine on the side of the metal bipolar plate base. Finally, the moving connecting rod driving motor drives the moving connecting rod 52 to slide outward along the sliding track so that the side flat member 53 faces away from the side surface of the metal bipolar plate base, thereby completing the side flattening operation of the metal bipolar plate base.
  • the pallet moves with the conveyor belt to the first side spraying mechanism, and the first side spraying mechanism sprays a graphene powder layer with a thickness of 300 microns on a pair of sides of the metal bipolar plate substrate.
  • the tray moves with the conveyor belt to the second side spraying mechanism, and the second side spraying mechanism sprays the graphene powder layer with a thickness of 300 microns on the other opposite side of the metal bipolar plate substrate.
  • the transmission mechanism includes a transmission part 1 corresponding to the first side spraying mechanism, a transmission part 2 corresponding to the second side spraying mechanism, the transmission part 1 and the transmission part 2 are arranged vertically and between the transmission part 1 and the transmission part 2 A transition mechanism is provided, and the transition mechanism is used to directly push the metal bipolar plate base body from the first transmission part to the second transmission part.
  • the graphene carbon powder spraying system of the present application can spray the graphene powder on the surface of the metal bipolar plate substrate efficiently and quickly, and the spraying effect is good, and the connection firmness between the graphene powder and the surface of the metal bipolar plate is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种材料表面处理技术领域,具体为一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法:L1.金属双极板基体抛光;L2.将抛光后的金属双极板基体放入超声波清洗池清洗;L3.将超声波清洗后的金属双极板基体放在基片转架上,通入氩气以对所述金属双极板基体表面进行辉光放电清洗;L4.将辉光放电清洗后的金属双极板基体通过高分子导电胶溶液池上胶;L5.通过石墨烯碳粉喷涂系统将石墨烯粉末均匀吸附在金属双极板基体表面;L6.将带有石墨烯粉末层的金属双极板基体放置在多层极板放置柜中。通过上述方法使金属双极板基体表面形成多层复合的微观结构和大量非晶组织,不仅提高了涂层的致密度,还能阻止腐蚀介质浸入涂层内部,大大提高了涂层的抗腐蚀性能。

Description

一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法 技术领域
本发明涉及材料表面处理技术领域,具体为一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法。
背景技术
21世纪将是氢能的世纪,随着地下煤气化制氢以及金属合金贮氢等技术的日趋成熟,燃料电池作为把氢能直接连续转化为电能的高效洁净发电装置即将大规模全面进入社会,预计到2021年,30%以上的电力将由燃料电池供给。
燃料电池是一种不经过燃烧直接以电化学反应方式将燃料的化学能转变为电能的发电装置,是一项高效率利用能源而又不污染环境的新技术。燃料电池有多种类型,按使用的电解液不同分类,主要有磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)及碱性燃料电池(AFC)。而质子交换膜燃料电池(PEMFC)由于具有高功率密度,高能量转换效率,低温启动,无腐蚀与电解液流失,低噪音,寿命长等独特优点,不仅是电动汽车的理想电源,而且可以应用于航天、军事等特殊领域,并且随着PEMFC生产成本的降低和电池系统技术的优化,在燃料电池电站、电动汽车、高效便携式电源等方面都具有很大的市场潜力。
目前质子交换膜燃料电池面临的挑战是降低成本、减轻电池堆的质量,其中关键的部件是分隔电池堆中单电池的双极板。双极板要求材料和加工工艺成本低、质轻、板薄、良好的力学性能、高的表面和体积电导率、低透气性和耐腐蚀。选择合适的双极板材料和制备技术可极大地改善电池的性能。
通常可用于质子交换膜燃料电池双极板的材料主要分为三大类:石墨材料,复合材料和金属材料。传统的双极板材料是高纯度的电导石墨,这种材料具有良好的导电性、导热性和耐腐蚀性,但石墨的脆性造成了加工困难,不仅费时,而且成本也高,难以实现批量生产。复合材料双极板由于密度低、阻气性好、强度高、加工性能优良,导电导热性能也完全满足PEMFC双极板的要求,但其制造成本仍然偏高,限制了其市场应用。而金属材料,尤其是不锈钢材料,成本低,强度高,易加工和成型,导电导热性能好,但其抗腐蚀性能相对较差,制约其商业化的应用。
双极板是PEMFC的核心部件,占电池组质量的60%,费用的45%。以金属双极板取代石墨双极板,无论是从材料成本、规模化加工,还是从大幅度提高电池比功率等方面看,都显示很好的应用前景。而金属双极板材料选择与表面处理是当前及未来研究的一个重要方向。
从现有研究成果看,轻金属如铝或其合金尽管在提高电池比功率方面更具优势,但其表面处理面临更大的困难,施加单一耐蚀、导电涂层可能难以满足PEMFC的要求。镍基合金由于较高的成本,在商业化应用方面不具竞争力。以不锈钢为主的铁基合金由于具有良好的综合性能及相对较低的成本,显示明显的竞争优势,是当前及未来PEMFC薄层金属双极板发展的主流。因此,如何提高不锈钢双极板抗腐蚀及导电性能就显得尤为重要,它关系到未来燃料电池及其相关产业的发展。
技术问题
本发明针对现有技术存在的问题,提出了一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,使得金属双极板具有较高的抗氢脆性能、优越的抗腐蚀性能及较好的导电性能。
技术解决方案
本发明解决其技术问题所采用的技术方案是:一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,包括
L1.金属双极板基体抛光;
L2.将抛光后的金属双极板基体放入超声波清洗池清洗;
L3.将超声波清洗后的金属双极板基体放在基片转架上,通入氩气以对所述金属双极板基体表面进行辉光放电清洗;
L4.将辉光放电清洗后的金属双极板基体通过高分子导电胶溶液池上胶;
L5.通过石墨烯碳粉喷涂系统将石墨烯粉末均匀吸附在金属双极板基体表面;
L6.将带有石墨烯粉末层的金属双极板基体放置在多层极板放置柜中;
L7.将多层极板放置柜送入加热保温炉,将加热保温炉加热至200℃后保持温度30分钟,且在加热保温过程中通过氮气充放装置使加热保温炉处于无氧或低氧状态;
L8.将加热保温后的金属双极板基体转移至降温炉,降温过程中通过氮气冷却循环装置使降温炉无氧降温至常温;
L9.通过烧结涂层面检测仪对降温后的金属双极板基体进行表面平整度检测。
作为优选,所述L1具体为,
将金属双极板基体依次通过砂纸、尼龙抛光以使所述金属双极板基体的表面粗糙度不大于0.5μm。
作为优选,所述L2具体为,
将抛光后的金属双极板基体放入装有丙酮和酒精的超声波清洗池清洗12~18分钟。
作为优选,所述L4具体为,将辉光放电清洗后的金属双极板基体淹没于导电胶溶液池中浸泡1~2分钟,取出后放于托盘静置1~2分钟。
作为优选,所述L5中,金属双极板基体表面的石墨烯粉末层厚度为280~320微米。
作为优选,所述石墨烯碳粉喷涂系统包括传输机构,沿所述传输机构传输方向依次设置的第一喷涂机构、第一平整机构、第二喷涂机构、第二平整机构、第三喷涂机构、调位机构、边侧平整机构、第一边侧喷涂机构和第二边侧喷涂机构;
所述L5包括,
L51.将上胶后的金属双极板基体连同托盘放于传输机构的传输带上;托盘随传输带移动至第一喷涂机构,第一喷涂机构给金属双极板基体顶面喷涂厚度为95~105微米的石墨烯粉末层;
L52.托盘随传输带移动至第一平整机构,第一平整机构对金属双极板基体顶面进行平整处理;
L53.托盘随传输带移动至第二喷涂机构,第二喷涂机构给金属双极板基体顶面喷涂厚度为95~105微米的石墨烯粉末层;
L54.托盘随传输带移动至第二平整机构,第二平整机构对金属双极板基体顶面进行平整处理;
L55.托盘随传输带移动至第三喷涂机构,第三喷涂机构给金属双极板基体顶面喷涂厚度为95~105微米的石墨烯粉末层;
L56.翻转金属双极板基体至另一托盘,并重新完成步骤L51~L56;
L57.托盘随传输带移动至调位机构,调位机构调整金属双极板基体的位置;
L58.托盘随传输带移动至边侧平整机构,边侧平整机构对金属双极板基体四个边侧进行平整处理;
L59.托盘随传输带移动至第一边侧喷涂机构,第一边侧喷涂机构给金属双极板基体的一对边侧喷涂厚度为280~320微米的石墨烯粉末层;托盘随传输带移动至第二边侧喷涂机构,第二边侧喷涂机构给金属双极板基体的另一对边侧喷涂厚度为285~315微米的石墨烯粉末层。
作为优选,所述第一平整机构与所述第二平整机构结构相同;所述第一平整机构包括
平整盘安装架,底部设有安装槽;
平整盘,包括安装体和盘体,所述安装体嵌设于所述安装槽并通过螺栓与所述平整盘安装架连接;
压力检测器,设于所述安装槽并与所述安装体接触连接;
转动杆,底部轴向端与所述平整盘安装架连接,且设有径向穿孔;
转动电机,与所述转动杆的顶部轴向端连接;
升降杆,底部轴向端与所述转动电机的壳体连接;
升降电机,与所述升降杆的顶部轴向端连接;
横向支撑杆,与所述径向穿孔装配连接,且在其两端部设有径向固定孔;所述横向支撑杆沿轴向设有顶部平面和底部平面;
竖向支撑杆,轴向一端设有允许所述横向支撑杆端部插入的限位口,对应轴向端面设有与所述限位口连通并与所述径向固定孔通过螺栓连接的轴向固定孔;轴向另一端设有径向通孔;
安装座,与所述平整盘安装架顶部固定连接,其顶部设有允许所述竖向支撑杆轴向另一端插入的安装槽口,其座体设有贯穿所述安装槽口并与所述径向通孔配合连接的安装孔,所述座体在所述安装孔轴向一端设有螺钉安装槽、在所述安装孔轴向另一端设有螺帽安装槽。
作为优选,所述调位机构包括
支撑圈,内圈侧设有径向支撑杆;
图像采集处理器,设于所述径向支撑杆底部;
夹持组件,对称设于所述支撑圈底部;
连接杆,底部轴向端与所述径向支撑杆顶部连接;
角度调节电机,与所述连接杆的顶部轴向端连接;
高度调节杆,底部轴向端与所述角度调节电机的壳体连接;
高度调节电机,与所述高度调节杆的顶部轴向端连接;
控制器,与所述图像采集处理器、夹持组件、角度调节电机、高度调节电机连接。
作为优选,所述夹持组件包括
导轨,沿径向设于所述支撑圈底部;
移动杆,顶部轴向端与所述导轨滑动连接;
驱动电机,用于驱动所述移动杆沿所述导轨滑动;
直角形限位件,与所述移动杆的底部轴向端连接。
作为优选,所述边侧平整机构包括
十字形支撑架,其各端底部设有滑动轨道;
移动连接杆,顶部轴向端与所述滑动轨道连接;
移动连接杆驱动电机,用于驱动所述移动连接杆沿所述滑动轨道滑动;
边侧平整件,与所述移动连接杆的底部轴向端连接;
加强圈,与所述十字形支撑架顶部连接;
升降柱,底部轴向端与所述十字形支撑架顶部中心连接;
升降控制电机,与所述升降柱的顶部轴向端连接。
有益效果
本申请的金属双极板经过胶水浸泡后与石墨烯利用静电吸附原理相结合,在无氧环境中高温烧结,通过高温烧结将石墨烯粉末牢牢地固定在金属双极板表面,通过本申请方法使金属双极板基体表面形成多层复合的微观结构和大量非晶组织,不仅提高了涂层的致密度,还能阻止腐蚀介质浸入涂层内部,大大提高了涂层的抗腐蚀性能;且利用石墨烯的高导电性及胶水的高粘合性有助于降低涂层的接触电阻,提高涂层的导电性能及涂层牢固性,为双极板的应用创造了很好的条件;通过本申请的石墨烯碳粉喷涂系统可以对金属双极板基体进行快速、有效的喷涂操作,喷涂效果好,进一步提高了石墨烯粉末与金属双极板表面的连接牢固度。
附图说明
图1为本申请石墨烯涂层制备系统图;
图2为本申请第一平整机构的结构示意图;
图3为图2中第一平整机构的局部放大图;
图4为图2中横向支撑杆的结构示意图;
图5为本申请调位机构的结构示意图;
图6为本申请边侧平整机构的结构示意图。
本发明的实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1所示,一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,包括
L1.金属双极板基体抛光。具体为将金属双极板基体依次通过砂纸、尼龙抛光以使所述金属双极板基体的表面粗糙度不大于0.5μm,本申请只需要进行砂纸、尼龙抛光即可,预处理操作非常简便,省时省力。
L2.将抛光后的金属双极板基体放入超声波清洗池清洗。具体为将抛光后的金属双极板基体放入装有丙酮和酒精的超声波清洗池清洗15分钟。
L3.将超声波清洗后的金属双极板基体放在基片转架上,通入氩气以对所述金属双极板基体表面进行辉光放电清洗。依次经过超声波清洗和辉光放电清洗使得金属双极板基体表面便于上胶。
L4.将辉光放电清洗后的金属双极板基体通过高分子导电胶溶液池上胶。具体为将辉光放电清洗后的金属双极板基体淹没于导电胶溶液池中浸泡1分钟,取出后放于托盘静置1分钟。
L5.通过石墨烯碳粉喷涂系统将石墨烯粉末均匀吸附在金属双极板基体表面,石墨烯粉末层的厚度为300微米。
L6.将带有石墨烯粉末层的金属双极板基体放置在多层极板放置柜中。
L7.将多层极板放置柜送入加热保温炉,将加热保温炉加热至200℃后保持温度30分钟,且在加热保温过程中通过氮气充放装置使加热保温炉处于无氧或低氧状态。
L8.将加热保温后的金属双极板基体转移至降温炉,降温过程中通过氮气冷却循环装置使降温炉无氧降温至常温。金属双极板经过胶水浸泡后与石墨烯利用静电吸附原理相结合,在无氧环境中高温烧结,通过高温烧结将石墨烯粉末牢牢地固定在金属双极板表面,通过步骤L4至L8可以使金属双极板基体表面形成多层复合的微观结构和大量非晶组织,不仅提高了涂层的致密度,还能阻止腐蚀介质浸入涂层内部,大大提高了涂层的抗腐蚀性能。另外,利用石墨烯的高导电性及胶水的高粘合性有助于降低涂层的接触电阻,提高涂层的导电性能及涂层牢固性,为双极板的应用创造了很好的条件。
L9.通过烧结涂层面检测仪对降温后的金属双极板基体进行表面平整度检测。本申请中防护涂层具有超过48N的结合强度,在10wt%H2SO4溶液中涂层的腐蚀电位为0.437V,自腐蚀电流为2.029*10 A.cm ,相比双极板基体,腐蚀电位提高了0.422V,石墨烯涂层对双极板基体的保护效率提高了99.97%;而涂层接触电阻仅为0.6mΩ.cm ,大大提高了燃料电池双极板在酸性介质中的导电性能,增大了燃料电池的输出功率,有助于燃料电池更广阔的市场化发展。
本申请的石墨烯碳粉喷涂系统包括传输机构,沿所述传输机构传输方向依次设置的第一喷涂机构、第一平整机构、第二喷涂机构、第二平整机构、第三喷涂机构、调位机构、边侧平整机构、第一边侧喷涂机构和第二边侧喷涂机构。L5具体包括,
L51.将上胶后的金属双极板基体连同托盘放于传输机构的传输带上。托盘随传输带移动至第一喷涂机构,第一喷涂机构给金属双极板基体顶面喷涂厚度为100微米的石墨烯粉末层。L52.托盘随传输带移动至第一平整机构,第一平整机构对金属双极板基体顶面进行平整处理。L53.托盘随传输带移动至第二喷涂机构,第二喷涂机构给金属双极板基体顶面喷涂厚度为100微米的石墨烯粉末层。L54.托盘随传输带移动至第二平整机构,第二平整机构对金属双极板基体顶面进行平整处理。L55.托盘随传输带移动至第三喷涂机构,第三喷涂机构给金属双极板基体顶面喷涂厚度为100微米的石墨烯粉末层。L56.翻转金属双极板基体至另一托盘,并重新完成步骤L51~L56。
如图2-4所示,所述第一平整机构与所述第二平整机构结构相同。所述第一平整机构包括平整盘安装架11,平整盘12,压力检测器13,转动杆14,转动电机15,升降杆16,升降电机17,横向支撑杆21,竖向支撑杆22和安装座23。
平整盘安装架11底部设有安装槽,平整盘12包括安装体和盘体,所述安装体嵌设于所述安装槽并通过螺栓与所述平整盘安装架11连接。压力检测器13设于所述安装槽并与所述安装体接触连接。转动杆14底部轴向端与所述平整盘安装架11连接,且设有径向穿孔。转动电机15与所述转动杆14的顶部轴向端连接。升降杆16底部轴向端与所述转动电机15的壳体连接,升降电机17与所述升降杆16的顶部轴向端连接。横向支撑杆21与所述径向穿孔装配连接,且在其两端部设有径向固定孔,所述横向支撑杆21沿轴向设有顶部平面和底部平面。竖向支撑杆22轴向一端设有允许所述横向支撑杆21端部插入的限位口,对应轴向端面设有与所述限位口连通并与所述径向固定孔通过螺栓连接的轴向固定孔,轴向另一端设有径向通孔。安装座23与所述平整盘安装架11顶部固定连接,其顶部设有允许所述竖向支撑杆22轴向另一端插入的安装槽口,其座体设有贯穿所述安装槽口并与所述径向通孔配合连接的安装孔,所述座体在所述安装孔轴向一端设有螺钉安装槽、在所述安装孔轴向另一端设有螺帽安装槽。
具体工作原理为,升降电机17控制升降杆16伸长,使得平整盘12与金属双极板基体顶面接触,直到压力检测器13检测到设定压力值时,升降电机17控制升降杆16停止伸长。然后转动电机15控制转动杆14转动,转动杆14结合横向支撑杆21、竖向支撑杆22一起带动平整盘12转动,平整盘12通过转动对金属双极板基体顶面进行平整操作,横向支撑杆21、竖向支撑杆22以及安装座23的设置,可以提高整个第一平整机构的稳定性。
本申请通过喷涂、平整、喷涂、平整、喷涂的方式对金属双极板基体的两个主要面进行石墨烯粉末层的喷涂,使得金属双极板基体与石墨烯粉末结合效果好。
L57.托盘随传输带移动至调位机构,调位机构调整金属双极板基体的位置。如图5所示,所述调位机构包括支撑圈31,图像采集处理器33,夹持组件,连接杆34,角度调节电机35,高度调节杆36,高度调节电机37和控制器。
支撑圈31内圈侧设有径向支撑杆32,图像采集处理器33设于所述径向支撑杆32底部。夹持组件对称设于所述支撑圈31底部,夹持组件具体包括沿径向设于所述支撑圈31底部的导轨41,顶部轴向端与所述导轨41滑动连接的移动杆42,用于驱动所述移动杆42沿所述导轨41滑动的驱动电机43,与所述移动杆42的底部轴向端连接的直角形限位件44。连接杆34底部轴向端与所述径向支撑杆32顶部连接,角度调节电机35与所述连接杆34的顶部轴向端连接,高度调节杆36底部轴向端与所述角度调节电机35的壳体连接,高度调节电机37与所述高度调节杆36的顶部轴向端连接,控制器与所述图像采集处理器33、夹持组件、角度调节电机35、高度调节电机37连接。
具体工作原理为,图像采集处理器33先采集金属双极板基体的图片以获取金属双极板基体的位置角度,然后控制器根据检测到的位置角度控制角度调节电机35转动以使连接杆34带动支撑圈31转动到合适的位置(此时,直角形限位件44与金属双极板基体的一条对角线对齐),接着高度调节电机37控制高度调节杆36伸长以使直角形限位件44与金属双极板基体位于同一平面,再接着通过驱动电机43使两移动杆42沿导轨41相向移动至直角形限位件44与金属双极板基体夹紧,最后通过控制角度调节电机35转动以使连接杆34带动支撑圈31转动到设定角度位置,从而使金属双极板基体位于设定好的位置区域以便于后续的边侧平整操作。
L58.托盘随传输带移动至边侧平整机构,边侧平整机构对金属双极板基体四个边侧进行平整处理。如图6所示,所述边侧平整机构包括十字形支撑架51,移动连接杆52,移动连接杆驱动电机,边侧平整件53,加强圈54,升降柱55和升降控制电机56。
十字形支撑架51其各端底部设有滑动轨道,移动连接杆52顶部轴向端与所述滑动轨道连接,移动连接杆驱动电机用于驱动所述移动连接杆沿所述滑动轨道滑动,边侧平整件53与所述移动连接杆52的底部轴向端连接,加强圈54与所述十字形支撑架51顶部连接,升降柱55底部轴向端与所述十字形支撑架51顶部中心连接,升降控制电机56与所述升降柱55的顶部轴向端连接。
金属双极板基体的两个主要面喷涂完成后,其边侧会存在部分胶水与石墨烯粉末的混合杂质,通过边侧平整机构可以将这些混合杂质刮除。具体工作原理为,先将金属双极板基体输送至十字形支撑架51底部,此时,边侧平整件53围城的区域正好与金属双极板基体相对。然后升降控制电机56控制升降柱55伸长,使得边侧平整件53对准金属双极板基体的边侧向下移动以将金属双极板基体边侧的杂志刮除。最后,移动连接杆驱动电机驱动移动连接杆52沿滑动轨道向外滑动以使边侧平整件53背向远离金属双极板基体的边侧面,从而完成金属双极板基体边侧平整操作。
L59.托盘随传输带移动至第一边侧喷涂机构,第一边侧喷涂机构给金属双极板基体的一对边侧喷涂厚度为300微米的石墨烯粉末层。托盘随传输带移动至第二边侧喷涂机构,第二边侧喷涂机构给金属双极板基体的另一对边侧喷涂厚度为300微米的石墨烯粉末层。传输机构包括与第一边侧喷涂机构对应设置的传输部一,与第二边侧喷涂机构对应设置的传输部二,传输部一和传输部二垂直设置且传输部一和传输部二之间设有过渡机构,过渡机构用于将由传输部一出来的金属双极板基体直接推送至传输部二。
本申请的石墨烯碳粉喷涂系统能够高效、快速地将石墨烯粉末喷涂在金属双极板基体表面,且喷涂效果好,进一步提高了石墨烯粉末与金属双极板表面的连接牢固度。
上面所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的构思和范围进行限定。在不脱离本发明设计构思的前提下,本领域普通人员对本发明的技术方案做出的各种变型和改进,均应落入到本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。

Claims (10)

  1. 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:包括
    L1.金属双极板基体抛光;
    L2.将抛光后的金属双极板基体放入超声波清洗池清洗;
    L3.将超声波清洗后的金属双极板基体放在基片转架上,通入氩气以对所述金属双极板基体表面进行辉光放电清洗;
    L4.将辉光放电清洗后的金属双极板基体通过高分子导电胶溶液池上胶;
    L5.通过石墨烯碳粉喷涂系统将石墨烯粉末均匀吸附在金属双极板基体表面;
    L6.将带有石墨烯粉末层的金属双极板基体放置在多层极板放置柜中;
    L7.将多层极板放置柜送入加热保温炉,将加热保温炉加热至200℃后保持温度30分钟,且在加热保温过程中通过氮气充放装置使加热保温炉处于无氧或低氧状态;
    L8.将加热保温后的金属双极板基体转移至降温炉,降温过程中通过氮气冷却循环装置使降温炉无氧降温至常温;
    L9.通过烧结涂层面检测仪对降温后的金属双极板基体进行表面平整度检测。
  2. 根据权利要求1所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述L1具体为,
    将金属双极板基体依次通过砂纸、尼龙抛光以使所述金属双极板基体的表面粗糙度不大于0.5μm。
  3. 根据权利要求1所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述L2具体为,
    将抛光后的金属双极板基体放入装有丙酮和酒精的超声波清洗池清洗12~18分钟。
  4. 根据权利要求1所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述L4具体为,将辉光放电清洗后的金属双极板基体淹没于导电胶溶液池中浸泡1~2分钟,取出后放于托盘静置1~2分钟。
  5. 根据权利要求1所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述L5中,金属双极板基体表面的石墨烯粉末层厚度为280~320纳米。
  6. 根据权利要求1所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述石墨烯碳粉喷涂系统包括传输机构,沿所述传输机构传输方向依次设置的第一喷涂机构、第一平整机构、第二喷涂机构、第二平整机构、第三喷涂机构、调位机构、边侧平整机构、第一边侧喷涂机构和第二边侧喷涂机构;
    所述L5包括,
    L51.将上胶后的金属双极板基体连同托盘放于传输机构的传输带上;托盘随传输带移动至第一喷涂机构,第一喷涂机构给金属双极板基体顶面喷涂厚度为95~105纳米的石墨烯粉末层;
    L52.托盘随传输带移动至第一平整机构,第一平整机构对金属双极板基体顶面进行平整处理;
    L53.托盘随传输带移动至第二喷涂机构,第二喷涂机构给金属双极板基体顶面喷涂厚度为95~105纳米的石墨烯粉末层;
    L54.托盘随传输带移动至第二平整机构,第二平整机构对金属双极板基体顶面进行平整处理;
    L55.托盘随传输带移动至第三喷涂机构,第三喷涂机构给金属双极板基体顶面喷涂厚度为95~105纳米的石墨烯粉末层;
    L56.翻转金属双极板基体至另一托盘,并重新完成步骤L51~L56;
    L57.托盘随传输带移动至调位机构,调位机构调整金属双极板基体的位置;
    L58.托盘随传输带移动至边侧平整机构,边侧平整机构对金属双极板基体四个边侧进行平整处理;
    L59.托盘随传输带移动至第一边侧喷涂机构,第一边侧喷涂机构给金属双极板基体的一对边侧喷涂厚度为280~320纳米的石墨烯粉末层;托盘随传输带移动至第二边侧喷涂机构,第二边侧喷涂机构给金属双极板基体的另一对边侧喷涂厚度为285~315纳米的石墨烯粉末层。
  7. 根据权利要求6所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述第一平整机构与所述第二平整机构结构相同;所述第一平整机构包括
    平整盘安装架(11),底部设有安装槽;
    平整盘(12),包括安装体和盘体,所述安装体嵌设于所述安装槽并通过螺栓与所述平整盘安装架(11)连接;
    压力检测器(13),设于所述安装槽并与所述安装体接触连接;
    转动杆(14),底部轴向端与所述平整盘安装架(11)连接,且设有径向穿孔;
    转动电机(15),与所述转动杆(14)的顶部轴向端连接;
    升降杆(16),底部轴向端与所述转动电机(15)的壳体连接;
    升降电机(17),与所述升降杆(16)的顶部轴向端连接;
    横向支撑杆(21),与所述径向穿孔装配连接,且在其两端部设有径向固定孔;所述横向支撑杆(21)沿轴向设有顶部平面和底部平面;
    竖向支撑杆(22),轴向一端设有允许所述横向支撑杆(21)端部插入的限位口,对应轴向端面设有与所述限位口连通并与所述径向固定孔通过螺栓连接的轴向固定孔;轴向另一端设有径向通孔;
    安装座(23),与所述平整盘安装架(11)顶部固定连接,其顶部设有允许所述竖向支撑杆(22)轴向另一端插入的安装槽口,其座体设有贯穿所述安装槽口并与所述径向通孔配合连接的安装孔,所述座体在所述安装孔轴向一端设有螺钉安装槽、在所述安装孔轴向另一端设有螺帽安装槽。
  8. 根据权利要求6所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述调位机构包括
    支撑圈(31),内圈侧设有径向支撑杆(32);
    图像采集处理器(33),设于所述径向支撑杆(32)底部;
    夹持组件,对称设于所述支撑圈(31)底部;
    连接杆(34),底部轴向端与所述径向支撑杆(32)顶部连接;
    角度调节电机(35),与所述连接杆(34)的顶部轴向端连接;
    高度调节杆(36),底部轴向端与所述角度调节电机(35)的壳体连接;
    高度调节电机(37),与所述高度调节杆(36)的顶部轴向端连接;
    控制器,与所述图像采集处理器(33)、夹持组件、角度调节电机(35)、高度调节电机(37)连接。
  9. 根据权利要求8所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述夹持组件包括
    导轨(41),沿径向设于所述支撑圈(31)底部;
    移动杆(42),顶部轴向端与所述导轨(41)滑动连接;
    驱动电机(43),用于驱动所述移动杆(42)沿所述导轨(41)滑动;
    直角形限位件(44),与所述移动杆(42)的底部轴向端连接。
  10. 根据权利要求6所述的一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法,其特征在于:所述边侧平整机构包括
    十字形支撑架(51),其各端底部设有滑动轨道;
    移动连接杆(52),顶部轴向端与所述滑动轨道连接;
    移动连接杆驱动电机,用于驱动所述移动连接杆沿所述滑动轨道滑动;
    边侧平整件(53),与所述移动连接杆(52)的底部轴向端连接;
    加强圈(54),与所述十字形支撑架(51)顶部连接;
    升降柱(55),底部轴向端与所述十字形支撑架(51)顶部中心连接;
    升降控制电机(56),与所述升降柱(55)的顶部轴向端连接。
PCT/CN2020/136863 2020-03-13 2020-12-16 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法 WO2021179724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010175142.7 2020-03-13
CN202010175142.7A CN111446461B (zh) 2020-03-13 2020-03-13 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法

Publications (1)

Publication Number Publication Date
WO2021179724A1 true WO2021179724A1 (zh) 2021-09-16

Family

ID=71657405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136863 WO2021179724A1 (zh) 2020-03-13 2020-12-16 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法

Country Status (2)

Country Link
CN (1) CN111446461B (zh)
WO (1) WO2021179724A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612975A (zh) * 2022-10-13 2023-01-17 四川美呀意斐医疗科技有限公司 一种钛合金超亲水处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446461B (zh) * 2020-03-13 2021-05-28 浙江华熔科技有限公司 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法
CN111900426B (zh) * 2020-07-29 2022-03-15 上海交通大学 一种燃料电池双极板防腐涂层及其制备方法
CN112310429B (zh) * 2020-10-29 2022-09-16 上海交通大学 一种用于燃料电池双极板的耐蚀涂层及其制备方法
CN115133046B (zh) * 2022-07-11 2023-05-23 浙江海盐力源环保科技股份有限公司 一种燃料电池双极板涂层装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335147A (ja) * 2006-06-13 2007-12-27 Toppan Printing Co Ltd 車両
CN104766980A (zh) * 2015-04-28 2015-07-08 安徽工业大学 一种酸性介质燃料电池双极板防护涂层及其制备方法
WO2016070862A1 (de) * 2014-11-03 2016-05-12 Forschungszentrum Jülich GmbH Bipolarplatte für elektrochemische zellen sowie verfahren zur herstellung derselben
CN106337977A (zh) * 2016-11-11 2017-01-18 大庆市盛日石油技术开发有限公司 一种石墨烯润滑耐磨防腐管及制备工艺
CN107364933A (zh) * 2017-07-18 2017-11-21 王林双 石墨烯复合电极的制备工艺以及石墨烯复合电极及其应用
CN109768295A (zh) * 2018-12-11 2019-05-17 上海治臻新能源装备有限公司 耐腐蚀高电导率燃料电池金属双极板的生产方法
CN111446461A (zh) * 2020-03-13 2020-07-24 浙江华熔科技有限公司 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156348A (ja) * 2007-12-26 2009-07-16 Showa Corp 油圧緩衝器
CN108199058B (zh) * 2017-12-15 2023-05-05 中国第一汽车股份有限公司 一种导电聚合物-石墨烯复合双极板的制备方法
CN108574107A (zh) * 2018-03-16 2018-09-25 上海交通大学 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法
CN109904479A (zh) * 2019-02-22 2019-06-18 佛山科学技术学院 一种复合耐腐燃料电池金属双极板及其制备方法
CN110808384B (zh) * 2019-10-11 2021-04-27 浙江锋源氢能科技有限公司 一种金属双极板及其制备方法以及燃料电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335147A (ja) * 2006-06-13 2007-12-27 Toppan Printing Co Ltd 車両
WO2016070862A1 (de) * 2014-11-03 2016-05-12 Forschungszentrum Jülich GmbH Bipolarplatte für elektrochemische zellen sowie verfahren zur herstellung derselben
CN104766980A (zh) * 2015-04-28 2015-07-08 安徽工业大学 一种酸性介质燃料电池双极板防护涂层及其制备方法
CN106337977A (zh) * 2016-11-11 2017-01-18 大庆市盛日石油技术开发有限公司 一种石墨烯润滑耐磨防腐管及制备工艺
CN107364933A (zh) * 2017-07-18 2017-11-21 王林双 石墨烯复合电极的制备工艺以及石墨烯复合电极及其应用
CN109768295A (zh) * 2018-12-11 2019-05-17 上海治臻新能源装备有限公司 耐腐蚀高电导率燃料电池金属双极板的生产方法
CN111446461A (zh) * 2020-03-13 2020-07-24 浙江华熔科技有限公司 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612975A (zh) * 2022-10-13 2023-01-17 四川美呀意斐医疗科技有限公司 一种钛合金超亲水处理方法

Also Published As

Publication number Publication date
CN111446461B (zh) 2021-05-28
CN111446461A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021179724A1 (zh) 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法
CN101257117B (zh) 一种燃料电池用双极板及其表面氮铬薄膜制备方法
CN109873122A (zh) 一种超薄金属锂复合体及其制备方法和用途
CN111490277A (zh) 中温质子交换膜燃料电池膜电极及其制备方法
CN111883855B (zh) 一种全固态电芯及其制备方法和固态电池
CN102130341A (zh) 一种燃料电池双极板及其表面碳钛纳米复合薄膜制备方法
TWI375347B (en) Manufacture method of bi-polar plates of fuel cell and bi-polar plates thereof
CN112209729B (zh) 一种基于Ni箔中间层的三元层状陶瓷钛硅碳及其固溶体与铁素体不锈钢的扩散连接方法
CN113224364A (zh) 一种熔融碳酸盐燃料电池堆立式组装装置及方法
CN109320214B (zh) 一种臭氧发生器用板式电极及其制备方法和应用
CN110718699A (zh) 用于燃料电池不锈钢双极板金属氮化物涂层的制备方法
CN101143395A (zh) 一种不锈钢双极板焊接方法
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN115224295A (zh) 一种具有耐腐蚀膜层的燃料电池双极板及其制备方法
KR101669952B1 (ko) 연료전지용 알루미늄 분리판
CN108539214B (zh) 等离子热化学处理的聚合物电解质膜燃料电池金属双极板
CN112952131B (zh) 一种具有纳米晶AlN改性层的Fe-Mn基合金双极板及其制备方法
CN112952129B (zh) 一种具有纳米TaNbN改性层的金属双极板及其制备方法
EP4075586A1 (en) Method and device for flattening fuel cell proton exchange membrane
CN107946600B (zh) 一种铅基蓄电池的轻质导电陶瓷极板的制备方法
CN112221892A (zh) 一种新型金属双极板表面改性的方法
CN211907583U (zh) 金属基复合双极板
EP2107630A1 (en) Process for anode treatment of a membrane electrode assembly of a solid oxide fuel cell
TWI792610B (zh) 多孔隙鉛碳複合極片及其製作方法與鉛碳複合電池
CN111554948B (zh) 双极板、其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923976

Country of ref document: EP

Kind code of ref document: A1