WO2021179366A1 - 一种异轴式自动无段混动变速系统及助力自行车 - Google Patents
一种异轴式自动无段混动变速系统及助力自行车 Download PDFInfo
- Publication number
- WO2021179366A1 WO2021179366A1 PCT/CN2020/082661 CN2020082661W WO2021179366A1 WO 2021179366 A1 WO2021179366 A1 WO 2021179366A1 CN 2020082661 W CN2020082661 W CN 2020082661W WO 2021179366 A1 WO2021179366 A1 WO 2021179366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pedal
- shaft
- transmission system
- gear
- type automatic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M11/00—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
- B62M11/04—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M25/00—Actuators for gearing speed-change mechanisms specially adapted for cycles
- B62M25/08—Actuators for gearing speed-change mechanisms specially adapted for cycles with electrical or fluid transmitting systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
- B62M6/45—Control or actuating devices therefor
- B62M6/50—Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
Definitions
- the invention belongs to the technical field of assisted bicycles, and particularly relates to a different axle type automatic stepless hybrid transmission system and an assisted bicycle.
- the present invention provides a choice of three power modes: hybrid, pure electric and pure pedaling.
- the riding is flexible, convenient and fun, and it can realize stepless speed change.
- a different axle type automatic stepless hybrid transmission system that realizes comfortable and intelligent riding, and a power-assisted bicycle applying the different axle type automatic stepless hybrid transmission system.
- the present invention adopts the following technical solutions:
- a different shaft type automatic stepless hybrid speed change system including a motor, a controller, a harmonic drive reducer and a pedal through shaft; wherein the controller is conductively connected to the motor, and the motor is decelerated by the harmonic drive
- the flexible gear of the harmonic drive reducer extends and is drivingly connected with the flexible gear; the rigid gear of the harmonic drive reducer is provided with a hybrid power output gear plate.
- a driving wheel is provided on the rotating shaft of the motor, one end of the wave generator protrudes out of the flexible gear and a driven wheel is provided, and the driving wheel is drivingly connected to the driven wheel through a transmission member.
- a bearing is provided where the pedal through shaft passes through the wave generator and the flexible gear, and a first clutch is also provided at the position where the pedal through shaft passes through the flexible gear, and the pedal through shaft passes through The first clutch is drivingly connected with the flexible gear.
- the position where the pedal through shaft passes through the wave generator is provided with a first bearing and a second bearing, and the first bearing and the second bearing are respectively located on the left and right sides of the inside of the wave generator; the pedal The position where the through shaft passes through the flexible gear is provided with a third bearing and a first clutch.
- the different shaft type automatic stepless hybrid transmission system further includes a speed sensor for real-time detection of the rotation speed of the pedal through shaft.
- the speed sensor is composed of a magnetic ring and a Hall element, and is conductively connected to the controller.
- a rigid connecting seat is provided on the rigid gear, and the hybrid power output gear plate is installed and fixed on the rigid connecting seat.
- the rigid connecting seat is a hollow tubular connecting seat and covers the flexible gear, one end of the rigid connecting seat is connected and fixed with the rigid gear, and the other end is installed with the hybrid power output gear plate, and the A fourth bearing is arranged inside the end of the rigid connecting seat where the hybrid power output gear plate is installed, and the fourth bearing is located between the rigid connecting seat and the flexible gear.
- a second unidirectional device is also provided between the flexible gear and the rigid gear.
- the different shaft type automatic stepless hybrid transmission system further includes a housing, the motor, the controller, the harmonic drive reducer, the first clutch and the pedal through shaft are all arranged in the housing, and the foot Both ends of the pedal shaft extend out of the housing.
- a power-assisted bicycle comprising a vehicle body and the above-mentioned different axle type automatic stepless hybrid transmission system, the vehicle body is provided with a battery pack, and the battery pack and a controller of the different axle type automatic stepless hybrid transmission system It is conductively connected with the motor to supply driving electric energy; the hybrid power output gear plate is drivingly connected with the rear wheels on the vehicle body.
- the present invention can select hybrid power mode, pure electric mode and pure pedaling mode according to riding needs, greatly improving the flexibility and convenience of riding, as well as riding pleasure, and can be achieved by harmonic transmission reducer.
- the variable ratio of the vehicle speed to the pedal speed is wider, and the pedaling can be kept easy and relaxed at medium and high speeds, and the power and pedals transmitted by the motor can be well transmitted.
- the power transmitted by the through shaft is mixed with the power output according to the set speed ratio, which realizes stepless stepless speed change and realizes more comfortable and intelligent riding.
- FIG. 1 is a schematic structural diagram of an embodiment of a different shaft type automatic stepless hybrid transmission system according to the present invention
- FIG. 2 is a speed change curve diagram of an embodiment of the different axle type automatic stepless hybrid speed change system in the hybrid power mode of the present invention
- Fig. 3 is a schematic structural diagram of an embodiment of an assisted bicycle according to the present invention.
- Fig. 4 is a speed change curve diagram of a conventional mechanical speed change system.
- a different shaft type automatic stepless hybrid transmission system includes a motor 1, a controller 2, a harmonic drive reducer 3, and a pedal through shaft 4.
- the harmonic drive reducer 3 includes a wave generator 31 with a flexible bearing 34, a flexible gear 32 and a rigid gear 33, and its structure and working principle are the same as the existing wave drive reducer, and will not be described in detail here;
- the controller 2 is conductively connected to the motor 1, and the motor 1 is drivingly connected to the wave generator 31 of the harmonic drive reducer 3;
- the pedal through shaft 4 passes through the harmonic drive reducer 3, and One end of the pedal through shaft 4 rotatably extends from the wave generator 31 of the harmonic drive reducer 3, and the other end extends from the flexible gear 32 of the harmonic drive reducer 3 and is drivingly connected to the flexible gear 32;
- the rigid gear 33 of the harmonic drive reducer 3 is provided with a hybrid power output gear plate 35.
- the specific structure may be as follows: a driving wheel 11 is provided on the rotating shaft 14 of the motor 1, one end of the wave generator 31 extends out of the flexible gear 32 and a driven wheel 13 is provided, and the driving wheel 11 passes through a transmission member 12 Drivingly connected with the driven wheel 13, the driving wheel 11 and the driven wheel 13 may be belt pulleys, and correspondingly, the transmission member 12 is a transmission belt; the pedal shaft 4 passes through the wave generator 31 and the flexible gear 32. Each is provided with a bearing, and a first clutch 36 is also provided where the pedal through shaft 4 passes through the flexible gear 32.
- the specific structure may be: a position where the pedal through shaft 4 passes through the wave generator 31 is provided with a first clutch 36 A bearing 37 and a second bearing 38, the first bearing 37 and the second bearing 38 are respectively located on the left and right inside the wave generator 31; the position where the pedal through shaft 4 passes through the flexible gear 32 is provided with a third bearing 39 and the first clutch 36; the pedal through shaft 4 is drivingly connected to the flexible gear 32 through the first clutch 36.
- the rigid gear 33 is provided with a rigid connecting seat 30, the hybrid power output gear plate 35 is installed and fixed on the rigid connecting seat 30, wherein the rigid connecting seat 30 may be a hollow tube-shaped connecting seat and cover the flexible Gear 32 (the rigid connecting seat 30 may also be composed of a number of rigid connecting blocks distributed annularly on the peripheral side of the flexible gear 32), one end of the rigid connecting seat 30 is connected and fixed with the rigid gear 33, and the other end is mounted with the Hybrid power output gear plate 35, and a fourth bearing 301 is provided inside one end of the rigid connection base 30 where the hybrid power output gear plate 35 is installed, and the fourth bearing 301 is located between the rigid connection base 30 and the flexible gear 32.
- the rigid connecting seat 30 may be a hollow tube-shaped connecting seat and cover the flexible Gear 32 (the rigid connecting seat 30 may also be composed of a number of rigid connecting blocks distributed annularly on the peripheral side of the flexible gear 32), one end of the rigid connecting seat 30 is connected and fixed with the rigid gear 33, and the other end is mounted with the Hybrid power
- the working principle of the different axle type automatic stepless hybrid transmission system of the present invention is: when the hybrid power mode (ie: electric and human hybrid driving mode) is selected, the controller 2 controls the motor 1 to start and drive the harmonic transmission
- the wave generator 31 of the speed reducer 3 rotates, and the flexible gear 32 and the rigid gear 33 are driven to rotate relative to each other through the flexible bearing on the wave generator 31.
- the pedal shaft 4 is rotated during the pedaling process, and the flexible gear is driven by the first clutch 36.
- the gear 32 rotates.
- the controller 2 controls the motor 1 to start, drives the wave generator 31 of the harmonic drive reducer 3 to rotate, and drives the flexible bearing on the wave generator 31
- the gear 32 rotates.
- the flexible gear 32 must be fixed to stop rotating, and the flexible gear 32 drives the rigid gear 33 to rotate, which drives the hybrid power output gear plate 35 to rotate;
- the pedaling process causes the pedal shaft 4 to rotate, and the first clutch 36 drives the flexible gear 32 to rotate. Since the wave generator 31 does not rotate, the flexible gear 32 is caused to rotate. The drive drives the rigid gear 33 to rotate, and drives the hybrid power output gear plate 35 to rotate.
- the different axle type automatic stepless hybrid transmission system of the present invention can select hybrid mode, pure electric mode and pure pedaling mode according to riding needs, greatly improving the flexibility and convenience of riding, and riding It is fun to travel, and through the control of the motor 1 speed, the harmonic drive reducer 3 can make the variable ratio of the vehicle speed to the pedal speed greater than 1 in the hybrid riding mode (for example: when the vehicle speed is increased by 2 times, the pedal The speed is only doubled). It can keep pedaling easy and relaxed even at medium and high speeds. At the same time, it can well transmit the power transmitted by the motor 1 and the pedal shaft 4 in the hybrid riding mode.
- the overcoming power realizes stepless stepless speed change (as shown in the graph of Figure 2, where a is the stepless stepless speed change curve), which solves the discomfort caused by the stepless speed change of the existing power-assisted bicycle mechanical transmission system. , To achieve a more comfortable and smarter riding.
- the different shaft type automatic stepless hybrid transmission system of the present invention also includes a speed sensor for real-time detection of the rotation speed of the pedal through shaft 4 (this speed sensor belongs to the prior art and is composed of a magnetic ring 41 and a Hall element 42 components, the working principle will not be described in detail here.), the speed sensor is conductively connected to the controller 2; the specific structure can be shown in Figure 1.
- the magnetic ring 41 is installed on the pedal shaft 4 through a bracket 43
- the Hall element 42 is fixed (for example, the Hall element 42 is fixed on the housing 5), and is inductively connected with the magnetic ring 41 that rotates with the pedal shaft 4.
- the speed sensor transmits the detected speed of the pedal shaft 4 to the controller 2 in real time, and then the controller 2 controls the speed of the motor 1 according to the pedal shaft 4 (i.e. riding speed) to ensure harmonic transmission
- the reducer 3 can make the variable ratio of the vehicle speed to the pedal speed greater than 1 in the hybrid riding mode, and the stepless speed change is more stable and reliable.
- a second clutch 302 is also provided between the flexible gear 32 and the rigid gear 33, that is, the second clutch 302 is provided inside the end of the rigid connection base 30 where the hybrid power output gear plate 35 is installed, and is connected to the rigid connection base 30.
- Seat 30 and flexible gear 32 In this way, it can be ensured that the power of the rigid gear 33 and the power higher than the flexible gear 32 in the hybrid power mode, the pure pedaling mode, and the pure electric drive mode can be output to the ring gear 35. At the same time, it can be ensured that the flexible gear 32 passes through the first when the pure pedaling drive mode is selected.
- the second clutch 302 drives the rigid gear 33 to rotate.
- the different shaft type automatic stepless hybrid transmission system further includes a housing 5.
- the motor 1, the controller 2, the harmonic drive reducer 3 and the pedal through shaft 4 are all arranged in the housing 5, and the Both ends of the pedal shaft 4 protrude out of the housing 5.
- the casing 5 can protect and fix the motor 1, the controller 2, the harmonic drive reducer 3 and the pedal through shaft 4, and can also improve the installation convenience of the different shaft type automatic stepless hybrid transmission system. .
- the present invention also provides a power-assisted bicycle, including a vehicle body 6 and the above-mentioned different axle type automatic stepless hybrid transmission system.
- the vehicle body 6 is provided with a battery pack 7, and the battery
- the group 7 is connected to the controller 2 (not shown in the figure) of the different axle type automatic stepless hybrid transmission system and the motor 1 to supply driving electric energy; the hybrid power output gear plate 35 and the rear of the vehicle body 6
- the driving connection of the wheels 8 may be specifically: an inner transmission 9 is installed on the axle of the rear wheel 8 of the vehicle body 6, and the hybrid power output gear plate 35 is drivingly connected to the inner transmission 9 through a chain (not shown in the figure).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Transmission Device (AREA)
- Structure Of Transmissions (AREA)
Abstract
一种异轴式自动无段混动变速系统及助力自行车,该系统包括电机(1)、控制器(2)、谐波传动减速器(3)和脚踏通轴(4);控制器(2)与电机(1)导通连接,电机(1)与谐波传动减速器(3)的波发生器(31)驱动连接;脚踏通轴(4)穿设在谐波传动减速器(3)上,且脚踏通轴(4)的一端可转动地从谐波传动减速器(3)的波发生器(31)伸出,另一端从谐波传动减速器(3)的柔性齿轮(32)伸出并与柔性齿轮(32)驱动连接;谐波传动减速器(3)的刚性齿轮(33)上设有混合动力输出齿盘(35)。该系统可根据骑行需要选择混合动力模式、纯电动模式和纯踩踏模式,还可以很好地将电机(1)和脚踏通轴(4)传递过来的动力依据设定的转速比例混合动力输出,实现无段位的无级变速。
Description
本发明属于助力自行车技术领域,特别涉及一种异轴式自动无段混动变速系统及助力自行车。
助力自行车,具有省力、负载大、车速快等优势,很快就已成为了人们途短出行和运输的主要工具。但是,申请人发现:目前市场上现有的助力自行车都是采用机械变速系统,导致在混合动力模式时,车速与脚踏转速按变速器速比变化,在不同车速时需调整变速比,使踩踏在舒适踏速下运转,而且这种机械变速系统都是段位式变速(如图4的曲线图所示,图中b为机械式变速器的段位式变速曲线),在骑行过程时由于机械变速系统的段位式变速,使助力自行车间断地出现突然前冲,使骑行车产生的不舒适感。
发明内容
为解决现有技术中存在的上述问题,本发明提供了一种具有选择混合动力、纯电动和纯踩踏三种动力模式,骑行灵活、便利、乐趣高,且可实现无段位的无极变速,实现舒适和智能的骑行的异轴式自动无段混动变速系统,以及应用了该异轴式自动无段混动变速系统的助力自行车。
为解决上述技术问题,本发明采用如下技术方案:
一种异轴式自动无段混动变速系统,包括电机、控制器、谐波传动减速器和脚踏通轴;其中,所述控制器与电机导通连接,所述电机与谐波传动减速器的波发生器驱动连接;所述脚踏通轴穿设在谐波传动减速器上,且脚踏通轴的一端可转动地从谐波传动减速器的波发生器伸出,另一端从谐波传动减速器的柔性齿轮伸出并与柔性齿轮驱动连接;所述谐波传动减速器的刚性齿轮上设有混合动力输出齿盘。
进一步地,所述电机的转动轴上设有主动轮,所述波发生器的一端伸出柔性齿轮外并设 有从动轮,所述主动轮通过传动件与从动轮驱动连接。
进一步地,所述脚踏通轴穿过波发生器和柔性齿轮的位置均设有轴承,且所述脚踏通轴穿过柔性齿轮处还设有第一离合器,所述脚踏通轴通过第一离合器与柔性齿轮驱动连接。
进一步地,所述脚踏通轴穿过波发生器的位置设有第一轴承和第二轴承,所述第一轴承和第二轴承分别位于波发生器内部的左右两侧;所述脚踏通轴穿过柔性齿轮的位置设有第三轴承和第一离合器。
进一步地,该异轴式自动无段混动变速系统还包括有用于实时检测脚踏通轴转速的速度传感器,所述速度传感器由磁环和霍尔元件组成,并与控制器导通连接。
进一步地,所述刚性齿轮上设有刚性连接座,所述混合动力输出齿盘安装固定在刚性连接座上。
进一步地,所述刚性连接座是中空的管形连接座,并罩住柔性齿轮,所述刚性连接座的一端与刚性齿轮连接固定,另一端安装有所述混合动力输出齿盘,而且所述刚性连接座安装有混合动力输出齿盘的一端内部设有第四轴承,所述第四轴承位于刚性连接座和柔性齿轮之间。
进一步地,所述柔性齿轮和刚性齿轮之间还设有第二单向器。
进一步地,该异轴式自动无段混动变速系统还包括有外壳,所述电机、控制器、谐波传动减速器、第一离合器和脚踏通轴均设于外壳内,且所述脚踏通轴的两端伸出外壳外。
一种助力自行车,包括有车体和上述异轴式自动无段混动变速系统,所述车体上设有电池组,所述电池组与异轴式自动无段混动变速系统的控制器和电机导通连接,供给驱动电能;所述混合动力输出齿盘与车体上的后车轮驱动连接。
本发明主要具有以下有益效果:
本发明通过上述技术方案,即可根据骑行需要选择混合动力模式、纯电动模式和纯踩踏模式,大大提高骑行的灵活性和便利性,以及骑行乐趣,而且通过谐波传动减速器可以在混合动力骑行模式下使车速与脚踏转速的变量比范围更大,在中速和高速时也能保持踩踏骑行 容易、轻松,同时可以很好地将电机传递过来的动力和脚踏通轴传递过来的动力依据设定的转速比例混和动力输出,实现了无段位的无极变速,实现更舒适更智能的骑行。
图1是本发明所述一种异轴式自动无段混动变速系统实施例的结构示意图;
图2是本发明所述一种异轴式自动无段混动变速系统实施例在混合动力模式下的变速曲线图;
图3是本发明所述一种助力自行车实施例的结构示意图;
图4是现有机械变速系统的变速曲线图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1和图2中所示:
本发明实施例所述一种异轴式自动无段混动变速系统,包括电机1、控制器2、谐波传动减速器3和脚踏通轴4。其中,该谐波传动减速器3包括带柔性轴承34的波发生器31、柔性齿轮32和刚性齿轮33,其结构和工作原理与现有的波传动减速器相同,在此不再详细赘述;所述控制器2与电机1导通连接,所述电机1与谐波传动减速器3的波发生器31驱动连接;所述脚踏通轴4穿设在谐波传动减速器3上,且脚踏通轴4的一端可转动地从谐波传动减速器3的波发生器31伸出,另一端从谐波传动减速器3的柔性齿轮32伸出并与柔性齿轮32驱动连接;所述谐波传动减速器3的刚性齿轮33上设有混合动力输出齿盘35。
具体结构可以为:所述电机1的转动轴14上设有主动轮11,所述波发生器31的一端伸出柔性齿轮32外并设有从动轮13,所述主动轮11通过传动件12与从动轮13驱动连接,所述主动轮11和从动轮13可以是皮带轮,相应地,所述传动件12是传动带;所述脚踏通轴4穿过波发生器31和柔性齿轮32的位置均设有轴承,且所述脚踏通轴4穿过柔性齿轮 32处还设有第一离合器36,具体结构可以为:所述脚踏通轴4穿过波发生器31的位置设有第一轴承37和第二轴承38,所述第一轴承37和第二轴承38分别位于波发生器31内部的左右两;所述脚踏通轴4穿过柔性齿轮32的位置设有第三轴承39和第一离合器36;所述脚踏通轴4通过第一离合器36与柔性齿轮32驱动连接。所述刚性齿轮33上设有刚性连接座30,所述混合动力输出齿盘35安装固定在刚性连接座30上,其中所述刚性连接座30可以是中空的管形连接座,并罩住柔性齿轮32(所述刚性连接座30也可以是由若干环形分布在柔性齿轮32周侧的刚性连接块构成),所述刚性连接座30的一端与刚性齿轮33连接固定,另一端安装有所述混合动力输出齿盘35,而且所述刚性连接座30安装有混合动力输出齿盘35的一端内部设有第四轴承301,所述第四轴承301位于刚性连接座30和柔性齿轮32之间。
本发明所述一种异轴式自动无段混动变速系统的工作原理为:当选择混合动力模式(即:电力和人力混合驱动模式)时,控制器2控制电机1启动、驱使谐波传动减速器3的波发生器31转动,并经波发生器31上的柔性轴承驱使柔性齿轮32与刚性齿轮33相对转动,同时踩踏过程使脚踏通轴4转动,并经第一离合器36驱使柔性齿轮32转动,最后柔性齿轮32与转动的波发生器31减速后,两者速度相加混和至驱使动刚性齿轮33转动,带动混合动力输出齿盘35转动;其中当踩踏速度定值时,混合动力输出齿盘35的转速变化,可以由波发生器31的转速变化来改变,因而产生变速的效果。
当选择纯电驱动模式(即:纯电力驱动模式)时,控制器2控制电机1启动、驱使谐波传动减速器3的波发生器31转动,并经波发生器31上的柔性轴承驱使柔性齿轮32转动,此时须将柔性齿轮32固定停止转动,转由柔性齿轮32驱使动刚性齿轮33转动,带动混合动力输出齿盘35转动;
当选择纯踩踏驱动模式(即:纯人力驱动模式)时,踩踏过程使脚踏通轴4转动,并经第一离合器36驱使柔性齿轮32转动,由于波发生器31不转动,致使柔性齿轮32带动驱使刚性齿轮33转动,带动混合动力输出齿盘35转动。
这样,本发明所述一种异轴式自动无段混动变速系统即可根据骑行需要选择混合动力模式、纯电动模式和纯踩踏模式,大大提高骑行的灵活性和便利性,以及骑行乐趣,而且通过电机1转速的控制下,使谐波传动减速器3可以在混合动力骑行模式下使车速与脚踏转速的变量比大于1(比如:当车速提高2倍时,脚踏转速只提高1倍),在中速和高速时也能使踩踏骑行保持容易、轻松,同时在混合动力骑行模式下可以很好地将电机1传递过来的动力和脚踏通轴4传递过来的动力实现了无段位的无极变速(如图2曲线图所示,图中a为无段位的无极变速曲线),解决了现有助力自行车机械变速系统的段位式变速所产生的不舒适感,实现更舒适更智能的骑行。
而且,本发明所述一种异轴式自动无段混动变速系统还包括有用于实时检测脚踏通轴4转速的速度传感器(该速度传感器属于现有技术,由磁环41和霍尔元件42组成,工作原理在此不再详细赘述。),所述速度传感器与控制器2导通连接;具体结构可以如图1,所述磁环41安装通过支架43安装在脚踏通轴4上,所述霍尔元件42固定不动(比如:霍尔元件42固定在外壳5上),并与随脚踏通轴4转动的磁环41感应连接。这样,速度传感器实时将检测到的脚踏通轴4转速传送至控制器2,然后控制器2根据脚踏通轴4(即:骑行踏速)控制电机1的转速,从而确保谐波传动减速器3可以在混合动力骑行模式下使车速与脚踏转速的变量比大于1,无段位的无极变速更稳定、更可靠。
此外,所述柔性齿轮32和刚性齿轮33之间还设有第二离合器302,即:所述第二离合器302设于刚性连接座30安装有混合动力输出齿盘35的一端内部,连接刚性连接座30和柔性齿轮32。这样,即可保证混合动力模式、纯踩踏模式、纯电驱动模式下刚性齿轮33与高于柔性齿轮32的动力都可以输出到齿盘35,同时确保选择纯踩踏驱动模式时柔性齿轮32经由第二离合器302带动驱使刚性齿轮33转动。
另外,该异轴式自动无段混动变速系统还包括有外壳5,所述电机1、控制器2、谐波传动减速器3和脚踏通轴4均设于外壳5内,且所述脚踏通轴4的两端伸出外壳5外。这样,外壳5对电机1、控制器2、谐波传动减速器3和脚踏通轴4既可起到保护、固定作用, 还可提高本异轴式自动无段混动变速系统安装便利性。
如图3中所示,本发明还提供了一种助力自行车,包括有车体6和上述异轴式自动无段混动变速系统,所述车体6上设有电池组7,所述电池组7与异轴式自动无段混动变速系统的控制器2(图中未表示出来)和电机1导通连接,供给驱动电能;所述混合动力输出齿盘35与车体6上的后车轮8驱动连接,具体可以为:所述车体6的后车轮8轮轴上安装有内变速器9,所述混合动力输出齿盘35通过链条(图中未表示出来)与内变速器9驱动连接。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (10)
- 一种异轴式自动无段混动变速系统,其特征在于:包括电机(1)、控制器(2)、谐波传动减速器(3)和脚踏通轴(4);其中,所述控制器(2)与电机(1)导通连接,所述电机(1)与谐波传动减速器(3)的波发生器(31)驱动连接;所述脚踏通轴(4)穿设在谐波传动减速器(3)上,且脚踏通轴(4)的一端可转动地从谐波传动减速器(3)的波发生器(31)伸出,另一端从谐波传动减速器(3)的柔性齿轮(32)伸出并与柔性齿轮(32)驱动连接;所述谐波传动减速器(3)的刚性齿轮(33)上设有混合动力输出齿盘(35)。
- 根据权利要求1所述异轴式自动无段混动变速系统,其特征在于:所述电机(1)的转动轴(14)上设有主动轮(11),所述波发生器(31)的一端伸出柔性齿轮(32)外并设有从动轮(13),所述主动轮(11)通过传动件(12)与从动轮(13)驱动连接。
- 根据权利要求1所述异轴式自动无段混动变速系统,其特征在于:所述脚踏通轴(4)穿过波发生器(31)和柔性齿轮(32)的位置均设有轴承,且所述脚踏通轴(4)穿过柔性齿轮(32)处还设有第一离合器(36),所述脚踏通轴(4)通过第一离合器(36)与柔性齿轮(32)驱动连接。
- 根据权利要求3所述异轴式自动无段混动变速系统,其特征在于:所述脚踏通轴(4)穿过波发生器(31)的位置设有第一轴承(37)和第二轴承(38),所述第一轴承(37)和第二轴承(38)分别位于波发生器(31)内部的左右两侧;所述脚踏通轴(4)穿过柔性齿轮(32)的位置设有第三轴承(39)和第一离合器(36)。
- 根据权利要求1所述异轴式自动无段混动变速系统,其特征在于:还包括有用于实时检测脚踏通轴(4)转速的速度传感器,所述速度传感器由磁环和霍尔元件组成,并与控制器(2)导通连接。
- 根据权利要求1至5中任一所述异轴式自动无段混动变速系统,其特征在于:所述刚性齿轮(33)上设有刚性连接座(30),所述混合动力输出齿盘(35)安装固定在刚性 连接座(30)上。
- 根据权利要求6所述异轴式自动无段混动变速系统,其特征在于:所述刚性连接座(30)是中空的管形连接座,并罩住柔性齿轮(32),所述刚性连接座(30)的一端与刚性齿轮(33)连接固定,另一端安装有所述混合动力输出齿盘(35),而且所述刚性连接座(30)安装有混合动力输出齿盘(35)的一端内部设有第四轴承(301),所述第四轴承(301)位于刚性连接座(30)和柔性齿轮(32)之间。
- 根据权利要求7所述异轴式自动无段混动变速系统,其特征在于:所述柔性齿轮(32)和刚性齿轮(33)之间还设有第二离合器(302)。
- 根据权利要求4或5或7或8所述异轴式自动无段混动变速系统,其特征在于:还包括有外壳(5),所述电机(1)、控制器(2)、谐波传动减速器(3)、第一离合器(36)和脚踏通轴(4)均设于外壳(5)内,且所述脚踏通轴(4)的两端伸出外壳(5)外。
- 一种助力自行车,其特征在于:包括有车体(6)和权利要求1至9中任一所述异轴式自动无段混动变速系统,所述车体(6)上设有电池组(7),所述电池组(7)与异轴式自动无段混动变速系统的控制器(2)和电机(1)导通连接,供给驱动电能;所述混合动力输出齿盘(35)与车体(6)上的后车轮(8)驱动连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010176572.0A CN111232120A (zh) | 2020-03-13 | 2020-03-13 | 一种异轴式自动无段混动变速系统及助力自行车 |
CN202010176572.0 | 2020-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179366A1 true WO2021179366A1 (zh) | 2021-09-16 |
Family
ID=70867757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/082661 WO2021179366A1 (zh) | 2020-03-13 | 2020-04-01 | 一种异轴式自动无段混动变速系统及助力自行车 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111232120A (zh) |
TW (1) | TWI772952B (zh) |
WO (1) | WO2021179366A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114655346A (zh) * | 2022-01-12 | 2022-06-24 | 深圳优安米科技有限公司 | 双系统助力自行车的控制系统及基于改系统的助力车 |
CN114789767A (zh) * | 2022-03-15 | 2022-07-26 | 苏州绿的谐波传动科技股份有限公司 | 一种助力自行车驱动装置的组装方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111703535A (zh) * | 2020-07-22 | 2020-09-25 | 珠海市钧兴机电有限公司 | 一种具有形变式扭力传感结构的变速系统及助力自行车 |
DE102020130601B3 (de) * | 2020-11-19 | 2022-03-10 | Fazua Gmbh | Antriebsvorrichtung für ein Elektrofahrrad und Elektrofahrrad |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201352736Y (zh) * | 2009-02-11 | 2009-11-25 | 宁波北斗科技有限公司 | 一种谐波无刷电机 |
CN101685994A (zh) * | 2008-09-22 | 2010-03-31 | 王乐琳 | 合成动力自行车机电一体驱动机 |
CN202827976U (zh) * | 2012-08-17 | 2013-03-27 | 赵勇 | 谐波减速电动助力自行车 |
CN204688340U (zh) * | 2015-05-29 | 2015-10-07 | 南京信息工程大学 | 一种谐波电动助力运动车 |
DE102017219601A1 (de) * | 2017-11-06 | 2019-05-09 | Zf Friedrichshafen Ag | Antriebsanordnung eines Pedelecs |
CN109850049A (zh) * | 2018-12-21 | 2019-06-07 | 苏州锂智车业科技有限公司 | 一种谐波减速电动自行车 |
CN109866866A (zh) * | 2019-04-11 | 2019-06-11 | 舍弗勒技术股份两合公司 | 电动助力车及传动装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5937964A (en) * | 1997-03-18 | 1999-08-17 | Currie Technologies Incorporated | Unitary power module for electric bicycles, bicycle combinations and vehicles |
WO2001054966A1 (fr) * | 2000-01-25 | 2001-08-02 | Sunstar Giken Kabushiki Kaisha | Bicyclette a commande assistee, dispositif d'entrainement et pignon d'entrainement |
CN101353076B (zh) * | 2008-09-18 | 2012-07-18 | 李平 | 小型电动车中置电机驱动器 |
TWM377385U (en) * | 2009-09-17 | 2010-04-01 | Huang Yung Sung | Harmonic transmission driven pedelecs |
CN102107712A (zh) * | 2011-01-19 | 2011-06-29 | 韩玉金 | 中置驱动助力自行车 |
US9243692B2 (en) * | 2013-02-19 | 2016-01-26 | Sram, Llc | Electric bicycle transmission |
CN108266501B (zh) * | 2017-01-04 | 2024-04-02 | 广东洛梵狄智能科技有限公司 | 内变速器及其控制方法 |
CN207634544U (zh) * | 2017-11-15 | 2018-07-20 | 珠海市钧兴机电有限公司 | 一种谐波齿轮波发生器与电机的调心装置 |
JP6936186B2 (ja) * | 2018-05-30 | 2021-09-15 | 株式会社シマノ | 人力駆動車用ドライブユニット |
CN212125429U (zh) * | 2020-03-13 | 2020-12-11 | 珠海市钧兴机电有限公司 | 一种异轴式自动无段混动变速系统及助力自行车 |
-
2020
- 2020-03-13 CN CN202010176572.0A patent/CN111232120A/zh active Pending
- 2020-04-01 WO PCT/CN2020/082661 patent/WO2021179366A1/zh active Application Filing
- 2020-11-04 TW TW109138470A patent/TWI772952B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685994A (zh) * | 2008-09-22 | 2010-03-31 | 王乐琳 | 合成动力自行车机电一体驱动机 |
CN201352736Y (zh) * | 2009-02-11 | 2009-11-25 | 宁波北斗科技有限公司 | 一种谐波无刷电机 |
CN202827976U (zh) * | 2012-08-17 | 2013-03-27 | 赵勇 | 谐波减速电动助力自行车 |
CN204688340U (zh) * | 2015-05-29 | 2015-10-07 | 南京信息工程大学 | 一种谐波电动助力运动车 |
DE102017219601A1 (de) * | 2017-11-06 | 2019-05-09 | Zf Friedrichshafen Ag | Antriebsanordnung eines Pedelecs |
CN109850049A (zh) * | 2018-12-21 | 2019-06-07 | 苏州锂智车业科技有限公司 | 一种谐波减速电动自行车 |
CN109866866A (zh) * | 2019-04-11 | 2019-06-11 | 舍弗勒技术股份两合公司 | 电动助力车及传动装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114655346A (zh) * | 2022-01-12 | 2022-06-24 | 深圳优安米科技有限公司 | 双系统助力自行车的控制系统及基于改系统的助力车 |
CN114789767A (zh) * | 2022-03-15 | 2022-07-26 | 苏州绿的谐波传动科技股份有限公司 | 一种助力自行车驱动装置的组装方法 |
CN114789767B (zh) * | 2022-03-15 | 2023-09-01 | 苏州绿的谐波传动科技股份有限公司 | 一种助力自行车驱动装置的组装方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111232120A (zh) | 2020-06-05 |
TWI772952B (zh) | 2022-08-01 |
TW202134113A (zh) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179366A1 (zh) | 一种异轴式自动无段混动变速系统及助力自行车 | |
US8721481B2 (en) | Motor having an auxiliary driven shaft | |
US6286616B1 (en) | Hybrid drive mechanism for a vehicle driven by muscle power, with an auxiliary electric motor | |
JP2582224B2 (ja) | 機械的変速が一体化された特に自転車用の電動モーター付き車輪 | |
JP3148233B2 (ja) | ハイブリッド走行車の遊星歯車装置 | |
EP3233618B1 (en) | Drivetrain system for an electrically assisted human powered vehicle | |
JP4541516B2 (ja) | 電動自転車用の運動エネルギー回生装置 | |
US20120302390A1 (en) | Bidirectional hub motor with unidirectional two-speed output | |
CN111788086B (zh) | 用于踏板车的动力传动系 | |
US20170050700A1 (en) | Multi mode e-bike hub wheel, direct drive, variable overdrive and regenerative braking | |
JPH0733070A (ja) | 電動モータ付き乗り物 | |
CN212125429U (zh) | 一种异轴式自动无段混动变速系统及助力自行车 | |
WO2020220398A1 (zh) | 电动单车动力中置传动总成 | |
TWM606074U (zh) | 輪轂電機傳動系統及助力自行車 | |
WO2021243780A1 (zh) | 一种驱动与变速一体式中置装置及电助力自行车 | |
TW202415583A (zh) | 用於電動自行車之電動輔助驅動系統 | |
CN203558185U (zh) | 新型助力电动自行车的动力装置 | |
KR19980024945U (ko) | 자전거 | |
JPH06321170A (ja) | 発電兼用電動機装置及び発電兼用電動機装置付き二輪又は三輪車 | |
CN201784784U (zh) | 复合式驱动的三轮车构造 | |
WO2012131292A1 (en) | Propulsion system for bicycles and similar vehicles | |
CN220743287U (zh) | 助力自行车发电模块传动系统 | |
JP2004149098A (ja) | 自転車用電動式車輪駆動装置 | |
CN219635414U (zh) | 同侧双链轮马达系统 | |
CN219857509U (zh) | 无级变速中置电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924174 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924174 Country of ref document: EP Kind code of ref document: A1 |