WO2021177706A1 - 전기화학센서 및 이의 제조방법 - Google Patents

전기화학센서 및 이의 제조방법 Download PDF

Info

Publication number
WO2021177706A1
WO2021177706A1 PCT/KR2021/002575 KR2021002575W WO2021177706A1 WO 2021177706 A1 WO2021177706 A1 WO 2021177706A1 KR 2021002575 W KR2021002575 W KR 2021002575W WO 2021177706 A1 WO2021177706 A1 WO 2021177706A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical sensor
reference electrode
working
distance
Prior art date
Application number
PCT/KR2021/002575
Other languages
English (en)
French (fr)
Inventor
천승환
김동옥
이영근
조수호
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to CN202180018815.0A priority Critical patent/CN115280141A/zh
Priority to US17/909,404 priority patent/US20230116505A1/en
Priority to JP2022552612A priority patent/JP2023515683A/ja
Publication of WO2021177706A1 publication Critical patent/WO2021177706A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies

Definitions

  • the present invention relates to an electrochemical sensor and a method for manufacturing the same.
  • a technology for detecting pathogens in the human body with high sensitivity and specificity is a very necessary technology for early diagnosis and disease treatment. By diagnosing the disease at an early stage, it is possible to significantly reduce the cost burden that may occur due to worsening of the disease and further increase the effectiveness of treatment.
  • the sensor has two electrodes composed of a working electrode whose potential is changed according to the concentration of components in the measurement solution, and a reference electrode, which has the purpose of flowing a current during electrode reaction, and a reference electrode, which is the reference electrode for the potential to obtain the generated potential of the working electrode. It can be divided into a system, a three-electrode system, etc. which further includes a counter electrode that sends or receives a current so that a reaction occurs on the surface of the working electrode.
  • a typical sensor has only one sensor in the strip, so there is a problem in that there is a possibility of receiving a wrong measurement signal due to a user's sampling error and manufacturing defect.
  • a conventional sensor has been researched on a method of introducing a plurality of electrode systems.
  • the electrode system applied to the conventional sensor has a problem in that one or more reference electrodes are required to detect one or more components included in the sample.
  • one or more reference electrodes are required to detect one or more components included in the sample.
  • it was necessary to provide a reference electrode for measurement in each detection unit. there was a problem in that the measurement deviation increased.
  • Patent Registration No. 10-1541798 discloses a technique for correcting a measurement error according to a change in conditions through measurement of a reference solution with a known redox potential, but capable of specific binding to glycated hemoglobin
  • the present invention provides a plurality of working electrodes using the same reference electrode at a predetermined distance around the reference electrode, thereby acquiring and analyzing a plurality of measurement signals to minimize the measurement dispersion, thereby measuring accuracy It is an object of the present invention to provide an electrochemical sensor capable of improving measurement precision and a method for manufacturing the same.
  • the present invention is a substrate; a plurality of working electrodes formed on the substrate; It provides an electrochemical sensor comprising a single reference electrode formed on the substrate, wherein a distance between at least one of the plurality of working electrodes and the reference electrode satisfies the following formula (1).
  • the present invention comprises the steps of forming a plurality of working electrodes on a substrate (a); It provides a method for manufacturing an electrochemical sensor, comprising the step (b) of forming a single reference electrode on the substrate, wherein a distance between at least one of the plurality of working electrodes and the reference electrode satisfies Equation 1 below.
  • the electrochemical sensor of the present invention forms a plurality of working electrodes to acquire and analyze a plurality of measurement signals at a time to minimize measurement dispersion, thereby realizing an electrochemical sensor for improving measurement accuracy and measurement precision.
  • the plurality of working electrodes have a further improved effect in terms of shortening the measurement time and simplification of the measurement procedure in terms of being able to measure different materials, respectively.
  • the plurality of working electrodes surrounding the reference electrode have a constant separation distance from the reference electrode, there is an advantage in that measurement dispersion can be minimized.
  • FIG. 1 is a plan view of an electrochemical sensor according to an embodiment of the present invention.
  • FIG. 2 is a view showing the arrangement of the working electrode according to an embodiment of the present invention.
  • Example 3 is a graph showing the measurement results of Example 1 and Comparative Example 1.
  • the present invention relates to an electrochemical sensor including a plurality of working electrodes having a predetermined spacing around a single reference electrode, and includes a method for manufacturing the electrochemical sensor.
  • the electrochemical sensor of the present invention includes a plurality of working electrodes having a constant spacing around a single reference electrode, thereby acquiring a plurality of measurement signals at once, excluding the maximum and minimum values, and calculating the average or median value. It can be minimized, and by enabling analysis of two or more different substances at the same time, there are advantages of shortening the measurement time and simplifying the measurement procedure.
  • the detection target sample may be a biological sample such as blood, body fluid, urine, saliva, tears, sweat, etc., and may be other liquid samples, but is not limited thereto .
  • the detection target material may be glucose, lactate, cholesterol, vitamin C (ascorbic acid), alcohol, various cations, and various anions, and is limited thereto. it is not
  • the present invention is a substrate; a plurality of working electrodes formed on the substrate; It relates to an electrochemical sensor comprising a single reference electrode formed on the substrate, wherein a distance between at least one of the plurality of working electrodes and the reference electrode satisfies the following equation (1).
  • the present invention comprises the steps of forming a plurality of working electrodes on a substrate (a); It relates to a method for manufacturing an electrochemical sensor, comprising the step (b) of forming a single reference electrode on the substrate, wherein a distance between at least one of the plurality of working electrodes and the reference electrode satisfies Equation 1 below.
  • the electrochemical sensor of the present invention is not particularly limited as long as it is an electrochemical sensor including a working electrode and a reference electrode, and in particular, it is characterized in that it includes a plurality of working electrodes having a predetermined distance around a single reference electrode.
  • FIG. 1 is a plan view schematically illustrating an electrochemical sensor including one reference electrode 30 and four working electrodes 20 according to an embodiment of the present invention.
  • the electrochemical sensor of the present invention includes a working electrode 20 , a reference electrode 30 , and a wiring part 40 provided on the upper surface of a substrate 10 , and the working electrode 20 ) may be provided with an enzyme reaction layer (not shown) on the upper surface.
  • the four working electrodes 20 have a square shape in a figure formed by an imaginary line connecting each working electrode 20 , and a working electrode formed around one reference electrode 30 with a spacing of 1 mm. (20) may be included.
  • FIG. 2 is a diagram illustrating an electrode arrangement including six working electrodes 20 according to an embodiment of the present invention.
  • the six working electrodes 20 included in the electrochemical sensor of the present invention have a shape formed by an imaginary line connecting the respective working electrodes 20 to form a regular hexagon, and to be spaced apart by 0.5 mm. It may include a working electrode 20 formed around the reference electrode 30 having a distance.
  • An enzyme reaction layer 50 may be provided on the upper surface of the working electrode 20 .
  • the arrangement shape of the plurality of working electrodes included in the electrochemical sensor of the present invention is not limited to a specific shape, and may be manufactured in various shapes such as linear and polygonal shapes as well as the shapes shown in FIGS. 1 and 2 .
  • the substrate serves to provide a structural base of the components constituting the electrochemical sensor.
  • the material of the substrate of the present invention may be used conventionally or developed later, and is not particularly limited, and polyester-based materials such as silicon, glass, glass epoxy, ceramic, polyethylene naphthalate (PET), polybutylene terephthalate, etc. profit; Cellulose resins, such as a diacetyl cellulose and a triacetyl cellulose; polycarbonate-based resin; acrylic resins such as polymethyl (meth)acrylate and polyethyl (meth)acrylate; styrenic resins such as polystyrene and acrylonitrile-styrene copolymer; polyolefin-based resins such as polyethylene, polypropylene, polyolefin having a cyclo-based or norbornene structure, and an ethylene-propylene copolymer; vinyl chloride-based resin; amide resins such as nylon and aromatic polyamide; imide-based resin; polyether sulfone-based resin; sulfone-based
  • the reference electrode has a constant potential and is an electrode that is a reference potential for obtaining the generated potential of the working electrode.
  • the single reference electrode included in the electrochemical sensor of the present invention may mean one reference electrode.
  • the working electrode is an electrode where a reaction occurs, and has the purpose of flowing a current during the electrode reaction, and the reaction occurring in the electrode is also called a cathode/anode according to the oxidation/reduction reaction.
  • the working electrode in one or a plurality of embodiments, gold (Au); silver (Ag); copper (Cu); platinum (Pt); titanium (Ti); nickel (Ni); tin (Sn); molybdenum (Mo); palladium (Pd); cobalt (Co); and alloys thereof; pyrolytic graphite; Glassy carbon (galssy carbon); carbon paste; perfluorocarbon (PFC); And at least one selected from the group consisting of carbon nanotubes (CNT), etc.
  • the materials used for the working electrode may be used alone, or two or more materials may be used as a multilayer film.
  • a material used as a conducting wire of the working electrode it may be a silver-palladium-copper alloy (Ag-Pd-Cu; APC), and the working electrode may be a carbon paste, and an electrode protective layer Silver is preferably ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the plurality of working electrodes may mean two, three, four, or five or more working electrodes.
  • At least one of the plurality of working electrodes may be formed with a predetermined spacing around the single reference electrode, and “interelectrode distance”, which means the distance from at least one of the plurality of working electrodes to the reference electrode, is [Equation 1] is satisfied.
  • the distance between the electrodes of the electrochemical sensor of the present invention may be 50 ⁇ m to 5 mm, preferably 200 ⁇ m to 3.0 mm, and more preferably 300 ⁇ m to 2.0 mm. If the distance between the working electrode and the reference electrode is less than 50 ⁇ m, there is a possibility that a measurement error may occur due to a short circuit between the reference electrode and the working electrode. becomes smaller
  • the electrochemical sensor of the present invention may further include a counter electrode or an electrode protective layer in addition to the working electrode and the reference electrode.
  • the counter electrode serves to send or receive a current so that a reaction occurs on the surface of the working electrode. That is, in the flow of current, exchange occurs between the counter electrode and the working electrode, and oxidation and reduction reactions occur.
  • the reference electrode serves as a feedback sensor to measure and monitor the potential of the counter electrode and maintain it in a constant state.
  • the counter electrode is the working electrode and All materials described in the reference electrode of the above item may be used, and it is preferable to use the same material as the working electrode and/or the reference electrode in order to simplify the process and improve the manufacturing cost.
  • the electrochemical sensor manufacturing method of the present invention comprises the steps of: (a) forming a plurality of working electrodes on a substrate;
  • the method may include a step (b) of forming a single reference electrode on the substrate, and a distance between at least one of the plurality of working electrodes and the reference electrode may satisfy Equation 1 below.
  • the steps (a) and (b) may be performed including one or more processes selected from the group consisting of screen printing, letterpress printing, engraving printing, lithography, and photolithography.
  • the steps (a) and (b) perform a photolithography process to form a wiring part, and each electrode is formed by screen printing, letterpress printing, engraving printing, And it may be performed by any one selected from the group consisting of lithographic printing, preferably screen printing.
  • the photolithography may be a method capable of integrally forming wiring by forming a carbon paste and/or a metal film on a substrate and patterning it through a mask.
  • the electrochemical sensor manufactured by the manufacturing method may exhibit all the characteristics described in the item ⁇ Electrochemical sensor>.
  • the present invention includes a method for measuring an electrochemical signal of a detection target material using the electrochemical sensor and/or the electrochemical sensor manufactured by the method for manufacturing the electrochemical sensor.
  • electrochemical signals of a plurality of detection target substances can be measured in a short time by simultaneously analyzing two or more different substances.
  • electrochemically measured refers to measurement by applying an electrochemical measurement method, and in one or more embodiments, an electric current measurement method, a potentiometric measurement method, a coulometric analysis method, etc. are mentioned, preferably For example, it may be an amperometric method.
  • the electrochemical sensor and/or the electrochemical sensor manufactured by the manufacturing method of the electrochemical sensor of the present invention may be to analyze two or more different substances at the same time.
  • the electrochemical sensor may be one capable of minimizing measurement error by obtaining an average value or a median value excluding the maximum and minimum values after acquiring a plurality of measurement signals.
  • applying a voltage to an electrode unit including the working electrode and the reference electrode after contact with the reagent, and emitting at the time of application may include measuring a value of the response current, and calculating an electrochemical signal of the substance to be detected in the sample based on the value of the response current.
  • the applied voltage is not particularly limited, but in one or a plurality of embodiments, it may be -500 to +500 mV, preferably -200 to +200 mV, based on the silver-silver chloride electrode (Ag/AgCl electrode). .
  • a voltage may be applied to the electrode unit after contact with the reagent and maintained in a non-applied state for a predetermined period of time, or with the reagent A voltage may be applied to the electrode portion simultaneously with the contact.
  • a part of the working electrode is in contact with a sample including a detection target material, and another sample including a detection target material different from the detection target material is applied to a part of the remaining working electrode. After the contact, a voltage may be applied to the electrode to measure the response current emitted respectively.
  • the Measurement error can be minimized by obtaining a plurality of response current values and measuring the average value excluding the maximum and minimum values, or obtaining an intermediate value excluding the maximum and minimum values after acquiring the plurality of response current values .
  • the present disclosure includes an electrochemical sensor of the present disclosure, a means for applying a voltage to an electrode part of the electrochemical sensor, and a means for measuring a current in the electrode part, in a sample
  • an electrochemical signal measuring system for measuring an electrochemical signal of a detection target substance.
  • the system for measuring an electrochemical signal of a substance to be detected of the present disclosure in order to measure the electrochemical signal of a substance to be detected in a sample using the electrochemical sensor of the present disclosure, by simultaneously analyzing two or more different substances, in a short time Multiple substances can be measured.
  • it is possible to minimize the measurement error and shorten the measurement time by using a method of obtaining an average or median value excluding the maximum and minimum values after acquiring multiple measurement signals at the same time.
  • the application means is not particularly limited as long as it conducts with the electrode portion of the electrochemical sensor and can apply a voltage, and a known application means can be used.
  • the application means may include, in one or more embodiments, a contact capable of contacting the electrode portion of the electrochemical sensor, and a power source such as a DC power supply.
  • the measuring means is for measuring a plurality of currents in the electrode portion generated at the time of voltage application, and in one or more embodiments, a response current value correlating with the amount of electrons emitted from the electrode portion of the electrochemical sensor As long as it is measurable, a conventional or later developed electrochemical sensor may be used.
  • Electrochemical sensors corresponding to Examples and Comparative Examples were manufactured through the following manufacturing method.
  • Example 1 As shown below, the glucose sensor of Example 1 of the same structure as the glucose sensor shown in FIG. 1 was produced.
  • an Ag alloy layer with a thickness of about 2000 ⁇ and an IZO metal protective layer with a thickness of about 500 ⁇ were patterned using a photolithography method, and then a carbon paste electrode layer (including Prussian blue) with a thickness of about 10 ⁇ m was printed by screen printing.
  • a working electrode was formed by sequentially stacking an enzyme reaction layer on which glucose oxidase was immobilized with chitosan.
  • a biosensor was prepared by forming an Ag/AgCl reference electrode on the substrate spaced apart from the working electrode.
  • the distance between the two electrodes was set to 1 mm, and a sensor having four working electrodes was fabricated as shown in FIG. 1 .
  • the manufacturing method was the same as in Example 1, and the distance between electrodes was 0.5 mm, and a sensor having four working electrodes was manufactured.
  • the manufacturing method was the same as in Example 1, and the distance between electrodes was 0.5 mm, and a sensor having 6 working electrodes was manufactured.
  • the manufacturing method was the same as in Example 1, the distance between electrodes was 1 mm, and a sensor having one working electrode was manufactured.
  • the manufacturing method was the same as in Example 1, the distance between the electrodes was 10 mm, and a sensor having four working electrodes was manufactured.
  • a sample obtained by dissolving 0.1-0.3 mM glucose in phosphate-buffered saline (PBS) was prepared and measured.
  • the volume of the sample used is 30ul, but it is not limited as long as it is a sufficient amount applied to the electrode surface and applied on the reference electrode and the working electrode.
  • the current value at 30 seconds obtained by measuring this using a potentiostat was converted into a concentration, and is shown in Table 1 below. However, it is not limited to the current value in 30 seconds, and the voltage applied at this time was -100mV.
  • Example 1 1mm 4 0.991 4.25%
  • Example 2 0.5mm 4 0.995 3.60%
  • Example 3 0.5mm 6 0.996 2.57% Comparative Example 1 1mm One 0.909 11.9% Comparative Example 2 10mm 4 0.875 15.3%
  • FIG. 3 is a graph showing the measurement results of Example 1 and Comparative Example 1, and it can be seen that the case of Example 1 has improved accuracy and precision than the case of Comparative Example 1. Therefore, it can be confirmed that the electrochemical sensor having a plurality of working electrodes and an inter-electrode distance disclosed in the present invention exhibits an effect of improving accuracy and precision.
  • the electrochemical sensor of the present invention by forming a plurality of working electrodes with a predetermined separation distance from the reference electrode, it is possible to acquire a plurality of measurement signals at a time and analyze them, thereby improving measurement accuracy and measurement precision. There is a possibility of use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

기판; 상기 기판상에 형성되는 복수의 작업전극; 상기 기판상에 형성되는 단수의 기준전극을 포함하며, 상기 단수의 기준전극과 기준전극 주위에 형성되는 상기 복수의 작업전극간의 이격거리가 하기 식 1을 만족하는 전기화학센서 및 이의 제조방법에 대한 것이다. [식 1] 50㎛ ≤ 전극간 거리 ≤ 5㎜

Description

전기화학센서 및 이의 제조방법
본 발명은 전기화학센서 및 이의 제조방법에 관한 것이다.
인체의 병원균을 높은 민감도와 특이도로 감지하는 기술은 초기 진단 및 질병 치료에 매우 필요한 기술이다. 조기에 질병을 진단 함으로써, 환자들의 질병 악화로 인해 발생할 수 있는 비용 부담을 대폭 줄이고, 치료의 효과를 더욱 높일 수 있다.
센서는 측정 용액의 성분 농도에 따라 전위가 변하게 되어 전극 반응 시 전류를 흐르게 하는 목적을 지니는 작업전극과 전위가 일정하며, 작업전극의 발생 전위를 얻기 위한 전위의 기준이 되는 기준전극으로 구성된 2전극계, 작업전극의 표면에서 반응이 일어나도록 전류를 보내거나 받는 상대전극을 더 포함하는 3전극계 등으로 구분될 수 있다.
통상의 센서는 strip 내에 한 개의 센서만을 보유하는데, 이 때문에 사용자의 샘플링 오류 및 제조불량 등으로 잘못된 측정신호를 받을 가능성이 존재하는 문제점이 있다.
이러한 문제를 해결하기 위하여 종래의 센서는 다수의 전극 시스템을 도입하는 방법에 대한 연구를 해 왔으나. 종래 센서에 응용되는 전극 시스템은 시료에 포함된 하나 이상의 성분을 검출하기 위해서는 하나 이상의 기준전극이 필요한 문제점이 있었다. 예를 들어, 종래 기술은 여러 종류의 항원을 검출하기 위해서는 각 검출부마다 측정을 위한 기준전극을 구비할 필요가 있었고, 여러 개의 기준전극을 사용할 경우 전극 시스템 또는 이를 포함하는 바이오센서에 대한 보관이 어렵고, 측정 편차가 커지는 문제점이 있었다.
이러한 문제를 해결하기 위하여, 등록특허 제 10-1541798호는 산화환원전위를 알고 있는 기준용액의 측정을 통해 조건 변화에 따른 측정오차를 보정하기 위한 기술을 개시하고 있으나, 당화헤모글로빈에 특이적 결합 가능한 부위를 포함하고 외부로부터 전압 및 전류의 공급 없이 당화헤모글로빈 결합에 의해 산화환원 반응전위가 변하는 분자들을 포함한다는 점에서, 범용적인 전기화학센서에는 사용이 곤란하다는 문제점이 있다.
이러한 문제를 해결하기 위하여 본 발명은, 동일한 기준전극을 사용하는 다수의 작업전극을 상기 기준전극 주위에 일정한 이격거리로 형성함으로써, 다수의 측정신호를 취득 및 분석하여 측정 산포를 최소화 함으로써, 측정 정확도 및 측정 정밀도를 향상시킬 수 있는 전기화학센서 및 이의 제조방법을 제공하는 것을 발명의 목적으로 한다.
본 발명은 기판; 상기 기판 상에 형성되는 복수의 작업전극; 상기 기판 상에 형성되는 단수의 기준전극을 포함하며, 상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서를 제공한다.
또한, 본 발명은 기판 상에 복수의 작업전극을 형성하는 단계(a); 상기 기판 상에 단수의 기준전극을 형성하는 단계(b)를 포함하며, 상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서 제조방법을 제공한다.
[식 1]
50㎛ ≤ 전극간 거리 ≤ 5㎜
본 발명의 전기화학센서는 다수의 작업전극을 형성하여 한번에 다수의 측정신호를 취득 및 분석하여 측정 산포를 최소화 함으로써, 측정 정확도 및 측정 정밀도를 향상시키기 위한 전기화학센서를 구현할 수 있도록 한다.
또한, 복수의 작업전극이 서로 다른 물질을 각각 측정할 수 있다는 측면에서, 측정시간 단축 및 측정절차의 간소화의 측면에서 더욱 향상된 효과를 갖는다.
더욱이, 기준전극 주위를 둘러싸는 복수의 작업전극이 기준전극과 일정한 이격거리를 가짐으로써, 측정 산포를 최소화할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 전기화학센서의 평면도이다.
도 2는 본 발명의 일 실시예에 따른 작업전극 배치 형태를 나타낸 도이다.
도 3은 실시예 1과 비교예 1의 측정결과를 나타낸 그래프이다.
본 발명은 단수의 기준전극 주위에 일정한 이격거리를 가지는 복수의 작업전극을 포함하는 전기화학센서에 관한 발명으로, 상기 전기화학센서의 제조방법을 포함한다. 본 발명의 전기화학센서는 단수의 기준전극 주위에 일정한 이격거리를 가지는 복수의 작업전극을 포함함으로써 한번에 다수의 측정신호를 취득하여 최대, 최소값을 제외하고 평균값 또는 중간값을 구하는 방법으로 측정 오차를 최소화 할 수 있으며, 서로 다른 둘 이상의 물질을 동시에 분석 가능하게 함으로써, 측정시간 단축 및 측정절차의 간소화라는 이점이 있다.
본 발명의 전기화학센서 및 그 제조방법에 있어서, 검출 대상 시료는, 혈액, 체액, 뇨, 타액, 눈물, 땀 등의 생체시료일 수 있으며, 그 외의 액체시료일 수 있고, 이에 한정되는 것은 아니다.
본 발명의 전기화학센서 및 그 제조방법에 있어서, 검출 대상 물질은 글루코스(glucose), 젖산(lactate), 콜레스테롤, 비타민 C(ascorbic acid), 알코올, 각종 양이온, 각종 음이온일 수 있으며, 이에 한정되는 것은 아니다.
보다 상세하게는, 본 발명은 기판; 상기 기판 상에 형성되는 복수의 작업전극; 상기 기판 상에 형성되는 단수의 기준전극을 포함하며, 상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서에 관한 것이다.
또한, 본 발명은 기판 상에 복수의 작업전극을 형성하는 단계(a); 상기 기판 상에 단수의 기준전극을 형성하는 단계(b)를 포함하며, 상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서 제조방법에 관한 것이다.
[식 1]
50㎛ ≤ 전극간 거리 ≤ 5㎜
이하, 본 발명의 이점 및 특징, 그리고 그것을 달성하기 위한 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다.
<전기화학센서>
본 발명의 전기화학센서는 작업전극과 기준전극을 포함하는 전기화학센서라면, 특별히 한정되지 않으며, 특히 단수의 기준전극 주위에 일정한 이격거리를 가지는 복수의 작업전극을 포함하는 것을 특징으로 한다.
구체적으로 도 1은 본 발명의 일 실시예에 따른 1개의 기준전극(30)과 4개의 작업전극(20)을 포함하는 전기화학센서를 모식화한 평면도이다. 도 1을 참조하면, 본 발명의 전기화학센서는, 기판(10)의 상면 상에 구비된 작업전극(20), 기준전극(30) 및 배선부(40)를 포함하며, 상기 작업전극(20)의 상면 상에 효소 반응층(도시하지 않음)을 구비하는 것일 수 있다. 4개의 작업전극(20)은 각각의 작업전극(20)을 연결한 가상의 선이 이루는 도형이 정사각형의 형태를 이루며, 1㎜의 이격거리를 가지고 1개의 기준전극(30) 주위에 형성된 작업전극(20)을 포함할 수 있다.
도 2는 본 발명의 일 실시예에 따른 6개의 작업전극(20)을 포함하는 전극 배치 형태를 나타낸 도이다. 도 2를 참조하면, 본 발명의 전기화학센서에 포함되는 6개의 작업전극(20)은 각각의 작업전극(20)을 연결한 가상의 선이 이루는 도형이 정육각형의 형태를 이루며, 0.5mm의 이격거리를 가지고 기준전극(30) 주위에 형성된 작업전극(20)을 포함할 수 있다. 상기 작업전극(20)의 상면 상에는 효소 반응층(50)이 구비될 수 있다.
본 발명의 전기화학센서에 포함되는 복수의 작업전극의 배치 형태는 일정한 형태로 제한되는 것은 아니며, 도 1 및 도 2에 나타난 형태뿐만 아니라 선형, 다각형 등 다양한 형태로 제작될 수 있다.
이하 본 발명의 전기화학센서의 구조를 구성 별로 설명한다.
기판
상기 기판은 상기 전기화학센서를 구성하는 구성요소들의 구조적인 기지(base)를 제공하는 역할을 수행한다.
본 발명의 기판의 재질은 종래 또는 이후에 개발되는 것을 사용할 수 있고, 특별히 제한되는 것은 아니며, 실리콘, 유리, 유리에폭시, 세라믹, 폴리에틸렌나프탈레이트(PET), 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알코올계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름 및 폴리이미드 중 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
기준전극
상기 기준 전극은 전위가 일정하며 작업전극의 발생전위를 얻기 위한 전위의 기준이 되는 전극으로, 은-염화은(Ag/AgCl) 전극, 칼로멜(calomel) 전극, 수은-황산수은(mercury sulfate) 전극, 및 수은-산화수은(mercury-oxide mercury) 전극 등으로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으며, 온도 사이클에 대한 전위의 히스테리시스가 덜하고, 고온까지 전위가 안정하다는 점을 고려할 때, 은-염화은(Ag/AgCl) 전극인 것이 바람직하다. 이외에 하기 작업전극에 사용하는 카본페이스트를 동일하게 사용하는 경우도 가능하다.
본 발명의 전기화학센서에 포함되는 단수의 기준전극은 1개의 기준전극을 의미할 수 있다.
작업전극
상기 작업전극은 반응이 일어나는 전극으로, 전극 반응 시 전류를 흐르게 하는 목적을 지니며, 전극에서 일어나는 반응이 산화/환원반응에 따라 음극/양극으로 불리기도 한다. 상기 작업전극은 1 또는 복수의 실시 형태에 있어서, 금(Au); 은(Ag); 구리(Cu); 백금(Pt); 티타늄(Ti); 니켈(Ni); 주석(Sn); 몰리브덴(Mo); 팔라듐(Pd); 코발트(Co); 및 이들의 합금; 파이로리틱그래파이트(pyrolytic graphite); 글래시카본(galssy carbon); 카본페이스트 (carbon paste); 퍼플루오로카본(PFC); 및 카본나노튜브(CNT) 등으로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 제작의 용이성, 재현의 우수성, 넓은 산화/환원 방향의 전위창을 고려할 때 카본페이스트(carbon paste)인 것이 바람직하다. 상기 작업전극에 사용되는 물질들은 단독으로 사용해도 좋고, 2개 이상의 재료를 다층막으로 사용해도 좋다. 일 실시예로, 상기 작업전극의 도선으로 사용되는 물질로써, 바람직하게는 은-팔라듐-구리 합금(Ag-Pd-Cu; APC)일 수 있으며, 작업전극은 카본페이스트일 수 있고, 전극 보호층은 ITO(Indium Tin Oxide) 또는 IZO(Indium Zinc Oxide)인 것이 바람직하다.
본 발명의 전기화학센서에서 복수의 작업전극은 2개, 3개, 4개, 또는 5개 이상의 작업전극을 의미할 수 있다.
상기 복수의 작업전극 중 하나 이상은 상기 단수의 기준전극 주위에 일정한 이격거리를 가지며 형성될 수 있으며, 상기 복수의 작업전극 중 하나 이상으로부터 기준전극까지의 거리를 의미하는 “전극간 거리”는 하기 [식 1]을 만족한다.
[식 1]
50㎛ ≤ 전극간 거리 ≤ 5㎜
상기 식 1에 나타낸 대로, 본 발명의 전기화학센서의 전극간 거리는 50㎛ 내지 5mm이며, 바람직하게는 200㎛ 내지 3.0mm일 수 있고, 더욱 바람직하게는 300㎛ 내지 2.0mm일 수 있다. 작업전극과 기준전극간의 거리가 50㎛ 미만인 경우에는 기준전극과 작업전극간의 단락으로 인해 측정 오류가 발생할 가능성이 있으며, 5㎜를 초과하는 경우에는 센서의 측정시간 지연 및 용액 저항 증가로 측정값이 작아지게 된다.
상대전극
본 발명의 전기화학센서는 상기 작업전극과 기준전극에 더하여 상대전극 내지 전극 보호층을 더 포함할 수 있다.
상기 상대전극은 작업전극의 표면에서 반응이 일어나도록 전류를 보내거나 받는 역할을 수행한다. 즉, 전류의 흐름은 주로 상대전극과 작업전극에서 교환이 일어나면서 산화, 환원반응이 발생하고 이때 기준전극은 상대전극의 전위를 측정 감시하여 일정한 상태로 유지하기 위한 피드백 센서로서의 역할을 수행한다. 상기 상대전극은 상기 항목 작업전극 상기 항목 기준전극에서 서술한 모든 재료 등이 사용될 수 있으며, 공정단순화 및 제조 원가 개선을 위해 상기 작업전극 및/또는 상기 기준전극과 동일한 재료를 사용하는 것이 바람직하다.
<전기화학센서 제조방법>
본 발명의 전기화학센서 제조방법은 기판 상에 복수의 작업전극을 형성하는 단계(a); 상기 기판 상에 단수의 기준전극을 형성하는 단계(b)를 포함할 수 있으며, 상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족할 수 있다.
[식 1]
50㎛ ≤ 전극간 거리 ≤ 5㎜
상기 단계(a) 및 단계(b)는 스크린 인쇄, 활판 인쇄, 음각 인쇄, 평판 인쇄 및 포토리소그래피(photolithography)로 이루어진 군에서 선택되는 하나 이상의 공정을 포함하여 수행되는 것일 수 있다. 1 또는 복수의 실시 형태에 있어서, 상기 단계(a)와 단계(b)는 포토리소그래피(photolithography)공정을 수행하여 배선부를 형성하는 것이 바람직하며, 각각의 전극은 스크린 인쇄, 활판 인쇄, 음각 인쇄, 및 평판 인쇄로 이루어진 군에서 선택되는 어느 하나로 수행될 수 있으며, 바람직하게는 스크린 인쇄일 수 있다.
상기 포토리소그래피(photolithography)는 기판 상에 카본 페이스트 및/또는 금속 막을 형성하고 마스크를 통해 이를 패터닝 함으로써 배선을 일체로 형성할 수 있는 방법일 수 있다.
상기 제조방법에 의해 제조되는 전기화학센서는 상기 항목 <전기화학센서>에서 서술한 모든 특성을 나타내는 것일 수 있다.
<전기화학적 신호 측정방법>
본 발명은 상기 전기화학센서 및/또는 상기 전기화학센서의 제조방법으로 제조된 전기화학센서를 이용한 검출 대상 물질의 전기화학적 신호 측정방법을 포함한다. 본 개시의 전기화학적 신호 측정방법에 의하면, 서로 다른 둘 이상의 물질을 동시에 분석 함으로써, 단시간에 복수개의 검출 대상 물질의 전기화학적 신호를 측정할 수 있다. 또한, 상기 복수의 작업전극으로부터 취득한 다수의 측정신호를 취득한 후 최대, 최소값을 제외하고 평균값 또는 중간값을 구하는 방법으로 측정오차를 최소화 할 수 있다.
본 명세서에 있어서 「전기 화학적으로 측정한다」란, 전기 화학적인 측정 수법을 적용하여 측정하는 것을 말하며, 1 또는 복수의 실시 형태에 있어서, 전류 측정법, 전위차 측정법, 전량 분석법 등을 들 수 있고, 바람직하게는 전류 측정법일 수 있다.
본 발명의 상기 전기화학센서 및/또는 상기 전기화학센서의 제조방법으로 제조된 전기화학센서는 서로 다른 둘 이상의 물질을 동시에 분석하는 것일 수 있다.
또한, 상기 전기화학센서는 다수의 측정신호를 취득한 후 최대, 최소값을 제외하고 평균값 또는 중간값을 구하는 방법으로 측정오차를 최소화 할 수 있는 것일 수 있다.
본 개시의 검출 대상 물질의 전기화학적 신호 측정방법은, 그 외의 실시 형태에 있어서, 상기 시약과의 접촉 후에 상기 작업전극과 기준전극을 포함하는 전극부에 전압을 인가하는 것, 상기 인가 시에 방출되는 응답 전류치를 측정하는 것, 및, 상기 응답 전류치에 기초하여 상기 시료 중의 검출 대상 물질의 전기화학적 신호를 산출하는 것을 포함할 수 있다. 인가 전압으로서는 특별히 제한되는 것은 아니나, 1 또는 복수의 실시 형태에 있어서, 은-염화은 전극(Ag/AgCl 전극)을 기준으로, -500 내지 +500mV일수 있으며 바람직하게는 -200 내지 +200 mV일수 있다.
본 개시의 검출 대상 물질의 전기화학적 신호 측정방법은, 그 외의 실시 형태에 있어서, 상기 시약과 접촉 후 소정 시간 비인가의 상태로 유지한 후, 상기 전극부에 전압을 인가해도 되고, 상기 시약과의 접촉과 동시에 전극부에 전압을 인가해도 된다.
본 개시의 검출 대상 물질의 전기화학적 신호 측정방법은, 상기 작업전극의 일부에 검출 대상 물질을 포함한 시료를 접촉하고, 나머지 작업전극의 일부에는 상기 검출 대상 물질과 상이한 검출 대상 물질을 포함한 다른 시료를 접촉한 뒤, 전극부에 전압을 인가하여 각각 방출되는 응답 전류치를 측정할 수 있다.
본 개시의 검출 대상 물질의 전기화학적 신호 측정 방법은 상기 복수의 작업 전극에 시료를 접촉한 뒤, 전극부에 전압을 인가하는 것, 상기 인가 시에 방출되는 복수의 응답 전류치를 측정하는 것, 상기 복수의 응답 전류치를 취득한 후 최대, 최소값을 제외하고 평균값을 측정하는 것, 또는 상기 복수의 응답 전류치를 취득한 후 최대, 최소값을 제외하고 중간값을 구하는 방법으로 측정 오차를 최소화 할 수 있는 것일 수 있다.
<전기화학적 신호 측정 시스템>
본 개시는, 또한 그 외의 형태로서, 본 개시의 전기화학센서와, 상기 전기화학센서의 전극부에 전압을 인가하는 수단과, 전극부에 있어서의 전류를 측정하기 위한 수단을 포함하는, 시료 중의 검출 대성 물질의 전기화학적 신호를 측정하기 위한 전기화학적 신호 측정 시스템에 관한 것이다. 본 개시의 검출 대상 물질의 전기화학적 신호 측정 시스템에 의하면, 본 개시의 전기화학센서를 이용하여 시료 중의 검출 대상 물질의 전기화학적 신호를 측정하기 위해, 서로 다른 둘 이상의 물질을 동시에 분석함으로써, 단시간에 복수 물질의 측정이 가능해 진다. 또한, 다수의 측정 신호를 동시에 취득한 후 최대, 최소값을 제외하고 평균값 또는 중간값을 구하는 방법을 이용하여, 측정 오차를 최소화, 측정시간 단축이 가능해 진다.
인가 수단으로서는, 전기화학센서의 전극부와 도통하고, 전압을 인가 가능하면 특별히 제한되는 것은 아니며, 공지의 인가 수단을 사용할 수 있다. 인가 수단으로서는, 1 또는 복수의 실시 형태에 있어서, 전기화학센서의 전극부와 접촉 가능한 접촉자, 및 직류 전원 등의 전원 등을 포함할 수 있다.
측정 수단은, 전압 인가 시에 발생한 전극부에 있어서의 복수의 전류를 측정하기 위한 것으로서, 1 또는 복수의 실시 형태에 있어서, 전기화학센서의 전극부로부터 방출되는 전자의 양에 상관하는 응답 전류치를 측정 가능한 것이면 되고, 종래 또는 이후 개발되는 전기화학센서로 사용되고 있는 것을 사용할 수 있다.
이하, 구체적으로 본 발명의 실시예를 기재한다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조부호는 동일 구성 요소를 지칭한다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않은 한 복수형도 포함한다.
명세서에서 사용되는 포함한다(comprises) 및/또는 포함하는(comprising)은 언급된 구성요소, 단계, 동작 및/또는 소자 이외의 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는 의미로 사용한다.
이하, 본 발명의 바람직한 실시 예를 상세히 설명하면 다음과 같다.
<실시예 및 비교예>
하기의 제조방법을 통해 실시예 및 비교예에 해당하는 전기화학센서를 제조하였다.
실시예 1
이하에 나타내는 바와 같이 하여, 도 1에 나타내는 글루코스 센서와 같은 구조의 실시예 1의 글루코스 센서를 제작했다.
기판 상에 약 2000Å 두께의 Ag 합금층과 약 500Å 두께의 IZO 금속 보호층은 포토리소그래피 법을 이용하여 패터닝 한 후 약 10㎛ 두께의 카본 페이스트 전극층(프러시안블루 포함)을 스크린인쇄법으로 인쇄하였다. 이 위에 글루코스 산화효소가 키토산으로 고정된 효소 반응층을 순서대로 적층하여 작업 전극을 형성하였다.
기판 상에 작업 전극과 이격하여 Ag/AgCl 기준 전극을 형성하여 바이오 센서를 준비하였다.
이때 두 전극간 이격거리는 1mm로 하였으며, 도1과 같이 4개의 작업 전극을 갖는 센서를 제작 하였다.
실시예 2
제조방법은 실시예 1과 동일하게 하고 전극간 이격거리를 0.5mm, 4개의 작업전극을 갖는 센서를 제작하였다.
실시예 3
제조 방법은 실시예 1과 동일하게 하고 전극간 이격거리를 0.5mm, 6개의 작업전극을 갖는 센서를 제작하였다.
비교예 1
제조 방법은 실시예 1과 동일하게 하고, 전극간 거리를 1mm로 하였으며, 1개의 작업전극을 갖는 센서를 제작하였다.
비교예 2
제조 방법은 실시예 1와 동일하게 하고, 전극간 거리를 10mm로 하였으며, 4개의 작업전극을 갖는 센서를 제작하였다.
<실험예>
상기의 실시예 및 비교예로 제작된 센서를 아래의 방법으로 측정하였다.
시료로는 0.1~0.3mM의 글루코스를 인산완충식염수(PBS)에 용해한 시료를 만들어 측정하였다. 이때 사용되는 시료의 부피는 30ul이지만 이는 전극 표면에 도포한 충분한 양으로 기준전극과 작업전극 위에 도포되는 양이라면 한정되지 않는다. 이를 전위가변기(potentiostat)을 이용하여 측정하여 얻어지는 30초에서의 전류값을 농도로 환산 하여, 하기 표 1에 나타내었다. 그러나 30초에서의 전류값에 한정되는 것은 아니며, 이때 가해지는 전압은 -100mV였다.
전극간 거리 작업전극 개수 R2
(정확성)
%RSD(0.2mM Glucose)
(정밀성)
실시예1 1㎜ 4 0.991 4.25%
실시예2 0.5mm 4 0.995 3.60%
실시예3 0.5mm 6 0.996 2.57%
비교예1 1㎜ 1 0.909 11.9%
비교예2 10㎜ 4 0.875 15.3%
전극간 거리가 본 발명의 개시된 범위에 해당하는 실시예 1 내지 3의 전기화학센서를 이용하여 글루코스 농도를 측정한 경우, 결정 계수(coefficient of determination; R2)가 0.991 이상으로 작업전극이 1개인 비교예 1 및 전극간 거리가 본 발명의 개시범위를 벗어나는 비교예 2 대비 정확성이 향상된 것을 확인할 수 있다. 또한, 상대 표준 편차(Relative Standard Deviation; RSD)의 백분율을 보면 실시예 1 내지 3의 경우가 비교예 1 내지 2의 경우보다 우수한 정밀성을 보이는 것을 확인할 수 있다. 구체적으로, 도 3은 실시예 1과 비교예 1의 측정결과를 나타낸 그래프이며, 실시예 1의 경우가 비교예 1의 경우보다 정확성과 정밀성이 개선된 것을 확인할 수 있다. 따라서, 본 발명이 개시하고 있는 전극간 거리와 복수의 작업전극을 구비하고 있는 전기화학센서의 경우 정확성과 정밀성이 향상되는 효과를 나타내고 있음을 확인할 수 있다.
본 발명의 전기화학센서에 의하면, 다수의 작업전극을 기준전극과 일정한 이격거리를 두어 형성함으로써, 한번에 다수의 측정 신호를 취득하고, 이를 분석하여, 측정 정확도 및 측정 정밀도를 향상시킬 수 있어, 산업상 이용 가능성이 있다.

Claims (7)

  1. 기판;
    상기 기판 상에 형성되는 복수의 작업전극;
    상기 기판 상에 형성되는 단수의 기준전극을 포함하며,
    상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서.
    [식 1]
    50㎛ ≤ 전극간 거리 ≤ 5㎜
  2. 청구항 1에 있어서,
    상기 작업전극은 금(Au); 은(Ag); 구리(Cu); 백금(Pt); 티타늄(Ti); 니켈(Ni); 주석(Sn); 몰리브덴(Mo); 팔라듐(Pd); 코발트(Co); 및 이들의 합금; 파이로리틱그래파이트(pyrolytic graphite); 글래시카본(galssy carbon); 카본페이스트 (carbon paste); 퍼플루오로카본(PFC); 및 카본나노튜브(CNT)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 전기화학센서.
  3. 청구항 1에 있어서,
    상기 기준전극은 은-염화은(Ag/AgCl) 전극, 칼로멜(calomel) 전극, 수은-황산수은(mercury sulfate) 전극, 및 수은-산화수은(mercury-oxide mercury) 전극으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 전기화학센서.
  4. 청구항 1에 있어서,
    상기 작업전극은 서로 다른 둘 이상의 물질을 동시에 분석하는 것을 특징으로 하는 전기화학센서.
  5. 청구항 1에 있어서,
    상기 전기화학센서는 다수의 측정신호를 취득한 후 최대, 최소값을 제외하고 평균값 또는 중간값을 구하는 방법으로 측정오차를 최소화 할 수 있는 것을 특징으로 하는 전기화학센서.
  6. 기판 상에 복수의 작업전극을 형성하는 단계(a);
    상기 기판 상에 단수의 기준전극을 형성하는 단계(b)를 포함하며,
    상기 복수의 작업전극 중 하나 이상과 상기 기준전극의 거리가 하기 식 1을 만족하는, 전기화학센서 제조방법.
    [식 1]
    50㎛ ≤ 전극간 거리 ≤ 5㎜
  7. 청구항 6에 있어서,
    상기 단계(a) 및 단계(b)는 스크린 인쇄, 활판 인쇄, 음각 인쇄, 평판 인쇄 및 포토리소그래피(photolithography)로 이루어진 군에서 선택되는 하나 이상의 공정을 포함하는 것을 특징으로 하는, 전기화학센서 제조방법.
PCT/KR2021/002575 2020-03-04 2021-03-02 전기화학센서 및 이의 제조방법 WO2021177706A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180018815.0A CN115280141A (zh) 2020-03-04 2021-03-02 电化学传感器及其制造方法
US17/909,404 US20230116505A1 (en) 2020-03-04 2021-03-02 Electrochemical sensor and method for manufacturing same
JP2022552612A JP2023515683A (ja) 2020-03-04 2021-03-02 電気化学センサおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200027319A KR20210112137A (ko) 2020-03-04 2020-03-04 전기화학센서 및 이의 제조방법
KR10-2020-0027319 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177706A1 true WO2021177706A1 (ko) 2021-09-10

Family

ID=77612722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002575 WO2021177706A1 (ko) 2020-03-04 2021-03-02 전기화학센서 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20230116505A1 (ko)
JP (1) JP2023515683A (ko)
KR (1) KR20210112137A (ko)
CN (1) CN115280141A (ko)
WO (1) WO2021177706A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008883A (ko) * 1998-07-16 2000-02-15 정선종 니들형 센서 및 그 제조 방법
KR20070117993A (ko) * 2006-06-09 2007-12-13 한국생명공학연구원 간 수치 측정 장치 및 간 수치 측정 시스템
US20110048972A1 (en) * 2009-08-31 2011-03-03 Lifescan Scotland Limited Multi-analyte test strip with shared counter/reference electrode and inline electrode configuration
US20140151225A1 (en) * 2012-05-17 2014-06-05 Panasonic Corporation Electrochemical detector and method for producing same
KR20150097692A (ko) * 2012-12-21 2015-08-26 알레레 스위쩌란트 게엠베하 전기화학적 분석용 테스트 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541798B1 (ko) 2011-11-28 2015-08-04 에스디 바이오센서 주식회사 전위차분석법을 이용한 당화헤모글로빈 측정용 바이오센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008883A (ko) * 1998-07-16 2000-02-15 정선종 니들형 센서 및 그 제조 방법
KR20070117993A (ko) * 2006-06-09 2007-12-13 한국생명공학연구원 간 수치 측정 장치 및 간 수치 측정 시스템
US20110048972A1 (en) * 2009-08-31 2011-03-03 Lifescan Scotland Limited Multi-analyte test strip with shared counter/reference electrode and inline electrode configuration
US20140151225A1 (en) * 2012-05-17 2014-06-05 Panasonic Corporation Electrochemical detector and method for producing same
KR20150097692A (ko) * 2012-12-21 2015-08-26 알레레 스위쩌란트 게엠베하 전기화학적 분석용 테스트 장치

Also Published As

Publication number Publication date
KR20210112137A (ko) 2021-09-14
CN115280141A (zh) 2022-11-01
JP2023515683A (ja) 2023-04-13
US20230116505A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2010044525A1 (en) Electrochemical biosensor structure and measuring method using the same
Roberts et al. Fast scan cyclic voltammetry: Chemical sensing in the brain and beyond
JP4418030B2 (ja) 電気化学測定装置を用いて目的物質を検出または定量する方法、電気化学測定装置、および電気化学測定用電極板
US20080023327A1 (en) Strip electrode with conductive nano tube printing
WO2017039345A1 (ko) 헤모글로빈 및 당화 헤모글로빈의 동시 측정 일회용 전류식 검출방법
WO2020235919A1 (ko) 탄소나노튜브를 포함하는 생체신호 측정용 전기화학적 바이오 센서 및 이의 제조방법
WO2017039356A1 (ko) 전기화학적 검출방법에 의한 알레르겐 검출 장치
WO2013069895A1 (ko) 자가혈당측정기 및 이를 이용한 측정 이상 감지 방법
WO2021177706A1 (ko) 전기화학센서 및 이의 제조방법
JPWO2004051249A1 (ja) 分析用具
CN1234873C (zh) 血糖测试仪配套试纸及其制作方法
Kim et al. An intrinsically stretchable multi-biochemical sensor for sweat analysis using photo-patternable ecoflex
EP1226425A1 (en) Microscopic combination amperometric and potentiometric sensor
JP4283881B1 (ja) 電気化学測定用電極板、および当該電気化学測定用電極板を有する電気化学測定装置、ならびに当該電気化学測定用電極板を用いて目的物質を定量する方法
WO2019212159A1 (ko) 글루코스 센서
WO2014046318A1 (ko) 시료를 인식하는 방법 및 이를 이용한 바이오센서
WO2018117448A1 (ko) 타액을 이용한 진단 디바이스 및 이를 이용한 진단 방법
WO2013062209A1 (ko) 바이오센서
KR20210112008A (ko) 바이오센서 및 이의 제조방법
EP2498082A1 (en) Thin-film reference pseudo-electrode and method for the production thereof
WO2021033870A1 (ko) 바이오 센서
Yağmur Reduction behavior of olanzapine and its differential pulse voltammetric determination in human urine and pharmaceuticals
WO2017061727A1 (ko) 바이오 센서 및 그의 센싱 방법
WO2023101361A1 (ko) 글루코스 및 락테이트 동시측정 바이오 센서
WO2020166762A1 (ko) 소변을 이용하여 검출 가능한 바이오 전자센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764992

Country of ref document: EP

Kind code of ref document: A1