WO2021177030A1 - アルミニウム系ろう材、及びその製造方法、並びにセラミックス複合基板の製造方法 - Google Patents
アルミニウム系ろう材、及びその製造方法、並びにセラミックス複合基板の製造方法 Download PDFInfo
- Publication number
- WO2021177030A1 WO2021177030A1 PCT/JP2021/005850 JP2021005850W WO2021177030A1 WO 2021177030 A1 WO2021177030 A1 WO 2021177030A1 JP 2021005850 W JP2021005850 W JP 2021005850W WO 2021177030 A1 WO2021177030 A1 WO 2021177030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brazing material
- aluminum
- metal layer
- ceramic composite
- composite substrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
Definitions
- the present invention relates to an aluminum-based brazing material, a method for manufacturing the same, and a method for manufacturing a ceramic composite substrate using the aluminum-based brazing material.
- the joining technology using brazing material is widely used.
- the brazing material an Ag-Cu-Sn-based brazing material containing silver (Ag) as a main component and mixed with copper (Cu), tin (Sn), etc. for the purpose of lowering the melting point is known, but as it is. Since it is not possible to bond with ceramics, those containing about 2 at% of titanium (Ti) have been mainly used for the purpose of activating the bonding interface with ceramics and obtaining bonding strength. However, since it contains a large amount of Ag and Ti, there is a problem that the brazing material becomes very expensive and the cost required for joining becomes very high. Therefore, in recent years, various new brazing materials have been studied as solutions.
- Patent Document 1 Ti is 0.1 to 2.0 wt% and silicon (Si) is 0.07 to 12.0 wt%.
- An Al—Si—Ti ternary alloy brazing material is disclosed, which contains% and is characterized in that the balance is composed of aluminum (Al) and unavoidable impurities. According to Patent Document 1, it is described that as a brazing material using an inexpensive Al alloy, Si's Al oxidation antioxidant action and Ti's oxide film activating action can be utilized, and a highly reliable bonded body can be obtained. Has been done.
- Patent Document 1 does not specifically disclose a method for producing an aluminum-based brazing material.
- a method for producing an aluminum-based brazing material In order to reduce the price of brazing filler metal, in addition to using a low-priced metal, it is also one of the problems to apply a manufacturing method capable of reducing the cost and having excellent productivity. Further, in order to obtain a high-quality aluminum-based brazing material, it is also important to realize a configuration in which elements such as Ti selected for a predetermined purpose function effectively.
- an object of the present invention is a method for producing an aluminum-based brazing material, which is suitable for obtaining a high-quality aluminum-based brazing material and has excellent productivity, and an aluminum-based brazing material suitable for achieving high quality.
- the present invention provides a method for manufacturing a ceramic composite substrate using such an aluminum-based brazing material.
- the present invention comprises a step of producing a plating solution containing Al ions and Ti ions, and by immersing a base material and an electrode in the plating solution and energizing the base material, 0.01 at% or more and 10 at% or less on the base material.
- This is a method for producing an aluminum-based brazing material, which comprises a step of forming a first metal layer composed of Ti, a balance Al, and unavoidable impurities.
- the aluminum-based brazing material of the present invention is composed of Ti of 0.01 at% or more and 10 at% or less, the balance Al and unavoidable impurities, and has a first metal layer in which the Ti is uniformly distributed. Twice
- the first metal layer of the above-mentioned aluminum-based brazing material is arranged on the ceramic substrate and joined.
- the method for manufacturing a ceramic composite substrate of the present invention includes a step of arranging the first metal layer of the aluminum-based brazing material on the ceramic substrate and joining the ceramic composite substrate, and at least a second metal layer on the first metal layer.
- the second metal layer has a composition different from that of the first metal layer.
- the present invention provides a method for producing an aluminum-based brazing material, which is suitable for obtaining a high-quality aluminum-based brazing material and has excellent productivity, an aluminum-based brazing material suitable for achieving high quality, and such an aluminum-based brazing material. It is possible to provide a method for manufacturing a ceramic composite substrate used.
- Ceramic composite substrate External photograph of ceramic composite substrate (ceramic / Al-Ti / Zn / Ni plating film / Cu bonded body). External photograph of ceramic composite substrate (ceramic / Al-Ti bonded body). Cross-sectional TEM image of aluminum-based brazing material Electron diffraction image of aluminum-based brazing material External photograph of ceramic composite substrate (ceramic / Al-Ti bonded body, 10 mm square).
- One of the features of the present invention is a step of producing a plating solution containing Al ions and Ti ions, and a base material and an electrode are immersed in the plating solution and energized to obtain 0.01 at% on the base material.
- An aluminum-based brazing material Al- The point is to obtain Ti brazing material.
- Al and Ti are electrochemically active, and their reduction / precipitation potentials are relatively close to each other. Therefore, conventional manufacturing methods such as casting, kneading, and rolling easily oxidize and lose their activity, but when manufactured by electroplating using a non-aqueous plating solution, both metals can be precipitated at the same time.
- Ti obtained in a form inclusive of Al can be obtained as a metal in an active state, so that Ti functions effectively.
- Such a high-quality state can be realized by a simple method called electroplating as described above, so that the productivity is excellent, and since the main component of the brazing material is low-priced Al, the cost can be reduced.
- the brazing material in the present invention is defined as a metal material that can be bonded to both ceramics and metals. At this time, the joining includes a form in which the brazing material simply adheres, and since the brazing material itself is a metal, a technique called metallizing is also included.
- a ceramic composite substrate can be produced by the action of Ti by arranging the first metal layer thus obtained on the ceramic substrate and performing bonding. Since the main component is Al, which has a relatively low melting point, the occurrence of thermal strain at the bonding interface is small, and since Ti is evenly distributed throughout the brazing material, there is little variation in bonding strength, and bonding reliability is high.
- a ceramic composite substrate can be provided. Further, a ceramic composite substrate having a multi-layer structure can be obtained by going through a step of arranging and joining the first metal layer on the ceramic substrate and a step of laminating and joining at least the second metal layer. This second metal layer has a composition different from that of the first metal layer.
- the first metal layer is already a layer containing Al as a main component, the first metal layer and the second metal layer can be easily joined at a lower temperature, reducing the joining cost and at the joining interface. Thermal strain and stress can be reduced, that is, high bonding reliability can be obtained.
- the details of the method for producing an aluminum-based brazing material are shown below as a mode for carrying out.
- the first metal layer of the aluminum-based brazing material of the present invention is manufactured by an electrolytic method (electroplating).
- the first metal layer is a metal layer whose main component is Al, and Ti is uniformly distributed over the entire metal layer even when observed from a microscopic field of view. Therefore, hereinafter, the first metal layer of the aluminum-based brazing material may be described as Al—Ti brazing material, Al—Ti, or the like.
- the plating solution is a plating solution in which an aluminum salt is dissolved in a solvent such as dialkylsulfone or toluene, which can precipitate (plat) aluminum at a low temperature of 120 ° C. or lower, and plating consisting of an imidazolium salt or the like and an aluminum salt.
- a solvent such as dialkylsulfone or toluene
- plating consisting of an imidazolium salt or the like and an aluminum salt.
- Examples thereof include a liquid, a plating liquid obtained by melting potassium chloride, sodium chloride and an aluminum salt at a high temperature, which can be precipitated at a high temperature of 200 ° C. or higher.
- Ti ions For Ti ions, after preparing the above-mentioned plating solution containing Al ions, (a) a metal salt such as titanium tetrachloride is mixed, (b) metallic titanium is immersed in the solution, and (c) metallic titanium and another. Titanium is contained as ions in the plating solution by immersing a pair of metal plates in the liquid and dissolving the metal titanium by passing a DC current with the metal titanium as the anode and the pair of metal plates as the cathode. Let me. The amount of Ti contained in the plating solution is determined according to the amount of Ti contained in the Al—Ti brazing material.
- the amount of Ti referred to here refers to the ratio of Al and Ti to the amount of substance in the Al—Ti brazing material or the plating solution.
- a cathode (base material) and an anode electrode are prepared, and a direct current is passed between both electrodes to obtain 0.01 at% or more and 10 at% or less on the base material.
- a first metal layer (Al—Ti) composed of Ti, the balance Al, and unavoidable impurities is formed.
- the base material on which Al-Ti is formed can be used as it is as a product (as integrated with Al-Ti), or the Al-Ti portion is peeled off from the base material and used as a single Al-Ti. You can also do it.
- aluminum or titanium is used for the anode electrode.
- As the shape a plate-shaped or foil-shaped one, or an insoluble case filled with a ball-shaped or pellet-shaped one can be used, and not only one kind of metal but also a plurality of metals are used side by side. May be good.
- the metal of the anode plays a role of replenishing the metal ions consumed at the cathode into the liquid by being dissolved by energization. Therefore, for example, if both aluminum and titanium are installed as the anode, Al-Ti can be produced. It is convenient because Al ions and Ti ions in the liquid consumed by the metal are replenished at the same time.
- various metal materials other than aluminum and titanium can be used depending on the target product form.
- aluminum, zinc, nickel, copper or the like in a form in which Al—Ti is integrated aluminum foil, zinc foil, nickel plate, copper plate, nickel-plated copper plate or the like may be used as it is for the cathode.
- titanium, stainless steel, or the like may be used as the cathode as a substrate that can be easily peeled off.
- the shape of these base materials may be a wire, a rod, a powder, a long plate or a coil wound with foil, a sheet of any size, or a case where it is continuously peeled off to obtain Al-Ti as a simple substance.
- a cylindrical material made of a material that can be easily peeled off may be used.
- the base material is unwound from the coil and immersed in a plating solution, and the aluminum-based brazing material on which the first metal layer is formed is wound up in a coil shape. , Since continuous processing is possible, it contributes to productivity improvement.
- the current density of the current flowing through the electrodes when manufacturing Al-Ti is adjusted according to the thickness, manufacturing speed, and appearance of the desired Al-Ti.
- the current density is generally about 80 to 600 mA / cm 2.
- the thickness of Al—Ti to be produced can be controlled not only by the current density but also by the energization time. Considering the use as a brazing material, the thickness of Al—Ti is appropriately about 0.5 to 100 ⁇ m, and the current density and time may be adjusted according to these necessary requirements.
- the Al-Ti precipitated on the substrate may then be washed with the plating solution and dried as it is for use as a product, or may be subjected to heat treatment for tempering (removal of residual stress, removal of cleaning liquid, etc.). ,
- the product may be produced after acid / alkali cleaning for removing the surface oxide film.
- FIG. 1 shows a cross-sectional observation of the crystal structure and composition distribution of the aluminum-based brazing material obtained by the above manufacturing method. The observation was performed using a scanning electron microscope (JSM-7900F, manufactured by JEOL Ltd.) with an acceleration voltage of 5 kV and a field of view of 3000 times. According to FIG. 1A, the crystal structure of the aluminum-based brazing material having an acceleration voltage of 5 kV and 3000 times is fine columnar crystals. The crystal size changes depending on the Ti content, and the larger the amount, the finer the columnar crystals. Further, Ti was uniformly distributed throughout the element mapping result of FIG. 1 (b), and it was confirmed from the result of the line analysis of FIG.
- JSM-7900F scanning electron microscope
- the content varies depending on the production conditions. However, carbon (C), O, sulfur (S), and chlorine (Cl) are contained.
- the amount of Ti contained in Al—Ti is preferably 0.01 to 10 at%. Since Ti has a role of allowing Al to wet and spread on ceramics, it is desirable that the content is high, but if it exceeds 10 at%, the Al-Ti brazing material itself becomes brittle and can be used as a brazing material. It will be difficult.
- the aluminum-based brazing material obtained by the production method of the present invention is composed of Ti of 0.01 at% or more and 10 at% or less, the balance Al and unavoidable impurities, and the Ti is uniformly distributed. It has a metal layer.
- the first metal layer (Al—Ti) of the aluminum-based brazing material manufactured by the above method is arranged on the ceramic substrate and joined.
- Al—Ti is melted by heat treatment at a temperature of 660 ° C. to 800 ° C. and a holding time of 1 to 120 minutes in an environment of an inert atmosphere such as a vacuum atmosphere, a nitrogen gas atmosphere, or an argon gas atmosphere.
- the temperature of the heat treatment may be set to a temperature equal to or higher than the melting point (about 660 ° C.) when Al—Ti alone is used, and higher than the eutectic point when it is integrated with other metals. Then, when cooled, Al—Ti solidifies, and a ceramic / Al—Ti bonded body in which the ceramic substrate and Al—Ti are integrated, that is, a ceramic composite substrate can be obtained. At this time, in order to suppress the positioning of Al—Ti and the formation of voids at the interface between the ceramics and Al—Ti, a weight or the like may be placed on Al—Ti for weighting.
- a method is possible in which a boron nitride (BN) plate or the like, which is difficult to bond with Al—Ti, is placed and weighted with a weight or the like from above.
- the surface composition of the ceramics it is desirable that the ceramics are in a clean state in which no components such as oil that deteriorate the wettability with Al—Ti remain.
- methods such as cleaning, degreasing, high-temperature heat treatment, and surface polishing can be used.
- the surface shape is not particularly limited, and for example, one having an arithmetic mean roughness Ra of 0.03 ⁇ m or more may be used. It is desirable to remove the oxide film on the surface of Al-Ti before use.
- the multilayer structure is a structure in which metal layers having at least or more different compositions are laminated and joined, or a structure in which ceramic layers of the same type or different types are laminated and joined. ..
- the metal layer referred to here is not limited to a film-like or plate-like one, but also includes a bulk-like one such as a structure.
- a heat dissipation substrate can be obtained, and if a copper plate is used as the metal layer, a circuit board can be obtained in the same manner.
- joining with a first metal layer with a general adhesive, solder joining, brazing joining, or the like can be used depending on the required characteristics and mechanical strength.
- the second metal layer itself can be used as a brazing material. Since the ceramic substrate is already firmly bonded to Al—Ti, which is the first metal layer, the second metal layer to be bonded here has a bondability to Al—Ti, which is the first metal layer. You can consider it.
- the second metal layer is an Al—Si brazing material containing silicon (Si), a solder for aluminum containing zinc as a main component, or an aluminum. It is possible to use a combination of solder and copper solder.
- a material having a melting point lower than that of the conventional Ag-based brazing material can be used as the brazing material (second metal layer), and specifically, the melting point of the first metal layer (Al—Ti). It is possible to carry out at (about 660 ° C.) or less, or lower than that, and below the eutectic point with Al—Ti. As described above, it is possible to manufacture a ceramic composite substrate using Al—Ti.
- the ceramic composite substrate obtained by the above method will be described. It is known that when a conventional Ag-Ti brazing material containing Ti, which is a conventional technique, is used, a layer of titanium nitride (TiN) having a thickness of 1 to 2 ⁇ m is formed at the interface with the ceramics. .. Since TiN has poor thermal conductivity, the ceramic composite substrate made of Ag—Ti brazing material has low thermal conductivity at the bonding interface. On the other hand, when an aluminum-based brazing material is used, such a layer is not confirmed, and instead, a layer mainly composed of elements contained in Al and ceramics is formed.
- TiN titanium nitride
- this layer Since the main component of this layer is Al having good thermal conductivity and its thickness is thin, good physical properties can be exhibited without lowering the thermal conductivity at the bonding interface of the ceramic composite substrate. Further, using an aluminum-based brazing material, a ceramic composite substrate in which the above-mentioned ceramic substrate and the first metal layer are bonded, and a first metal layer are bonded to the first metal layer and at least the second metal layer. A ceramic composite substrate having a multi-layer structure in which and is bonded can be manufactured at a low temperature of 660 ° C. or lower, and stress concentration and thermal strain at the bonding interface are compared with the case where a conventional Ag—Ti brazing material is used.
- Example 1 (Making aluminum-based brazing material) 10 mol of dimethyl sulfone (DMSO 2 ) was heated and melted at 110 ° C., and 3.8 mol of anhydrous aluminum chloride (AlCl 3 ) and 0.2 mol of ammonium chloride were mixed therein and stirred to prepare a uniform plating solution. Ammonium chloride used was dried by heating at 100 ° C. for 12 hours in a vacuum dryer. Next, two Ti plates were immersed in the prepared plating solution, each of which was used as a cathode and an anode electrode, and energized for 30 minutes at a liquid temperature of 85 ° C.
- DMSO 2 dimethyl sulfone
- AlCl 3 anhydrous aluminum chloride
- ammonium chloride used was dried by heating at 100 ° C. for 12 hours in a vacuum dryer.
- two Ti plates were immersed in the prepared plating solution, each of which was used as a cathode and an anode electrode, and
- an Al—Ti plating solution containing Ti ions was prepared.
- the Ti concentration was 0.8 at% with respect to the total amount of substances of Al and Ti contained in the plating solution.
- the Al plate and the Ti plate were immersed in the prepared Al-Ti plating solution, and a direct current was applied to the Ti plate at a current density of 50 mA / cm 2 for 36 minutes using each as an anode and a cathode. Ti was formed in the form of a plating film.
- the cathode electrode was taken out, washed with water and dried, and the plating film was peeled off from the Ti plate to obtain an aluminum-based brazing material.
- the obtained Al—Ti brazing material had a thickness of 16 ⁇ m, and when analyzed by ICP, the Ti concentration in the aluminum-based brazing material was 2 at%. Further, the same applies when the liquid temperature when dissolving Ti in the plating solution is 95 ° C. and the current density is 100 mA / cm 2 and the liquid temperature when forming Al—Ti on the cathode is 90 ° C. and 100 mA / cm 2. Al-Ti could be obtained.
- the oxygen concentration on the surface before and after the treatment was measured and compared using energy dispersive spectroscopy (OXFORD, Energy250) with an acceleration voltage of 5 kV and a field of view of 1000 times. It was confirmed that it was reduced. Further, as a surface oxide film removal of the produced aluminum-based brazing material, an alkaline aluminum surface treatment agent (AL20, manufactured by World Metal Co., Ltd.) was used, and the treatment was carried out by immersing at room temperature for 2 minutes. Similarly, it was confirmed that the amount was reduced to 1.1 at%.
- SiN Silicon nitride having a thickness of 10 mm and a thickness of 0.3 mm was used for the ceramics. Before joining, the SiN surface was smoothed and polished with a diamond slurry to make it clean. The arithmetic mean roughness Ra of SiN after polishing was 0.08 ⁇ m.
- the aluminum-based brazing material prepared above was cut out to a size of about 8 mm ⁇ 8 mm and placed on the polished SiN, and allowed to stand in an atmosphere furnace.
- a TiN layer is not formed at the bonding interface as in the case of using a conventional Ag—Ti brazing material, but instead a layer composed of Al, N, and O is formed with a thickness of several tens of nm.
- the layer composed of Al, N, and O contains Al as a main component based on the composition ratio of each component, and is not a simple oxide layer such as alumina. From these facts, it is presumed that the interface structure is excellent in thermal conductivity as compared with the case of using the conventional Ag—Ti-based brazing material in which a TiN layer having poor thermal conductivity is formed.
- the composition mapping observation result in the macro field of view of FIG. 3 is shown in FIG. It was confirmed that Ti in the aluminum-based brazing material arranged on SiN aggregated after being heated and melted to form an alloy composed of Al and Ti, and was scattered in the bulk of Al. Further, such a ceramic composite substrate could be similarly produced when a large-sized SiN having a thickness of 190 mm ⁇ 130 mm and a thickness of 0.3 mm was used. A photograph of the appearance of the produced substrate is shown in FIG.
- Example 1-3 in which a part of Example 1 is modified, a commercially available aluminum solder (aluminum) is used as a second metal layer on the Al—Ti side of the ceramic composite substrate instead of Zn and Ni in Example 1.
- a Cu-bonded circuit board having sufficient strength could be obtained by placing a T235) manufactured by the same company, placing a Cu plate on the Cu plate, and heating at 250 ° C. in an air atmosphere.
- Example 1-4 in which a part of Example 1 is modified, an Al—Si alloy foil is placed on the Al—Ti side of the first metal layer as at least the second metal layer as a ceramic composite substrate having a multi-layer structure.
- An Al plate is placed on it, and it is allowed to stand in an atmosphere furnace. By heating with, an Al-pasted circuit board was obtained. The Al plate was firmly bonded to the ceramic composite substrate and had sufficient strength to withstand practical use.
- Example 1-5 in which a part of Example 1 was modified, Al—Ti was arranged on one side of the SiN plate, and Ag—Cu—In—Ti brazing material and Cu plate were arranged on the other surface in this order. Heating was performed in a vacuum atmosphere of ⁇ 10 -3 Pa or less under the conditions of a heating rate of 10 ° C./min, a temperature lowering rate of ⁇ 10 ° C./min, a holding temperature of 830 ° C., and a holding time of 30 minutes. As a result, a circuit board (multilayer ceramic composite substrate) having different metal types on both sides of the ceramic substrate, that is, one made of Al—Ti and the other made of Cu was obtained.
- a circuit board multilayer ceramic composite substrate
- the ceramic composite substrate could be obtained by using aluminum nitride instead of silicon nitride.
- a ceramic composite substrate could be similarly obtained by using aluminum oxide.
- a ceramic composite substrate could be similarly obtained by ultrasonic cleaning in pure water instead of polishing for the pre-bonding treatment.
- a ceramic composite substrate can also be obtained by wiping and cleaning with acetone, which is an organic solvent, instead of polishing for the pre-bonding treatment. rice field.
- Example 2-5 in which Example 2 is partially modified a ceramic composite substrate can also be obtained by wiping and cleaning with ethanol, which is an organic solvent, instead of polishing for the pre-bonding treatment. rice field.
- Example 3 In Example 1, an Al—Ti plating solution having a Ti concentration of 0.1 at% with respect to the total amount of substances of Al and Ti contained in the plating solution was used at a current density of 200 mA / cm 2. A direct current was applied for 5 minutes, and the other parts were the same as described above to obtain an Al—Ti brazing material.
- the obtained Al—Ti brazing material had a thickness of 5 ⁇ m, and when analyzed by ICP, the Ti concentration in the aluminum-based brazing material was 0.2 at%.
- the obtained Al—Ti brazing material could be bonded to various ceramics, and a ceramic composite substrate could be produced.
- Example 4 In Example 1, an Al—Ti plating solution having a Ti concentration of 2.7 at% with respect to the total amount of substances of Al and Ti contained in the plating solution was used at a current density of 100 mA / cm 2. A direct current was applied for 12 minutes, and an Al—Ti brazing material was obtained in the same manner as described above. The obtained Al—Ti brazing material had a thickness of 10 ⁇ m, and when analyzed by ICP, the Ti concentration in the aluminum-based brazing material was 7 at%. The obtained Al—Ti brazing material could be bonded to various ceramics, and a ceramic composite substrate could be produced.
- Example 5 In Example 1, 1.0 mol of tetramethylammonium chloride was further added to the Al—Ti plating solution to prepare each. Using these, the others were carried out in the same manner as described above to obtain various Al-Ti brazing materials. Any of the obtained brazing materials could be used for joining with various ceramics, and a ceramic composite substrate could be produced.
- Example 7 In Example 1, 1.5 mol of tetramethylammonium chloride was further added to the Al—Ti plating solution to prepare each. Using these, the others were carried out in the same manner as described above to obtain various Al-Ti brazing materials. Any of the obtained brazing materials could be used for joining with various ceramics, and a ceramic composite substrate could be produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Ceramic Products (AREA)
Abstract
アルミニウム系ろう材の生産性が優れない。 Alイオン、及び、Tiイオンを含むめっき液を作製する工程と、前記めっき液に基材と電極とを浸漬し通電して、前記基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層を形成する工程と、を有することを特徴とするアルミニウム系ろう材の製造方法。
Description
本発明は、アルミニウム系ろう材、及びその製造方法、並びにアルミニウム系ろう材を用いたセラミックス複合基板の製造方法に関する。
セラミックスと金属を接合する手段の一つとして、ろう材による接合技術が広く用いられている。ろう材は、銀(Ag)を主成分とし、融点を下げる目的等で銅(Cu)やスズ(Sn)などを混合したAg-Cu-Sn系のろう材などが知られているが、そのままではセラミックスとの接合ができないため、セラミックスとの接合界面を活性化させたり、接合強度を得る目的でチタン(Ti)を2at%程度含有させたものが主に用いられていた。しかし、AgやTiを多く含むために、ろう材が非常に高価となり、接合に要するコストが非常に高くなる問題があった。そこで近年では、その解決策として、種々の新規ろう材が検討されており、たとえば、特許文献1に、Tiを0.1~2.0wt%、シリコン(Si)を0.07~12.0wt%含み、残部はアルミニウム(Al)と不可避不純物からなることを特徴とするAl-Si-Ti3元合金ろう材が開示されている。特許文献1によれば、価格の安いAl合金を用いたろう材として、SiのAl酸化防止作用と、Tiの酸化膜活性化作用とを活用でき、信頼性の高い接合体を得られることが記載されている。
しかしながら、特許文献1にはアルミニウム系ろう材の製造方法は具体的に開示されていない。ろう材の低価格化のためには、低価格金属を用いることに加えて、低コスト化が可能な、生産性に優れた製造方法を適用することも課題の一つである。また、高品質なアルミニウム系ろう材を得るうえで、所定の目的で選定したTi等の元素が有効に機能する構成を実現することも重要である。本発明の目的は、上記課題に鑑み、高品質なアルミニウム系ろう材を得るうえで好適、かつ生産性に優れたアルミニウム系ろう材の製造方法、高品質の実現に好適なアルミニウム系ろう材、及びかかるアルミニウム系ろう材を用いたセラミックス複合基板の製造方法を提供することである。
本発明は、Alイオン、及び、Tiイオンを含むめっき液を作製する工程と、前記めっき液に基材と電極とを浸漬し通電して、前記基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層を形成する工程と、を有することを特徴とするアルミニウム系ろう材の製造方法である。
また、本発明のアルミニウム系ろう材は、0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなり、前記Tiが均一分布している第1金属層を有する。
さらに、本発明のセラミックス複合基板の製造方法は、前述のアルミニウム系ろう材の前記第1金属層をセラミックス基板に配置して接合を行う。
そのうえ、本発明のセラミックス複合基板の製造方法は、前述のアルミニウム系ろう材の前記第1金属層をセラミックス基板に配置して接合を行う工程と、前記第1金属層に、少なくとも第2金属層を積層して、接合を行う工程と、を有し、前記第2金属層は前記第1金属層と異なる組成を有する。
本発明は、高品質なアルミニウム系ろう材を得るうえで好適、かつ生産性に優れたアルミニウム系ろう材の製造方法、高品質の実現に好適なアルミニウム系ろう材、及びかかるアルミニウム系ろう材を用いたセラミックス複合基板の製造方法を提供できる。
本発明の特徴の一つは、Alイオン、及び、Tiイオンを含むめっき液を作製する工程と、前記めっき液に基材と電極とを浸漬し通電して、基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層を形成する工程と、を有することを特徴とする製造方法(電解法,電気めっき)によって、アルミニウム系ろう材(Al-Tiろう材)を得る点にある。AlとTiはどちらも電気化学的に活性であり、それらの還元・析出電位も比較的近いという特徴がある。それゆえ、従来の鋳造・混錬・圧延といった製造方法では、容易に酸化して活性を失ってしまうが、非水系めっき液を用いて電気めっきで製造すると、両金属を同時に析出させることができ、ミクロな視野で観察した場合に、それら従来の方法では得られない組成や組織で、Al中にTiが均一分布しており、なおかつ箔形状で厚さを均一に制御されたろう材を提供することができる。特にAlに包括された形で得られるTiについては、活性な状態のまま金属として得ることができるため、Tiが有効に機能する。本発明は、かかる高品質な状態を上述のような電気めっきという簡易な方法で実現できるため、生産性にも優れ、ろう材の主成分が低価格のAlであるため、低コスト化にも寄与する。尚、本発明におけるろう材とは、セラミックスにも金属にも接合可能な金属材料として定義される。このとき接合は、単にろう材が付着するだけの形態も含まれ、ろう材自身が金属であるため、メタライズと呼ばれる技術も含まれる。
また、そのようにして得られた第1金属層をセラミックス基板に配置して接合を行うことにより、Tiの作用によってセラミックス複合基板を作製することができる点もまた、特徴の一つである。主成分が比較的低融点なAlであるため、接合界面における熱歪の発生が少なく、さらにTiがろう材全体に均一に分布しているため、接合強度のばらつきが少なく、接合信頼性の高いセラミックス複合基板を提供することができる。また、第1金属層をセラミックス基板に配置して接合した工程と、少なくとも第2金属層を積層して、接合する工程と、を経ることにより、多層構造のセラミックス複合基板を得ることができる。この第2金属層は第1金属層と異なる組成を有する。第1金属層が既にAlを主成分とする層であるため、第1金属層と、第2金属層と、の接合はさらに低温で容易に行うことができ、接合コストの低減や接合界面における熱歪・応力の低減、すなわち高い接合信頼性を得ることができる。
以下に、実施するための形態として、アルミニウム系ろう材の製造方法の詳細を示す。
(アルミニウム系ろう材の製造方法)
本発明のアルミニウム系ろう材の第1金属層は、電解法(電気めっき)にて製造する。第1金属層は主成分をAlとする金属層であり、ミクロな視野で観察しても、その全体にTiが均一に分布したものである。よって、以下アルミニウム系ろう材の第1金属層をAl-Tiろう材やAl-Tiなどと記載することがある。めっき液としては、120℃以下の低温でアルミニウムを析出(めっき)させることが可能な、ジアルキルスルホンやトルエンなどの溶媒にアルミニウム塩を溶解させためっき液、イミダゾリウム塩等とアルミニウム塩からなるめっき液、200℃以上の高温で析出可能な、塩化カリウムや塩化ナトリウムとアルミニウム塩を高温で溶融させためっき液等が挙げられる。
Tiイオンは、上述のAlイオンを含むめっき液を調製した後に、(a)四塩化チタンなどの金属塩を混合する、(b)金属チタンをその液に浸漬する、(c)金属チタンともう1対の金属板をその液に浸漬して、金属チタンをアノード、対の金属板をカソードとして直流電流を流すことで金属チタンを溶解させる、などして、めっき液中にチタンをイオンとして含有させる。めっき液に含まれるTiの量は、Al-Tiろう材に含有させるTi量に応じて決定する。例えば、Ti=0.01~10at%のAl-Tiろう材を得ようとする場合、めっき液に溶出させるTi量はTi=0.005~5at%とすればよい。ここでいうTi量とは、Al-Tiろう材中あるいはめっき液中のAlとTiの物質量に対する割合をいう。上記のめっき液を満たしためっき槽中において、カソード(基材)とアノード電極とを用意し、その両電極間に直流電流を流すことで、基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層(Al-Ti)を形成させる。Al-Tiを形成させた基材は、そのまま製品として(Al-Tiと一体化したものとして)用いることもできるし、基材からAl-Tiの部分を剥離して、Al-Ti単体として用いることもできる。このとき、アノード電極には、アルミニウムまたはチタンを用いる。形状は、板状や箔状、あるいは不溶性のケースにボール形状やペレット形状等にしたものを充填したもの等を用いることができ、1種の金属だけでなく複数の金属を並べて使うなどしてもよい。アノードの金属は、通電によって溶解することにより、カソードで消費される金属イオンを液中に補給する役割を担っているので、例えば、アルミニウムとチタンの両方をアノードとして設置すると、Al-Tiの製造によって消費される液中のAlイオンとTiイオンを同時に補給することとなり、好都合である。
(アルミニウム系ろう材の製造方法)
本発明のアルミニウム系ろう材の第1金属層は、電解法(電気めっき)にて製造する。第1金属層は主成分をAlとする金属層であり、ミクロな視野で観察しても、その全体にTiが均一に分布したものである。よって、以下アルミニウム系ろう材の第1金属層をAl-Tiろう材やAl-Tiなどと記載することがある。めっき液としては、120℃以下の低温でアルミニウムを析出(めっき)させることが可能な、ジアルキルスルホンやトルエンなどの溶媒にアルミニウム塩を溶解させためっき液、イミダゾリウム塩等とアルミニウム塩からなるめっき液、200℃以上の高温で析出可能な、塩化カリウムや塩化ナトリウムとアルミニウム塩を高温で溶融させためっき液等が挙げられる。
Tiイオンは、上述のAlイオンを含むめっき液を調製した後に、(a)四塩化チタンなどの金属塩を混合する、(b)金属チタンをその液に浸漬する、(c)金属チタンともう1対の金属板をその液に浸漬して、金属チタンをアノード、対の金属板をカソードとして直流電流を流すことで金属チタンを溶解させる、などして、めっき液中にチタンをイオンとして含有させる。めっき液に含まれるTiの量は、Al-Tiろう材に含有させるTi量に応じて決定する。例えば、Ti=0.01~10at%のAl-Tiろう材を得ようとする場合、めっき液に溶出させるTi量はTi=0.005~5at%とすればよい。ここでいうTi量とは、Al-Tiろう材中あるいはめっき液中のAlとTiの物質量に対する割合をいう。上記のめっき液を満たしためっき槽中において、カソード(基材)とアノード電極とを用意し、その両電極間に直流電流を流すことで、基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層(Al-Ti)を形成させる。Al-Tiを形成させた基材は、そのまま製品として(Al-Tiと一体化したものとして)用いることもできるし、基材からAl-Tiの部分を剥離して、Al-Ti単体として用いることもできる。このとき、アノード電極には、アルミニウムまたはチタンを用いる。形状は、板状や箔状、あるいは不溶性のケースにボール形状やペレット形状等にしたものを充填したもの等を用いることができ、1種の金属だけでなく複数の金属を並べて使うなどしてもよい。アノードの金属は、通電によって溶解することにより、カソードで消費される金属イオンを液中に補給する役割を担っているので、例えば、アルミニウムとチタンの両方をアノードとして設置すると、Al-Tiの製造によって消費される液中のAlイオンとTiイオンを同時に補給することとなり、好都合である。
また、基材には、目的とする製品形態に応じて、アルミニウムやチタンの他、種々の金属材料を用いることができる。例えば、アルミニウム、亜鉛、ニッケル、銅などとAl-Tiが一体化した形で使用したい場合は、アルミニウム箔、亜鉛箔、ニッケル板、銅板、ニッケルめっきした銅板等をそのままカソードに用いればよい。あるいは、Al-Ti単体として得たい場合は、剥離しやすい基板としてチタンやステンレスなどをカソードに用いればよい。これら基材の形状は、ワイヤーやロッド、粉体、長尺の板あるいは箔を巻いたコイル状でもよいし、任意のサイズのシート状や、連続的に剥離してAl-Ti単体として得る場合には剥離しやすい素材から成る円筒状のものを用いてもよい。コイル状に巻回された基材を用いる構成は、基材はコイルから巻き出されてめっき液へ浸漬され、第1金属層が形成されたアルミニウム系ろう材は、コイル状に巻き取られるという、連続処理を可能にするので、生産性向上に寄与する。
Al-Tiを製造する際に電極に流す電流の電流密度は、得たいAl-Tiの厚さや製造速度、外観に応じて調整する。例えば、電流密度は一般的には80~600mA/cm2程度である。製造するAl-Tiの厚さについては、電流密度のほか、通電時間によっても制御することができる。ろう材としての用途を考慮するとAl-Tiの厚さは0.5~100μm程度が適当であり、それら必要要件に応じて、電流密度と時間を調整すればよい。
基材上に析出させたAl-Tiは、その後、めっき液を洗浄し、そのまま乾燥させて製品として用いてもよいし、調質(残留応力の除去や洗浄液の除去など)のための熱処理や、表面酸化膜除去のための酸・アルカリ洗浄を行った後に製品としてもよい。
以上の方法により、セラミックス複合基板の製造に有用な、アルミニウム系ろう材を得ることができる。
以上の方法により、セラミックス複合基板の製造に有用な、アルミニウム系ろう材を得ることができる。
(アルミニウム系ろう材の物性)
上記製法にて得られるアルミニウム系ろう材について、結晶組織と組成分布を断面から観察したものを図1に示す。観察は、走査電子顕微鏡(日本電子社製,JSM-7900F)を用い、加速電圧5kV、3000倍の視野で行った。図1(a)によれば、加速電圧5kV、3000倍のアルミニウム系ろう材の結晶組織は、微細な柱状晶となっている。結晶サイズはTiの含有量によって変化し、量が多いほど柱状晶は微細となる。また、Tiは、図1(b)の元素マッピングの結果から全体に均一分布しており、図1(c)のライン分析の結果から、酸化しておらず活性な状態であることを確認した。
また、Tiの状態について観察した結果を図2に示す。観察は、透過電子顕微鏡(JEOL社製,JEM-2800)を用い、加速電圧200kV、100万倍の視野で行った。図2(a)の粒子の寸法に対する図2(b-2)のTiの組成分布から、Tiのサイズは、この観察条件で粒子として捉えられないほど小さく、酸素との存在比率から酸化していない活性な状態であることが確認できた。また、別視野にて粒界および粒内の観察および組成分析を行ったところ(図7)、Tiの結晶粒は確認できないほど小さく(図7のTEM像)、組成としては1.7~2.0at%の割合で含有されており、粒界や粒内に偏在せずに均一に分布していることを確認した(図7(i)~(iii)箇所の分析結果)。また、組成比率の比較から、酸素(O)よりもTiの方が存在量が多いことから、Tiは酸化せずに金属的性質を維持した状態(活性な状態)で分布していると考えられる。なお、このサンプルについて電子線回折による結晶性を確認したところ(図8)、得られた回折ピークはAlに帰属するものだけであった。これは、Tiが本手法で捉えられないほど微細な状態でAl中に存在していることを示していると考えられる。このように、結晶粒が存在しない、あるいはナノサイズ以下の非常に微細な状態であり、なおかつ粒内や粒界に偏在せずにAlのバルク全体に分散している状態のことを、均一分布といい、本製法によってTiが均一分布したアルミニウムろう材を得ることができる。
Al-Tiろう材の融点は純Alとほぼ同じで、おおよそ660℃前後である。組成は、Alが80mass%以上であり、その他の成分としてはTiの他にめっき液由来の成分が含まれ、上記のジメチルスルホン系めっき液から作製した場合は、製造条件によって含有量は変動するが、炭素(C)、O、硫黄(S)、塩素(Cl)が含まれる。また、Al-Tiに含まれるTi量は、0.01~10at%が好ましい。Tiはセラミックス上でAlが濡れ広がることを可能とする役割があるため、含有量は多いほうが望ましいが、10at%超となると、Al-Tiろう材そのものが脆くなり、ろう材として使用することが困難となる。以上のことから、本発明の製造方法で得られたアルミニウム系ろう材は、0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなり、前記Tiが均一分布している第1金属層を有している。
上記製法にて得られるアルミニウム系ろう材について、結晶組織と組成分布を断面から観察したものを図1に示す。観察は、走査電子顕微鏡(日本電子社製,JSM-7900F)を用い、加速電圧5kV、3000倍の視野で行った。図1(a)によれば、加速電圧5kV、3000倍のアルミニウム系ろう材の結晶組織は、微細な柱状晶となっている。結晶サイズはTiの含有量によって変化し、量が多いほど柱状晶は微細となる。また、Tiは、図1(b)の元素マッピングの結果から全体に均一分布しており、図1(c)のライン分析の結果から、酸化しておらず活性な状態であることを確認した。
また、Tiの状態について観察した結果を図2に示す。観察は、透過電子顕微鏡(JEOL社製,JEM-2800)を用い、加速電圧200kV、100万倍の視野で行った。図2(a)の粒子の寸法に対する図2(b-2)のTiの組成分布から、Tiのサイズは、この観察条件で粒子として捉えられないほど小さく、酸素との存在比率から酸化していない活性な状態であることが確認できた。また、別視野にて粒界および粒内の観察および組成分析を行ったところ(図7)、Tiの結晶粒は確認できないほど小さく(図7のTEM像)、組成としては1.7~2.0at%の割合で含有されており、粒界や粒内に偏在せずに均一に分布していることを確認した(図7(i)~(iii)箇所の分析結果)。また、組成比率の比較から、酸素(O)よりもTiの方が存在量が多いことから、Tiは酸化せずに金属的性質を維持した状態(活性な状態)で分布していると考えられる。なお、このサンプルについて電子線回折による結晶性を確認したところ(図8)、得られた回折ピークはAlに帰属するものだけであった。これは、Tiが本手法で捉えられないほど微細な状態でAl中に存在していることを示していると考えられる。このように、結晶粒が存在しない、あるいはナノサイズ以下の非常に微細な状態であり、なおかつ粒内や粒界に偏在せずにAlのバルク全体に分散している状態のことを、均一分布といい、本製法によってTiが均一分布したアルミニウムろう材を得ることができる。
Al-Tiろう材の融点は純Alとほぼ同じで、おおよそ660℃前後である。組成は、Alが80mass%以上であり、その他の成分としてはTiの他にめっき液由来の成分が含まれ、上記のジメチルスルホン系めっき液から作製した場合は、製造条件によって含有量は変動するが、炭素(C)、O、硫黄(S)、塩素(Cl)が含まれる。また、Al-Tiに含まれるTi量は、0.01~10at%が好ましい。Tiはセラミックス上でAlが濡れ広がることを可能とする役割があるため、含有量は多いほうが望ましいが、10at%超となると、Al-Tiろう材そのものが脆くなり、ろう材として使用することが困難となる。以上のことから、本発明の製造方法で得られたアルミニウム系ろう材は、0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなり、前記Tiが均一分布している第1金属層を有している。
(セラミックス複合基板の製造方法)
次に、製造したアルミニウム系ろう材とセラミックス基板との接合について説明する。接合するセラミックス基板は、窒化ケイ素など、不活性雰囲気の環境下で第1金属層を濡れ広がらせられるものであれば、種々のものを用いることができる。セラミックス基板の上に、前述の方法で製造したアルミニウム系ろう材の第1金属層(Al-Ti)を配置して接合を行う。例えば、真空雰囲気、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性雰囲気の環境下で、温度;660℃~800℃、保持時間;1~120分で加熱処理することにより、Al-Tiを溶融させてセラミックス基板の上で濡れ広がらせる。加熱処理の温度は、Al-Ti単体で用いる場合はその融点(約660℃)以上、その他金属と一体となったものの場合は共晶点以上の温度に設定すればよい。そしてその後、冷却すると、Al-Tiは凝固し、セラミックス基板とAl-Tiが一体となったセラミックス/Al-Ti接合体、すなわちセラミックス複合基板を得ることができる。このとき、Al-Tiの位置決めや、セラミックスとAl-Ti界面のボイド形成を抑制するために、Al-Tiの上に重り等を置いて加重してもよい。例えば、Al-Tiと接合し難い窒化ホウ素(BN)板などを置いて、その上から重りなどで加重する方法をとることができる。
セラミックスの表面組成については、油など、Al-Tiとの濡れ性を悪くする成分が残留していない清浄な状態であることが望ましい。それらの除去方法としては、洗浄、脱脂、高温熱処理、表面研磨などの手法を用いることができる。また、表面形状は特に制約なく、例えば、算術平均粗さRaが0.03μm以上のものを用いればよい。
Al-Tiは、使用前に表面の酸化膜を除去しておくことが望ましい。そのような方法としては、酸あるいはアルカリで洗浄する、還元雰囲気炉で熱処理する、表面を削る等の一般的な除去方法を用いることができる。例えば、実際の製造では、上記のアルミニウム系ろう材の製造工程中に酸やアルカリで洗浄する洗浄槽を設けたり、製造した後のアルミニウム系ろう材コイルを水素還元雰囲気炉に入れて熱処理したり、ブラシや砥粒を当てて表面を研削したりする方法を用いることができる。
次に、製造したアルミニウム系ろう材とセラミックス基板との接合について説明する。接合するセラミックス基板は、窒化ケイ素など、不活性雰囲気の環境下で第1金属層を濡れ広がらせられるものであれば、種々のものを用いることができる。セラミックス基板の上に、前述の方法で製造したアルミニウム系ろう材の第1金属層(Al-Ti)を配置して接合を行う。例えば、真空雰囲気、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性雰囲気の環境下で、温度;660℃~800℃、保持時間;1~120分で加熱処理することにより、Al-Tiを溶融させてセラミックス基板の上で濡れ広がらせる。加熱処理の温度は、Al-Ti単体で用いる場合はその融点(約660℃)以上、その他金属と一体となったものの場合は共晶点以上の温度に設定すればよい。そしてその後、冷却すると、Al-Tiは凝固し、セラミックス基板とAl-Tiが一体となったセラミックス/Al-Ti接合体、すなわちセラミックス複合基板を得ることができる。このとき、Al-Tiの位置決めや、セラミックスとAl-Ti界面のボイド形成を抑制するために、Al-Tiの上に重り等を置いて加重してもよい。例えば、Al-Tiと接合し難い窒化ホウ素(BN)板などを置いて、その上から重りなどで加重する方法をとることができる。
セラミックスの表面組成については、油など、Al-Tiとの濡れ性を悪くする成分が残留していない清浄な状態であることが望ましい。それらの除去方法としては、洗浄、脱脂、高温熱処理、表面研磨などの手法を用いることができる。また、表面形状は特に制約なく、例えば、算術平均粗さRaが0.03μm以上のものを用いればよい。
Al-Tiは、使用前に表面の酸化膜を除去しておくことが望ましい。そのような方法としては、酸あるいはアルカリで洗浄する、還元雰囲気炉で熱処理する、表面を削る等の一般的な除去方法を用いることができる。例えば、実際の製造では、上記のアルミニウム系ろう材の製造工程中に酸やアルカリで洗浄する洗浄槽を設けたり、製造した後のアルミニウム系ろう材コイルを水素還元雰囲気炉に入れて熱処理したり、ブラシや砥粒を当てて表面を研削したりする方法を用いることができる。
(多層構造のセラミックス複合基板の製造方法)
さらに、アルミニウム系ろう材を用いて多層構造のセラミックス複合基板を作製することが可能である。多層構造とは、組成の異なる第2金属層を少なくとも有するか、あるいはそれ以上の金属層を積層して接合された構造、または、同種もしくは異種のセラミックス層を積層して接合された構造である。以下、少なくとも第2金属層を有する例を用いて説明する。ここでいう金属層とは、膜状、板状のものに限らず、構造物などのバルク状のものも含む。例えば、金属層としてアルミニウム製のフィンを用いれば放熱基板を得る事ができるし、金属層として銅板を用いれば、同様にして回路基板とすることができる。これらセラミックス複合基板を得る場合には、要求される特性や機械的強度に応じて、第1金属層と、一般的な接着剤による接合、はんだ接合、ろう付け接合などを用いることができる。あるいは、第2金属層そのものをろう材として用いることもできる。セラミックス基板は、第1金属層であるAl-Tiとすでに強固に接合された状態であるので、ここで接合しようとする第2金属層は、第1金属層であるAl-Tiに対する接合性を考慮すればよい。したがって、例えば上述のようにアルミニウムや銅を接合する場合は、第2金属層として、シリコン(Si)を含有したAl-Si系ろう材や、亜鉛を主成分としたアルミニウム用はんだ、あるいはアルミニウム用はんだと銅用はんだを組み合わせたものなどを用いることが可能である。そして、これらの接合には、従来のAg系ろう材よりも低融点な材料をろう材(第2金属層)として用いることができ、具体的には第1金属層(Al-Ti)の融点(約660℃)以下、あるいはそれよりも低く、Al-Tiとの共晶点以下で行うことが可能である。以上のようにして、Al-Tiを用いたセラミックス複合基板の作製が可能となる。
さらに、アルミニウム系ろう材を用いて多層構造のセラミックス複合基板を作製することが可能である。多層構造とは、組成の異なる第2金属層を少なくとも有するか、あるいはそれ以上の金属層を積層して接合された構造、または、同種もしくは異種のセラミックス層を積層して接合された構造である。以下、少なくとも第2金属層を有する例を用いて説明する。ここでいう金属層とは、膜状、板状のものに限らず、構造物などのバルク状のものも含む。例えば、金属層としてアルミニウム製のフィンを用いれば放熱基板を得る事ができるし、金属層として銅板を用いれば、同様にして回路基板とすることができる。これらセラミックス複合基板を得る場合には、要求される特性や機械的強度に応じて、第1金属層と、一般的な接着剤による接合、はんだ接合、ろう付け接合などを用いることができる。あるいは、第2金属層そのものをろう材として用いることもできる。セラミックス基板は、第1金属層であるAl-Tiとすでに強固に接合された状態であるので、ここで接合しようとする第2金属層は、第1金属層であるAl-Tiに対する接合性を考慮すればよい。したがって、例えば上述のようにアルミニウムや銅を接合する場合は、第2金属層として、シリコン(Si)を含有したAl-Si系ろう材や、亜鉛を主成分としたアルミニウム用はんだ、あるいはアルミニウム用はんだと銅用はんだを組み合わせたものなどを用いることが可能である。そして、これらの接合には、従来のAg系ろう材よりも低融点な材料をろう材(第2金属層)として用いることができ、具体的には第1金属層(Al-Ti)の融点(約660℃)以下、あるいはそれよりも低く、Al-Tiとの共晶点以下で行うことが可能である。以上のようにして、Al-Tiを用いたセラミックス複合基板の作製が可能となる。
(セラミックス複合基板の物性)
上記方法で得られるセラミックス複合基板について説明する。従来技術の、Tiを含んだ従来のAg-Ti系ろう材を用いた場合、セラミックスとの界面には厚さ1~2μmの窒化チタン(TiN)の層が形成されることが知られている。TiNは熱伝導性が乏しいため、Ag-Ti系ろう材を用いて作製したセラミックス複合基板は、その接合界面において熱伝導性が低下する。それに対し、アルミニウム系ろう材を用いた場合には、そのような層は確認されず、代わりに、Al及びセラミックスに含有する元素を主としてなる層が形成される。この層の主成分は熱伝導性の良好なAlであり、なおかつその厚さも薄いため、セラミックス複合基板の接合界面における熱伝導性は低下せずに良好な物性を発現することができる。
また、アルミニウム系ろう材を用いて、上述のセラミックス基板と第1金属層とを接合させたセラミックス複合基板、並びに、第1金属層とを接合させ、第1金属層と、少なくとも第2金属層と、を接合させた多層構造のセラミックス複合基板については、660℃以下の低温で製造することができ、従来のAg-Ti系ろう材を用いた場合に比べて接合界面の応力集中や熱歪が少なく接合信頼性に優れるうえ、熱による結晶組織変化も抑えられ、接合前後における各素材の物性変化(劣化)がほとんど生じない。
したがって、これらの製法、接合方法、ろう材を用いることによって、従来よりも信頼性・性能に優れたセラミックス複合基板を製造・提供することが可能となる。
上記方法で得られるセラミックス複合基板について説明する。従来技術の、Tiを含んだ従来のAg-Ti系ろう材を用いた場合、セラミックスとの界面には厚さ1~2μmの窒化チタン(TiN)の層が形成されることが知られている。TiNは熱伝導性が乏しいため、Ag-Ti系ろう材を用いて作製したセラミックス複合基板は、その接合界面において熱伝導性が低下する。それに対し、アルミニウム系ろう材を用いた場合には、そのような層は確認されず、代わりに、Al及びセラミックスに含有する元素を主としてなる層が形成される。この層の主成分は熱伝導性の良好なAlであり、なおかつその厚さも薄いため、セラミックス複合基板の接合界面における熱伝導性は低下せずに良好な物性を発現することができる。
また、アルミニウム系ろう材を用いて、上述のセラミックス基板と第1金属層とを接合させたセラミックス複合基板、並びに、第1金属層とを接合させ、第1金属層と、少なくとも第2金属層と、を接合させた多層構造のセラミックス複合基板については、660℃以下の低温で製造することができ、従来のAg-Ti系ろう材を用いた場合に比べて接合界面の応力集中や熱歪が少なく接合信頼性に優れるうえ、熱による結晶組織変化も抑えられ、接合前後における各素材の物性変化(劣化)がほとんど生じない。
したがって、これらの製法、接合方法、ろう材を用いることによって、従来よりも信頼性・性能に優れたセラミックス複合基板を製造・提供することが可能となる。
以下、具体的な実施例を示す。
(実施例1)
(アルミニウム系ろう材の作製)
ジメチルスルホン(DMSO2)10molを110℃で加熱・溶融させ、そこに無水塩化アルミニウム(AlCl3)3.8mol、塩化アンモニウム0.2molを混合し、攪拌して均一なめっき液を調製した。塩化アンモニウムは真空乾燥機で12時間、100℃で加熱乾燥させたものを用いた。次に、調製しためっき液にTi板を2枚浸漬し、それぞれをカソード、アノード電極にして、液温85℃、50mA/cm2の電流密度で30分通電し、Tiをめっき中に溶解させて、Tiイオンを含んだAl-Tiめっき液とした。ICPにて、調製したAl-Tiめっき液を分析したところ、Ti濃度は、めっき液中に含まれているAlとTiの合計物質量に対して0.8at%であった。
次に、調製したAl-Tiめっき液に、Al板とTi板を浸漬し、それぞれをアノード、カソードとして、50mA/cm2の電流密度で36分直流電流を通電し、Ti板上にAl-Tiをめっき膜状に形成させた。通電終了後、カソード電極を取り出し、水洗、乾燥させ、Ti板からめっき膜を剥離して、アルミニウム系ろう材を得た。得られたAl-Tiろう材は厚さ16μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は2at%であった。
また、Tiをめっき液に溶解させるときの液温を95℃、電流密度を100mA/cm2とし、Al-Tiをカソードに形成させるときの液温を90℃、100mA/cm2としても、同様にAl-Tiを得ることができた。このとき得られたAl-Tiに含まれるTi濃度は、液に溶かしたTiの量に依存し、例えば液中のTi量が1.7at%のときは、Al-Tiに含まれるTi量は3.8at%であった。
このようにして作製したAl-Tiろう材は、表面酸化膜を除去するため、10倍に希釈した酸性アルミニウム表面処理剤(AL50,株式会社ワールドメタル製)に室温で50秒浸漬し、表面処理を行った。処理後は、流水で洗浄し、送風乾燥させた。処理前後の表面の酸素濃度を、エネルギー分散型分光分析(OXFORD社製,Energy250)を用いて、加速電圧5kV、1000倍の視野で測定し比較したところ、2.9at%から0.8at%に低減していることを確認した。
また、作製したアルミニウム系ろう材の表面酸化膜除去として、アルカリ性アルミニウム表面処理剤(AL20,株式会社ワールドメタル製)を用い、室温で2分浸漬して処理を行ったところ、表面の酸素濃度は同様に1.1at%に低減することを確認した。
(実施例1)
(アルミニウム系ろう材の作製)
ジメチルスルホン(DMSO2)10molを110℃で加熱・溶融させ、そこに無水塩化アルミニウム(AlCl3)3.8mol、塩化アンモニウム0.2molを混合し、攪拌して均一なめっき液を調製した。塩化アンモニウムは真空乾燥機で12時間、100℃で加熱乾燥させたものを用いた。次に、調製しためっき液にTi板を2枚浸漬し、それぞれをカソード、アノード電極にして、液温85℃、50mA/cm2の電流密度で30分通電し、Tiをめっき中に溶解させて、Tiイオンを含んだAl-Tiめっき液とした。ICPにて、調製したAl-Tiめっき液を分析したところ、Ti濃度は、めっき液中に含まれているAlとTiの合計物質量に対して0.8at%であった。
次に、調製したAl-Tiめっき液に、Al板とTi板を浸漬し、それぞれをアノード、カソードとして、50mA/cm2の電流密度で36分直流電流を通電し、Ti板上にAl-Tiをめっき膜状に形成させた。通電終了後、カソード電極を取り出し、水洗、乾燥させ、Ti板からめっき膜を剥離して、アルミニウム系ろう材を得た。得られたAl-Tiろう材は厚さ16μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は2at%であった。
また、Tiをめっき液に溶解させるときの液温を95℃、電流密度を100mA/cm2とし、Al-Tiをカソードに形成させるときの液温を90℃、100mA/cm2としても、同様にAl-Tiを得ることができた。このとき得られたAl-Tiに含まれるTi濃度は、液に溶かしたTiの量に依存し、例えば液中のTi量が1.7at%のときは、Al-Tiに含まれるTi量は3.8at%であった。
このようにして作製したAl-Tiろう材は、表面酸化膜を除去するため、10倍に希釈した酸性アルミニウム表面処理剤(AL50,株式会社ワールドメタル製)に室温で50秒浸漬し、表面処理を行った。処理後は、流水で洗浄し、送風乾燥させた。処理前後の表面の酸素濃度を、エネルギー分散型分光分析(OXFORD社製,Energy250)を用いて、加速電圧5kV、1000倍の視野で測定し比較したところ、2.9at%から0.8at%に低減していることを確認した。
また、作製したアルミニウム系ろう材の表面酸化膜除去として、アルカリ性アルミニウム表面処理剤(AL20,株式会社ワールドメタル製)を用い、室温で2分浸漬して処理を行ったところ、表面の酸素濃度は同様に1.1at%に低減することを確認した。
(セラミックスとアルミニウム系ろう材の接合)
セラミックスには10mm×10mm、厚さ0.3mmの窒化ケイ素(以下、SiNと表記する)を用いた。接合前に、ダイヤモンドスラリーを使ってSiN表面を平滑研磨し、清浄な状態とした。研磨後のSiNの算術平均粗さRaは0.08μmであった。研磨したSiNの上に、上記で作製したアルミニウム系ろう材を約8mm×8mmのサイズに切り出して置き、雰囲気炉中に静置した。1×10-3Pa以下の真空雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度735℃、保持時間30分の条件で焼成し、セラミックス/Al-Ti接合体(セラミックス複合基板)を得た。得られたセラミックス複合基板を図9に示す。
セラミックス/Al-Ti接合体のセラミックスとAl-Tiの接合界面について、断面から観察を行った。その結果を図3(a)に示す。観察には透過電子顕微鏡(JEOL社製,JEM-2800)を用いた。接合界面には従来のAg-Tiろう材を用いた場合のようなTiN層は形成されておらず、代わりにAl,N,Oからなる層が数十nmの厚さで形成されていることを確認した(図3(b))。Al,N,Oからなる層は、各成分の組成比率からAlを主成分とするものであり、アルミナのような単純な酸化物の層ではない。これらのことから、従来の熱伝導性に乏しいTiN層が形成されるようなAg-Ti系ろう材を用いた場合に比べ、熱伝導性に優れた界面構成になっていると推察される。また、このAl,N,Oから成る層の厚さは、焼成時の保持温度が高いほど、保持時間が長いほど厚くなることを確認した。
一方で、Tiについては、界面に濃化していないことも確認した。図3のマクロ視野での組成マッピング観察結果を図4に示す。SiN上に配置されたアルミニウム系ろう材中のTiは、加熱溶融させた後には凝集し、AlとTiから成る合金を形成して、Alのバルク中に点在していることを確認した。また、このようなセラミックス複合基板は、190mm×130mm、厚さ0.3mmの大型サイズのSiNを用いた場合にも同様に作製可能であった。作製した基板の外観写真を図6に示す。
セラミックスには10mm×10mm、厚さ0.3mmの窒化ケイ素(以下、SiNと表記する)を用いた。接合前に、ダイヤモンドスラリーを使ってSiN表面を平滑研磨し、清浄な状態とした。研磨後のSiNの算術平均粗さRaは0.08μmであった。研磨したSiNの上に、上記で作製したアルミニウム系ろう材を約8mm×8mmのサイズに切り出して置き、雰囲気炉中に静置した。1×10-3Pa以下の真空雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度735℃、保持時間30分の条件で焼成し、セラミックス/Al-Ti接合体(セラミックス複合基板)を得た。得られたセラミックス複合基板を図9に示す。
セラミックス/Al-Ti接合体のセラミックスとAl-Tiの接合界面について、断面から観察を行った。その結果を図3(a)に示す。観察には透過電子顕微鏡(JEOL社製,JEM-2800)を用いた。接合界面には従来のAg-Tiろう材を用いた場合のようなTiN層は形成されておらず、代わりにAl,N,Oからなる層が数十nmの厚さで形成されていることを確認した(図3(b))。Al,N,Oからなる層は、各成分の組成比率からAlを主成分とするものであり、アルミナのような単純な酸化物の層ではない。これらのことから、従来の熱伝導性に乏しいTiN層が形成されるようなAg-Ti系ろう材を用いた場合に比べ、熱伝導性に優れた界面構成になっていると推察される。また、このAl,N,Oから成る層の厚さは、焼成時の保持温度が高いほど、保持時間が長いほど厚くなることを確認した。
一方で、Tiについては、界面に濃化していないことも確認した。図3のマクロ視野での組成マッピング観察結果を図4に示す。SiN上に配置されたアルミニウム系ろう材中のTiは、加熱溶融させた後には凝集し、AlとTiから成る合金を形成して、Alのバルク中に点在していることを確認した。また、このようなセラミックス複合基板は、190mm×130mm、厚さ0.3mmの大型サイズのSiNを用いた場合にも同様に作製可能であった。作製した基板の外観写真を図6に示す。
(回路基板(多層構造のセラミックス複合基板)の作製)
作製したセラミックス/Al-Ti接合体の第1金属層の上に、第2金属層としての純亜鉛(Zn)箔(ニラコ社製)を置き、さらにその上に、Niめっき膜を20μmの厚さで形成させたCu板を置いて、(セラミックス/Al-Ti接合体)/Zn/Niめっき膜/Cu板の順で積層された構成とした。それを、雰囲気炉中に静置して、アルゴン(Ar)雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度430℃、保持時間5分の条件で加熱することにより、Cu貼回路基板(多層構造のセラミックス複合基板)を得た。得られたセラミックス複合基板を図5に示す。貼り付けたCu板はセラミックス/Al-Ti接合体と強固に接合しており、実用に耐えうる十分な強度を有していた。このことは、bond tester 4000plus(ノードソン・アドバンスト・テクノロジー)を用い、試験速度100μm/sの条件で行った、せん断強度測定の結果が80MPa以上であったことと、-40℃~160℃の条件で行った冷熱サイクル試験において250サイクル以上測定を繰り返しても剥離していないことで検証した。また、実施例1を一部変更した実施例1-2として、Niに代わってAl箔を用い、(セラミックス/Al-Ti接合体)/Zn/Al/Cu板の順で積層させた構成としても、Cu貼回路基板を得ることができた。
作製したセラミックス/Al-Ti接合体の第1金属層の上に、第2金属層としての純亜鉛(Zn)箔(ニラコ社製)を置き、さらにその上に、Niめっき膜を20μmの厚さで形成させたCu板を置いて、(セラミックス/Al-Ti接合体)/Zn/Niめっき膜/Cu板の順で積層された構成とした。それを、雰囲気炉中に静置して、アルゴン(Ar)雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度430℃、保持時間5分の条件で加熱することにより、Cu貼回路基板(多層構造のセラミックス複合基板)を得た。得られたセラミックス複合基板を図5に示す。貼り付けたCu板はセラミックス/Al-Ti接合体と強固に接合しており、実用に耐えうる十分な強度を有していた。このことは、bond tester 4000plus(ノードソン・アドバンスト・テクノロジー)を用い、試験速度100μm/sの条件で行った、せん断強度測定の結果が80MPa以上であったことと、-40℃~160℃の条件で行った冷熱サイクル試験において250サイクル以上測定を繰り返しても剥離していないことで検証した。また、実施例1を一部変更した実施例1-2として、Niに代わってAl箔を用い、(セラミックス/Al-Ti接合体)/Zn/Al/Cu板の順で積層させた構成としても、Cu貼回路基板を得ることができた。
さらに実施例1の一部変更した実施例1-3として、セラミックス複合基板のAl-Ti側の上に、実施例1におけるZn及びNiに代わって、第2金属層として市販のアルミはんだ(アルミット社製、T235)を置き、その上にCu板を配置して、大気雰囲気下、250℃で加熱することでも、上記同様に十分な強度を有したCu貼回路基板を得ることができた。
さらに実施例1の一部変更した実施例1-4として、多層構造のセラミックス複合基板として、第1金属層のAl-Ti側の上に、少なくとも第2金属層としてAl-Si合金箔を置き、その上にAl板を配置して、雰囲気炉中に静置して、真空雰囲気、昇温速度10℃/min、降温速度-10℃/min、保持温度590℃、保持時間30分の条件で加熱することにより、Al貼回路基板を得た。Al板はセラミックス複合基板と強固に接合しており、実用に耐えうる十分な強度を有していた。
さらに実施例1の一部変更した実施例1-5として、SiN板の片面にAl-Ti、もう片方の面にはAg-Cu-In-Tiろう材とCu板の順に配置して、1×10-3Pa以下の真空雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度830℃、保持時間30分の条件で加熱した。これにより、セラミックス基板の両面で金属種の異なる、すなわち片方がAl-Ti、もう片方がCuから成る回路基板(多層構造のセラミックス複合基板)を得た。
実施例1で作成したセラミックス/Al-Ti接合体を用いて、第一金属層に対してセラミックス板を挟んでもう一方の面にもAl-Tiを接合したAl-Ti/セラミックス/Al-Ti接合体を用いて、Al板/Zn/(Al-Ti/セラミックス/Al-Ti接合体)/Zn/Al箔/Cu板の順で積層された構成とし、それを、1×10-3Pa以下の真空雰囲気にて、昇温速度10℃/min、降温速度-10℃/min、保持温度430℃、保持時間5分の条件で加熱した。これにより、セラミックス複合基板の両面で金属種の異なる回路基板(多層構造のセラミックス複合基板)を得た。比較的低温で加熱されているため、熱応力が少なく、反りのない回路基板を得ることができた。これにより、一方にAl製放熱フィン(ヒートシンクなど)を備え、もう一方に電子回路を形成させた電気回路基板を得ることが可能となる。また、多層化における接合は、先のセラミックス複合基板に影響を及ぼさなければ、真空雰囲気以外にAr等の非酸化性雰囲気でも同様に接合可能である。
(実施例2)
上記実施例1において、セラミックスを、窒化ケイ素に代わって窒化アルミニウムとすることでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-2として、酸化アルミニウムを用いることでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-3として、接合前処理を研磨に代わって純水中での超音波洗浄することでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-4として、接合前処理を研磨に代わって、有機溶媒であるアセトンでのふき取り洗浄を行う事でも、同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-5として、接合前処理を研磨に代わって、有機溶媒であるエタノールでのふき取り洗浄を行う事でも、同様にセラミックス複合基板を得ることができた。
上記実施例1において、セラミックスを、窒化ケイ素に代わって窒化アルミニウムとすることでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-2として、酸化アルミニウムを用いることでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-3として、接合前処理を研磨に代わって純水中での超音波洗浄することでも同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-4として、接合前処理を研磨に代わって、有機溶媒であるアセトンでのふき取り洗浄を行う事でも、同様にセラミックス複合基板を得ることができた。さらに、実施例2を一部変更した実施例2-5として、接合前処理を研磨に代わって、有機溶媒であるエタノールでのふき取り洗浄を行う事でも、同様にセラミックス複合基板を得ることができた。
(実施例3)
実施例1において、Ti濃度を、めっき液中に含まれているAlとTiの合計物質量に対して0.1at%としたAl-Tiめっき液を用いて、200mA/cm2の電流密度で5分直流電流を通電し、その他は上述と同様にして、Al-Tiろう材を得た。得られたAl-Tiろう材は厚さ5μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は0.2at%であった。得られたAl-Tiろう材は、各種セラミックスと接合することができ、セラミックス複合基板の作製も可能であった。
実施例1において、Ti濃度を、めっき液中に含まれているAlとTiの合計物質量に対して0.1at%としたAl-Tiめっき液を用いて、200mA/cm2の電流密度で5分直流電流を通電し、その他は上述と同様にして、Al-Tiろう材を得た。得られたAl-Tiろう材は厚さ5μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は0.2at%であった。得られたAl-Tiろう材は、各種セラミックスと接合することができ、セラミックス複合基板の作製も可能であった。
(実施例4)
実施例1において、Ti濃度を、めっき液中に含まれているAlとTiの合計物質量に対して2.7at%としたAl-Tiめっき液を用いて、100mA/cm2の電流密度で12分直流電流を通電し、その他は上述と同様にして、Al-Tiろう材を得た。得られたAl-Tiろう材は厚さ10μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は7at%であった。得られたAl-Tiろう材は、各種セラミックスと接合することができ、セラミックス複合基板の作製も可能であった。
実施例1において、Ti濃度を、めっき液中に含まれているAlとTiの合計物質量に対して2.7at%としたAl-Tiめっき液を用いて、100mA/cm2の電流密度で12分直流電流を通電し、その他は上述と同様にして、Al-Tiろう材を得た。得られたAl-Tiろう材は厚さ10μmであり、ICPにて分析したところ、アルミニウム系ろう材中のTi濃度は7at%であった。得られたAl-Tiろう材は、各種セラミックスと接合することができ、セラミックス複合基板の作製も可能であった。
(実施例5)
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを1.0mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを1.0mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
(実施例6)
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを0.1mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを0.1mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
(実施例7)
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを1.5mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
実施例1において、Al-Tiめっき液に、さらに塩化テトラメチルアンモニウムを1.5mol添加したものをそれぞれ調製した。これらを用いて、その他は上述と同様に実施し、各種Al-Tiろう材を得た。得られたいずれのろう材を用いても、各種セラミックスと接合することができ、セラミックス複合基板の作製が可能であった。
1・・・第1金属層
2・・・セラミックス基板
2・・・セラミックス基板
Claims (4)
- Alイオン、及び、Tiイオンを含むめっき液を作製する工程と、
前記めっき液に基材と電極とを浸漬し通電して、前記基材上に0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなる第1金属層を形成する工程と、
を有することを特徴とするアルミニウム系ろう材の製造方法。 - 0.01at%以上10at%以下のTiと、残部Alと不可避不純物からなり、
前記Tiが均一分布している第1金属層を有する
ことを特徴とするアルミニウム系ろう材。 - セラミックス基板を用いたセラミックス複合基板の製造方法であって、
請求項2に記載のアルミニウム系ろう材の前記第1金属層をセラミックス基板に配置して接合を行うことを特徴とするセラミックス複合基板の製造方法。 - セラミックス基板を用いたセラミックス複合基板の製造方法であって、
請求項2に記載のアルミニウム系ろう材の前記第1金属層をセラミックス基板に配置して接合を行う工程と、
前記第1金属層に、少なくとも第2金属層を積層して、接合を行う工程と、を有し、
前記第2金属層は前記第1金属層と異なる組成を有することを特徴とするセラミックス複合基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022505104A JPWO2021177030A1 (ja) | 2020-03-03 | 2021-02-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-035611 | 2020-03-03 | ||
JP2020035611 | 2020-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021177030A1 true WO2021177030A1 (ja) | 2021-09-10 |
Family
ID=77612707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005850 WO2021177030A1 (ja) | 2020-03-03 | 2021-02-17 | アルミニウム系ろう材、及びその製造方法、並びにセラミックス複合基板の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021177030A1 (ja) |
WO (1) | WO2021177030A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377844A (en) * | 1976-12-22 | 1978-07-10 | Kanto Yakin Kogyo | Preparation of wax material for brazing provided with desired shape |
JPS63252691A (ja) * | 1987-04-08 | 1988-10-19 | Seiko Instr & Electronics Ltd | ろう材 |
JPH04294890A (ja) * | 1991-03-22 | 1992-10-19 | Dowa Mining Co Ltd | A1−Si−Ti3元合金ろう材 |
JP2000119071A (ja) * | 1998-10-14 | 2000-04-25 | Fuji Electric Co Ltd | 半導体装置用セラミックス基板 |
JP2004306121A (ja) * | 2003-04-09 | 2004-11-04 | Sumitomo Metal Mining Co Ltd | Au・Sn合金箔の製造方法 |
JP2005105344A (ja) * | 2003-09-30 | 2005-04-21 | Sumitomo Metal Mining Co Ltd | Au・Sn合金箔の製造方法 |
JP2005113245A (ja) * | 2003-10-10 | 2005-04-28 | Sumitomo Metal Mining Co Ltd | 保持材を用いたAu・Sn合金箔の製造方法 |
-
2021
- 2021-02-17 WO PCT/JP2021/005850 patent/WO2021177030A1/ja active Application Filing
- 2021-02-17 JP JP2022505104A patent/JPWO2021177030A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377844A (en) * | 1976-12-22 | 1978-07-10 | Kanto Yakin Kogyo | Preparation of wax material for brazing provided with desired shape |
JPS63252691A (ja) * | 1987-04-08 | 1988-10-19 | Seiko Instr & Electronics Ltd | ろう材 |
JPH04294890A (ja) * | 1991-03-22 | 1992-10-19 | Dowa Mining Co Ltd | A1−Si−Ti3元合金ろう材 |
JP2000119071A (ja) * | 1998-10-14 | 2000-04-25 | Fuji Electric Co Ltd | 半導体装置用セラミックス基板 |
JP2004306121A (ja) * | 2003-04-09 | 2004-11-04 | Sumitomo Metal Mining Co Ltd | Au・Sn合金箔の製造方法 |
JP2005105344A (ja) * | 2003-09-30 | 2005-04-21 | Sumitomo Metal Mining Co Ltd | Au・Sn合金箔の製造方法 |
JP2005113245A (ja) * | 2003-10-10 | 2005-04-28 | Sumitomo Metal Mining Co Ltd | 保持材を用いたAu・Sn合金箔の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021177030A1 (ja) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102280653B1 (ko) | 전자 부품 탑재 기판 및 그 제조 방법 | |
TW201813462A (zh) | 陶瓷電路基板、及陶瓷電路基板的製造方法 | |
JP6038389B2 (ja) | 積層体及び、その製造方法 | |
WO2007004645A1 (ja) | 電子機器用銅合金及びその製造方法 | |
JP6272636B2 (ja) | 金属シュウ酸塩から形成されたろう付けを含むデバイスの製造方法 | |
Fouzder et al. | Influence of cerium oxide (CeO 2) nanoparticles on the microstructure and hardness of tin–silver–copper (Sn–Ag–Cu) solders on silver (Ag) surface-finished copper (Cu) substrates | |
JP5030633B2 (ja) | Cr−Cu合金板、半導体用放熱板及び半導体用放熱部品 | |
WO2021177030A1 (ja) | アルミニウム系ろう材、及びその製造方法、並びにセラミックス複合基板の製造方法 | |
JP2000096288A (ja) | 半田付性に優れるNiめっきアルミ基複合材および前記Niめっきアルミ基複合材の製造方法 | |
JP5630695B2 (ja) | 窒化珪素回路基板およびその製造方法 | |
KR20170014777A (ko) | 비정질 및 발열 특성을 갖는 금속 도금막을 이용한 초경재료의 접합방법 | |
US6669534B2 (en) | Surface treatment of oxidizing materials | |
Mohanty et al. | Electrochemical corrosion study of Sn–XAg–0.5 Cu alloys in 3.5% NaCl solution | |
JP6845444B1 (ja) | 接合材、接合材の製造方法及び接合体 | |
WO2022186262A1 (ja) | プリフォーム層付きの接合用シート、接合体の製造方法、及びプリフォーム層付きの被接合部材 | |
KR101776148B1 (ko) | 비정질 및 발열특성을 갖는 금속 도금막을 이용한 피접합재 저온 접합 방법 | |
JP6510900B2 (ja) | 半導体装置用接合材及びその製造方法 | |
JP7101756B2 (ja) | めっき膜、及びめっき被覆部材 | |
JP2024041251A (ja) | 電子部品接合方法 | |
JPS60128234A (ja) | リ−ドフレ−ム用銅合金 | |
JP7441263B2 (ja) | 無電解Co-Wめっき皮膜、および無電解Co-Wめっき液 | |
KR20170108892A (ko) | 저온 접합용 박막소재 | |
WO2024005150A1 (ja) | セラミックス銅回路基板およびそれを用いた半導体装置 | |
Jiang | Advanced electronic interconnections based on template-assisted electrodeposited Cu nanowire/micropillar arrays | |
Sokkalingam et al. | Direct Active Soldering of PEO Coated and Uncoated AA6061 Aluminium Alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764461 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022505104 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21764461 Country of ref document: EP Kind code of ref document: A1 |