WO2021175285A1 - 混合动力全地形车 - Google Patents

混合动力全地形车 Download PDF

Info

Publication number
WO2021175285A1
WO2021175285A1 PCT/CN2021/079076 CN2021079076W WO2021175285A1 WO 2021175285 A1 WO2021175285 A1 WO 2021175285A1 CN 2021079076 W CN2021079076 W CN 2021079076W WO 2021175285 A1 WO2021175285 A1 WO 2021175285A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cooling channel
radiator
engine
hybrid
Prior art date
Application number
PCT/CN2021/079076
Other languages
English (en)
French (fr)
Inventor
陈明堂
王明勇
Original Assignee
赛格威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023018008.0U external-priority patent/CN215793154U/zh
Application filed by 赛格威科技有限公司 filed Critical 赛格威科技有限公司
Priority to US17/908,709 priority Critical patent/US20230182562A1/en
Publication of WO2021175285A1 publication Critical patent/WO2021175285A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • B60Y2200/124Buggies, Quads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This application relates to the technical field of vehicle structural design, and in particular to a hybrid all-terrain vehicle.
  • hybrid all-terrain vehicles need to use electric energy as a power source.
  • This kind of all-terrain vehicle needs to use a motor as a power device.
  • the motor generates a lot of heat during its operation, which is concentrated in the all-terrain vehicle.
  • the interior of the motor will not only affect the service life of the motor, but also affect driving safety.
  • the present application is proposed to solve the above-mentioned problems or at least partly solve the above-mentioned problems as a hybrid all-terrain vehicle.
  • the embodiment of the present application provides a hybrid all-terrain vehicle, including: a frame; a front wheel located on the front side of the frame and a rear wheel located on the rear side of the frame; a power system fixed on the frame, the power system including An engine and an electric motor, the engine is used to drive the electric motor to generate electric energy or to output power for the front wheel or the rear wheel, and the electric motor is used to generate electric energy under the drive of the engine or to generate electric energy for the front wheels or The rear wheels output power; the motor, which has a motor cooling channel inside the motor; the motor radiator, which is fixed on the frame, includes a motor radiator liquid inlet and a motor radiator liquid outlet, and the motor radiator enters liquid The motor cooling channel and the motor radiator outlet are sequentially connected to form a motor cooling system; a water pump is connected to the motor cooling system, and the height of the water pump from the ground is less than or equal to the motor cooling system The height of the two ends of the channel from the ground; and/or the height of the water pump from the ground is less
  • the electric motor includes a first electric motor and a second electric motor.
  • the second electric motor is connected to the engine and generates electric energy under the driving of the engine.
  • the first electric motor passes through the second electric motor.
  • the electric energy generated by the motor is the output power of the front wheel or the rear wheel;
  • the first motor has a first motor cooling channel in the interior, and the second motor has a second motor cooling channel in the interior; the height of the water pump from the ground Less than or equal to the height of the two ends of the first motor cooling channel from the ground, and/or the height of the water pump from the ground is less than or equal to the height of the two ends of the second motor cooling channel from the ground .
  • the hybrid all-terrain vehicle further includes a controller connected to the motor cooling system, the controller has a controller cooling channel, and the height of the water pump from the ground It is less than or equal to the height of the two ends of the controller cooling channel from the ground.
  • the engine has an engine cooling channel inside, and the height of the water pump from the ground is less than or equal to the height of the two ends of the engine cooling channel from the ground.
  • the motor radiator liquid outlet is in communication with the first end of the first motor cooling passage, and the motor radiator liquid inlet is in communication with the first end of the second motor cooling passage , The second end of the first motor cooling passage is communicated with the second end of the second motor cooling passage.
  • the controller cooling channel is connected in series between the motor radiator liquid outlet and the first motor cooling channel; wherein the motor radiator liquid outlet and the controller cooling The first end of the channel is in communication, and the second end of the controller cooling channel is in communication with the first end of the first motor cooling channel.
  • the water pump is provided between the second end of the controller cooling channel and the first end of the first motor cooling channel; or, the water pump is provided at the outlet of the motor radiator. Between the liquid port and the first end of the controller cooling channel; or, the water pump is arranged between the second end of the second motor cooling channel and the second end of the first motor cooling channel; or The water pump is arranged between the liquid inlet of the motor radiator and the first end of the second motor cooling channel.
  • the hybrid all-terrain vehicle further includes an engine radiator, and the motor radiator and the engine radiator are arranged side by side along the width direction of the vehicle.
  • the engine radiator and the motor radiator are symmetrically arranged along the longitudinal center plane of the hybrid all-terrain vehicle.
  • the motor radiator is located on the front side of the frame; the engine is fixed on the frame and located behind the motor radiator, and the second motor is connected to the engine and located on the engine In front of the engine, the first motor is located behind the engine, and the controller is located on one side of the engine.
  • the motor has a motor cooling channel, the motor radiator liquid inlet, the motor cooling channel, and the motor radiator liquid outlet are sequentially connected to form a motor cooling system, and the water pump is in the motor cooling system
  • the position is at the lowest position of the motor cooling system, so that the water pump can quickly pump the coolant of the motor radiator to the motor cooling system, so that the circulation efficiency of the entire motor cooling system is higher, and the motor heat dissipation efficiency is effectively improved, so that the motor can get Quickly dissipate heat, thereby effectively increasing the service life of the motor and ensuring the driving safety of the all-terrain vehicle.
  • the embodiment of the present application also provides a hybrid all-terrain vehicle, including: a frame; an engine, arranged on the frame; an axle, arranged on the frame; a first motor, and the axle Driving connection, the first motor is provided with a first motor cooling channel; a second motor is drivingly connected to the engine, and the second motor is provided with a second motor cooling pipe; and a motor radiator is provided at the On the frame, the motor radiator is provided with a motor radiator liquid inlet and a motor radiator liquid outlet, wherein the motor radiator liquid inlet is in communication with the first end of the second motor cooling channel The outlet of the motor radiator is communicated with the first end of the first motor cooling passage, and the second end of the first motor cooling passage is communicated with the second end of the second motor cooling passage.
  • the hybrid all-terrain vehicle further includes a controller in which a controller cooling channel is provided, and a first end of the controller cooling channel is connected to the motor radiator liquid outlet, The second end is connected to the first end of the first motor cooling channel.
  • the hybrid all-terrain vehicle further includes a water pump disposed between the liquid outlet of the motor radiator and the first end of the controller cooling channel.
  • the hybrid all-terrain vehicle further includes a water pump disposed between the motor radiator liquid inlet and the first end of the second motor cooling channel.
  • the hybrid all-terrain vehicle further includes: a filling tank arranged on the frame; and a filling pipe, one end of the filling pipe communicating with the filling tank, and the other end It is connected between the water pump and the liquid outlet of the motor radiator.
  • the hybrid all-terrain vehicle further includes: a filling tank arranged on the frame; and a filling pipe, one end of the filling pipe communicating with the filling tank, and the other end It is connected between the first end of the controller cooling channel and the liquid outlet of the motor radiator.
  • the hybrid all-terrain vehicle further includes a vent pipe that communicates with the filling tank and the motor radiator.
  • the motor radiator is located at the front end of the frame.
  • the hybrid all-terrain vehicle further includes two headlights, and the two headlights are respectively arranged on both sides of the motor radiator.
  • the liquid inlet of the motor radiator and the liquid outlet of the motor radiator are respectively arranged on two opposite sides of the motor radiator.
  • the embodiment of the present application provides a hybrid all-terrain vehicle.
  • the circulating liquid circulating in the circulating cooling channel can be used to convert the first
  • the heat generated by the motor and the second motor is continuously carried to the motor radiator, and the heat is dissipated to the external environment through the motor radiator.
  • the first motor and the second motor can be effectively dissipated, and the first motor can be improved.
  • the service life of the first motor and the second motor and ensure the driving safety of the hybrid all-terrain vehicle.
  • Fig. 1 is a schematic structural diagram of a vehicle cooling system for a hybrid all-terrain vehicle provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of the cooperation relationship between the liquid cooling system and the power plant of another hybrid all-terrain vehicle provided by an embodiment of the application.
  • the arrow on the circulation channel indicates the direction of the circulating fluid circulating in the circulation channel. Another heat sink is shown.
  • Fig. 3 is a schematic diagram of the connection relationship between the motor radiator shown in Fig. 2 and another radiator.
  • Fig. 4 is a schematic diagram of the installation positions of the motor radiator and another radiator shown in Fig. 2 on the frame.
  • connection herein includes any direct and indirect means of connection. Therefore, if it is described in the text that a first device is connected to a second device, it means that the first device can be directly connected to the second device, or indirectly connected to the second device through other devices.
  • the subsequent description of the specification is a preferred embodiment for implementing the application, but the description is for the purpose of explaining the general principles of the application, and is not intended to limit the scope of the application. The protection scope of this application shall be subject to those defined by the appended claims.
  • Fig. 1 is a schematic structural diagram of a vehicle cooling system for a hybrid all-terrain vehicle provided by an embodiment of the application.
  • a hybrid all-terrain vehicle of this embodiment includes: a frame 9 (see FIG. 4 ), front wheels, rear wheels, a power system 100, a motor radiator 30 and a water pump 50.
  • the front wheels are located on the front side of the frame 9, and the rear wheels are located on the rear side of the frame 9.
  • the power system can be fixed on the frame 9.
  • the power system includes a motor and an engine 40; the engine 40 is used to drive the motor to generate electrical energy or to output power for the front or rear wheels, and the motor is used to generate electrical energy under the drive of the engine 40 or Used to output power to the front or rear wheels.
  • the motor has a motor cooling channel; the motor radiator 30 is fixed on the frame 9, the motor radiator 30 includes a motor radiator liquid inlet 31 and a motor radiator liquid outlet 32, a motor radiator liquid inlet 31, and a motor cooling channel It communicates with the liquid outlet 32 of the motor radiator in sequence to form a motor cooling system.
  • the water pump 50 is connected to the motor cooling system, and the height of the water pump 50 from the ground is less than or equal to the height of the two ends of the motor cooling channel from the ground; and/or the height of the water pump 50 from the ground is less than or equal to the motor radiator inlet liquid The height of the opening 31 and the liquid outlet 32 of the motor radiator above the ground.
  • the water pump 50 is located at the lowest position of the motor cooling system. Since the water flows downwards, the water pump 50 is set at the lowest position, so that the water pump 50 can quickly pump the coolant at the motor radiator 30 to various parts of the motor cooling system, thereby maximizing the cooling efficiency.
  • the hybrid all-terrain vehicle of this embodiment is driven by a hybrid of fuel (gasoline, diesel, etc.) and electric energy. More specifically, the vehicle in this embodiment may be a range-extended vehicle.
  • the motor has a motor cooling channel, the motor radiator liquid inlet, the motor cooling channel, and the motor radiator liquid outlet are sequentially connected to form a motor cooling system, and the water pump is in the motor cooling system
  • the position is at the lowest position of the motor cooling system, so that the water pump can quickly pump the coolant of the motor radiator to the motor cooling system, so that the circulation efficiency of the entire motor cooling system is higher, and the motor heat dissipation efficiency is effectively improved, so that the motor can get Quickly dissipate heat, thereby effectively increasing the service life of the motor and ensuring the driving safety of the all-terrain vehicle.
  • the electric motor may include a first electric motor 10 and a second electric motor 20.
  • the second electric motor 20 of this embodiment may be connected to the engine 40 and generate electric energy under the driving of the engine 40, and the second electric motor 20 may be connected to the first electric motor.
  • 10 is electrically connected, so that the electric energy generated by the first electric motor 10 through the second electric motor 20 outputs power for the front wheels or the rear wheels.
  • the second electric motor 20 provides electric energy for the first electric motor 10, and the first electric motor 10 is used to The axle (not shown in the figure) is drivingly connected, so that the power of the first motor 10 is transmitted to the wheels. Since the engine 40 can generate electricity for the second electric machine 20, and the second electric machine 20 can provide electric energy for the first electric machine 10, the cruising range of the whole vehicle is increased.
  • the first motor 10 may have a first motor cooling passage inside
  • the second motor 20 may have a second motor cooling passage inside.
  • the first motor cooling channel may be a pipeline provided in the first motor 10, or a cavity channel formed on the inner wall surface of the first motor 10
  • the second motor cooling channel may be a pipeline provided in the second motor 20.
  • the pipeline may also be a cavity channel formed by the inner wall surface of the second motor 20, which is not particularly limited in this embodiment.
  • the height of the water pump 50 from the ground is less than or equal to the height of the two ends of the first motor cooling channel from the ground, and/or the height of the water pump 50 from the ground is less than or equal to the two ends of the second motor cooling channel The height from the ground.
  • the motor radiator liquid inlet 31, the first motor cooling channel, and the second motor cooling channel communicate with the motor radiator liquid outlet 32 to form a motor cooling system.
  • the coolant passes through the motor radiator 30, the first motor cooling channel, and the second motor cooling channel to cool and dissipate the first motor 10 and the second motor 20.
  • the motor radiator 30 may also be connected with a liquid filling tank 30a, and the liquid filling tank 30a is arranged on the frame 9 of the vehicle. Specifically, one end of the liquid filling tank 30a may be connected to the motor radiator 30 through a vent pipe 30b, the other end of the liquid filling tank 30a may be connected with a liquid filling pipe 30c, and the liquid filling pipe 30c may be arranged at the outlet of the water pump 50 and the motor radiator. Between liquid ports 32.
  • the filling tank 30a is mainly used to supplement the circulating cooling channel with circulating fluid, and the circulating fluid does not flow into the filling tank 30a when circulating in the circulating cooling channel. Since the other end of the filling pipe 30c is connected between the water pump 50 and the outlet 32 of the motor radiator, the circulating fluid flowing from the filling tank 6 into the circulating cooling channel does not need to pass through the motor radiator 30 and can be used in the water pump 50. The drive flows to the motor cooling system.
  • one end of the filling pipe 30c may be connected to the filling tank 30a, and the other end may be connected between the first end of the controller cooling channel and the liquid outlet 32 of the motor radiator.
  • the end of the vent pipe 30b communicating with the filling tank 30a may be connected to the filling port of the filling tank 30a to prevent the liquid level of the coolant in the filling tank 30a from being higher than the height of the cooling liquid in the filling tank 30a.
  • the height of one end of the liquid tank 30a communicating with each other allows the circulating fluid to flow into the vent pipe 30b.
  • the filling tank 30a and the vent pipe 30b may not be provided.
  • the motor radiator liquid outlet 32 communicates with the first end of the first motor cooling channel
  • the motor radiator liquid inlet 31 communicates with the first end of the second motor cooling channel
  • the second end of the first motor cooling channel is connected to the second end of the second motor cooling channel.
  • the second end of the motor cooling channel communicates.
  • the outlet 32 of the motor radiator is connected with the first end of the first motor cooling channel, and the inlet 31 of the motor radiator is connected with the first end of the second motor cooling channel, therefore, when the cooling liquid is circulating cooling When circulating in the channel, the coolant flowing out of the radiator outlet 32 first passes through the first motor 10, then passes through the second motor 20, and finally flows from the motor radiator inlet 31 into the motor radiator 30 for heat dissipation.
  • the second motor 20 since the second motor 20 is used for generating electricity, it converts mechanical energy into electrical energy, and the first motor 10 is used as a driving motor, and the heat generated by the second motor 20 for generating electricity is greater than the heat generated by the first motor 10.
  • the coolant first absorbs the heat generated by the first motor 10 with a relatively low temperature, and then absorbs the heat generated by the second motor 20 with a relatively high temperature, so that the heat transfer efficiency is the highest , The cooling effect is the best.
  • the vehicle cooling system of this embodiment further includes a controller 60, which is connected to the motor cooling system.
  • the controller 60 has a controller cooling channel, and the height of the water pump 50 from the ground is less than or Equal to the height of the two ends of the controller cooling channel from the ground.
  • the controller cooling channel can be connected in series between the motor radiator liquid outlet 32 and the first motor cooling channel; wherein the motor radiator liquid outlet 32 communicates with the first end of the controller cooling channel, and the second end of the controller cooling channel The end communicates with the first end of the first motor cooling passage.
  • the controller 60 can be used to cooperate with the first motor 10 and the second motor 20.
  • the controller 60 can have multiple control functions.
  • the controller 60 can have a first control terminal and a second control terminal.
  • the first control terminal is connected to the first motor 10
  • the second control terminal is connected to the second motor 20, so that the electric energy generated by the first motor 20 is modulated by the controller 60 and sent to the first motor 10.
  • the controller 60 may also be electrically connected with other electronic control components of the entire vehicle to realize the control of the entire vehicle.
  • the motor radiator may be located on the front side of the frame 9; the engine 40 is fixed on the frame 9 and located behind the motor radiator, the second motor 20 is connected to the engine and located in front of the engine, and the first motor 10 is located behind the engine, and the controller 60 may be located on one side of the engine 40.
  • a controller cooling channel is provided inside the controller 60, and the controller cooling channel is connected to the motor cooling system, so that the cooling water of the motor cooling system passes through the controller 60 In order to dissipate the heat of the controller 60, the service life of the controller 60 is increased, and the situation that the vehicle is out of control due to the sudden failure of the controller 60 due to high temperature damage can be avoided.
  • the controller 60 of this embodiment is provided between the motor radiator 30 and the first motor 10. After the coolant that has released heat at the motor radiator 30 flows out of the motor radiator 30, it passes through the controller 60, the first motor 10, and the second motor 20 in turn, and then returns to the motor radiator 30, where the controller 60 The heat generated by the work ⁇ the heat generated by the first motor 10 ⁇ the heat generated by the second motor 20, so that the controller 60, the first motor 10, and the second motor 20 can dissipate heat reasonably and effectively, Coolant has the best cooling effect.
  • the water pump 50 may be arranged between the second end of the controller cooling channel and the first end of the first motor cooling channel.
  • the setting of the water pump 50 can speed up the circulation efficiency of the cooling liquid and ensure the heat dissipation speed.
  • the water pump 50 is arranged before the first motor 10 and the second motor 20, because the first motor 10 and the second motor 20 have more heat when working, and the location of the water pump 50 is closer to the first motor 10 and the second motor 20 Therefore, the coolant can be quickly pumped to the first motor 10 and the second motor 20 with higher temperature, so that the first motor 10 and the second motor 20 quickly dissipate heat.
  • the water pump 50 can be arranged between the outlet 32 of the motor radiator and the first end of the controller cooling channel, and the circulating fluid after passing through the motor radiator 30 to dissipate heat can be Driven by the water pump 50, it flows to the controller 60, the first motor 10 and the second motor 20 as soon as possible, so as to increase the heat dissipation speed of the controller 60, the first motor 10 and the second motor 20.
  • the water pump 50 is provided between the second end of the second motor cooling channel and the second end of the first motor cooling channel; or, the water pump 50 is provided between the motor radiator liquid inlet 31 and the first motor cooling channel. Between ends.
  • the water pump 50 can be arranged at any position in the motor cooling system, as long as it can quickly pump the coolant at the motor radiator 30 to the motor cooling system, which is not particularly limited in this embodiment.
  • the hybrid all-terrain vehicle provided in this embodiment further includes an engine cooling channel, and the height of the water pump 50 from the ground is less than or equal to the height of the two ends of the engine cooling channel from the ground.
  • the engine cooling passage includes an engine radiator 70, and the engine radiator 70 includes an engine radiator liquid inlet 71 and an engine radiator liquid outlet 72.
  • the engine 40 has an engine cooling channel, and the engine radiator liquid outlet 72, the first end of the engine cooling channel, and the second end of the engine cooling channel communicate with the engine radiator liquid inlet 71 in order to form an engine cooling system.
  • an independent engine cooling system for dissipating the engine 40 is provided, so that the cooling of the engine 40 and the cooling of the motor are independent of each other and do not affect each other.
  • the heat dissipation effect of the engine 40 and the motor is effectively improved, so that the vehicle has sufficient power.
  • the motor cooling system and the engine cooling system are arranged side by side along the width direction of the vehicle.
  • the side-by-side arrangement of the motor cooling system and the engine cooling system means that they are arranged side by side as a whole, and not every component is arranged side by side in the width direction of the vehicle.
  • at least the motor radiator and the engine radiator 70 can be arranged side by side.
  • the vehicles are arranged side by side in the width direction, with compact structure and reasonable layout. More specifically, the engine radiator 70 and the motor radiator are symmetrically arranged along the longitudinal center plane of the hybrid all-terrain vehicle, so that the mass distribution of the entire vehicle is as uniform as possible, which improves the balance of the entire vehicle to a certain extent and improves driving safety.
  • the engine cooling channel may be communicated with the engine radiator outlet 72 through the engine water inlet pipe, an oil cooler (not shown in the figure) is provided on the engine 40, and the oil cooler may be communicated with the engine water inlet pipe.
  • the oil cooler can be communicated with the engine water inlet pipe through the oil cooling pipe 73.
  • a part of the coolant from the engine radiator outlet 72 directly enters the engine water inlet pipe, and the other part enters the oil cooler.
  • the oil inside the engine 40 is cooled, which further helps the engine 40 to dissipate heat.
  • the oil cooling tube 73 may be a rubber tube to facilitate assembly and connection.
  • the pipe in the motor cooling system may include at least one rigid pipe and at least one flexible pipe.
  • the pipes in the engine cooling system may include at least one rigid pipe and at least one flexible pipe.
  • the pipes used to connect the various components may include at least one rigid pipe and at least one flexible pipe.
  • the rigid pipe helps to define the extension path of the pipe, while the flexible pipe can facilitate the installation of the pipe.
  • the flexible pipe is connected at the position, and the rigid pipe is connected at other positions.
  • the connecting pipe between the two parts can be a flexible pipe to facilitate installation and connection.
  • the connecting pipe between the two components can be a rigid pipe, or a pipe that is a combination of a rigid pipe and a flexible pipe, so that the pipeline between the two components at a longer distance can extend according to a predetermined path, and Not easy to be confused.
  • the “components” described above are one or more of the following components: motor radiator 30, first motor 10, second motor 20, water pump 50, controller 60, engine radiator 70, engine 40.
  • the rigid pipe provided in this embodiment may be an aluminum pipe, and the aluminum material has better heat dissipation, and part of the heat of the coolant can be taken away by the aluminum pipe, which further improves the heat dissipation effect.
  • the motor radiator liquid outlet 32 is connected to the first hose a, the first hose a is connected to the first aluminum tube b, and the first aluminum tube b passes through the second hose c and connects to the controller cooling channel.
  • the first end is connected, the second end of the controller cooling channel is connected to the water pump 50 through the third hose d, and the water pump 50 is connected to the first end of the first motor cooling channel through the fourth hose e, and the first motor cooling channel
  • the second end is connected to the second end of the second motor cooling channel through the second aluminum tube f
  • the first end of the second motor cooling channel is connected to the fifth hose g
  • the fifth hose g is connected to the third aluminum tube h
  • the tube h is connected to the sixth hose i
  • the sixth hose i is connected to the liquid inlet 31 of the motor radiator.
  • the engine radiator outlet 72 is connected to the seventh hose j, the seventh hose j is connected to the fourth aluminum tube k, the fourth aluminum tube k is connected to the eighth hose 1, and the eighth hose 1 is connected to the first end of the engine and the second end of the engine
  • the ninth hose m is connected, the ninth hose m is connected to the fifth aluminum tube n, the fifth aluminum tube n is connected to the tenth hose o, and the tenth hose o is connected to the engine radiator liquid inlet 71.
  • the eighth hose 1 is the aforementioned engine water inlet pipe to which the oil cooling pipe 73 communicates.
  • Embodiment 2 This embodiment of the application also provides a hybrid all-terrain vehicle. Please refer to Figures 2 to 4.
  • the hybrid all-terrain vehicle includes a frame 9, an engine 40 (see Figure 1), and a first motor 10. , Axle (not shown in the figure), second motor 20, motor radiator 30.
  • the engine 40 is installed on the frame 9.
  • the second motor 20 is drivingly connected with the engine 40, and a second motor cooling channel is provided inside the second motor 20.
  • the axle is provided on the frame 9.
  • the first motor 10 is drivingly connected to the axle, and the first motor 10 is provided with a first motor cooling channel.
  • the motor radiator 30 is arranged on the frame 9, and the motor radiator 30 is provided with a motor radiator liquid inlet 31 and a motor radiator liquid outlet 32, wherein the motor radiator liquid inlet 31 and the second motor cooling channel One end is in communication, the motor radiator liquid outlet 32 is in communication with the first end of the first motor cooling channel, and the second end of the first motor cooling channel is in communication with the second end of the second motor cooling channel.
  • the motor radiator 30 is provided at the front end of the frame.
  • the hybrid all-terrain vehicle further includes two headlights 80, and the two headlights 80 are respectively provided on the motor radiator 30. That is to say, the motor radiator 30 is arranged directly in front of the cockpit of the hybrid all-terrain vehicle, thereby facilitating the motor radiator 30 to dissipate heat.
  • the motor radiator 30 can also be arranged at the rear or side of the frame 9 as long as the motor radiator 30 can effectively dissipate heat.
  • the motor radiator liquid inlet 31 and the motor radiator liquid outlet 32 are respectively arranged on two opposite sides of the motor radiator 30, the first motor cooling channel, the motor radiator liquid inlet 31, the motor radiator The radiator outlet 32 and the second motor cooling channel communicate with each other to form a circulating cooling channel in the hybrid all-terrain vehicle. Because the motor radiator inlet 31 is the first motor cooling channel and the second motor cooling channel. The outlet 32 of the motor radiator is connected to the first end of the first motor cooling channel.
  • the circulating fluid flowing out of the outlet 32 of the motor radiator Pass the first motor 10 first, then the second motor 20, and finally flow into the motor radiator 30 from the motor radiator liquid inlet 31 to dissipate heat, thus, the heat generated by the second motor 20 and the first motor 10 can be removed Bring to the motor radiator 30 to dissipate heat to the external environment through the motor radiator 30, so that the second motor 20 and the first motor 10 can be effectively dissipated, thereby increasing the service life of the motor and ensuring the mixing Driving safety of powered all-terrain vehicles.
  • the circulating fluid first absorbs the first motor 10 whose temperature is relatively low.
  • the generated heat then absorbs the heat generated by the second motor 20 with a relatively high temperature, thereby ensuring that the first motor 10 and the second motor 20 can effectively dissipate heat.
  • the hybrid all-terrain vehicle further includes another radiator, the other radiator is fixed with the motor radiator 30, and the motor radiator 30 is disposed on the other radiator in the front-rear direction.
  • the front side of a radiator may be an engine radiator 70.
  • the other structure of the second embodiment is basically the same as the structure of the first embodiment, so it will not be repeated here.

Abstract

一种混合动力全地形车,包括车架(9);固定在车架上的动力系统(100),包括发动机(40)和电机,发动机(40)用于驱动电机产生电能或用于为前轮或后轮输出动力,电机用于在发动机(40)的驱动下产生电能或用于为前轮或后轮输出动力;电机内具有电机冷却通道;电机散热器(30)包括电机散热器进液口(31)和电机散热器出液口(32),电机散热器进液口(31)、电机冷却通道与电机散热器出液口(32)依次连通以形成电机冷却系统;水泵(50)连接于电机冷却系统中,水泵(50)离地面高度小于或等于电机冷却通道的两个端部离地面高度;和/或水泵(50)离地面高度小于或等于电机散热器进液口(31)和电机散热器出液口(32)离地高度,整个冷却系统的循环效率和电机散热效率较高,电机能快速散热,进而有效提高电机的寿命。

Description

混合动力全地形车
相关申请的交叉引用
本申请要求申请号为202020268213.3、申请日为2020年03月06日的中国专利申请,以及申请号为2020230180080、申请日为2020年12月14日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及车辆的结构设计技术领域,尤其涉及一种混合动力全地形车。
背景技术
相关技术中,混合动力的全地形车等需要利用电能作为动力源,该种全地形车需要使用电机作为动力装置,但是,电机在工作过程中会产生大量的热量,这些热量聚集在全地形车的内部,不仅会影响电机的使用寿命,还会影响行车安全。
发明内容
鉴于上述问题,提出了本申请以解决上述问题或至少部分地解决上述问题的混合动力全地形车。
本申请实施例提供一种混合动力全地形车,包括:车架;位于车架前侧的前轮和位于车架后侧的后轮;固定在车架上的动力系统,所述动力系统包括发动机和电机,所述发动机用于驱动所述电机产生电能或者用于为所述前轮或所述后轮输出动力,所述电机用于在发动机的驱动下产生电能或者用于为前轮或后轮输出动力;电机,所述电机内部具有电机冷却通道;电机散热器,固定在所述车架上,包括电机散热器进液口和电机散热器出液口,所述电机散热器进液口、所述电机冷却通道与所述电机散热器出液口依次连通以形成电机冷却系统;水泵,连接于所述电机冷却系统中,且所述水泵离地面的高度小于或等于所述电机冷却通道的两个端部离地面的高度;和/或,所述水泵离地面的高度小于或等于电机散热器进液口和电机散热器出液口离地面的高度。
在至少一个实施例中,所述电机包括第一电机和第二电机,所述第二电机与所述发动机连接并在所述发动机的驱动下产生电能,所述第一电机通过所述第二电机产生的电能为所述前轮或所述后轮输出动力;所述第一电机内部具有第一电机冷却通道,所述第二电机 内部具有第二电机冷却通道;所述水泵离地面的高度小于或等于所述第一电机冷却通道的两个端部离地面的高度,和/或,所述水泵离地面的高度小于或等于所述第二电机冷却通道的两个端部离地面的高度。
在至少一个实施例中,所述混合动力全地形车还包括控制器,所述控制器连接在所述电机冷却系统中,所述控制器内具有控制器冷却通道,所述水泵离地面的高度小于或等于所述控制器冷却通道的两个端部离地面的高度。
在至少一个实施例中,所述发动机内部具有发动机冷却通道,所述水泵离地面的高度小于或等于所述发动机冷却通道的两个端部离地面的高度。
在至少一个实施例中,所述电机散热器出液口与所述第一电机冷却通道的第一端连通,所述电机散热器进液口与所述第二电机冷却通道的第一端连通,所述第一电机冷却通道的第二端与所述第二电机冷却通道的第二端连通。
在至少一个实施例中,所述控制器冷却通道串联于所述电机散热器出液口与所述第一电机冷却通道之间;其中,所述电机散热器出液口与所述控制器冷却通道的第一端连通,所述控制器冷却通道的第二端与所述第一电机冷却通道的第一端连通。
在至少一个实施例中,所述水泵设于所述控制器冷却通道的第二端与所述第一电机冷却通道的第一端之间;或者,所述水泵设于所述电机散热器出液口与所述控制器冷却通道的第一端之间;或者,所述水泵设于所述第二电机冷却通道的第二端与所述第一电机冷却通道的第二端之间;或者,所述水泵设于所述电机散热器进液口与所述第二电机冷却通道的第一端之间。
在至少一个实施例中,所述混合动力全地形车还包括:发动机散热器,所述电机散热器与所述发动机散热器沿所述车辆的宽度方向并排设置。
在至少一个实施例中,所述发动机散热器和所述电机散热器沿所述混动全地形车的纵向中心面对称布置。
在至少一个实施例中,所述电机散热器位于所述车架的前侧;所述发动机固定在所述车架上且位于电机散热器的后方,所述第二电机与发动机连接且位于发动机的前方,所述第一电机位于发动机的后方,所述控制器位于发动机的一侧。
本申请实施例所提供的混合动力全地形车,电机具有电机冷却通道,电机散热器进液口、电机冷却通道、与电机散热器出液口依次连通形成电机冷却系统,水泵在电机冷却系统中的位置处于电机冷却系统的最低位置,使得水泵能够快速地将电机散热器的冷却液泵向电机冷却系统,使得整个电机冷却系统的循环效率较高,有效提高了电机散热效率,使得电机能够得到快速散热,进而有效提高电机的使用寿命,保证全地形车的行车安全。
本申请实施例还提供了一种混合动力全地形车,包括:车架;发动机,设置在所述车 架上;车桥,设置在所述车架上;第一电机,与所述车桥驱动连接,所述第一电机内部设置有第一电机冷却通道;第二电机,与所述发动机驱动连接,所述第二电机内部设置有第二电机冷却管道;以及电机散热器,设置在所述车架上,所述电机散热器上设置有电机散热器进液口和电机散热器出液口,其中,所述电机散热器进液口与所述第二电机冷却通道的第一端连通,所述电机散热器出液口与所述第一电机冷却通道的第一端连通,所述第一电机冷却通道的第二端与所述第二电机冷却通道的第二端连通。
在至少一个实施例中,所述混合动力全地形车还包括控制器,所述控制器内设置控制器冷却通道,所述控制器冷却通道的第一端连接所述电机散热器出液口,第二端连接所述第一电机冷却通道的第一端。
在至少一个实施例中,所述混合动力全地形车还包括水泵,所述水泵设置在所述电机散热器出液口和所述控制器冷却通道的第一端之间。
在至少一个实施例中,所述混合动力全地形车还包括水泵,所述水泵设置在所述电机散热器进液口和所述第二电机冷却通道的第一端之间。
在至少一个实施例中,所述混合动力全地形车还包括:加液箱,设置在所述车架上;以及加液管,所述加液管的一端连通所述加液箱,另一端连通在所述水泵和所述电机散热器出液口之间。
在至少一个实施例中,所述混合动力全地形车还包括:加液箱,设置在所述车架上;以及加液管,所述加液管的一端连通所述加液箱,另一端连通在所述控制器冷却通道的第一端和所述电机散热器出液口之间。
在至少一个实施例中,所述混合动力全地形车还包括通气管,所述通气管连通所述加液箱和所述电机散热器。
在至少一个实施例中,所述电机散热器位于所述车架的前端。
在至少一个实施例中,所述混合动力全地形车还包括两个前大灯,两个所述前大灯分别设置在所述电机散热器的两侧。
在至少一个实施例中,所述电机散热器进液口和电机散热器出液口分别设置在所述电机散热器相对的两个侧面上。
本申请实施例提供了一种混合动力全地形车,通过将第一电机、第二电机、电机散热器相互连通形成一个循环冷却通道,可以利用在循环冷却通道中循环流动的循环液将第一电机和第二电机产生的热量不断地带到电机散热器处,并通过电机散热器将热量散发到外部环境中,由此,可以对第一电机和第二电机进行有效地散热,进而可以提高第一电机和第二电机的使用寿命,并保证混合动力全地形车的行车安全。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的混合动力全地形车的车辆冷却系统的结构示意图。
图2为本申请实施例提供的另一种混合动力全地形车的液冷散热系统与动力装置的配合关系示意图,循环通道上的箭头表示循环液在循环通道中循环流动的方向,图中还示出了另一散热器。
图3为图2中所示的电机散热器和另一散热器的连接关系示意图。
图4为图2中所示的电机散热器和另一散热器在车架上的安装位置示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
此外,“连接”一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一装置连接于一第二装置,则代表所述第一装置可直接连接于所述第二装置,或通过其它装置间接地连接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请的描述中,“前”、“后”方位或位置关系为基于附图所示的方位或位置关系, 需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
实施例一
图1为本申请实施例提供的混合动力全地形车的车辆冷却系统的结构示意图。请参照附图1,本实施例一种混合动力全地形车的包括:车架9(参见图4)、前轮、后轮、动力系统100、电机散热器30和水泵50。
其中,前轮位于车架9的前侧,后轮位于车架9的后侧。动力系统可以固定在车架9上,动力系统包括电机和发动机40;发动机40用于驱动电机产生电能或者用于为前轮或后轮输出动力,电机用于在发动机40的驱动下产生电能或者用于为前轮或后轮输出动力。
电机内部具有电机冷却通道;电机散热器30固定在车架9上,电机散热器30包括电机散热器进液口31和电机散热器出液口32,电机散热器进液口31、电机冷却通道与电机散热器出液口32依次连通以形成电机冷却系统。
水泵50连接于电机冷却系统中,且水泵50离地面的高度小于或等于电机冷却通道的两个端部离地面的高度;和/或,水泵50离地面的高度小于或等于电机散热器进液口31和电机散热器出液口32离地面的高度。由此,使得水泵50位于电机冷却系统的最低位置。由于水是往下流,水泵50设置在最低位置,使得水泵50能够快速地将电机散热器30处的冷却液泵向电机冷却系统的各处,从而最大程度上提高冷却效率。
本实施例的混合动力全地形车该混合动力全地形车采用燃料(汽油、柴油等)和电能的混合动力驱动。更具体的,本实施例的车辆可以为增程式车辆。
本申请实施例所提供的混合动力全地形车,电机具有电机冷却通道,电机散热器进液口、电机冷却通道、与电机散热器出液口依次连通形成电机冷却系统,水泵在电机冷却系统中的位置处于电机冷却系统的最低位置,使得水泵能够快速地将电机散热器的冷却液泵向电机冷却系统,使得整个电机冷却系统的循环效率较高,有效提高了电机散热效率,使得电机能够得到快速散热,进而有效提高电机的使用寿命,保证全地形车的行车安全。
具体的,电机可以包括第一电机10和第二电机20,本实施例的第二电机20可以与发动机40连接,并在发动机40的驱动下产生电能,而第二电机20可以与第一电机10电连接,使得第一电机10通过第二电机20产生的电能为前轮或后轮输出动力,具体的,第二电机20为第一电机10提供电能,第一电机10用于与车辆的车桥(图中未示出)驱动连接,进而使得第一电机10的动力传输给车轮。由于发动机40可以给第二电机20发电,而第二电机20可以为第一电机10提供电能,使得整车续航里程增加。
第一电机10内部可以具有第一电机冷却通道,第二电机20内部可以具有第二电机冷 却通道。其中,第一电机冷却通道可以为设于第一电机10内的管路,还可以为第一电机10内部壁面形成的腔体通道,第二电机冷却通道可以为设于第二电机20内的管路,还可以为第二电机20内部壁面所形成的腔体通道,本实施例不做特别限定。
具体的,水泵50离地面的高度小于或等于第一电机冷却通道的两个端部离地面的高度,和/或,水泵50离地面的高度小于或等于第二电机冷却通道的两个端部离地面的高度。
电机散热器进液口31、第一电机冷却通道、第二电机冷却通道与电机散热器出液口32连通以形成电机冷却系统。冷却液途径电机散热器30、第一电机冷却通道、第二电机冷却通道以将第一电机10和第二电机20进行冷却散热。
其中,电机散热器30还可以连接有加液箱30a,加液箱30a设置在车架9上。具体的,加液箱30a的一端可以通过通气管30b连通至电机散热器30,加液箱30a的另一端可以连接有加液管30c,加液管30c可以设于水泵50与电机散热器出液口32之间。
具体地,加液箱30a主要用于为循环冷却通道补充循环液,循环液在循环冷却通道中循环流动时并不会流入加液箱30a中。由于加液管30c的另一端连通在水泵50和电机散热器出液口32之间,因此,从加液箱6流入循环冷却通道的循环液不需要经过电机散热器30,便可以在水泵50的驱动下流向电机冷却系统。
在其它实施方式中,也可以是加液管30c的一端连通加液箱30a,另一端连通在控制器冷却通道的第一端和电机散热器出液口32之间。
由于冷却液在循环冷却系统中循环流动时,不可避免地会产生一些气泡,因此,通过设置通气管30b,可以有效地排出循环冷却系统中的气泡,以保证冷却液能够具备良好的吸热功能。在本实施例中,通气管30b与加液箱30a连通的一端可以与加液箱30a的加注口连通,以防止加液箱30a中的冷却液的液面高度高于通气管30b与加液箱30a连通的一端的设置高度,而使循环液流入通气管30b中。当然,在其它实施方式中,也可以不设置加液箱30a和通气管30b。
电机散热器出液口32与第一电机冷却通道的第一端连通,电机散热器进液口31与第二电机冷却通道的第一端连通,第一电机冷却通道的第二端与第二电机冷却通道的第二端连通。需要说明的是,此处所描述的连通,是包括直接连通,也可以包括间接连接。由于电机散热器出液口32是与第一电机冷却通道的第一端连通,电机散热器进液口31是与第二电机冷却通道的第一端连通的,因此,当冷却液在循环冷却通道中循环流动时,从散热器出液口32流出的冷却液先经过第一电机10,然后经过第二电机20,最后再从电机散热器进液口31流入电机散热器30中进行散热,由此,可以将第一电机10和第二电机20运行而产生大量热量带到电机散热器30处,以通过电机散热器30将热量散发到外部环境中,从而可以对第一电机10和第二电机20进行有效地散热,进而可以提高电机的使用寿命, 并保证混合动力全地形车的行车安全。
另外,由于第二电机20用于发电,是将机械能转换为电能,而第一电机10作为驱动电机,用于发电的第二电机20所产生的热量大于第一电机10所产生的热量,因此,在本实施例的电机冷却系统中,冷却液先吸收温度相对较低的第一电机10所产生的热量,再吸收温度相对较高的第二电机20所产生的热量,使得热传递效率最高,冷却效果最好。
进一步的,如图1所示,本实施例的车辆冷却系统还包括控制器60,控制器60连接在电机冷却系统中,控制器60内具有控制器冷却通道,水泵50离地面的高度小于或等于控制器冷却通道的两个端部离地面的高度。控制器冷却通道可以串联于电机散热器出液口32与第一电机冷却通道之间;其中,电机散热器出液口32与控制器冷却通道的第一端连通,控制器冷却通道的第二端与第一电机冷却通道的第一端连通。
在本实施例中,控制器60可以用于与第一电机10和第二电机20配合,控制器60可以具有多种控制功能,比如,控制器60可以具有第一控制端和第二控制端,第一控制端与第一电机10连接,第二控制端与第二电机20连接,以使第一电机20产生的电能经过控制器60的调制后输送给第一电机10。另外,控制器60还可以与整车的其他电控部件电连接,以实现整车控制。
在一些实施例中,电机散热器可以位于车架9的前侧;发动机40固定在车架9上且位于电机散热器的后方,第二电机20与发动机连接且位于发动机的前方,第一电机10位于发动机的后方,控制器60可以位于发动机40的一侧。
由于控制器60在工作状态下也会产生一定的热量,因此,在控制器60内部设置控制器冷却通道,将控制器冷却通道接入电机冷却系统,使得电机冷却系统的冷却水经过控制器60以对控制器60散热,提高控制器60的使用寿命,避免车辆出现因控制器60因高温损坏而突然失灵导致失控的情况发生。
进一步地,由于控制器60所产生的热量要小于第一电机10和第二电机20产生的热量,因此,本实施例的控制器60设于在电机散热器30和第一电机10之间,在电机散热器30处释放了热量的冷却液从电机散热器30流出之后,依次经过控制器60、第一电机10和第二电机20,然后再回到电机散热器30,其中,控制器60工作所产生的热量<第一电机10工作所产生的热量<第二电机20工作所产生的热量,由此使得控制器60、第一电机10和第二电机20都能够合理有效地进行散热,冷却液的冷却效果最好。
在上述实施例的基础上,进一步的,如图1所示,水泵50可以设于控制器冷却通道的第二端与第一电机冷却通道的第一端之间。水泵50的设置可以加快冷却液的循环效率,保证散热速度。将水泵50设置在第一电机10与第二电机20之前,由于第一电机10和第二电机20工作时的热量较多,而水泵50设置位置距离第一电机10和第二电机20较近,可 以使得冷却液快速地泵向温度较高的第一电机10和第二电机20,使得第一电机10和第二电机20快速散热。
当然,在其他实施例中,如图2所示,水泵50可以设于电机散热器出液口32与控制器冷却通道的第一端之间,经过电机散热器30散热之后的循环液可以在水泵50的驱动下尽快地流向控制器60、第一电机10和第二电机20,以提高控制器60、第一电机10和第二电机20的散热速度。或者,水泵50设于第二电机冷却通道的第二端与第一电机冷却通道的第二端之间;或者,水泵50设于电机散热器进液口31与第二电机冷却通道的第一端之间。水泵50可以设置在电机冷却系统中的任意位置,只要是能够将电机散热器30处的冷却液快速泵向电机冷却系统即可,本实施例不做特别限定。
进一步的,如图1所示,本实施例所提供的混合动力全地形车还包括:发动机冷却通道,水泵50离地面的高度小于或等于发动机冷却通道的两个端部离地面的高度。
发动机冷却通道包括发动机散热器70,发动机散热器70包括发动机散热器进液口71和发动机散热器出液口72。发动机40内部具有发动机冷却通道,发动机散热器出液口72、发动机冷却通道的第一端、发动机冷却通道的第二端与发动机散热器进液口71依次连通以形成发动机冷却系统。
由于发动机40在工作过程中也会产生大量热量,并且热量较多,因此通过独立设置用于对发动机40散热的发动机冷却系统,使得发动机40的冷却与电机的冷却相互独立,互不影响,从而有效地提升了发动机40及电机的散热效果,使得车辆动力充足。
进一步的,如图1所示,电机冷却系统与发动机冷却系统沿车辆的宽度方向并排设置。所谓电机冷却系统与发动机冷却系统并排设置是指整体上呈并排布置,而并非每个零部件均沿车辆的宽度方向并排设置,在本实施例中,至少电机散热器和发动机散热器70可以在车辆的宽度方向并排设置,结构紧凑,布局合理。更具体的,发动机散热器70和电机散热器沿混动全地形车的纵向中心面对称布置,使得整车质量分布尽量均匀,在一定程度上提高整车的平衡性,提高行驶安全。
进一步的,发动机冷却通道可以通过发动机进水管与发动机散热器出液口72连通,发动机40上设有机油冷却器(图中未示出),机油冷却器可以与发动机进水管连通。具体的,机油冷却器可以通过机油冷却管73与发动机进水管连通,从发动机散热器出液口72出来的冷却液一部分直接进入发动机进水管,另一部分进入机油冷却器,由此可以用于对发动机40内部的机油进行冷却,进一步帮助发动机40散热。
需要说明的是,在本实施例中,优选的,机油冷却管73可以为胶管,以便于组装连接。
在本实施例中,电机冷却系统中的管道可以包括至少一个刚性管道和至少一个柔性管道。同样的,发动机冷却系统中的管道可以包括至少一个刚性管道和至少一个柔性管道。 用于连接各个部件之间的管道可以包括至少一个刚性管道和至少一个柔性管道,刚性管道有利于限定管路的延伸路径,而柔性管道可以便于管道的安装,因此,可以在部件的连接口的位置处连接柔性管道,而在其他位置处连接刚性管道,特别的,当两个部件距离较近时,两个部件之间的连接管道可以为柔性管道,以便于安装连接,而当两个部件距离较远时,两个部件之间的连接管道可以为刚性管道,或者为刚性管道与柔性管道组合的管道,以使得距离较远的两个部件之间的管路能按照预定路径延伸,而不易混乱。需要说明的是,上述描述的“部件”为以下部件中的一种或多种:电机散热器30、第一电机10、第二电机20、水泵50、控制器60、发动机散热器70、发动机40。
需要说明的是,本实施例中所提供的刚性管道可以为铝管,铝制材料的散热较好,通过铝管可以带走冷却液的一部分热量,进一步提高散热效果。
在本申请一个较佳实施例中,电机散热器出液口32连接第一胶管a、第一胶管a连接第一铝管b,第一铝管b通过第二胶管c与控制器冷却通道的第一端连通,控制器冷却通道的第二端通过第三胶管d与水泵50连通,水泵50再通过第四胶管e与第一电机冷却通道的第一端连通,而第一电机冷却通道的第二端通过第二铝管f与第二电机冷却通道的第二端连通,第二电机冷却通道的第一端连通第五胶管g,第五胶管g连通第三铝管h,第三铝管h连通第六胶管i,第六胶管i连通至电机散热器进液口31。
发动机散热器出液口72连接第七胶管j,第七胶管j连通第四铝管k,第四铝管k连通第八胶管l,第八胶管l连通发动机第一端,发动机的第二端连通第九胶管m,第九胶管m连通第五铝管n,第五铝管n连通第十胶管o,第十胶管o连通至发动机散热器进液口71。
需要说明的是,第八胶管l为上述的供机油冷却管73连通的发动机进水管。
实施例二本申请实施例还提供了一种混合动力全地形车,请参阅图2至图4,该混合动力全地形车包括:车架9、发动机40(参见图1)、第一电机10、车桥(图未示出)、第二电机20、电机散热器30。发动机40设置在车架9上。第二电机20与发动机40驱动连接,第二电机20内部设置有第二电机冷却通道。车桥设置在车架9上。第一电机10与车桥驱动连接,第一电机10内部设置有第一电机冷却通道。电机散热器30设置在车架9上,电机散热器30上设置有电机散热器进液口31和电机散热器出液口32,其中电机散热器进液口31与第二电机冷却通道的第一端连通,电机散热器出液口32与第一电机冷却通道的第一端连通,第一电机冷却通道的第二端与第二电机冷却通道的第二端连通。
在本实施例中,电机散热器30设置在车架的前端,在一些实施例中,混合动力全地形车还包括两个前大灯80,两个前大灯80分别设置在电机散热器30的两侧,也就是说,电机散热器30是设置在混合动力全地形车的驾驶舱的正前方,由此,可以便于电机散热器30进行散热。在其它实施方式中,电机散热器30也可以设置在车架9的后端或者侧面等 位置,只要保证电机散热器30能够进行有效散热即可。
在本实施例中,电机散热器进液口31和电机散热器出液口32分别设置在电机散热器30相对的两个侧面上,第一电机冷却通道、电机散热器进液口31、电机散热器出液口32和第二电机冷却通道之间相互连通,以在混合动力全地形车中形成了一个循环冷却通道,由于电机散热器进液口31是与第二电机冷却通道的第一端连通,电机散热器出液口32是与第一电机冷却通道的第一端连通的,所以,当循环液在循环冷却通道中循环流动时,从电机散热器出液口32流出的循环液先经过第一电机10,然后经过第二电机20,最后再从电机散热器进液口31流入电机散热器30中进行散热,由此,可以将第二电机20和第一电机10产生的热量带到电机散热器30处,以通过电机散热器30将热量散发到外部环境中,从而可以对第二电机20和第一电机10进行有效地散热,进而可以提高电机的使用寿命,并保证混合动力全地形车的行车安全。
另外,由于用于发电的第二电机20所产生的热量大于第一电机10所产生的热量,所以,在本实施例的循环冷却通道中,循环液先吸收温度相对较低的第一电机10所产生的热量,再吸收温度相对较高的第二电机20所产生的热量,由此,可以保证第一电机10和第二电机20都能进行有效地散热。
在一些实施例中,如图4所示,混合动力全地形车还包括另一散热器,该另一散热器与电机散热器30固定在一起,并且电机散热器30沿前后方向设置在该另一散热器前侧。例如,该另一散热器可以是发动机散热器70。
实施例二的其他结构与实施例一的结构基本相同,因此在此不再赘述。
在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种混合动力全地形车,包括:
    车架(9);
    位于车架(9)前侧的前轮和位于车架(9)后侧的后轮;
    固定在车架(9)上的动力系统(100),所述动力系统(100)包括发动机(40)和电机,所述发动机(40)用于驱动所述电机产生电能或者用于为所述前轮或所述后轮输出动力,所述电机用于在发动机(40)的驱动下产生电能或者用于为前轮或后轮输出动力;
    电机,所述电机内部具有电机冷却通道;
    电机散热器(30),固定在所述车架(9)上,包括电机散热器进液口(31)和电机散热器出液口(32),所述电机散热器进液口(31)、所述电机冷却通道与所述电机散热器出液口(32)依次连通以形成电机冷却系统;
    水泵(50),连接于所述电机冷却系统中,且所述水泵(50)离地面的高度小于或等于所述电机冷却通道的两个端部离地面的高度;
    和/或,所述水泵(50)离地面的高度小于或等于电机散热器进液口(31)和电机散热器出液口(32)离地面的高度。
  2. 根据权利要求1所述的混合动力全地形车,其特征在于,所述电机包括第一电机(10)和第二电机(20),所述第二电机(20)与所述发动机(40)连接并在所述发动机(40)的驱动下产生电能,所述第一电机(10)通过所述第二电机(20)产生的电能为所述前轮或所述后轮输出动力;
    所述第一电机(10)内部具有第一电机冷却通道,所述第二电机(20)内部具有第二电机冷却通道;
    所述水泵(50)离地面的高度小于或等于所述第一电机冷却通道的两个端部离地面的高度,和/或,所述水泵(50)离地面的高度小于或等于所述第二电机冷却通道的两个端部离地面的高度。
  3. 根据权利要求2所述的混合动力全地形车,其特征在于,还包括控制器(60),所述控制器(60)连接在所述电机冷却系统中,所述控制器(60)内具有控制器冷却通道,所述水泵(50)离地面的高度小于或等于所述控制器冷却通道的两个端部离地面的高度。
  4. 根据权利要求1所述的混合动力全地形车,其特征在于,所述发动机(40)内部具有发动机冷却通道,所述水泵(50)离地面的高度小于或等于所述发动机冷却通道的两个端部离地面的高度。
  5. 根据权利要求2所述的混合动力全地形车,其特征在于,所述电机散热器出液口(32) 与所述第一电机冷却通道的第一端连通,所述电机散热器进液口(31)与所述第二电机冷却通道的第一端连通,所述第一电机冷却通道的第二端与所述第二电机冷却通道的第二端连通。
  6. 根据权利要求5所述的混合动力全地形车,其特征在于,所述控制器冷却通道串联于所述电机散热器出液口(32)与所述第一电机冷却通道之间;
    其中,所述电机散热器出液口(32)与所述控制器冷却通道的第一端连通,所述控制器冷却通道的第二端与所述第一电机冷却通道的第一端连通。
  7. 根据权利要求6所述的混合动力全地形车,其特征在于,
    所述水泵(50)设于所述控制器冷却通道的第二端与所述第一电机冷却通道的第一端之间;
    或者,所述水泵(50)设于所述电机散热器出液口(32)与所述控制器冷却通道的第一端之间;
    或者,所述水泵(50)设于所述第二电机冷却通道的第二端与所述第一电机冷却通道的第二端之间;
    或者,所述水泵(50)设于所述电机散热器进液口(31)与所述第二电机冷却通道的第一端之间。
  8. 根据权利要求1所述的混合动力全地形车,其特征在于,还包括:
    发动机散热器(70),所述电机散热器(30)与所述发动机散热器(70)沿所述车辆的宽度方向并排设置。
  9. 根据权利要求8所述的混合动力全地形车,其特征在于,所述发动机散热器(70)和所述电机散热器(30)沿所述混动全地形车的纵向中心面对称布置。
  10. 根据权利要求3所述的混合动力全地形车,其特征在于,
    所述电机散热器(30)位于所述车架(9)的前侧;
    所述发动机(40)固定在所述车架(9)上且位于电机散热器(30)的后方,
    所述第二电机(20)与发动机(40)连接且位于发动机(40)的前方,所述第一电机(10)位于发动机(40)的后方,所述控制器(60)位于发动机(40)的一侧。
  11. 一种混合动力全地形车,其特征在于,包括:
    车架(9);
    发动机(40),设置在所述车架(9)上;
    车桥,设置在所述车架(9)上;
    第一电机(10),与所述车桥驱动连接,所述第一电机(10)内部设置有第一电机冷却通道;
    第二电机(20),与所述发动机(40)驱动连接,所述第二电机(20)内部设置有第二电机冷却通道;以及
    电机散热器(30),设置在所述车架(9)上,所述电机散热器(30)上设置有电机散热器进液口(31)和电机散热器出液口(32),
    其中,所述电机散热器进液口(31)与所述第二电机冷却通道的第一端连通,所述电机散热器出液口(32)与所述第一电机冷却通道的第一端连通,所述第一电机冷却通道的第二端与所述第二电机冷却通道的第二端连通。
  12. 根据权利要求11所述的混合动力全地形车,其特征在于,还包括控制器(60),所述控制器(60)内设置控制器冷却通道,所述控制器冷却通道的第一端连接所述电机散热器出液口(32),第二端连接所述第一电机冷却通道的第一端。
  13. 根据权利要求12所述的混合动力全地形车,其特征在于,还包括水泵(50),所述水泵(50)设置在所述电机散热器出液口(32)和所述控制器冷却通道的第一端之间。
  14. 根据权利要求12所述的混合动力全地形车,其特征在于,还包括水泵(50),所述水泵(50)设置在所述电机散热器进液口(31)和所述第二电机冷却通道的第一端之间。
  15. 根据权利要求11-13中任一项所述的混合动力全地形车,其特征在于,还包括:
    加液箱(30a),设置在所述车架(9)上;以及
    加液管(30c),所述加液管(30c)的一端连通所述加液箱(30a),另一端连通在所述水泵(50)和所述电机散热器出液口(32)之间。
  16. 根据权利要求14所述的混合动力全地形车,其特征在于,还包括:
    加液箱(30a),设置在所述车架(9)上;以及
    加液管(30c),所述加液管(30c)的一端连通所述加液箱(30a),另一端连通在所述控制器冷却通道的第一端和所述电机散热器出液口(32)之间。
  17. 根据权利要求15或16所述的混合动力全地形车,其特征在于,还包括通气管(30b),所述通气管(30b)连通所述加液箱(30a)和所述电机散热器(30)。
  18. 根据权利要求11至16中任一项所述的混合动力全地形车,其特征在于,所述电机散热器(30)位于所述车架(9)的前端。
  19. 根据权利要求18所述的混合动力全地形车,其特征在于,所述混合动力全地形车还包括两个前大灯(80),两个所述前大灯(80)分别设置在所述电机散热器(30)的两侧。
  20. 根据权利要求18所述的混合动力全地形车,其特征在于,所述电机散热器进液口(31)和所述电机散热器出液口(32)分别设置在所述电机散热器(30)相对的两个侧面上。
PCT/CN2021/079076 2020-03-06 2021-03-04 混合动力全地形车 WO2021175285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/908,709 US20230182562A1 (en) 2020-03-06 2021-03-04 Hybrid all-terrain vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020268213.3 2020-03-06
CN202020268213 2020-03-06
CN202023018008.0U CN215793154U (zh) 2020-12-14 2020-12-14 车辆冷却系统及混合动力全地形车
CN202023018008.0 2020-12-14

Publications (1)

Publication Number Publication Date
WO2021175285A1 true WO2021175285A1 (zh) 2021-09-10

Family

ID=77613898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079076 WO2021175285A1 (zh) 2020-03-06 2021-03-04 混合动力全地形车

Country Status (2)

Country Link
US (1) US20230182562A1 (zh)
WO (1) WO2021175285A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170220Y (zh) * 2008-03-28 2008-12-24 中国嘉陵工业股份有限公司(集团) 用于轻型全地形车无级双流转向机构的闭式液压系统
WO2010021292A1 (ja) * 2008-08-19 2010-02-25 三菱重工業株式会社 ハイブリッド型産業車両のバッテリ冷却構造
CN203515762U (zh) * 2013-10-15 2014-04-02 山东良子动力有限公司 全地形车发动机冷却系统
CN209650052U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
CN110492673A (zh) * 2019-05-31 2019-11-22 北京致行慕远科技有限公司 电机冷却系统和具有其的全地形车
CN212979844U (zh) * 2020-03-06 2021-04-16 赛格威科技有限公司 全地形车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170220Y (zh) * 2008-03-28 2008-12-24 中国嘉陵工业股份有限公司(集团) 用于轻型全地形车无级双流转向机构的闭式液压系统
WO2010021292A1 (ja) * 2008-08-19 2010-02-25 三菱重工業株式会社 ハイブリッド型産業車両のバッテリ冷却構造
CN203515762U (zh) * 2013-10-15 2014-04-02 山东良子动力有限公司 全地形车发动机冷却系统
CN209650052U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
CN110492673A (zh) * 2019-05-31 2019-11-22 北京致行慕远科技有限公司 电机冷却系统和具有其的全地形车
CN212979844U (zh) * 2020-03-06 2021-04-16 赛格威科技有限公司 全地形车

Also Published As

Publication number Publication date
US20230182562A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US6124644A (en) Single core dual circuit heat exchange system
CN102544625A (zh) 一种半导体水冷电池冷却装置
CN212979863U (zh) 车辆用冷却水综合热管理装置
KR20210091897A (ko) 냉각수 급수 모듈
KR20210090814A (ko) 냉각수 급수 모듈
US20110303395A1 (en) Vehicle heat exchanger assembly
CN110060967A (zh) 一种双面冷却散热器
WO2021175285A1 (zh) 混合动力全地形车
JP2007200915A (ja) 冷却フィンおよび冷却装置
CN113794332A (zh) 集成电驱系统
US10766354B2 (en) Vehicle having cooling arrangement disposed below floor surface
CN209675272U (zh) 一种双面冷却散热器
CN212979844U (zh) 全地形车
CN201265446Y (zh) 发动机散热器组及带有散热器组的发动机冷却系统
CN109572387A (zh) 汽车及冷却系统
KR102476381B1 (ko) 차량용 라디에이터
KR101596688B1 (ko) 연료전지 차량용 쿨링 모듈 및 시스템
CN215793154U (zh) 车辆冷却系统及混合动力全地形车
CN214043789U (zh) 一种新能源汽车电池包气液混合散热系统
CN211376773U (zh) 一种车辆动力装置支撑散热装置
CN215153920U (zh) 车辆冷却系统及混合动力全地形车
CN112714592A (zh) 一种机车充电机用多功能水冷散热器
CN215633284U (zh) 全地形车及其散热系统
CN110778389A (zh) 用于电传动车的发动机发电机复合散热系统
CN218497330U (zh) 一种车载投影系统以及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764937

Country of ref document: EP

Kind code of ref document: A1