WO2021175170A1 - 一种多波段传输光纤及其制备方法 - Google Patents

一种多波段传输光纤及其制备方法 Download PDF

Info

Publication number
WO2021175170A1
WO2021175170A1 PCT/CN2021/078373 CN2021078373W WO2021175170A1 WO 2021175170 A1 WO2021175170 A1 WO 2021175170A1 CN 2021078373 W CN2021078373 W CN 2021078373W WO 2021175170 A1 WO2021175170 A1 WO 2021175170A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
functional
optical fiber
layer
refractive index
Prior art date
Application number
PCT/CN2021/078373
Other languages
English (en)
French (fr)
Inventor
陶光明
邹郁祁
李攀
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021175170A1 publication Critical patent/WO2021175170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the invention relates to an optical fiber and a preparation method thereof, in particular to a multi-band transmission optical fiber integrating multiple functions and a preparation method thereof.
  • laser technology is widely used in sensing, material processing, additive manufacturing, imaging, communication, Medical and other fields.
  • laser medical treatment as a treatment method that replaces traditional metal knives and high-frequency electric knives, has become the safest, most efficient, and low-damage surgical method at this stage.
  • laser processing has high efficiency, low cost, non-contact, processing in extreme environments, no wear, wide versatility, easy handling and control compared with existing processing methods.
  • the Chinese invention patent with publication number CN110497083A provides a laser processing equipment, which can improve the efficiency and versatility of laser processing by using a double-rod cylinder to drive the light barrier and multiple fixed blocks.
  • the equipment is powerless for processing in complex environments.
  • the Chinese invention patent with publication number CN110497102A provides a material conveying system and laser processing equipment.
  • the production capacity can be increased by the way of the stage.
  • it effectively solves the bottleneck problem of balanced output with the subsequent process.
  • the laser High-precision and high-flexibility processing methods have not been realized.
  • a flexible, universal, high-efficiency, high-stability, and low-cost laser processing method in the existing laser processing field is still missing.
  • the Chinese invention patent with publication number CN109452968A discloses a CO2 laser treatment instrument for the treatment of oral diseases. Laser technology treatment is precise and fast. The cutting of soft and hard tissues is not painful, and it is clean and hygienic.
  • the Chinese invention patent with publication number CN109975921A discloses an infrared energy-transmitting optical fiber and its manufacturing method as well as an infrared laser medical transmission system, which realizes laser transmission through a metal dielectric layer structure.
  • the Chinese invention patent with publication number CN109946786A discloses a multifunctional laser scalpel and laser processing equipment with a controllable and self-deformable optical fiber, which adopts a deformation-controllable protective layer and multifunctional optical fiber composite technology to realize detection, transmission, and gas circulation Integration of functions.
  • the Chinese invention patent with publication number CN108671415A discloses a medical optical fiber, which is formed by connecting a plurality of hollow-core metal waveguide optical fibers with a predetermined length, which improves the flexibility to a certain extent.
  • the laser scalpel has the advantages of no direct contact, low infection rate, short operation time, small damage, no noise, no vibration, and high precision, its application has been limited for a long time due to the lack of flexible transmission methods.
  • the fiber that can be used to achieve illumination in the prior art is a side-emitting fiber with a spiral groove disclosed in the Chinese Invention Patent Application Publication No. CN108152882A.
  • the side-emitting fiber is wrapped around the outer circumference of a cylindrical core.
  • the cladding layer is provided with a spiral groove deep into the cladding layer, and the inner width of the spiral groove is smaller than the outer width, that is, the inner width of the spiral groove is narrow and the outer width is outside.
  • the disadvantage of this invention is that the process is complicated, cannot be mass-produced, and the optical fiber is easily damaged.
  • the existing optical fiber used in laser surgery or processing can only transmit the laser alone and cannot achieve illumination at the same time.
  • the illumination method in the prior art often cannot be combined with the transmission system, but is opened through the other end. It is achieved by directly adding lighting fibers, and the technology of integrating the lighting function into the quartz fiber for transmission needs to be solved urgently. Therefore, the multi-wavelength transmission fiber for fiber laser material processing integrating aiming, illumination and laser processing will be the choice for a new generation of fiber applications.
  • the embodiment of the present invention provides a multi-band transmission optical fiber capable of both laser transmission function and illumination function and a preparation method thereof.
  • a multi-band optical fiber which is characterized by: comprising an outer covering, and a functional fiber located in the outer covering and at least one illuminating fiber; the functional fiber is used to transmit laser light
  • the illuminating fiber is used to transmit visible light, and the functional fiber and the illuminating fiber are arranged side by side in the outer covering, or are arranged entangled with each other.
  • the functional fiber is a core-wrap structure or a photonic band gap structure fiber
  • the core-wrap structure includes a core layer located on the inner side and a cladding layer arranged concentrically on the outer side, and the refractive index of the core layer is higher than that of the cladding layer;
  • the photonic band gap structure optical fiber includes an air layer at the center and a cladding layer surrounding the air layer.
  • the cladding layer includes a first cladding layer and a second cladding layer, and the first cladding layer and the second cladding layer are sequentially Alternately stacked and arranged, the refractive index of the first cladding layer is higher than the refractive index of the second cladding layer, and the air layer is adjacent to the first cladding layer.
  • the illuminating fiber is an optical fiber, a light-emitting fiber, or a structure containing a micro LED light-emitting component.
  • the functional fiber is located in the center, and the illuminating fiber evenly surrounds the outer side of the functional fiber.
  • the mutual winding is spiral winding or braid winding.
  • the functional fiber is entangled together with the illuminating fiber, or the functional fiber is located in the center, and the illuminating fiber is entangled with each other and surrounds the functional fiber.
  • the optical fiber has at least a two-layer structure, including a low refractive index material layer and a high refractive index material layer, visible light is transmitted in the high refractive index material layer, and the low refractive index material layer is used to separate the high refractive index material layer. Refractive index material layer.
  • the low refractive index material layer and the high refractive index material layer are any two thermoplastic polymers with a refractive index difference greater than 0.01;
  • the low-refractive index material layer and the high-refractive index material layer have overlapping regions of temperature ranges within the 10 4 poise-10 8 poise viscosity range, and the drawing temperature of the optical fiber is 100° C.-500° C.;
  • the outer covering material is a thermoplastic polymer.
  • the materials of the low refractive index material layer, the high refractive index material layer and the outer cover layer are carbonate polymers (such as polycarbonate PC), sulfone polymers (such as polyethersulfone PES, polyphenylene Sulfone resin PPSU), etherimide polymers (such as polyetherimide PEI), acrylate polymers (such as polymethyl methacrylate PMMA, styrene dimethacrylate copolymer SMMA) , Any one of cyclic olefin copolymer (COC), polystyrene, polycarbonate, polyethylene, polypropylene, ABS, fluoropolymer, or a blend composed of any combination of the above substances.
  • carbonate polymers such as polycarbonate PC
  • sulfone polymers such as polyethersulfone PES, polyphenylene Sulfone resin PPSU
  • etherimide polymers such as polyetherimide PEI
  • acrylate polymers such as polymethyl
  • the luminescent fiber includes a substrate, an electrode and an electroluminescent material, and the substrate wraps the electrode and the electroluminescent material.
  • the lighting fiber includes a micro LED light-emitting component, the diameter of the micro LED light-emitting component is less than 100 ⁇ m, which is directly attached to the surface of the lighting fiber or integrated on the end surface of the lighting fiber.
  • the cross section of the optical fiber is circular, square, triangular or regular polygon.
  • the material of the functional fiber may be polymer, chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, quartz material, sapphire, fluoride glass, or any combination of the foregoing materials.
  • the electroluminescent material is liquid crystal.
  • the preparation method when the functional fiber and the illuminating fiber are entangled including
  • the method for preparing the outer coating is coating or evaporation.
  • the winding method includes spiral winding or braid winding.
  • the functional fiber when there are at least two illuminating fibers, the functional fiber is located in the center, and the illuminating fiber is evenly distributed on the outside of the functional fiber; the functional fiber is entangled with the illuminating fiber, or the functional fiber Located in the center, the illuminating fibers are entangled with each other and surround the functional fibers. .
  • the method for preparing the functional fiber pre-illuminated fiber in the above-mentioned optical fiber includes
  • S3 preparing an outer covering with at least two pores, the pores extending side by side;
  • step S4 Put the functional fiber or functional fiber preform prepared in step S1, and the illuminating fiber or illuminating fiber preform prepared in step S2 into the pores of the outer cover, respectively, and draw the optical fiber.
  • the inner diameter of the pores in the outer covering prepared in step S3 is larger than the outer diameter of the functional fiber;
  • the inner diameter of the pores in the outer covering prepared in the step S3 is larger than the outer diameter of the illuminating
  • step S4 when the optical fiber is drawn, the ends of the outer covering, functional fiber and/or illuminating fiber need to be fixed and drawn at the same time.
  • the method for preparing the functional fiber preform or the functional fiber includes a double crucible method, a melting and casting method, a tube rod method, a hot drawing method, an evaporation method, a film winding method or an extrusion method;
  • the method for preparing the lighting fiber or the lighting fiber preform includes a hot pressing method or a film winding method
  • the method for preparing the outer covering layer may be a hot pressing method.
  • a single fiber realizes a high degree of integration of functions such as laser transmission, illumination and aiming, and can also ensure the flexibility of the fiber. It has a wide range of applications in the field of laser material processing or medical treatment.
  • the optical fiber can adopt a wide range of materials, which can realize low-loss laser transmission in the whole wavelength range.
  • the core-clad structure chalcogenide glass fiber and the hollow-core one-dimensional photonic band gap fiber provided by the present invention can solve the problem of the lack of CO2 laser transmission mode at this stage, using the photonic band gap effect and the high transmittance of chalcogenide glass in the infrared band.
  • the overrate realizes the flexible low-loss transmission of CO2 laser.
  • the production method is simple, the production efficiency is high, and the mass production is possible.
  • Figure 1 is a schematic diagram of an optical fiber according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the optical fiber according to Embodiment 2 of the present invention.
  • Figure 3 is a schematic diagram of an optical fiber according to Embodiment 3 of the present invention.
  • Figure 4 is a schematic diagram of an optical fiber according to Embodiment 4 of the present invention.
  • Figure 5 is a schematic diagram of an optical fiber according to Embodiment 5 of the present invention.
  • Fig. 6 is a schematic diagram of an optical fiber according to Embodiment 6 of the present invention.
  • the optical fiber structure of the present invention includes the outermost outer cladding layer, and functional fibers and illuminating fibers located in the outer cladding layer.
  • the functional fiber is used to transmit high-power lasers, which are used for material processing or biological tissue ablation in medical operations.
  • the illuminating fiber is used to transmit visible light, thereby realizing the aiming and illuminating functions in processing or surgery. In addition, visible light can also be used to simulate the focus point of invisible light to achieve aiming, which is convenient for observation at any time during actual operation.
  • the illuminating fiber is at least one.
  • the functional fiber and the illuminating fiber are arranged side by side in the outer covering, or arranged in a winding arrangement.
  • the functional fiber and the illuminating fiber can be side-by-side, or when there are multiple illuminating fibers, the functional fiber can be placed in the center, and the illuminating fiber can be evenly spaced around the functional fiber.
  • the functional fiber and the illuminating fiber are wound and arranged, if there are multiple illuminating fibers, the functional fiber is located in the center at any cross section, and the illuminating fiber is evenly arranged around the functional fiber.
  • the functional fiber has a core-wrap structure.
  • the functional fiber includes a core layer and a cladding layer, and the refractive index of the core layer is higher than that of the cladding layer, so that the laser light is transmitted in the core layer.
  • the material of the functional fiber can be polymer, chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, quartz material, sapphire, fluoride glass and other common optical fiber materials suitable for different laser transmission bands .
  • the functional fiber can also be a one-dimensional photonic band gap structure fiber, a two-dimensional photonic band gap structure fiber, and so on. It includes an air layer at the center and a cladding layer wrapping the air layer.
  • the cladding layer includes a first cladding layer and a second cladding layer stacked in sequence.
  • the first cladding layer is close to the air layer, and
  • the refractive index of one cladding layer is greater than the refractive index of the second cladding layer.
  • the illuminating fiber can be an optical fiber, a structure including a micro LED light-emitting component, or a visible light transmission structure such as a light-emitting fiber.
  • the illuminating fiber When the illuminating fiber is an optical fiber, it includes at least two layers of structure, including a low refractive index material layer with a refractive index difference and a high refractive index material layer.
  • the low refractive index material layer and the high refractive index material layer can be arranged inside and outside, for example: the high refractive index layer can be inside, the low refractive index layer can be outside, visible light is transmitted in the high refractive index material layer, and the low refractive index material layer plays The role of interval. It can also be a low refractive index layer in the center and a high refractive index layer in the outer layer. As long as the outer cladding layer outside the high refractive index layer has a lower refractive index than the high refractive index layer, visible light can still be transmitted in the high refractive index layer.
  • the low refractive index material layer, the high refractive index material layer and the outer cover layer are preferably thermoplastic polymers and have good tensile properties and flexibility, and provide sufficient mechanical support for the entire fiber.
  • the low refractive index material is also a thermoplastic polymer, which is used to block visible light transmitted in the high refractive index material layer.
  • the low-refractive index material layer and the high-refractive index material layer have an overlapping area of temperature range within the 10 4 poise-10 8 poise viscosity range.
  • the drawing temperature of the optical fiber is preferably 100°C to 500°C.
  • the low refractive index material layer and the high refractive index material layer may be carbonate polymers (such as polycarbonate PC), sulfone polymers (such as polyethersulfone PES, polyphenylsulfone resin PPSU), ether Imide polymers (such as polyetherimide PEI), acrylate polymers (such as polymethyl methacrylate PMMA, styrene dimethacrylate copolymer SMMA), cyclic olefin copolymer (COC) ), polystyrene, polycarbonate, polyethylene, polypropylene, ABS, fluoropolymer, or a blend of any combination thereof, as long as it is any two thermoplastic polymers with a refractive index difference greater than 0.01 Anything can be done.
  • carbonate polymers such as polycarbonate PC
  • sulfone polymers such as polyethersulfone PES, polyphenylsulfone resin PPSU
  • ether Imide polymers such as polyetherimi
  • the material of the outer layer can be carbonate polymers (such as polycarbonate PC), sulfone polymers (such as polyethersulfone PES, polyphenylsulfone resin PPSU), etherimide polymers (such as poly Etherimide (PEI), acrylate polymers (such as polymethyl methacrylate PMMA, styrene dimethacrylate copolymer SMMA), cyclic olefin copolymer (COC), polystyrene, polycarbonate , Polyethylene, polypropylene, ABS, fluoropolymer, or a blend of any combination thereof. Any polymer with thermoplastic properties is fine.
  • the diameter of the core layer is 50 ⁇ m-200 ⁇ m, and the thickness of the cladding layer is 50 ⁇ m-500 ⁇ m.
  • the diameter of the central air layer is 200 ⁇ m-1000 ⁇ m
  • the cladding thickness is 50 ⁇ m-500 ⁇ m
  • the single-layer cladding thickness is 2.5 ⁇ m-5 ⁇ m, alternately each with 10-50 layers .
  • the diameter of the low refractive index material layer is 50 ⁇ m-250 ⁇ m, and the thickness of the high refractive index material layer is 150 ⁇ m-1000 ⁇ m.
  • the outer diameter is 2mm-6mm.
  • the illuminating fiber When the illuminating fiber is an electroluminescent fiber with a visible light transmission structure, it includes an electrode, a substrate and an electroluminescent material.
  • the electrode includes at least one set of electrode wires arranged in parallel, and the electrode wires are arranged in the substrate.
  • the substrate wraps the electrode wire and the electroluminescent material.
  • the electroluminescent material may be a liquid crystal material, the substrate has at least one hole structure parallel to the electrode wire, and the liquid crystal material is filled in the hole structure of the substrate.
  • the electrode wire is a metal wire, more preferably, the electrode wire is a stainless steel wire, a copper wire or a tungsten wire; specifically, the diameter of the electrode wire is 10 ⁇ m to 500 ⁇ m.
  • the substrate is a thermoplastic polymer material with a transparency of not less than 75%; preferably, the substrate is PMMA, SMMA, cyclic olefin copolymer, polystyrene, polycarbonate, polyethylene, polypropylene, and ABS One or any combination of the blends.
  • the at least one set of electrode wires arranged in parallel includes one positive electrode wire and at least two negative electrode wires.
  • the liquid crystal material is a cholesteric liquid crystal material; more specifically, the liquid crystal material is a cholesteric liquid crystal material formed by mixing a nematic liquid crystal and a chiral agent.
  • the micro LED light-emitting component is an LED with a diameter of less than 100 ⁇ m, which can be directly attached to the surface of the lighting fiber or integrated on the end surface of the lighting fiber.
  • the functional fiber is a low-loss fiber
  • the transmitted laser is used for processing and cutting, or for tissue ablation in medical surgery. Visible light is transmitted in the illuminating fiber. Because the processing laser is invisible, the visible light transmitted in the illuminating fiber is not only used for lighting, but also for aiming.
  • the preparation method of the multi-band transmission optical fiber specifically includes:
  • step S4 the method for preparing the outer coating is coating or vapor deposition.
  • the above-mentioned winding method may be mutual spiral winding or braid winding.
  • the functional fiber when there are at least two illuminating fibers, the functional fiber is located in the center, the illuminating fiber is evenly distributed on the outside of the functional fiber, and the functional fiber is helically wound together with the illuminating fiber, or The functional fiber is located in the center, and the illuminating fiber is entangled with each other and surrounds the functional fiber.
  • the winding method can be ordinary winding or weaving.
  • Another preparation method of the optical fiber includes
  • step S4 Put the functional fiber or functional fiber preform prepared in step S1, the illuminating fiber or illuminating fiber preform prepared in step S2, respectively, into the pores of the outer covering to obtain the optical fiber preform, and then the optical fiber The preform is drawn to obtain an optical fiber.
  • the inner diameter of the pores in the outer covering prepared in S3 is larger than the outer diameter of the functional fiber, and/or, when the illuminating fiber is prepared in step S2, The inner diameter of the pores in the outer cladding prepared in S3 is larger than the outer diameter of the illuminating fiber. Therefore, in the step S4, the ends of the outer cladding, functional fiber and/or the illuminating fiber need to be fixed and drawn at the same time when the optical fiber is drawn. system. That is, as long as the functional fibers or lighting fibers that have been drawn are put into the pores of the outer cover before the final drawing, the outer diameters of the functional fibers and the lighting fibers are usually much smaller than the pores of the outer cover. Therefore, in the final When drawing the optical fiber preform, it is necessary to fix the functional fiber or the illuminating fiber at the same time, and the pores shrink during the drawing, so that the outer covering is bonded to the functional fiber or the illuminating fiber.
  • the method for preparing the functional fiber preform or the functional fiber includes a double crucible method, a melting and casting method, a tube rod method, a hot drawing method, an evaporation method, a film winding method or an extrusion method.
  • the method for preparing the lighting fiber or the lighting fiber preform includes a hot pressing method or a film winding method; the method for preparing the outer cover layer may be a hot pressing method.
  • the optical fiber structure includes an outer cladding 130, a functional fiber 110 for transmitting laser light located in the outer cladding 130, and an illumination for transmitting visible light
  • the fiber 120, the functional fiber 110 and the illuminating fiber 120 are arranged side by side.
  • the functional fiber 110 is a silica fiber structure and is used to transmit laser light from a 1 ⁇ m or 1.5 ⁇ m fiber laser.
  • the illuminating fiber 120 includes a two-layer light guide structure, including a low refractive index material layer 121 located on the inner side, and a high refractive index material layer 122 located on the outer side.
  • the core layer 111 is GeO 2 doped high-purity quartz
  • the cladding layer 112 is high-purity quartz
  • the core layer 111 has a diameter of 50 ⁇ m
  • the cladding layer 112 has a thickness of 50 ⁇ m.
  • the core and the cladding have a concentric structure.
  • the illuminating fiber 120 includes an outer high refractive index material layer 122 made of a high refractive index thermoplastic polymer material PPSU with a thickness of 150 ⁇ m, which provides sufficient mechanical support for the entire optical fiber while realizing the transmission of visible light. Illumination is aimed, and visible light is transmitted in the high refractive index material layer.
  • the low refractive index material layer 121 located on the inner side is COC and has a diameter of 50 ⁇ m.
  • the above two polymer materials have an overlapping area of temperature range in the 10 4 poise-10 8 poise viscosity range, and the drawing temperature is 400°C.
  • the material of the outer cladding layer 130 is PMMA.
  • the diameter of the entire fiber is 2mm.
  • the functional fiber is a high-energy laser transmission structure.
  • the preparation method of the fiber includes
  • step S4 a total of In the drawing process, the functional fibers need to be separately fixed and placed in the outer covering before drawing. During the drawing of the outer covering, the pores in the outer covering shrink, so that the outer covering is close to the functional fibers.
  • the lighting fiber preform can be directly combined with the outer cover structure with a pore structure.
  • the outer cover structure can also be drawn into the lighting fiber first, and then drawn together with the outer cover structure during the preparation process.
  • the optical fiber in this embodiment also includes an outer covering 230, a functional fiber 210 for transmitting laser light located in the outer covering 230, and an illuminating fiber 220.
  • the illuminating fiber 220 is used to transmit visible light.
  • the functional fiber 210 and the illuminating fiber 220 are mutually Winding settings.
  • the cross-section of the optical fiber in this embodiment is triangular.
  • the functional fiber 210 has a core-clad fiber structure and is used to transmit laser light from a fiber laser.
  • the core layer is Ge 20 As 20 Se 15 Te 45
  • the cladding layer is Ge 20 As 20 Se 18 Te 42
  • the core layer diameter is 200 ⁇ m
  • the cladding thickness is 500 ⁇ m
  • the diameter of the functional fiber is 1200 ⁇ m
  • the core and cladding are Concentric structure.
  • the illuminating fiber 220 includes two layers of light guide structures, including a low refractive index material layer on the inner side, and a high refractive index material layer on the outer side.
  • the high refractive index material layer of the illuminating fiber is a high refractive index thermoplastic polymer material PPSU with a thickness of 1 mm
  • the low refractive index thermoplastic polymer is COC, located on the inner side, with a diameter of 500 ⁇ m, that is, the diameter of the illuminating fiber is 2.5 mm, the diameter of the illuminating fiber is much larger than that of the functional fiber. Therefore, it provides a large enough mechanical support for the entire optical fiber while realizing the transmission of visible light and realizing the illumination aiming of the optical fiber.
  • the above two polymer materials have an overlapping area of temperature range in the 10 4 poise-10 8 poise viscosity range.
  • the material of the outermost cladding layer 230 is PMMA.
  • the cross-section of the optical fiber is triangular, and the side length of the entire optical fiber is 6mm.
  • An outer covering is made on the outside of the wound functional fiber and the illuminating fiber. Specifically, the outer covering may be formed by coating or by winding a film. Finally, the entire outer surface of the optical fiber is reshaped to form a triangular cross-section structure.
  • the multi-band transmission optical fiber in this embodiment includes an outer covering 330, and a functional fiber 310 for transmitting laser light located in the outer covering 330; and an illuminating fiber 320, which is used to transmit visible light, and the functional fiber 310 and The lighting fibers 320 are arranged side by side.
  • the functional fiber 310 is an optical fiber with a photonic band gap structure in which PPSU and As 2 Se 3 alternate, and is used to transmit laser light from a fiber laser.
  • the functional fiber 310 has an air layer 311 in the middle.
  • the cladding layer surrounding the air layer 311 includes a first cladding layer 312 and a second cladding layer 313.
  • the refractive index of the first cladding layer 312 and the second cladding layer 313 are different.
  • the refractive index of the layer 312 is higher than the refractive index of the second cladding layer 313, and the first cladding layer 312 and the second cladding layer 313 are alternately overlapped to form the cladding layer.
  • the first cladding layer is PPSU
  • the second cladding layer is As 2 Se 3
  • the first cladding layer is arranged close to the core layer.
  • the diameter of the air layer is 200 ⁇ m
  • the thickness of the cladding layer is 50 ⁇ m.
  • the illuminating fiber 320 includes a two-layer light guide structure, including a low refractive index material layer 321 located on the outer side, and a high refractive index material layer 322 located on the inner side.
  • the high refractive index material layer 322 inside the illuminating fiber 320 is a high refractive index thermoplastic polymer material COC with a diameter of 150 ⁇ m, which provides a large enough mechanical support for the entire optical fiber and realizes the transmission of visible light and realizes the illumination of the optical fiber. aim.
  • the low refractive index material layer 321 on the outer side is PMMA and has a thickness of 50 ⁇ m.
  • the above two polymer materials have an overlapping area of temperature range in the 10 4 poise-10 8 poise viscosity range.
  • the material of the outer cladding layer 330 is COC.
  • the outer diameter of the outer cladding that is, the diameter of the entire optical fiber is 2 mm.
  • the method for preparing the optical fiber includes S1: preparing a functional fiber preform; S2: preparing an illuminating fiber preform, S3, preparing an outer covering with pores, S4: putting a functional fiber preform and an illuminating fiber preform into the outer covering In the corresponding pores of the layer, an optical fiber preform is obtained, and the optical fiber preform is thermally drawn.
  • the step S1 of preparing the functional fiber preform includes
  • S11 Prepare a double-layer film by thermal evaporation method. Use an agate mortar to grind the chalcogenide glass As 2 Se 3 into granules, fill the As 2 Se 3 into the crucible of the coating machine, and select an evaporation cover that matches the crucible diameter. Paste the required PPSU polymer film on the evaporation drum, seal the entire coating chamber, and evenly evaporate the loaded As 2 Se 3 glass onto the PPSU polymer film to obtain the PPSU-As 2 Se 3 double layer film.
  • the thickness of the PPSU film is 25 ⁇ m
  • the size of the PPSU film is 30cm ⁇ 90cm
  • the charge of As 2 Se 3 glass is 100g
  • the vacuum degree in the chamber during the evaporation of the As 2 Se 3 glass is 5 ⁇ 10 -4 Pa
  • the evaporation temperature of the As 2 Se 3 glass is 415°C
  • the evaporation rate is The vapor deposition thickness is 25 ⁇ m
  • the PPSU needs to be scrubbed with alcohol before coating, and a radio frequency power supply is used for cleaning before coating.
  • the power supply is 49w
  • the pressure in the chamber is stable at 5.0 Pa after argon is introduced.
  • the fixed roller speed of PPSU is 30rad/min.
  • the PPSU-As2Se 3-layer film is wound layers of layer 50, a round bar having a diameter of 10mm, the curing temperature is 230 °C , the function optical fiber preform having a diameter of 15mm.
  • the step S2 is to make the illumination optical fiber preform by the hot pressing method, specifically: S21: the hot pressing method makes a low refractive index material layer, and the PMMA polymer particles are filled into the mold of the hot press, and the mold has a diameter of 17.5 mm , A semi-cylindrical groove with a length of 180mm, put the mold between the upper and lower heating plates of the hot press, set the hot pressing temperature to 120 °C, and the hot pressing pressure to 30 MPa, and heat the PMMA polymer particles to a diameter of 17.5 mm , A semi-cylindrical rod with a length of 180mm; repeat the above process to prepare another semi-cylindrical rod; put the two semi-cylinders obtained by the above steps into two molds, and stack the two molds to make The two semi-cylindrical rods are spliced into a complete cylinder and put into a hot press to be hot pressed into a cylindrical solid rod; the surface is polished and polished to make it smooth.
  • step S3 preparing an outer covering with a hole, which is specifically the same as the step of preparing the PMMA polymer round rod in the illumination optical fiber preform by the hot pressing method in step S2, with a diameter of 100mm, and, in the completed cylinder, Drill two small holes, the diameters of which are 15mm and 17.5mm, respectively.
  • S4 Put the functional fiber preform and the illuminating fiber preform into the pores of the outer cover respectively to obtain the optical fiber preform.
  • the optical fiber integrating illumination and laser transmission can be obtained by hot drawing the optical fiber preform.
  • FIG. 4 it is a schematic diagram of the optical fiber of Embodiment 4, and the shape of the optical fiber is square.
  • the optical fiber includes an outer covering 430, and a functional fiber 410 and an illuminating fiber 420 located in the outer covering, and the functional fiber 410 and the illuminating fiber 420 are arranged side by side.
  • the functional fiber is a core-clad structure, including a core layer on the inner side and a cladding layer on the outer side.
  • the refractive index of the core layer is higher than that of the cladding layer, and the core layer and the cladding layer are made of chalcogenide glass.
  • the core layer is Ge 20 As 20 Se 15 Te 45
  • the cladding layer 412 is Ge 20 As 20 Se 18 Te 42
  • the core layer diameter is 200 ⁇ m
  • the cladding thickness is 500 ⁇ m
  • the core and the cladding have a concentric structure.
  • the illuminating fiber 420 includes a low refractive index material layer on the inner side and a high refractive index material layer on the outer side.
  • the high refractive index material layer 422 is PPSU with a thickness of 1 mm
  • the low refractive index material layer is PMMA with a diameter of 0.5 mm.
  • the outer cladding is PMMA, and the outer diameter of the outer cladding, that is, the side length of the entire optical fiber is 5mm.
  • the shape of the optical fiber is square.
  • the optical fiber includes an outer covering 530, and a functional fiber 510 and an illuminating fiber 520 located in the outer covering, and the functional fiber 510 and the illuminating fiber 520 are arranged side by side.
  • the functional fiber is a core-clad structure, including a core layer on the inner side and a cladding layer on the outer side.
  • the refractive index of the core layer is higher than that of the cladding layer, and the core layer and the cladding layer are made of chalcogenide glass.
  • the core layer has a core layer of Ge 20 As 20 Se 15 Te 45 , a cladding layer of Ge 20 As 20 Se 18 Te 42 , a core layer diameter of 200 ⁇ m, and a cladding thickness of 500 ⁇ m.
  • the core and the cladding have a concentric structure.
  • the illuminating fiber 520 includes a micro LED light-emitting component with a diameter of 2 mm.
  • the illuminating fiber 520 includes a substrate and an array of micro LED light-emitting components fixed on the substrate.
  • the array of micro LED light-emitting components is directly adsorbed on the surface of the substrate or arranged on the end surface of the substrate.
  • the outer cladding material is PPSU, and the side length of the entire optical fiber is 5mm.
  • FIG. 6 this is a schematic diagram of the optical fiber of this embodiment, and the cross-section of the optical fiber is triangular.
  • the optical fiber includes an outer covering 630, and a functional fiber 610 and an illuminating fiber 620 located in the outer covering, and the functional fiber 610 and the illuminating fiber 620 are arranged side by side.
  • the lighting fiber includes three.
  • the functional fiber is a core-clad structure, including a core layer on the inner side and a cladding layer on the outer side.
  • the refractive index of the core layer is higher than that of the cladding layer, and the core layer and the cladding layer are made of chalcogenide glass.
  • the core layer has a core layer of Ge 20 As 20 Se 15 Te 45 , a cladding layer of Ge 20 As 20 Se 18 Te 42 , a core layer diameter of 200 ⁇ m, and a cladding layer thickness of 500 ⁇ m.
  • the core layer and the cladding layer have a concentric structure.
  • the illuminating fiber 620 is a luminous fiber.
  • the light-emitting fiber includes at least one set of electrodes and a light-emitting layer, and a substrate.
  • the base material wraps the light-emitting layer and the electrode.
  • the electrode includes an inner electrode and a transparent outer electrode that are arranged oppositely. The size of the inner electrode and the outer electrode are both 10 ⁇ m- 20 ⁇ m, the light-emitting layer is located between the inner and outer electrodes, which is an electroluminescent material.
  • the light-emitting layer is a liquid crystal material, or a PMMA/ZnS composite material.
  • the outermost outer cladding material is PMMA, and the side length of the entire optical fiber is 5mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种多波段传输光纤及其制备方法,包括外包层(130),以及位于外包层(130)内的功能纤维(110)和至少一根照明纤维(120);所述功能纤维(110)用于传输激光,所述照明纤维(120)用于传输可见光,功能纤维(110)和照明纤维(120)在外包层(130)内并列设置,或者相互缠绕设置。本光纤结构通过单根纤维即可同时实现多波段激光传输、照明以及瞄准等功能的高度集成,还能确保光纤的柔性,在激光材料加工或者医疗领域具有广泛的应用。

Description

一种多波段传输光纤及其制备方法 技术领域
本发明涉及一种光纤及其制备方法,特别是涉及一种集多种功能为一体的多波段传输光纤及其制备方法。
背景技术
激光技术作为20世纪人类最伟大的科学发明之一,由于其高相干性、高亮度、高方向性、高单色性等优点广泛用于传感、材料加工、增材制造、成像、通信、医疗等领域。其中,激光医疗,作为一种代替传统金属刀以及高频电刀的治疗方式,成为现阶段最为安全、高效、低损伤的手术方法。另外,激光加工作为一种新兴的加工,其相比较于现有加工方式具有高效率、低成本、无接触、可在极端环境下加工、无磨损、普适性广、易处理与控制等多个优点。
在激光加工领域,如公开号为CN110497083A的中国发明专利提供了一种激光加工设备,通过采用双杆气缸驱动挡光板以及多个固定块的方式可提高激光加工时的效率与通用性,但该设备对于复杂环境下的加工无能为力。公开号为CN110497102A的中国发明专利提供了一种物料传输系统及激光加工设备,通过载物台的方式可提高产能,同时有效解决了与后段工序均衡产出受限的瓶颈问题,但激光的高精度高灵活性加工方式并未得到实现。综上所述,现有激光加工领域中一款灵活的,具有普适性、高效率、高稳定性、低成本的激光加工方式仍是缺失的,现有技术中,基于光纤激光器的激光传输系统和加工已通过石英光纤实现。但石英光纤加工时的高温特性限制了其它功能的附加。如何为现有技术中的光纤激光器传输用的石英光纤附加其它功能是亟需解决的问题之一。
而在激光医疗领域,激光手术刀利用光路传输实现了非接触式医疗,在现今被广泛应用,如公开号为CN109452968A的中国发明专利公开了一种用于口腔疾 病治疗的CO2激光治疗仪,通过激光技术治疗,作用精准、快捷,软硬组织切割没有瘁痛感,干净卫生。公开号为CN109975921A的中国发明专利公开了一种红外传能光纤及其制造方法以及红外激光医疗传输系统,通过金属介电层结构实现激光传输。公开号为CN109946786A的中国发明专利公开了一种可控自变形光纤的多功能激光手术刀和激光加工设备,其采用形变可控的保护层以及多功能光纤复合技术,实现检测、传输、气体流通的功能一体化。公开号为CN108671415A的中国发明专利公开了一种医用光纤,由多个预定长度的空芯金属波导光纤连接而成,一定程度上提高了柔性。然而激光手术刀虽然具有无直接接触,感染率小,手术时间短,损伤小,无噪声,无振动,高精度等优点,但由于柔性传输方式的匮乏,其应用长久以来受到限制。
然而医疗以及加工领域中应用的激光,通常为非可见光,由于非可见光的不可见性,在利用非可见光进行工业加工时,往往需要可见光提供光照以及瞄准功能。因此,现有技术中可用于的实现光照的纤维有如公开号为CN108152882A的中国发明专利申请公开的一种带有螺旋沟槽的侧发光光纤,该侧发光光纤由柱形纤芯外圆周裹包层组成,所述包层上设有深入该包层内部的螺旋沟槽,所述螺旋沟槽的内部宽度小于其外部宽度,即螺旋沟槽内窄外宽。此发明缺点在于工艺复杂、不可批量生产、光纤易损坏。
由此可见,现有的激光手术或者加工中所用的光纤,都只能单独传输激光而无法同时实现照明,现有技术中的照明方式也往往无法与传输系统结合,而是通过另一端开孔直接增加照明纤维来实现,将光照功能集成到传输用石英纤维上的技术亟需解决。因此,集瞄准、照明和激光加工一体化的用于光纤激光器材料加工的多波段传输光纤将会是新一代光纤应用的选择。
发明内容
有鉴于此,本发明实施例提供了一种能够兼具激光传输功能以及照明功能的多波段传输光纤及其制备方法。
为了解决上述问题,本发明主要提供如下技术方案:一种多波段光纤,其特征在于:包括外包层,以及位于外包层内的功能纤维和至少一根照明纤维;所述功能纤维用于传输激光,所述照明纤维用于传输可见光,所述功能纤维和所述照明纤维在所述外包层内并列设置,或者相互缠绕设置。
优选的,所述功能光纤为芯包结构或者光子带隙结构光纤;
所述芯包结构包括位于内侧的芯层和位于外侧的同心设置的包层,芯层的折射率高于包层;
所述光子带隙结构光纤包括位于中心的空气层和包裹所述空气层的包层,所述包层包括第一包层和第二包层,所述第一包层和第二包层依次交替层叠设置,并且所述第一包层的折射率高于第二包层的折射率,所述空气层与所述第一包层相邻。
优选的,所述照明纤维为光导纤维、发光纤维或包含微型LED发光组件的结构。
优选的,所述照明纤维为至少两根时,所述功能纤维位于中心,所述照明纤维均匀围绕在功能纤维的外侧。
优选的,所述相互缠绕为螺旋缠绕或者编织缠绕。
优选的,当照明纤维与所述功能纤维相互缠绕时,所述功能纤维预所述照明纤维一起进行缠绕,或者所述功能纤维位于中心,所述照明纤维相互缠绕并且围绕所述功能纤维。
优选的,所述光导纤维为至少两层结构,包括低折射率材料层和高折射率材料层,可见光在所述高折射率材料层中传输,低折射率材料层用于隔开所述高折射率材料层。
优选的,所述低折射率材料层和高折射率材料层,为折射率差大于0.01的任意两种热塑性聚合物;
并且,所述低折射率材料层和高折射率材料层,在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域,光纤的拉制温度为100℃-500℃;
所述外包层材料为热塑性聚合物。
优选的,所述低折射率材料层、高折射率材料层和外包层的材料,为碳酸酯类聚合物(如聚碳酸酯PC)、砜类聚合物(例如聚醚砜PES,聚亚苯基砜树脂PPSU)、醚酰亚胺类聚合物(例如聚醚酰亚胺PEI)、丙烯酸酯类聚合物(例如聚甲基丙烯酸甲酯PMMA,苯乙烯二甲基丙烯酸甲酯共聚物SMMA),环烯烃共聚物(COC)、聚苯乙烯、聚碳酸酯、聚乙烯、聚丙烯、ABS、含氟聚合物中的任意一种或者上述物质中任意组合组成的共混物。
优选的,所述发光纤维包含基材、电极以及电致发光材料,所述基材包裹所述电极和电致发光材料。
优选的,所述照明纤维包含微型LED发光组件,所述微型LED发光组件的直径小于100μm,直接附加在照明纤维表面或者集成在照明纤维端面。
优选的,所述光纤的截面为圆形、方形、三角形或正多边形。
优选的,所述功能纤维的材料可为聚合物、硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、石英材料、蓝宝石、氟化物玻璃或上述材料的任意组合。
优选的,所述电致发光材料为液晶。
上述光纤中,功能纤维与照明纤维为缠绕时的制备方法,包括
S1:制备功能纤维;
S2:制备照明纤维;
S3:将所述功能纤维预照明纤维相互缠绕;
S4:在所述缠绕后的功能纤维和照明纤维外侧制备外包层。
优选的,该步骤S4中,制备外包层的方法是涂覆或者蒸镀。
优选的,所述缠绕方式包括螺旋缠绕或者编织缠绕。
优选的,所述照明纤维为至少两根时,所述功能纤维位于中心,照明纤维均匀分布于所述功能纤维的外侧;所述功能纤维预所述照明纤维一起进行缠绕,或者所述功能纤维位于中心,所述照明纤维相互缠绕并且围绕所述功能纤维。.
上述光纤中功能纤维预照明纤维并且时的制备方法,包括
S1:制备功能纤维或功能纤维预制棒;
S2:制备照明纤维或照明纤维预制棒;
S3:制备具有至少两个细孔的外包层,所述细孔并列延伸;
S4:将步骤S1中制得的所述功能纤维或功能纤维预制棒,步骤S2中制得的照明纤维或照明纤维预制棒,分别放入外包层的细孔中,并且进行拉制得到光纤。
优选的,所述步骤S1中制备的是功能纤维时,所述步骤S3中制备的外包层内的细孔内径大于所述功能纤维的外径;和/或
在所述步骤S2中制备的是照明纤维时,所述步骤S3中制备的外包层内的细孔内径大于所述照明的外径;
则在所述步骤S4中,拉制光纤时需要将外包层、功能纤维和/或照明纤维的端部同时固定拉制。
优选的,所述功能纤维预制棒或功能纤维的制备方法,包括双坩埚法、熔铸法、管棒法、热拉伸法、蒸镀法、薄膜卷绕法或者挤压法;
所述制备照明纤维或照明纤维预制棒的方法,包括热压法或者薄膜卷绕法;
所述外包层制备的方法可以为热压法。
借由上述技术方案,本发明实施例提供的技术方案至少具有下列优点:
单根纤维实现激光传输、照明以及瞄准等功能的高度集成,还能确保光纤的柔性,在激光材料加工或者医疗领域具有广泛的应用。
可以在高精度加工或者手术的同时,在不增加额外部件的前提下,提供瞄准和照明功能。用可见光代替非可见光实现瞄准,可以在无其他程序控制或者其他部件的参与下解决加工激光难以观察的问题。并且避免了另外增加照明部件,避免了手术中人体额外的负担。
该光纤能够采用的材料广泛,进而可实现全波段的激光低损耗传输。特别是本发明所提供的芯包结构硫系玻璃光纤以及空芯一维光子带隙光纤可解决现阶段CO2激光传输方式缺失的问题,利用光子带隙效应以及硫系玻璃在红外波段的高透过率实现CO2激光的柔性低损耗传输。
生产方式简单,生产效率高,可规模化量产。
附图说明
图1为本发明实施例1的光纤的示意图;
图2为本发明实施例2的光纤的示意图;
图3为本发明实施例3的光纤的示意图;
图4为本发明实施例4的光纤的示意图;
图5为本发明实施例5的光纤的示意图;
图6为本发明实施例6的光纤的示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本发明的光纤结构,包括最外侧的外包层,以及位于外包层内的功能纤维和照明纤维。该功能纤维用于传输高功率激光,该高功率激光用于实施材料加工,或者进行医学手术中的生物组织消融。所述照明纤维用于传输可见光,进而实现加工或者手术中的瞄准和照明功能。此外,可见光还可用于模拟非可见光的聚焦点,实现瞄准,便于在实际操作过程中的随时观察。所述照明纤维为至少一个。
该功能纤维和照明纤维在外包层内并列设置,或者缠绕设置。当功能纤维和照明纤维并列时,可以是左右并列,或者当照明纤维为多个时,可以将功能纤维置于中心,照明纤维围绕功能纤维均匀间隔设置。当功能纤维和照明纤维缠绕设置时,如果照明纤维为多个,在任意截面,该功能纤维均位于中心,照明纤维围绕所述功能纤维均匀设置。
优选地,该功能纤维为芯包结构。该功能纤维包括芯层和包层,芯层的折射率高于包层,使得激光在芯层内传输。该功能纤维的的材料可为聚合物、硫系玻 璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、石英材料、蓝宝石、氟化物玻璃等常见可适用于不同激光传输波段的光纤材料。而且该功能纤维还可以为一维光子带隙结构光纤、二维光子带隙结构光纤等等。包括位于中心的空气层,和包裹所述空气层的包层,所述包层包括依次层叠设置的第一包层和第二包层,所述第一包层贴近所述空气层,并且第一包层的折射率大于第二包层折射率。
该照明纤维可以为光导纤维,包含微型LED发光组件的结构或者发光纤维等可见光传输结构。
该照明纤维为光导纤维时,包括至少两层结构,包括有折射率差的低折射率材料层和高折射率材料层。所述低折射率材料层和高折射率材料层可内外设置,例如:可以高折射率层在内,低折射率层在外,可见光在高折射率材料层中传输,低折射率材料层起到间隔的作用。也可以是中心为低折射率层,外层为高折射率层,只要高折射率层外侧的外包层的折射率低于高折射率层即可,可见光仍然可以在高折射率层中传输。
所述低折射率材料层和高折射率材料层以及外包层,优选为热塑性聚合物且具有良好的拉伸性能与柔韧性,为整根纤维提供足够大的机械支撑。该低折射率材料也为热塑性聚合物,用于阻挡高折射率材料层中传输的可见光。并且该低折射率材料层和高折射率材料层,在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域。光纤的拉制温度优选为100℃-500℃。
所述低折射率材料层和高折射率材料层,可以为碳酸酯类聚合物(如聚碳酸酯PC)、砜类聚合物(例如聚醚砜PES,聚亚苯基砜树脂PPSU)、醚酰亚胺类聚合物(例如聚醚酰亚胺PEI)、丙烯酸酯类聚合物(例如聚甲基丙烯酸甲酯PMMA,苯乙烯二甲基丙烯酸甲酯共聚物SMMA),环烯烃共聚物(COC)、聚苯乙烯、聚碳酸酯、聚乙烯、聚丙烯、ABS、含氟聚合物中的一种或者其任意组合组成的共混物,只要是满足折射率差大于0.01的任意两种热塑性聚合物均可。
该外包层的材料可以为碳酸酯类聚合物(如聚碳酸酯PC)、砜类聚合物(例如聚醚砜PES,聚亚苯基砜树脂PPSU)、醚酰亚胺类聚合物(例如聚醚酰亚胺PEI)、丙烯酸酯类聚合物(例如聚甲基丙烯酸甲酯PMMA,苯乙烯二甲基丙烯酸 甲酯共聚物SMMA),环烯烃共聚物(COC)、聚苯乙烯、聚碳酸酯、聚乙烯、聚丙烯、ABS、含氟聚合物的一种或者其任意组合组成的共混物。任何具备热塑性特性的聚合物均可。
优选的,对于芯包结构的功能纤维,芯层直径为50μm-200μm,包层厚度为50μm-500μm。
优选的,对于光子带隙结构光纤的功能纤维,中心空气层的直径为200μm-1000μm,包层厚度为50μm-500μm,其中单层包层厚度为2.5μm-5μm,交替各10层-50层。
优选的,对于照明纤维,低折射率材料层的直径为50μm-250μm,高折射率材料层的厚度为150μm-1000μm。
优选的,对于本发明的光纤整体,外径为2mm-6mm。
该照明纤维为电致发光纤维可见光传输结构时,包括电极、基材和电致发光材料,所述电极包括至少一组平行布置的电极丝,所述电极丝设置在所述基材内,所述基材包裹所述电极丝和电致发光材料。优选地,所述电致发光材料可以为液晶材料,所述基材具有与电极丝平行的至少一个孔状结构,所述液晶材料填充在所述基材的孔状结构内。
优选的,所述电极丝为金属丝,更加优选的,所述电极丝为不锈钢丝、铜丝或钨丝;具体的,所述电极丝的直径为10μm至500μm。所述基材为热塑性聚合物材料,透明度不低于75%;优选的,所述基材为PMMA、SMMA、环烯烃类共聚物、聚苯乙烯、聚碳酸酯、聚乙烯、聚丙烯和ABS中的一种或者其任意组合组成的共混物。所述至少一组平行布置的电极丝包括一根正极电极丝和至少两根负极电极丝。具体的,所述液晶材料为胆甾型液晶材料;更加具体的,所述液晶材料为向列型液晶和手性剂混合而成的胆甾型液晶材料。
该照明纤维包含微型LED发光组件时,所述微型LED发光组件为直径小于100μm的LED,可直接附加在照明纤维表面,或集成在照明纤维端面。
在实际应用场景中,可以选取不同给的激光光源,功能纤维为低损耗光纤,传输的激光用于加工切割,或者用于医学手术中的组织消融。照明纤维中传输可 见光,由于加工激光的不可见,照明纤维中传输的可见光不但用于照明,还可以用于瞄准。
该多波段传输光纤的制备方法,具体包括:
S1:制备功能纤维;
S2:制备照明纤维;
S3:将所述功能纤维预照明纤维相互缠绕;
S4:在所述缠绕后的功能纤维和照明纤维外侧制备外包层。
上述该步骤S4中,制备外包层的方法是涂覆或者蒸镀。
上述缠绕的方式可以是相互螺旋缠绕,或者是编织缠绕。
并且优选地,当所述照明纤维为至少两根时,所述功能纤维位于中心,照明纤维均匀分布于所述功能纤维的外侧,所述功能纤维与所述照明纤维一起进行螺旋缠绕,或者所述功能纤维位于中心,所述照明纤维相互缠绕并且围绕所述功能纤维。缠绕方式为普通缠绕或编织均可。
该光纤的另一种制备方法,包括
S1:制备功能纤维或功能纤维预制棒;
S2:制备照明纤维或照明纤维预制棒;
S3:制备中心具有细孔的外包层;
S4:将步骤S1中制得的所述功能纤维或功能纤维预制棒,步骤S2中制得的照明纤维或照明纤维预制棒,分别放入外包层的细孔中得到光纤预制棒,然后将光纤预制棒进行拉制得到光纤。
并且,所述S1中制备的是功能纤维时,所述S3中制备的外包层内的细孔内径大于所述功能纤维的外径,和/或,在S2步骤中制备的是照明纤维时,在S3中制备的外包层内的细孔内径大于照明纤维的外径,因此,在所述步骤S4中,拉制光纤时需要将外包层、功能纤维和/或照明纤维的端部同时固定拉制。即只要在最后拉制前放入外包层的细孔内的是已经拉制过的功能纤维或者照明纤维,功能纤维和照明纤维的外径通常都会远小于外包层的细孔,因此,在最后拉制光纤预制棒时,需要同时将功能纤维或者照明纤维也同时固定,通过拉制时细孔收缩,使 得外包层与功能纤维或者照明纤维贴合。
优选地,所述功能纤维预制棒或功能纤维的制备方法,包括双坩埚法、熔铸法、管棒法、热拉伸法、蒸镀法、薄膜卷绕法或者挤压法。
所述制备照明纤维或照明纤维预制棒的方法,包括热压法或者薄膜卷绕法;所述外包层制备的方法可以为热压法。
实施例1:
图1为本发明第一实施例的光纤结构示意图,如图所示,该光纤结构包括外包层130,以及位于外包层130内的用于传输激光的功能纤维110,以及用于传输可见光的照明纤维120,该功能纤维110和照明纤维120并列设置。
具体的,该功能纤维110为石英光纤结构,用于传输1μm或者1.5μm的光纤激光器的激光。所述照明纤维120包括两层光导结构,包括位于内侧的低折射率材料层121,以及位于外侧的高折射率材料层122。芯层111为掺杂GeO 2的高纯石英,包层112为高纯石英,芯层111直径为50μm,包层112厚度为50μm,纤芯与包层为同心结构。
优选地,该照明纤维120包括外侧的高折射率材料层122为高折射率热塑性聚合物材料PPSU,厚度为150μm,为整根光纤提供足够大的机械支撑的同时实现可见光的传输,实现光纤的照明瞄准,可见光在高折射率材料层中传输。位于内侧的低折射率材料层121为COC,直径为50μm。上述两种聚合物材料在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域,拉制温度为400℃。最外层的外包层130材料为PMMA。整根光纤的直径为2mm。
其中的功能纤维为高能激光传输结构,该光纤的制备方法,包括
S1:制备功能纤维,即石英光纤;
S2:制作可传输可见光的照明纤维120的预制棒;
S3:制备内部具有细孔结构的外包层结构,该外包层的直径为20mm;
S4:将功能纤维以及照明纤维预制棒放入该外包层结构相应的细孔内,得到光纤预制棒,将该光纤预制棒以及功能纤维的端部均固定,并且进行热拉制,得 到具有多功能的用于光纤激光器材料加工的多波段激光传输光纤,拉制后的光纤直径为2mm。
该制备方法中,因为石英光纤,即功能纤维的熔点远远高于照明纤维和外包层,而外包层中放置功能纤维的细孔内径也远大于功能纤维的外径,因此,在步骤S4共拉过程中,需要将功能纤维单独固定,放入外包层中再实施拉制,而外包层在拉制过程中,外包层中的细孔收缩,进而使外包层贴紧所述功能纤维。
照明纤维预制棒可直接与具有细孔结构的外包层结构结合,当然本领域技术人员也可以了解到,也可以是先拉制成照明纤维,随后在制备过程中与外包层结构共同拉丝。
实施例2:
该实施例中,同样包括外包层230,以及位于外包层230内的用于传输激光的功能纤维210,以及照明纤维220,该照明纤维220用于传输可见光,该功能纤维210和照明纤维220相互缠绕设置。该实施例中的光纤截面为三角形。
具体的,该功能纤维210为芯包光纤结构,用于传输光纤激光器的激光。芯层为Ge 20As 20Se 15Te 45,包层为Ge 20As 20Se 18Te 42,芯层直径为200μm,包层厚度为500μm,即功能纤维的直径为1200μm,纤芯与包层为同心结构。所述照明纤维220包括两层光导结构,包括位于内侧的低折射率材料层,以及位于外侧的高折射率材料层。
优选的,该照明纤维的高折射率材料层为高折射率热塑性聚合物材料PPSU,厚度为1mm,低折射率热塑性聚合物为COC,位于内侧,直径为500μm,即该照明纤维的直径为2.5mm,该照明纤维的直径远大于功能纤维,因此,为整根光纤提供足够大的机械支撑的同时实现可见光的传输,实现光纤的照明瞄准。上述两种聚合物材料在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域。最外层的外包层230材料为PMMA。光纤截面呈三角形,整根光纤的边长为6mm。
S1:制作功能纤维;
S2:制作照明纤维;
S3:将功能纤维和照明纤维相互缠绕呈螺旋状;
S4:在缠绕后的功能纤维和照明纤维外侧制作外包层,具体的,该外包层可以是涂覆形成,也可以是薄膜卷绕形成。最后,再将整个光纤外表面进行整形,形成截面为三角形的结构。
实施例3
该实施例中的多波段传输光纤,包括外包层330,以及位于外包层330内的用于传输激光的功能纤维310;以及照明纤维320,该照明纤维320用于传输可见光,该功能纤维310和照明纤维320并列设置。
具体的,该功能纤维310为具有PPSU与As 2Se 3交替的光子带隙结构的光纤,用于传输光纤激光器的激光。该功能纤维310的中间为空气层311,包裹空气层311的包层包括第一包层312和第二包层313,第一包层312和第二包层313的折射率不同,第一包层312折射率高于第二包层313折射率,第一包层312和第二包层313交替重叠设置,形成所述包层。该实施例中,第一包层为PPSU,第二包层为As 2Se 3,并且,第一包层贴近所述芯层设置。空气层的直径为200μm,包层的厚度为50μm。
所述照明纤维320包括两层光导结构,包括位于外侧的低折射率材料层321,以及位于内侧的高折射率材料层322。优选地,该照明纤维320内侧的高折射率材料层322为高折射率热塑性聚合物材料COC,直径为150μm,为整根光纤提供足够大的机械支撑的同时实现可见光的传输,实现光纤的照明瞄准。位于外侧的低折射率材料层321为PMMA,厚度为50μm。上述两种聚合物材料在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域。最外层的外包层330材料为COC。
该外包层的外径,即整根光纤的直径为2mm。
该光纤的制备方法,包括S1:制备功能纤维预制棒;S2:制备照明纤维预制棒,S3,制备带有细孔的外包层,S4:将功能纤维预制棒和照明纤维预制棒放入该外包层相应的细孔中,得到光纤预制棒,并且热拉制该光纤预制棒。
具体的,该制备功能纤维预制棒的步骤S1包括
S11:热蒸镀法制备双层薄膜,采用玛瑙研钵将硫系玻璃As 2Se 3研磨成颗粒态,将As 2Se 3填至镀膜机坩埚内,同时选取与坩埚口径匹配的蒸发盖,蒸镀滚筒上贴敷所需的PPSU聚合物薄膜,密封整个镀膜腔室,将所装载的As 2Se 3玻璃均匀蒸镀到PPSU聚合物薄膜上,即可得到PPSU-As 2Se 3双层薄膜。
作为优选的方案,所述PPSU薄膜厚度为25μm,PPSU薄膜尺寸为30cm×90cm,As 2Se 3玻璃的装料为100g,所述As 2Se 3玻璃蒸镀时腔室内真空度为5×10 -4Pa,所述As 2Se 3玻璃蒸镀温度为415℃,蒸镀速率为
Figure PCTCN2021078373-appb-000001
蒸镀厚度为25μm,所述PPSU在镀膜前需用酒精擦洗,且在镀膜前应用射频电源清洗,电源功率为49w,氩气通入后腔室内气压稳定为5.0Pa。PPSU所固定的滚筒转速为30rad/min。
S12:用薄膜卷绕法制备功能纤维预制棒,将上述PPSU-As 2Se 3双层薄膜,采用高性能聚合物薄膜卷绕法,在圆棒上卷绕包裹多层PPSU-As 2Se 3双层薄膜,置于管式炉中真空固化,取下圆棒,即可得到具有空芯结构与PPSU-As 2Se 3交替介质全向反射层的空芯反射层预制棒,即所述功能纤维预制棒。
作为优选的方案,所述PPSU-As2Se 3双层薄膜卷绕层数为50层,圆棒直径为10mm,固化温度为230℃,,所述功能光纤预制棒的直径为15mm。
所述步骤S2通过热压法制作所述照明光纤预制棒,具体为:S21:热压法制作低折射率材料层,将PMMA聚合物颗粒填充到热压机模具中,模具有直径为17.5mm、长为180mm的半圆柱体凹槽,将模具放入热压机上下加热板之间,设置热压温度为120℃,热压压强为30MPa,将PMMA聚合物颗粒热压成直径为17.5mm、长为180mm的半圆柱体棒;重复步骤上述过程制备另外一根半圆柱体棒;将上述步骤制得的两根半圆柱体分别放进两个模具中,并将两个模具堆叠,使两根半圆柱棒拼接成一根完整圆柱体,放入热压机中热压成圆柱实心棒;表面经过抛光打磨处理使其光滑。得到外径为17.5mm,且具有2.5mm孔径的PMMA棒
同样方法制作外径为2.5mm,无孔径的COC圆柱实心棒,将所述COC圆柱实心棒放入PMMA圆柱实心棒的中心孔,即得到所述照明纤维预制棒。
S3,制备带有空孔的外包层,具体与S2步骤中热压法制作照明光纤预制棒中的PMMA聚合物圆棒的步骤相同,直径为100mm,并且,在制作完成的完整圆柱体中,钻出两个细孔,该细孔的直径分别为15mm与17.5mm。
S4:将功能纤维预制棒和照明纤维预制棒分别放入外包层的细孔中,得到光纤预制棒。热拉制所述光纤预制棒即可得到该集照明、激光传输为一体的光纤。
实施例4:
如图4所示,为该实施例4的光纤的示意图,该光纤的外形为方形。该光纤包括外包层430,以及位于外包层内的功能纤维410和照明纤维420,该功能纤维410和照明纤维420并列设置。并且,该实施例中,照明纤维为三根,围绕功能纤维均匀设置。
该功能纤维为芯包结构,包括位于内侧的芯层和位于外侧的包层,芯层的折射率高于包层的折射率,并且芯层和包层材料均为硫系玻璃,具体的,该芯层为Ge 20As 20Se 15Te 45,包层412为Ge 20As 20Se 18Te 42,芯层直径为200μm,包层厚度为500μm,纤芯与包层为同心圆结构。
该照明纤维420包括位于内侧的低折射率材料层和位于外侧的高折射率材料层,该高折射率材料层422为PPSU,厚度为1mm,低折射率材料层为PMMA,直径为0.5mm。外包层为PMMA,外包层的外径,即整个光纤的边长为5mm。
实施例5
如图5所示,为该实施例的光纤示意图,该光纤的外形为方形。该光纤包括外包层530,以及位于外包层内的功能纤维510和照明纤维520,该功能纤维510和照明纤维520并列设置。
该功能纤维为芯包结构,包括位于内侧的芯层和位于外侧的包层,芯层的折射率高于包层的折射率,并且芯层和包层材料均为硫系玻璃,具体的,该芯层为芯层为Ge 20As 20Se 15Te 45,包层为Ge 20As 20Se 18Te 42,芯层直径为200μm,包层厚度为500μm,纤芯与包层为同心圆结构。
该照明纤维520包含微型LED发光组件,该微型LED发光组件直径为2mm,该照明纤维520包括基材,以及固定设于基材上的微型LED发光组件阵 列。该微型LED发光组件阵列直接吸附于基材表面或者设于基材端面。该外包层材料为PPSU,整个光纤的边长为5mm。
实施例6
如图6所示,该为该实施例的光纤示意图,该光纤的截面为三角形。该光纤包括外包层630,以及位于外包层内的功能纤维610和照明纤维620,该功能纤维610和照明纤维620并列设置。照明纤维包括三根。
该功能纤维为芯包结构,包括位于内侧的芯层和位于外侧的包层,芯层的折射率高于包层的折射率,并且芯层和包层材料均为硫系玻璃,具体的,该芯层为芯层为Ge 20As 20Se 15Te 45,包层为Ge 20As 20Se 18Te 42,芯层直径为200μm,包层厚度为500μm,芯层与包层为同心圆结构。
该照明纤维620为发光纤维。该发光纤维包括至少一组电极和发光层,以及基材,基材包裹所述发光层和电极,该电极包括相对设置的内电极和透明外电极,内电极和外电极的尺寸均为10μm-20μm,发光层位于内、外电极之间,为电致发光材料。优选地,该发光层为液晶材料,或者PMMA/ZnS复合材料。
最外侧的外包层材料为PMMA,整个光纤的边长为5mm。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种多波段传输光纤,其特征在于:包括外包层,以及位于外包层内的功能纤维和至少一根照明纤维;所述功能纤维用于传输激光,所述照明纤维用于传输可见光,所述功能纤维和所述照明纤维在所述外包层内并列设置,或者相互缠绕设置。
  2. 如权利要求1所述的多波段传输光纤,其特征在于:所述功能光纤为芯包结构或者光子带隙结构光纤;
    所述芯包结构包括位于内侧的芯层和位于外侧的同心设置的包层,芯层的折射率高于包层;
    所述光子带隙结构光纤包括位于中心的空气层和包裹所述空气层的包层,所述包层包括第一包层和第二包层,所述第一包层和第二包层依次交替层叠设置,并且所述第一包层的折射率高于第二包层的折射率,所述空气层与所述第一包层相邻。
  3. 如权利要求1所述的多波段传输光纤,其特征在于:所述照明纤维为光导纤维、发光纤维或包含微型LED发光组件的结构。
  4. 如权利要求1所述的多波段传输光纤,其特征在于:所述照明纤维为至少两根时,所述功能纤维位于中心,所述照明纤维均匀围绕在功能纤维的外侧。
  5. 如权利要求1所述的多波段传输光纤,其特征在于:所述相互缠绕为螺旋缠绕或者编织缠绕。
  6. 如权利要求4所述的多波段传输光纤,其特征在于:当照明纤维与所述功能纤维相互缠绕时,所述功能纤维预所述照明纤维一起进行缠绕;或者所述功能纤维位于中心,所述照明纤维相互缠绕并且围绕所述功能纤维。
  7. 如权利要求3所述的多波段传输光纤,其特征在于:所述光导纤维为至少 两层结构,包括低折射率材料层和高折射率材料层,可见光在所述高折射率材料层中传输,低折射率材料层用于隔开所述高折射率材料层。
  8. 如权利要求7所述的多波段传输光纤,其特征在于:所述低折射率材料层和高折射率材料层,为折射率差大于0.01的任意两种热塑性聚合物;
    并且,所述低折射率材料层和高折射率材料层,在10 4poise-10 8poise粘度区间内具有温度区间的重叠区域;
    所述外包层材料为热塑性聚合物。
  9. 如权利要求8所述的多波段传输光纤,其特征在于:所述低折射率材料层、高折射率材料层和外包层的材料,为碳酸酯类聚合物、砜类聚合物、醚酰亚胺类聚合物、丙烯酸酯类聚合物,环烯烃共聚物、聚苯乙烯、聚碳酸酯、聚乙烯、聚丙烯、ABS、含氟聚合物中的任意一种或者上述物质中任意组合组成的共混物。
  10. 如权利要求1所述的多波段传输光纤,其特征在于:所述光纤的截面为圆形、方形、三角形或正多边形;
    所述功能纤维的材料可为聚合物、硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、石英材料、蓝宝石、氟化物玻璃或上述材料的任意组合。
  11. 一种多波段传输光纤的制备方法,其特征在于:
    S1:制备功能纤维;
    S2:制备照明纤维;
    S3:将所述功能纤维预照明纤维相互缠绕;
    S4:在所述缠绕后的功能纤维和照明纤维外侧制备外包层。
  12. 如权利要求11所述的制备方法,其特征在于:该步骤S4中,制备外包层的方法是涂覆或者薄膜卷绕。
  13. 一种光纤制备方法,其特征在于:
    S1:制备功能纤维或功能纤维预制棒;
    S2:制备照明纤维或照明纤维预制棒;
    S3:制备具有至少两个细孔的外包层,所述细孔并列延伸;
    S4:将步骤S1中制得的所述功能纤维或功能纤维预制棒,步骤S2中制得的照明纤维或照明纤维预制棒,分别放入外包层的细孔中,并且进行拉制得到光纤。
  14. 如权利要求13所述的制备方法,其特征在于:所述步骤S1中制备的是功能纤维时,所述步骤S3中制备的外包层内的细孔内径大于所述功能纤维的外径;和/或
    在所述步骤S2中制备的是照明纤维时,所述步骤S3中制备的外包层内的细孔内径大于所述照明的外径;
    则在所述步骤S4中,拉制光纤时需要将外包层、功能纤维和/或照明纤维的端部同时固定拉制。
  15. 如权利要求11或13所述的光纤制备方法,其特征在于:
    所述功能纤维预制棒或功能纤维的制备方法,包括双坩埚法、熔铸法、管棒法、热拉伸法、蒸镀法、薄膜卷绕法或者挤压法;
    所述制备照明纤维或照明纤维预制棒的方法,包括热压法或者薄膜卷绕法;
    所述外包层制备的方法可以为热压法。
PCT/CN2021/078373 2020-03-02 2021-03-01 一种多波段传输光纤及其制备方法 WO2021175170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134081.XA CN111474625B (zh) 2020-03-02 2020-03-02 一种多波段传输光纤及其制备方法
CN202010134081.X 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021175170A1 true WO2021175170A1 (zh) 2021-09-10

Family

ID=71747114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078373 WO2021175170A1 (zh) 2020-03-02 2021-03-01 一种多波段传输光纤及其制备方法

Country Status (2)

Country Link
CN (1) CN111474625B (zh)
WO (1) WO2021175170A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474625B (zh) * 2020-03-02 2021-11-09 华中科技大学 一种多波段传输光纤及其制备方法
CN114872394B (zh) * 2022-05-13 2023-04-04 上海网讯新材料科技股份有限公司 一种高效率施工的金属塑料复合带及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276936A (ja) * 2009-05-29 2010-12-09 Sumita Optical Glass Inc ライトガイド
CN103760644A (zh) * 2012-09-04 2014-04-30 Ofs飞泰尔公司 防止液体和气体的紧凑型光纤单元及其制造方法
CN107209337A (zh) * 2015-04-07 2017-09-26 株式会社藤仓 松套管、松套管型光纤电缆、松套管的光纤带的单芯分离方法、松套管的制造方法及多根光纤的集线方法
CN108732680A (zh) * 2018-04-18 2018-11-02 中国科学院西安光学精密机械研究所 单模双包层掺镝硫系玻璃光纤及其制备方法
CN109946786A (zh) * 2019-03-25 2019-06-28 北京大学口腔医学院 一种可控自变形光纤的多功能激光手术刀和激光加工设备
CN110333570A (zh) * 2019-06-19 2019-10-15 华中科技大学 一种空芯传能中红外光纤及其制备方法
CN110426782A (zh) * 2019-08-31 2019-11-08 浙江工业大学 一种带异常检测的单包层多芯光纤
WO2019238945A1 (de) * 2018-06-15 2019-12-19 Osram Opto Semiconductors Gmbh Lichtfaser und beleuchtungsvorrichtung
CN110683753A (zh) * 2019-10-11 2020-01-14 华中科技大学 一种多材料多结构中红外光纤的低成本批量制备方法及系统
CN111474625A (zh) * 2020-03-02 2020-07-31 华中科技大学 一种多波段传输光纤及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746554B2 (ja) * 1996-02-06 2006-02-15 株式会社フジクラ レーザ加工装置およびこれを用いたレーザ加工方法
JP4613274B2 (ja) * 2001-06-21 2011-01-12 独立行政法人 日本原子力研究開発機構 複合型光ファイバを用いたレーザ加工システム
US7582057B2 (en) * 2004-02-24 2009-09-01 Japan Atomic Energy Research Institute Endoscopic system using an extremely fine composite optical fiber
CN101339820B (zh) * 2008-08-19 2010-12-15 清华大学 一种光电同传纤维的制造方法
CN101852886A (zh) * 2009-03-31 2010-10-06 中国电子科技集团公司第二十三研究所 一种高抗损伤传能光纤及制作方法
WO2011155444A1 (ja) * 2010-06-08 2011-12-15 株式会社クラレ 複合型光ファイバ、及びその製造方法
US8620123B2 (en) * 2012-02-13 2013-12-31 Corning Cable Systems Llc Visual tracer system for fiber optic cable
CN203433143U (zh) * 2013-09-09 2014-02-12 曲阜师范大学 一种用于3-5微米波段光波宽带低损耗传输的空芯光子带隙光纤
US10603744B2 (en) * 2017-12-18 2020-03-31 Lumentum Operations Llc Aiming beam side-coupler
CN108318135B (zh) * 2018-01-17 2021-02-02 长春理工大学 一种光纤激光在线监测系统
CN209499707U (zh) * 2018-12-29 2019-10-18 赵天祺 一种多功能激光治疗机
CN209674037U (zh) * 2019-04-22 2019-11-22 南京杰迪欧光电科技有限公司 一种低损耗光子晶体光纤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276936A (ja) * 2009-05-29 2010-12-09 Sumita Optical Glass Inc ライトガイド
CN103760644A (zh) * 2012-09-04 2014-04-30 Ofs飞泰尔公司 防止液体和气体的紧凑型光纤单元及其制造方法
CN107209337A (zh) * 2015-04-07 2017-09-26 株式会社藤仓 松套管、松套管型光纤电缆、松套管的光纤带的单芯分离方法、松套管的制造方法及多根光纤的集线方法
CN108732680A (zh) * 2018-04-18 2018-11-02 中国科学院西安光学精密机械研究所 单模双包层掺镝硫系玻璃光纤及其制备方法
WO2019238945A1 (de) * 2018-06-15 2019-12-19 Osram Opto Semiconductors Gmbh Lichtfaser und beleuchtungsvorrichtung
CN109946786A (zh) * 2019-03-25 2019-06-28 北京大学口腔医学院 一种可控自变形光纤的多功能激光手术刀和激光加工设备
CN110333570A (zh) * 2019-06-19 2019-10-15 华中科技大学 一种空芯传能中红外光纤及其制备方法
CN110426782A (zh) * 2019-08-31 2019-11-08 浙江工业大学 一种带异常检测的单包层多芯光纤
CN110683753A (zh) * 2019-10-11 2020-01-14 华中科技大学 一种多材料多结构中红外光纤的低成本批量制备方法及系统
CN111474625A (zh) * 2020-03-02 2020-07-31 华中科技大学 一种多波段传输光纤及其制备方法

Also Published As

Publication number Publication date
CN111474625A (zh) 2020-07-31
CN111474625B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2021175170A1 (zh) 一种多波段传输光纤及其制备方法
CN102971652B (zh) 复合型光纤及其制造方法
JP4554199B2 (ja) テラヘルツ波伝送のためのプラスチック・フォトニック結晶ファイバ及びその製造方法
US20110194846A1 (en) Fluid heater
CN105633778A (zh) 高阶模滤除光纤端面泵浦耦合器及其制作方法
CN103257399B (zh) 一种用于光纤激光器且可滤除包层光的装置
CN101794955B (zh) 一种全光纤激光合成器件的制备方法
JP2010520497A (ja) フォトニック結晶ファイバおよびそれを製造する方法
CN105633779A (zh) 用于光纤放大器的光纤端面泵浦耦合器及其制作方法
US20200241281A1 (en) Optical fibre
CN109031527A (zh) 一种高功率光纤端帽及其制造方法
CN110683753B (zh) 一种多材料多结构中红外光纤的低成本批量制备方法及系统
WO2010075066A1 (en) Hollow core fiber power combiner and divider
JP6067319B2 (ja) 中空型光ファイバ及び複合型光ファイバ、並びにそれらの製造方法
CN108462028A (zh) 侧泵型光纤泵浦信号合束器及其制备方法
CN111399110A (zh) 一种多功能光纤及其制备方法
CN112912229A (zh) 形成纤维状结构的方法、纤维状结构和具有纤维状结构的装置
CN111505761B (zh) 具有较高数值孔径的光纤及制备方法
JP2012025625A (ja) 光ファイバの製造方法
WO2013031484A1 (ja) ファイバ
JP6198225B2 (ja) フォトニッククリスタル光ファイバ母材の製造方法
RU87027U1 (ru) Оптоволоконный кабель
KR100502292B1 (ko) 표면 발광 플라스틱 광섬유 및 이의 제조방법
CN102488565B (zh) 牙科用刚性异型微结构光纤棒
TWM296984U (en) Optical fiber lens for diametrically arranged optics for numerical bore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21765357

Country of ref document: EP

Kind code of ref document: A1