WO2021174973A1 - 彩膜基板和显示装置 - Google Patents

彩膜基板和显示装置 Download PDF

Info

Publication number
WO2021174973A1
WO2021174973A1 PCT/CN2020/140334 CN2020140334W WO2021174973A1 WO 2021174973 A1 WO2021174973 A1 WO 2021174973A1 CN 2020140334 W CN2020140334 W CN 2020140334W WO 2021174973 A1 WO2021174973 A1 WO 2021174973A1
Authority
WO
WIPO (PCT)
Prior art keywords
texture recognition
color filter
base substrate
layer
touch
Prior art date
Application number
PCT/CN2020/140334
Other languages
English (en)
French (fr)
Inventor
袁靖超
赵敬鹏
焦辉
李盼盼
孙亮
白雅杰
胡双
杨婷
朱文涛
潘宏鑫
郑新
孔迪
石凌锋
周志恒
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021174973A1 publication Critical patent/WO2021174973A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present invention relates to the field of display technology, in particular, to a color filter substrate and a display device.
  • Under-screen texture recognition technology can greatly increase the screen-to-body ratio of mobile terminals, and has become an important technical means for mobile terminals such as mobile phones to achieve full screens.
  • LCD liquid crystal display device
  • LCD liquid crystal display device
  • LCD liquid crystal display device
  • the realization of under-screen texture recognition on LCD is of great significance to the improvement of LCD product performance.
  • due to the complex hierarchical structure of the LCD it faces problems such as low sensor sensitivity and poor recognition accuracy in realizing the under-screen texture recognition function.
  • an object of the present invention is to provide a color filter substrate with high texture recognition sensitivity or good recognition accuracy and a display device containing the color filter substrate.
  • the present invention provides a color filter substrate.
  • the color filter substrate includes: a base substrate; a color filter layer, the color filter layer is provided on one side of the base substrate, and includes a black matrix and a plurality of color filters, the The black matrix defines a plurality of sub-pixel openings, and the color filters are provided in the sub-pixel openings in a one-to-one correspondence; a plurality of texture recognition units are provided on the base substrate Each of the texture recognition units includes a thin film transistor and a light sensor, and the light sensor is electrically connected to the thin film transistor; wherein, the orthographic projections of a plurality of the texture recognition units on the base substrate are located in the black matrix In the orthographic projection on the base substrate.
  • the texture recognition unit is designed on the color filter substrate.
  • the surface of the light sensor and touch objects such as fingers, palms, etc.
  • the thickness of the LCD can be effectively controlled, saving materials and production costs;
  • the texture recognition unit only occupies the color film In the black matrix area of the layer, adding a texture recognition unit on the color film substrate does not affect the light transmittance of the LCD. While realizing the texture recognition under the screen, the LCD display effect is better.
  • a plurality of the texture recognition units are provided on a side of the base substrate away from the color filter layer.
  • the color filter layer is provided on a side of the plurality of texture recognition units away from the base substrate.
  • the orthographic projection of the thin film transistor on the base substrate is within the orthographic projection of the photosensor on the base substrate.
  • each light sensor is arranged corresponding to at least one sub-pixel.
  • each light sensor is arranged corresponding to a plurality of sub-pixels, and each light sensor is configured as a mesh structure.
  • the photosensor has hollowed-out areas, and the orthographic projection of each hollowed-out area on the base substrate covers an orthographic projection of the sub-pixel opening on the base substrate.
  • a plurality of the texture recognition units are arranged in a one-to-one correspondence with a plurality of pixels, wherein each of the pixels includes at least two of the sub-pixels.
  • the orthographic projection of the thin film transistor in the thin film transistor on the color filter layer is located on a black matrix between a plurality of pixels.
  • the texture recognition unit includes: a gate line; and a source line, the source line intersects the gate line and defines the thin film transistor.
  • the photosensor includes: a bottom electrode, the bottom electrode is provided on a side of the texture recognition unit away from the base substrate, and is electrically connected to the drain through a second via hole; a photosensitive material layer, the The photosensitive material layer is arranged on the surface of the bottom electrode away from the base substrate; the top electrode is arranged on the surface of the photosensitive material layer away from the base substrate.
  • the photosensor satisfies at least one of the following conditions: the effective photosensitive area of the photosensitive material layer is not less than 1600 ⁇ m 2 ; the photosensitive material layer is an organic-inorganic hybrid film; the photosensitive material layer The optimal response wavelength of the optical sensor is 700-850 nm; the thickness of the photosensitive material layer is 10-20 microns; the detection accuracy of the optical sensor is greater than or equal to 300 dpi.
  • the present invention provides a display device.
  • the display device includes: the aforementioned color filter substrate; an array substrate, where the array substrate is arranged opposite to the color filter substrate; Between the array substrates.
  • the liquid crystal display device has all the features and advantages of the color filter substrate described above, and will not be repeated here.
  • the texture recognition unit is multiplexed as a touch unit.
  • the display device further includes a touch control circuit that is electrically connected to the texture recognition unit through the gate line and the source line in the thin film transistor layer, and is configured to pass through
  • the light sensor detects the light reflected by the first touch object, and converts the intensity of the light reflected by the first touch object detected by the multiple light sensors into a touch current signal, based on the position of the texture recognition unit and the touch
  • the control current signal determines the touch position.
  • the display device further includes: a texture recognition control circuit, the texture recognition control circuit is electrically connected to the texture recognition unit through the gate line and the source line, and is configured as the When the touch control circuit detects a touch operation, the light sensor detects the light reflected by the second touch object, and converts the intensity of the light reflected by the second touch object detected by each light sensor into a texture recognition current signal , Determining a texture image based on the texture recognition current signal.
  • a texture recognition control circuit is electrically connected to the texture recognition unit through the gate line and the source line, and is configured as the
  • the touch control circuit detects a touch operation
  • the light sensor detects the light reflected by the second touch object, and converts the intensity of the light reflected by the second touch object detected by each light sensor into a texture recognition current signal , Determining a texture image based on the texture recognition current signal.
  • the display device further includes: a calculation circuit electrically connected to the texture recognition control circuit for performing calculation processing on the texture recognition current signal before determining the texture image .
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of a color filter substrate according to an embodiment of the present invention
  • FIG. 2 shows a schematic cross-sectional structure diagram of a color filter substrate according to another embodiment of the present invention
  • Fig. 3 shows a schematic diagram of a planar structure of a texture recognition unit and a black matrix according to an embodiment of the present invention
  • Figure 4 shows a schematic plan view of a partial structure of a pixel
  • FIG. 5 shows a schematic diagram of a cross-sectional structure of a texture recognition unit according to another embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of a planar structure of a texture recognition unit and a black matrix in a pixel according to another embodiment of the present invention
  • FIG. 7 shows a schematic diagram of a cross-sectional structure of a display device according to an embodiment of the present invention.
  • FIG. 8 shows a schematic cross-sectional structure diagram of a display device according to another embodiment of the present invention.
  • the present invention provides a color filter substrate.
  • the color filter substrate includes: a base substrate 10; a color filter layer 20, the color filter layer 20 is provided on one side of the base substrate and includes a black matrix 21 and a plurality of color filters 22, the black matrix defines a plurality of sub-pixel openings 23, and the color filters 22 are provided in the sub-pixel openings 23 in a one-to-one correspondence; a plurality of texture recognition units 30
  • the texture recognition unit is provided on the base substrate, and each of the texture recognition units includes a thin film transistor 31 and a light sensor 32.
  • the light sensor 32 is electrically connected to the thin film transistor, wherein a plurality of the textures
  • the orthographic projection of the identification unit 30 on the base substrate 10 is within the orthographic projection of the black matrix 21 on the base substrate 10.
  • the texture recognition unit is integrated and arranged on the color filter substrate.
  • the texture recognition unit only occupies the black matrix area of the color film layer. After the texture recognition unit is added to the color film substrate, the light transmittance of the LCD is not affected. While the texture recognition under the screen is realized, the LCD display effect is better.
  • the texture recognition unit and the color filter substrate are integrally formed, which can effectively reduce the thickness of the display device, simplify the assembly steps of the display device, and save costs.
  • the color filter layer and the texture recognition unit may be arranged on the same side of the base substrate, or may be arranged on both sides of the base substrate.
  • a plurality of the texture recognition units 30 are provided on the side of the base substrate 10 away from the color filter layer 20.
  • the color filter layer 20 is provided on a side of the plurality of texture recognition units 30 away from the base substrate 10.
  • the specific type of the base substrate is not particularly limited, and it may be a base substrate commonly used in color filter substrates in the art, and specifically may be a glass substrate, a polymer substrate, etc., which will not be repeated here.
  • the color filter substrate is generally applied to a display device, and the display device generally includes a plurality of pixels to realize color display, and each pixel includes a plurality of sub-pixels with different colors.
  • the color filter substrate is The sub-pixel opening is the light-transmitting window of the sub-pixel.
  • the light emitted by the backlight module of the display device is emitted from the sub-pixel opening after liquid crystal modulation, and the color filter in the sub-pixel opening can convert the light from the backlight of the display device into The light with a predetermined color required for the display, wherein the color filters in the multiple sub-pixel openings in each pixel have different colors to realize color display.
  • each pixel may include 3, 4 sub-pixels, etc. Taking the three primary color display as an example, a pixel may include 3 sub-pixels, and the color filters corresponding to the 3 sub-pixels are red, Green and blue. In other embodiments, one pixel may also include 4 sub-pixels, and the color filters corresponding to the 4 sub-pixels are red, green, blue, and white, respectively. In the following, the color filter substrate and the display device displaying three primary colors are taken as examples for description.
  • both the black matrix and the color filter in the color film layer can be formed by a resin with a corresponding color.
  • pigments of the corresponding color can be added to the resin material.
  • the black matrix can be formed. Black pigments are added to the material, and red, green, and blue pigments are added to the material forming the color filter, and so on.
  • the color filter layer and the texture recognition unit may be located on the same side of the base substrate, or may be located on opposite sides of the base substrate.
  • it is more inclined to arrange the color film layer and the texture recognition unit on the first side and the second side of the base substrate respectively (refer to Figure 1), and make the side with the color film layer face the liquid crystal Layer arrangement, the texture recognition unit is arranged on the side of the base substrate away from the liquid crystal layer, so that the texture recognition unit is closer to the touch object in actual use, which can greatly reduce the crosstalk between adjacent sensor layers and shorten the
  • the optical path enhances the collection of optical signals, which in turn can improve detection sensitivity and detection accuracy.
  • the thin film transistor layer 31 is usually provided on the surface of the base substrate 10, and the photosensor 32 is provided on the thin film transistor layer 31 away from the substrate.
  • the orthographic projection of the thin film transistor layer 31 on the base substrate 10 is within the orthographic projection of the photosensor 32 on the base substrate 10.
  • the fingerprint identification unit may include a gate line 1 and a source line 2.
  • the gate line 1 and the source line 2 are intersected and define a thin film transistor 3, wherein the gate line 1 A part of the TFT can form the gate of the thin film transistor, and a part of the source line 2 can form the source of the thin film transistor.
  • the gate line can be used to control the switching of the thin film transistor, and the source line can be connected to the control circuit for connecting
  • the sensing signal of the texture recognition unit is output to the control circuit, and the specific position of the texture recognition can be determined according to the sensing signal of the gate line and the source line (specifically, one of the gate line and the source line can determine the row direction , And the other can determine the column direction, the intersection of the two is the specific location where texture recognition occurs).
  • the thin film transistor described herein may include a gate, an active layer, a source, and a drain.
  • the necessary insulation layer can be set between the poles.
  • the thin film transistor includes: a gate 311, the gate 311 is disposed on the second side of the base substrate; a gate insulating layer 312, the gate insulating layer 312 is disposed on the The second side of the base substrate, and cover the gate 311; an active layer 313, the active layer 313 is provided on the surface of the gate insulating layer 312 away from the base substrate 10;
  • the dielectric layer 314, the interlayer dielectric layer 314 is provided on the surface of the gate insulating layer 312 away from the base substrate 10, and covers the active layer 313; the source electrode 315 and the drain electrode 316, the source The electrode 315 and the drain electrode 316 are provided on the surface of the interlayer dielectric layer 314 away from the base substrate 10, and are electrically connected to the active layer 313 through the first via
  • the gate, source, and drain can be made of metal materials, and can be a single-layer metal layer structure or multiple metal layers stacked together. It can be the same or different.
  • the metal materials that can be used include but are not limited to one or a combination of copper, silver, aluminum, and molybdenum; the active layer is made of semiconductor materials, and the semiconductor materials that can be used include but are not limited to Oxide semiconductor materials, polysilicon, etc.
  • the gate insulating layer, the interlayer dielectric layer, and the first insulating layer can be made of silicon dioxide, silicon nitride and other materials, which have a good insulating effect, and the planarization layer can be made of organic materials.
  • Organic materials that can be used include, but are not limited to, acrylic and the like.
  • the touch object when a finger performs a touch operation, can reflect the light irradiated on the touch object to the light sensor, and the light sensor can detect the intensity of the light reflected by the touch object and convert it into a current signal, Then the texture image can be determined based on the current signal, and the fingerprint, palmprint and other texture recognition functions can be realized.
  • each light sensor is arranged corresponding to at least one sub-pixel.
  • one light sensor can be provided for each sub-pixel, or one light sensor can be provided for multiple sub-pixels.
  • each light sensor 32 is correspondingly arranged with a plurality of (e.g., 2, 3, 4, 5, etc.) sub-pixels, and each light sensor 32 Is constructed as a mesh structure. Therefore, the design of the mesh structure allows the light sensor to only occupy the black matrix area of the color film layer. After the light sensor is arranged on the color film layer, the light transmittance is not affected, and at the same time, the light sensor can have a larger photosensitive area. It is helpful to improve the sensitivity and accuracy of the light sensor.
  • the photosensor 32 has a plurality of hollow areas 321, and the orthographic projection of each hollow area 321 on the base substrate covers one of the sub-pixel openings 23 in the base substrate.
  • the orthographic projection on the base substrate may be greater than the area of the orthographic projection of one of the sub-pixel openings 23 on the base substrate, or each of the The orthographic projection of the hollow area 321 on the base substrate exactly overlaps the orthographic projection of one of the sub-pixel openings 23 on the base substrate. Therefore, the light sensor is also arranged on the black matrix between the sub-pixel openings, which can make the light sensor have a larger effective photosensitive area, which is beneficial to improve the sensitivity and accuracy of the light sensor.
  • a plurality of the texture recognition units may be arranged in a one-to-one correspondence with a plurality of pixels, wherein each of the pixels includes at least two of the sub-pixels.
  • each pixel includes three sub-pixels, and a texture recognition unit is provided corresponding to the three sub-pixels.
  • the density of texture recognition units is higher, and the recognition accuracy and sensitivity are both higher.
  • a plurality of the texture recognition units can be arranged in a one-to-one correspondence with a plurality of pixels, and each pixel includes three sub-pixels as an example for description.
  • each light sensor can be arranged corresponding to a thin film transistor.
  • the front projection of the thin film transistor on the color film layer The black matrix located between the multiple pixels, in other words, the black matrix between the multiple sub-pixels in each pixel and the orthographic projection of the thin film transistor on the color film layer do not overlap. Therefore, the light transmittance of the sub-pixel opening is not affected, and the display effect of the liquid crystal display device is still better.
  • the detection accuracy of the light sensor is greater than or equal to 300 dpi
  • the effective photosensitive area of the photosensitive material layer in the light sensor is not less than 1600 ⁇ m 2
  • the texture recognition unit does not affect the light transmittance of the liquid crystal display device. Therefore, the optical sensor according to the embodiment of the present invention can ensure better fingerprint accuracy and sensitivity, and at the same time ensure the display effect of the liquid crystal display device.
  • the color filter substrate of the embodiment of the present invention is used for a 6.2-inch liquid crystal display panel.
  • the lateral dimension L1 of each texture recognition unit is 81 microns
  • the longitudinal dimension L2 is 74 microns.
  • the horizontal size L3 of each sub-pixel opening is 20 microns
  • the vertical size L4 is 60 microns
  • the horizontal accuracy of the light sensor is 300dpi
  • the vertical is 325dpi
  • the effective photosensitive area is 2394 (81*74-20*60*3) square Micron
  • the larger light sensing area can effectively ensure the normal operation of the light sensor.
  • Each pixel includes 3 sub-pixel light transmission channels, and the light transmittance of the sub-pixel opening of the liquid crystal display device using the color filter substrate is 54.3%.
  • the liquid crystal display panel adopting the above color film substrate can realize the texture recognition under the LCD full screen.
  • the sensor module parameters are shown in Table 1. The sensor resolution is 795*1830 and the accuracy is 300dpi.
  • the photosensor 32 includes a bottom electrode 321, which is provided on a side of the planarization layer 318 away from the base substrate 10 and passes through a second The via 31b is electrically connected to the drain 316; a photosensitive material layer 322, which is provided on the surface of the bottom electrode 321 away from the base substrate 10; and a top electrode 323, the top electrode 323 It is arranged on the surface of the photosensitive material layer 322 away from the base substrate 10.
  • the photosensitive material layer can absorb photons with high efficiency and output a current signal proportional to the number of absorbed photons. Based on the current signal, the texture recognition function can be effectively realized.
  • the photosensitive material layer is not less than the effective area of the photosensitive 1600 ⁇ m 2 (specifically, such as 1600 ⁇ m 2, 1700 ⁇ m 2, 1800 ⁇ m 2 , 1900 ⁇ m 2, 2000 ⁇ m 2, 2200 ⁇ m 2, 2500 ⁇ m 2 , etc.);
  • the photosensitive material The layer is an organic-inorganic hybrid film;
  • the optimal response wavelength of the photosensitive material layer is 700-850nm (specifically 700nm, 710nm, 720nm, 730nm, 740nm, 750nm, 760nm, 770nm, 780nm, 790nm, 800nm, 810nm, 820nm , 830nm, 840nm, 850nm, etc.);
  • the thickness of the photosensitive material layer is 10-20 microns (specifically, 10 microns, 11 microns, 12 microns, 13 microns, 14 microns, 15 microns, 16 microns, 17 microns, 18 microns , 19
  • a larger effective photosensitive area and detection accuracy can perform texture recognition with higher sensitivity and accuracy, and at the same time, the performance requirements of the texture recognition IC can be greatly reduced, and the higher sensitivity and accuracy enable the photosensitive material layer to achieve better
  • the thin thickness is beneficial to reduce the thickness of the color filter substrate and the liquid crystal display device to achieve miniaturization.
  • the above-mentioned corresponding wavelengths can use ordinary backlight or ambient light as the detection light source, and there is no need to set a separate texture recognition detection light source, which can further simplify the structure.
  • the optimal response wavelength of the photosensitive material layer refers to the photosensitive material layer within the wavelength range of 400 to 1000 nm, and the response to light in this wavelength range is greater than that of light in other wavelength ranges. Sensitive.
  • the detection light source of the light sensor is a backlight source of a display device or ambient light.
  • the backlight source when used as the detection light source, the light emitted by the backlight source irradiates the touch object, and then irradiates the photosensitive material layer in the light sensor through the reflection of the touch object, and the photosensitive material layer absorbs the light reflected by the touch object.
  • Output current signal generate texture image based on current signal to realize texture recognition function; and when in a strong light environment, ambient light can also be used as the detection light source, specifically, ambient light enters the liquid crystal display device, each of the liquid crystal display devices
  • the layer structure (such as the reflective layer in the backlight module, etc.) will reflect the incoming ambient light to the touch object, and after it is reflected by the touch object, it will be directed to the optical sensor.
  • the photosensitive material layer in the light sensor absorbs the light reflected by the touch object. After that, the current signal can be output, and the texture image can be generated based on the current signal to realize the texture recognition function.
  • the present invention provides a display device.
  • the display device includes: the aforementioned color filter substrate 100; an array substrate 200, where the array substrate 200 is disposed opposite to the color filter substrate 100; and a liquid crystal layer 300, the The liquid crystal layer 300 is sealed and disposed between the color filter substrate 100 and the array substrate 200.
  • the display device can realize full-screen texture recognition, and the sensitivity and accuracy of texture recognition are high. At the same time, the thickness of the display device is small, the assembly is easy, and the display effect will not be affected by the texture recognition unit.
  • the array substrate 200 may specifically include an array substrate substrate 220 and a circuit structure layer 210 disposed on the surface of the array substrate substrate 220 close to the liquid crystal layer 300, wherein the circuit structure layer 210 It may include a thin film transistor array for driving the display, and the specific structure may be performed with reference to a conventional process, which will not be repeated here.
  • the display device may further include: an upper polarizer 400 disposed on the side of the array substrate 200 away from the liquid crystal layer 300, and a lower polarizer disposed on the side of the texture recognition unit 30 away from the base substrate 10. 500 and a cover plate 600 disposed on the side of the upper polarizer away from the liquid crystal layer 30.
  • the texture recognition unit in order to simplify the structure of the display device and reduce the thickness of the display device at the same time, the texture recognition unit can be multiplexed as a touch unit, that is, the texture recognition unit can realize the function of texture recognition and at the same time.
  • the function of detecting the touch position can be realized. Therefore, the display device does not need to be separately provided with a touch control module, which not only simplifies the structure, but also reduces the thickness.
  • the display device further includes a touch control circuit that is electrically connected to the texture recognition unit through the gate line and the source line in the thin film transistor layer, and is configured to pass
  • the light sensor detects the light reflected by the first touch object, and converts the intensity of the light reflected by the first touch object detected by the multiple light sensors into a touch current signal, based on the position of the texture recognition unit and the touch
  • the control current signal determines the touch position. That is, when a touch operation occurs, the touched object reflects the light from the detection light source toward the finger to the light sensor, and the photosensitive material layer absorbs the reflected light from the touched object and generates a corresponding current signal.
  • the corresponding position of the light sensor that detects the change in the current signal is that The position where the touch operation occurs, therefore, the touch position where the touch operation occurs can be determined based on the current signal and the position of the corresponding light sensor.
  • the display device further includes: a texture recognition control circuit that is electrically connected to the texture recognition unit through a gate line and a source line in the thin film transistor layer, and is configured to When the touch control circuit detects a touch operation, the light sensor located at the touch position detects the light reflected by the second touch object, and the intensity of the light reflected by the second touch object detected by each light sensor It is converted into a texture recognition current signal, and a texture image is determined based on the texture recognition current signal. That is, the touch position is determined in advance by the touch circuit, and then the touch position is scanned by the texture recognition circuit to realize the texture recognition function.
  • a texture recognition control circuit that is electrically connected to the texture recognition unit through a gate line and a source line in the thin film transistor layer, and is configured to When the touch control circuit detects a touch operation, the light sensor located at the touch position detects the light reflected by the second touch object, and the intensity of the light reflected by the second touch object detected by each light sensor It is converted into a texture recognition current signal
  • the specific mechanism of texture recognition is that the touch object reflects the light from the detection light source to the touch object to the light sensor.
  • the photosensitive material layer absorbs the reflected light of the touch object and generates the corresponding texture recognition current signal.
  • the texture can be determined based on the texture recognition current signal. image.
  • the touch current signal is the sum of the currents of a plurality of the texture recognition units, and the texture recognition current signal is the current of one texture recognition unit.
  • the touch detection line used to detect the touch current signal can be electrically connected to multiple optical sensor layers, and the touch current signal output through the touch detection line is the sum of the currents of the multiple optical sensors, thus , Without affecting the touch accuracy, touch scanning can be performed at a lower frequency with lower energy consumption; at the same time, the touch position is determined by the touch control circuit first, and then the touch position is performed by the texture recognition control circuit Scanning, you only need to scan a part of the area to realize texture recognition, and can realize full-screen texture recognition, and because texture recognition needs to recognize the spine of the texture, the texture recognition detection line used to detect the texture recognition current signal can be combined with one The optical sensor layers are electrically connected, and each texture recognition detection line detects a current signal of the light sensor, which is beneficial to improve the
  • the liquid crystal display device further includes: a calculation circuit, which is electrically connected to the texture recognition control circuit, and is configured to perform a correction before determining the texture image
  • the texture recognition current signal is subjected to calculation processing.
  • the texture recognition current signal directly detected by the texture recognition control circuit may have noise or crosstalk, etc., and the directly detected texture recognition current signal can be processed appropriately through the calculation circuit and using a suitable algorithm to obtain clearer and more accurate results.
  • a higher-degree texture image further improves the sensitivity and accuracy of texture recognition.
  • the present invention provides a method for preparing the aforementioned color filter substrate.
  • the method includes: forming a color filter layer on a first side of a base substrate; and sequentially forming a thin film transistor layer and a light sensor on the second side of the base substrate.
  • the method has simple and convenient operation steps, high compatibility with existing processes, low cost, and the prepared color film substrate has better performance.
  • the color film layer can be formed by the following steps: the base substrate is cleaned in advance, and then a black matrix and color filters of different colors are sequentially formed through a photolithography process.
  • the black matrix is taken as an example to illustrate the light
  • the specific steps of the engraving process first coat and form a black matrix material layer on the surface of the base substrate, then coat and form a photoresist layer on the black matrix material layer, and expose and develop the photoresist layer to obtain a pattern After the patterned photoresist is removed, the black matrix material layer that is not covered by the patterned photoresist is etched (including but not limited to wet etching and dry etching), and the black matrix is obtained after removing the patterned photoresist Floor.
  • the steps of forming the color filters of different colors can be the same as the steps of forming the black matrix, which will not be repeated here.
  • the thin film transistor layer can be formed by the following steps: cleaning the base substrate, then forming the gate through deposition (such as sputtering, etc.) and photolithography process, and then forming the gate insulating layer through physical vapor deposition, and then The active layer is formed by deposition and photolithography, followed by physical vapor deposition to form the interlayer dielectric layer, and then the first via hole is formed by photolithography, and then the source and drain are formed by deposition, and then the first insulating layer and The planarization layer can be used to obtain thin film transistors.
  • deposition such as sputtering, etc.
  • photolithography such as sputtering, etc.
  • the active layer is formed by deposition and photolithography, followed by physical vapor deposition to form the interlayer dielectric layer
  • the first via hole is formed by photolithography
  • the source and drain are formed by deposition
  • the first insulating layer and The planarization layer can be used to obtain thin film transistors.
  • the photosensor can be formed by the following steps: now the second via hole is etched on the thin film transistor by a photolithography process, and then the bottom electrode, the photosensitive material layer and the top electrode are sequentially deposited to form the bottom electrode.
  • the photosensor can be efficiently prepared and formed.
  • the method for preparing a color filter substrate may also include other necessary steps.
  • an electrode for controlling the deflection of liquid crystal may be provided on the color filter substrate, and in this case, it may be formed on the base substrate first. The electrodes, and then the color film layer is formed, and other specific operations can be performed with reference to the conventional process, which will not be repeated here.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.

Abstract

彩膜基板和显示装置,彩膜基板包括:衬底基板(10);彩膜层(20),设在衬底基板(10)的一侧,包括黑矩阵(21)和多个彩色滤光片(22);多个纹理识别单元(30),设在衬底基板(10)上,每个纹理识别单元(30)包括薄膜晶体管(31)和光传感器(32),其中,多个纹理识别单元(30)在衬底基板(10)上的正投影位于黑矩阵(21)在衬底基板(10)上的正投影内。

Description

彩膜基板和显示装置
相关申请的交叉引用
本公开要求于2020年03月03日提交的申请号为202010139365.8的中国专利申请的优先权权益,并将其全部引入本文。
技术领域
本发明涉及显示技术领域,具体的,涉及彩膜基板和显示装置。
背景技术
屏下纹理识别技术能极大地提高移动终端屏占比,已成为手机等移动终端实现全面屏的重要技术手段。LCD(液晶显示装置)是当前主流显示产品,具有产量高,成本低,技术成熟等特点,具备广阔的市场优势,在LCD上实现屏下纹理识别对LCD产品性能提升具有重要的意义。但由于LCD层级结构复杂,在实现屏下纹理识别功能上面临传感器灵敏度低,识别精度差等问题。
因而,目前LCD屏下纹理识别技术仍有待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种纹理识别灵敏度高或者识别精度佳的彩膜基板以及含有该彩膜基板的显示装置。
在本发明的一个方面,本发明提供了一种彩膜基板。根据本发明的实施例,该彩膜基板包括:衬底基板;彩膜层,所述彩膜层设在所述衬底基板的一侧,包括黑矩阵和多个彩色滤光片,所述黑矩阵限定出多个亚像素开口,所述彩色滤光片一一对应的设在所述亚像素开口中;多个纹理识别单元,多个所述纹理识别单元设在所述衬底基板上,每个所述纹理识别单元包括薄膜晶体管和光传感器,所述光传感器与所述薄膜晶体管电连接;其中,多个所述纹理识别单元在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。本发明中,将纹理识别单元设计在彩膜基板上,相对于传统置于阵列基板的TFT(薄膜晶体管)层上,一方面可以可有效缩短光传感器与触摸物体(如手指、手掌等)表面之间的光程,采集光信号增强,同时大幅降低光信号在LCD层间传输的噪声;另一方面 可以有效控制LCD的厚度,节约材料及制作成本;第三方面纹理识别单元只占用彩膜层的黑矩阵区域,在彩膜基板上增加纹理识别单元后不影响LCD光透过率,在实现屏下纹理识别的同时,LCD显示效果较好。
根据本发明的实施例,多个所述纹理识别单元设在所述衬底基板远离所述彩膜层的一侧。
根据本发明的实施例,所述彩膜层设在多个所述纹理识别单元远离所述衬底基板的一侧。
根据本发明的实施例,所述薄膜晶体管在所述衬底基板上的正投影位于所述光传感器在所述衬底基板上的正投影内。
根据本发明的实施例,每个光传感器与至少一个亚像素对应设置。
根据本发明的实施例,每个光传感器与多个亚像素对应设置,且每个所述光传感器被构造为网状结构。
根据本发明的实施例,所述光传感器具有镂空区域,每个所述镂空区域在所述衬底基板上的正投影覆盖一个所述亚像素开口在所述衬底基板上的正投影。
根据本发明的实施例,多个所述纹理识别单元与多个像素一一对应设置,其中,每个所述像素包括至少2个所述亚像素。
根据本发明的实施例,所述薄膜晶体管中的薄膜晶体管在所述彩膜层上的正投影位于多个像素之间的黑矩阵上。
根据本发明的实施例,所述纹理识别单元包括:栅极线;源极线,所述源极线与所述栅极线交叉设置并限定出所述薄膜晶体管。所述光传感器包括:底电极,所述底电极设在所述纹理识别单元远离所述衬底基板的一侧,且通过第二过孔与所述漏极电连接;光敏材料层,所述光敏材料层设在所述底电极远离所述衬底基板的表面上;顶电极,所述顶电极设在所述光敏材料层远离所述衬底基板的表面上。
根据本发明的实施例,所述光传感器满足以下条件的至少一种:所述光敏材料层的有效感光面积不小于1600μm 2;所述光敏材料层为有机-无机混合薄膜;所述光敏材料层的最佳响应波长为700~850nm;所述光敏材料层的厚度为10-20微米;所述光传感器的探测精度大于等于300dpi。
在本发明的另一方面,本发明提供了一种显示装置。根据本发明的实施例,该显示装置包括:前面所述的彩膜基板;阵列基板,所述阵列基板与所述彩膜基板相对设置;液晶层,所述液晶层密封设置在彩膜基板和所述阵列基板之间。该液晶显示装置具有前面所述的彩膜基板的所有特征和优点,在此不再一一赘述。
根据本发明的实施例,所述纹理识别单元复用为触控单元。
根据本发明的实施例,该显示装置还包括:触控控制电路,所述触控控制电路通过薄膜晶体管层中的栅极线和源极线与所述纹理识别单元电连接,被构造为通过所述光传感器检测第一触摸物体反射光,并将多个光传感器检测到的所述第一触摸物体反射光的强度转化为触控电流信号,基于所述纹理识别单元的位置和所述触控电流信号确定触摸位置。
根据本发明的实施例,该显示装置还包括:纹理识别控制电路,所述纹理识别控制电路通过所述栅极线和所述源极线与所述纹理识别单元电连接,被构造为所述触控控制电路检测到触摸操作时,通过所述光传感器检测第二触摸物体反射光,并将每个所述光传感器检测到的所述第二触摸物体反射光的强度转化为纹理识别电流信号,基于所述纹理识别电流信号确定纹理图像。
根据本发明的实施例,该显示装置还包括:计算电路,所述计算电路与所述纹理识别控制电路电连接,用于在确定所述纹理图像之前,对所述纹理识别电流信号进行计算处理。
附图说明
图1显示了本发明一个实施例的彩膜基板的剖面结构示意图;
图2显示了本发明另一个实施例的彩膜基板的剖面结构示意图;
图3显示了本发明一个实施例的纹理识别单元和黑矩阵的平面结构示意图;
图4显示了一个像素的部分结构的平面结构示意图;
图5显示了本发明另一个实施例的纹理识别单元的剖面结构示意图;
图6显示了本发明另一个实施例的一个像素中的纹理识别单元和黑矩阵的平面结构示意图;
图7显示了本发明一个实施例的显示装置的剖面结构示意图。
图8显示了本发明另一个实施例的显示装置的剖面结构示意图。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本发明的一个方面,本发明提供了一种彩膜基板。根据本发明的实施例,参照图1和图2,该彩膜基板包括:衬底基板10;彩膜层20,所述彩膜层20设在所述衬底基板的 一侧,包括黑矩阵21和多个彩色滤光片22,所述黑矩阵限定出多个亚像素开口23,所述彩色滤光片22一一对应的设在所述亚像素开口23中;多个纹理识别单元30,所述纹理识别单元设在所述衬底基板上,每个所述纹理识别单元包括薄膜晶体管31和光传感器32,所述光传感器32与所述薄膜晶体管电连接,其中,多个所述纹理识别单元30在所述衬底基板10上的正投影位于所述黑矩阵21在所述衬底基板10上的正投影内。本发明中,将纹理识别单元集成设置在彩膜基板上,相对于传统设置于阵列基板的TFT(薄膜晶体管)层上,一方面可以有效缩短光传感器与触摸物体表面之间的光程,采集光信号增强,同时大幅降低光信号在LCD层间传输的噪声;另一方面可以有效控制LCD的厚度,节约材料及制作成本;第三方面纹理识别单元只占用彩膜层的黑矩阵区域,在彩膜基板上增加纹理识别单元后不影响LCD光透过率,在实现屏下纹理识别的同时,LCD显示效果较好。另外,纹理识别单元与彩膜基板一体形成,可以有效减小显示装置的厚度,简化显示装置的组装步骤,节省成本。
根据本发明的实施例,彩膜层和纹理识别单元可以设置在衬底基板的同侧,也可以设置在衬底基板的两侧。一些具体实施例中,参照图1,多个所述纹理识别单元30设在所述衬底基板10远离所述彩膜层20的一侧。另一些具体实施例中,参照图2,所述彩膜层20设在多个所述纹理识别单元30远离所述衬底基板10的一侧。
根据本发明的实施例,衬底基板的具体种类没有特别限制,可以为本领域彩膜基板常用的衬底基板,具体可以为玻璃基板、聚合物基板等,在此不再一一赘述。
根据本发明的实施例,该彩膜基板通常应用于显示装置,而显示装置一般包括多个像素以实现彩色显示,而每个像素包括多个颜色不同的亚像素,可以理解,彩膜基板上的亚像素开口是亚像素的透光窗口,显示装置背光模组发出的光经过液晶调制后从亚像素开口射出,而亚像素开口中的彩色滤光片可以将显示装置背光源的光转换为显示需要的具有预定颜色的光,其中,每个像素中的多个亚像素开口中的彩色滤光片的颜色不同,以实现彩色显示。一些具体实施例中,每个像素可以包括3个、4个亚像素等,以三原色显示为例,一个像素可以包括3个亚像素,该3个亚像素对应的彩色滤光片分别为红色、绿色和蓝色。另一些实施例中,一个像素也可以包括4个亚像素,该4个亚像素对应的彩色滤光片分别为红色、绿色、蓝色和白色。下文中均以三原色显示的彩膜基板和显示装置为例进行说明。
根据本发明的实施例,彩膜层中的黑矩阵和彩色滤光片均可以通过具有相应颜色的树脂形成,例如可以向树脂材料中添加相应颜色的颜料,具体的,可以向形成黑矩阵的材料中添加黑色颜料,向形成彩色滤光片的材料中分别添加红色、绿色和蓝色颜料等等。
根据本发明的实施例,彩膜层和纹理识别单元可以位于衬底基板的同侧,也可以分别位于 衬底基板相对的两侧。实际使用过程中,更倾向于将彩膜层和纹理识别单元分别设置在衬底基板的第一侧和第二侧(参照图1所示),并使形成有彩膜层的一侧朝向液晶层设置,将纹理识别单元设置在衬底基板远离液晶层的一侧,由此实际使用时纹理识别单元更加靠近触摸物体,可以很大程度上减少相邻传感器层之间的串扰,同时可以缩短光程,增强采集光信号,进而可以提高检测灵敏度和检测精度。
根据本发明的实施例,参照图1和图2,在每个纹理识别单元30中,通常将薄膜晶体管层31设在衬底基板10的表面上,光传感器32设在薄膜晶体管层31远离衬底基板10的表面上。由此,可以避免制备过程中薄膜晶体管层制程对光传感器产生污染,保证光传感器的灵敏度和精度。根据本发明的具体实施例,参照图3,所述薄膜晶体管层31在所述衬底基板10上的正投影位于所述光传感器32在所述衬底基板10上的正投影内。
根据本发明的实施例,参照图4,指纹识别单元可以包括栅极线1和源极线2,栅极线1和源极线2交叉设置并限定出薄膜晶体管3,其中,栅极线1的一部分可以构成薄膜晶体管的栅极,源极线2的一部分可以构成薄膜晶体管的源极,其中,栅极线可以用关于控制薄膜晶体管的开光,源极线可以与控制电路相连,用于将纹理识别单元的感测信号输出至控制电路,同时根据栅极线和源极线的感测信号可以确定纹理识别的具体位置(具体的,栅极线和源极线中的一个可以确定行方向的位置,而另一个可以确定列方向的,两者交叉位置即为发生纹理识别的具体位置)。
根据本发明的实施例,本文中所述的薄膜晶体管可以包括栅极、有缘层、源极和漏极,可以理解,为了保证薄膜晶体管的正常工作,上述栅极、有缘层、源极和漏极之间可以设置必要的绝缘层。一个具体实施例中,参照图5,所述薄膜晶体管包括:栅极311,所述栅极311设在所述衬底基板的第二侧;栅绝缘层312,所述栅绝缘层312设在所述衬底基板的第二侧,且覆盖所述栅极311;有源层313,所述有源层313设在所述栅绝缘层312远离所述衬底基板10的表面上;层间介质层314,所述层间介质层314设在所述栅绝缘层312远离所述衬底基板10的表面上,且覆盖所述有源层313;源极315和漏极316,所述源极315和漏极316设在所述层间介质层314远离所述衬底基板10的表面上,且通过第一过孔31a与所述有源层313电连接;第一绝缘层317,所述第一绝缘层317设在所述层间介质层314远离所述衬底基板10的表面上,且覆盖所述源极315和漏极316;平坦化层318,所述平坦化层318设在所述第一绝缘层317远离所述衬底基板10的表面上。可以理解,薄膜晶体管的具体结构可以根据需要进行调整,例如可以为顶栅结构的薄膜晶体管等,在此不再一一赘述。
根据本发明的实施例,上述薄膜晶体管中,栅极、源极和漏极可以由金属材料制备得 到,可以为单层金属层结构也可以为多层金属层层叠在一起,多层金属层金属可以相同也可以不同,可以采用的金属材料包括但不限于铜、银、铝、钼中的一种或者多种的组合;有源层由半导体材料制备得到,可以采用的半导体材料包括但不限于氧化物半导体材料、多晶硅等。而上述薄膜晶体管中栅绝缘层、层间介质层和第一绝缘层可以由二氧化硅、氮化硅等材料制备得到,具有较好的绝缘效果,而平坦化层可以由有机材料制备得到,可以采用的有机材料包括但不限于亚克力等。
根据本发明的实施例,当手指进行触摸操作时,触摸物体可以将照射到触摸物体上的光反射至光传感器,而光传感器可以检测触摸物体反射光的强度,并将其转化为电流信号,进而基于电流信号即可确定纹理图像,实现指纹、掌纹等纹理识别功能。
根据本发明的实施例,每个光传感器与至少一个亚像素对应设置。具体的,可以每个亚像素设置一个光传感器,也可以多个亚像素对应设置一个光传感器。根据本发明的一些具体实施例,参照图6,每个光传感器32与多个(具体如2个、3个、4个、5个等)亚像素对应设置,且每个所述光传感器32被构造为网状结构。由此,网状结构的设计,光传感器可以只占用彩膜层的黑矩阵区域,在彩膜层上设置光传感器后不影响光透过率,同时可以使得光传感器具有较大的感光面积,利于提高光传感器的灵敏度和精度。
根据本发明的实施例,参照图6,所述光传感器32具有多个镂空区域321,每个所述镂空区域321在所述衬底基板上的正投影覆盖一个所述亚像素开口23在所述衬底基板上的正投影。具体的,每个所述镂空区域324在所述衬底基板上的正投影的面积可以大于一个所述亚像素开口23在所述衬底基板上的正投影的面积,也可以每个所述镂空区域321在所述衬底基板上的正投影恰好和一个所述亚像素开口23在所述衬底基板上的正投影重叠。由此,亚像素开口之间的黑矩阵上也设置有光传感器,可以使得光传感器具有较大的有效感光面积,利于提高光传感器的灵敏度和精度。
一些具体实施例中,多个所述纹理识别单元可以与多个像素一一对应设置,其中,每个所述像素包括至少2个所述亚像素。具体如三原色显示的彩膜基板,每个像素包括三个亚像素,则三个亚像素对应设置一个纹理识别单元。由此,纹理识别单元的密度较大,识别精度和灵敏度均较高。本文附图中均以多个所述纹理识别单元可以与多个像素一一对应设置、且每个像素包括三个亚像素为例进行说明。
根据本发明的一些具体实施例,参照图6,每个光传感器可以与一个薄膜晶体管对应设置,当每个像素对应设置一个光传感器时,所述薄膜晶体管在所述彩膜层上的正投影位于多个像素之间的黑矩阵上,换句话说,每个像素中的多个亚像素之间的黑矩阵和薄膜晶体管在彩膜层上的正投影不重叠。由此,不会影响亚像素开口的透光率,液晶显示装置的显 示效果仍较佳。
根据本发明的实施例,光传感器的探测精度大于等于300dpi,光传感器中的光敏材料层的有效感光面积不小于1600μm 2,同时设置纹理识别单元不影响液晶显示装置的光透过率。由此,根据本发明实施例的光传感器可以保证较好的指纹精度和灵敏度,同时保证液晶显示装置的显示效果。
根据本发明的一个具体实施例,将本发明实施例的彩膜基板用于6.2寸的液晶显示面板,参照图6,每个纹理识别单元的横向尺寸L1为81微米,纵向尺寸L2为74微米,每个亚像素开口的横向尺寸L3为20微米,纵向尺寸L4为60微米,光传感器的横向精度为300dpi,纵向为325dpi,有效光敏面积为2394(81*74-20*60*3)平方微米,该较大的光感面积可以有效保证光传感器正常工作。每个像素包括3个亚像素光透过通道,采用该彩膜基板的液晶显示装置的亚像素开口的光透过率为54.3%。采用上述彩膜基板的液晶显示面板,可实现LCD全面屏屏下纹理识别,传感器模组参数如表1所,传感器分辨率为795*1830,精度为300dpi。
表1
参数项 参数值
显示屏大小(mm) 67.6*142.7
感光面积(μm 2)/光传感器 2394
像素间距(横向/纵向)(μm) 85/78
像素数量(横向/纵向) 300/325
分辨率 795*1830
薄膜晶体管尺寸(横向/纵向)(μm) 6/10
感光光源波长 近红外(750-800nm)
根据本发明的实施例,参照图5,所述光传感器32包括:底电极321,所述底电极321设在所述平坦化层318远离所述衬底基板10的一侧,且通过第二过孔31b与所述漏极316电连接;光敏材料层322,所述光敏材料层322设在所述底电极321远离所述衬底基板10的表面上;顶电极323,所述顶电极323设在所述光敏材料层322远离所述衬底基板10的表面上。其中,光敏材料层可以以较高的效率吸收光子,并输出与吸收的光子数量成比例的电流信号,基于该电流信号,可以有效实现纹理识别功能。
根据本发明的实施例,所述光敏材料层的有效感光面积不小于1600μm 2(具体如1600μm 2、1700μm 2、1800μm 2、1900μm 2、2000μm 2、2200μm 2、2500μm 2等);所述光敏材料层为有机-无机混合薄膜;所述光敏材料层的最佳响应波长为700~850nm(具体如700nm、 710nm、720nm、730nm、740nm、750nm、760nm、770nm、780nm、790nm、800nm、810nm、820nm、830nm、840nm、850nm等);所述光敏材料层的厚度为10-20微米(具体如10微米、11微米、12微米、13微米、14微米、15微米、16微米、17微米、18微米、19微米、20微米等),所述光传感器的探测精度大于等于300dpi(具体如300dpi、320dpi、350dpi、380dpi、400dpi、420dpi、450dpi等)。由此,较大的有效感光面积和探测精度可以以较高的灵敏度和精度进行纹理识别,同时对纹理识别IC的性能要求可以大大降低,而较高的灵敏度和精度使得光敏材料层可以实现较薄的厚度,利于减小彩膜基板和液晶显示装置的厚度,以实现小型化。另外,上述相应波长可以采用普通背光源或者环境光作为探测光源,不需要设置单独的纹理识别探测光源,可以进一步简化结构。
需要说明的是,本文中的描述“光敏材料层的最佳响应波长”是指光敏材料层在400~1000nm的波长范围内,对该波长范围的光的响应较其他波长范围的光的相应更灵敏。
根据本发明的实施例,所述光传感器的检测光源为显示装置的背光源或者环境光。具体的,以背光源作为检测光源时,背光源发出的光照射到触摸物体上,然后经过触摸物体的反射照射到光传感器中的光敏材料层上,光敏材料层吸收触摸物体反射的光后可以输出电流信号,基于电流信号生成纹理图像,实现纹理识别功能;而当处于强光环境时,也可以以环境光作为检测光源,具体的,环境光射入液晶显示装置,液晶显示装置中的各层结构(如背光模组中的反射层等)会将射入的环境光反射向触摸物体,再次经触摸物体反射后会射向光学传感器,光传感器中的光敏材料层吸收触摸物体反射的光后可以输出电流信号,基于电流信号生成纹理图像,实现纹理识别功能。
在本发明的另一方面,本发明提供了一种显示装置。根据本发明的实施例,参照图7,该显示装置包括:前面所述的彩膜基板100;阵列基板200,所述阵列基板200与所述彩膜基板100相对设置;液晶层300,所述液晶层300密封设置在彩膜基板100和所述阵列基板200之间。该显示装置可以实现全屏纹理识别,且纹理识别的灵敏度和精度较高,同时显示装置的厚度较小,组装容易,显示效果不会受纹理识别单元的影响。
根据本发明的实施例,参照图8,阵列基板200具体可以包括阵列基板衬底220和设置在阵列基板衬底220靠近液晶层300的表面上的电路结构层210,其中,电路结构层210中可以包括用于驱动显示的薄膜晶体管阵列,具体结构可以参照常规工艺进行,在此不再一一赘述。进一步的,参照图8,该显示装置还可以包括:设置在阵列基板200远离液晶层300的一侧的上偏振片400,设置在纹理识别单元30远离衬底基板10的一侧的下偏振片500和设置在上偏振片远离液晶层30的一侧的盖板600。
根据本发明的实施例,为了简化显示装置的结构,同时减小显示装置的厚度,所述纹 理识别单元可以复用为触控单元,即上述纹理识别单元既可以实现纹理识别的功能,同时还可以实现检测触控位置的功能。由此,该显示装置不需要额外单独设置触控模组,既简化了结构,又减薄了厚度。
根据本发明的实施例,该显示装置还包括:触控控制电路,所述触控控制电路通过薄膜晶体管层中的栅极线和源极线与所述纹理识别单元电连接,被构造为通过所述光传感器检测第一触摸物体反射光,并将多个光传感器检测到的所述第一触摸物体反射光的强度转化为触控电流信号,基于所述纹理识别单元的位置和所述触控电流信号确定触摸位置。即发生触摸操作时,触摸物体将检测光源射向手指的光反射向光传感器,光敏材料层吸收触摸物体的反射光,并产生相应的电流信号,检测到电流信号变化的光传感器对应的位置即发生触摸操作的位置,因此,基于电流信号和相应的光传感器的位置即可确定发生触摸操作的触摸位置。
根据本发明的实施例,该显示装置还包括:纹理识别控制电路,所述纹理识别控制电路通过薄膜晶体管层中的栅极线和源极线与所述纹理识别单元电连接,被构造为所述触控控制电路检测到触摸操作时,通过位于触摸位置处的所述光传感器检测第二触摸物体反射光,并将每个所述光传感器检测到的所述第二触摸物体反射光的强度转化为纹理识别电流信号,基于所述纹理识别电流信号确定纹理图像。即预先通过触控电路确定触摸位置,然后再通过纹理识别电路对触摸位置处进行扫描,以实现纹理识别功能。纹理识别的具机理为触摸物体将检测光源射向触摸物体的光反射向光传感器,光敏材料层吸收触摸物体的反射光,并产生相应的纹理识别电流信号,基于纹理识别电流信号即可确定纹理图像。
根据本发明的实施例,为了降低显示装置的能耗,所述触控电流信号为多个所述纹理识别单元的电流之和,所述纹理识别电流信号为一个所述纹理识别单元的电流。也就是说,用于检测触控电流信号的触控检测线可以与多个光学传感层电连接,通过触控检测线输出的触控电流信号为多个光传感器的电流之和,由此,在不影响触控精度的同时,可以以较低的频率进行触控扫描,能耗较低;同时,先通过触控控制电路确定触摸位置,然后再通过纹理识别控制电路对触摸位置处进行扫描,则仅需要对部分区域扫描即可实现纹理识别,且可以实现全屏纹理识别,而由于纹理识别需要对纹理的脊骨进行识别,用于检测纹理识别电流信号的纹理识别检测线可以与一个光学传感器层电连接,每个纹理识别检测线检测一个光传感器的电流信号,如此,利于提高纹理识别的检测灵敏度和精度。
根据本发明的实施例,为了更加精准的进行纹理识别,该液晶显示装置还包括:计算电路,所述计算电路与所述纹理识别控制电路电连接,用于在确定所述纹理图像之前,对所述纹理识别电流信号进行计算处理。具体的,通过纹理识别控制电路直接检测到的纹理 识别电流信号可能存在噪声或串扰等,通过计算电路并利用合适的算法对直接检测到的纹理识别电流信号进行适当处理,可以得到更清晰、准确度更高的纹理图像,进一步提高纹理识别的灵敏度和准确度。
在本发明的又一方面,本发明提供了一种制备前面所述的彩膜基板的方法。根据本发明的实施例,该方法包括:在衬底基板的第一侧上形成彩膜层;依次在所述衬底基板的第二侧上形成薄膜晶体管层和光传感器。该方法操作步骤简单,方便,且与现有工艺兼容性高,成本较低,且制备得到的彩膜基板性能较佳。
根据本发明的实施例,彩膜层可以通过以下步骤形成:预先对衬底基板进行清洗,然后通过光刻工艺依次形成黑矩阵和不同颜色的彩色滤光片,下面以黑矩阵为例说明光刻工艺的具体步骤:先在衬底基板的表面上涂布形成黑矩阵材料层,然后在黑矩阵材料层上涂布形成光刻胶层,并对光刻胶层进行曝光和显影,得到图案化光刻胶,然后对未被图案化光刻胶覆盖的黑矩阵材料层进行刻蚀(包括但不限于湿法刻蚀和干法刻蚀),去除图案化光刻胶后则得到黑矩阵层。不同颜色的彩色滤光片形成的步骤可以与黑矩阵的形成步骤相同,在此不再一一赘述。
根据本发明的实施例,薄膜晶体管层可以通过以下步骤形成:清洗衬底基板,然后通过沉积(如溅射等)和光刻工艺形成栅极,然后可以通过物理气相沉积形成栅绝缘层,接着通过沉积和光刻工艺形成有源层,接着物理气相沉积形成层间介质层,然后通过光刻形成第一过孔,再沉积形成源极和漏极,之后再依次沉积形成第一绝缘层和平坦化层,即可得到薄膜晶体管。
根据本发明的实施例,光传感器可以通过以下步骤形成:现在薄膜晶体管上通过光刻工艺刻蚀第二过孔,然后依次沉积形成底电极、光敏材料层和顶电极。由此,可以有效制备形成光传感器。
可以理解,除了上述步骤之外,该制备彩膜基板的方法还可以包括其他必要的步骤,例如,彩膜基板上可以设置用于控制液晶偏转的电极,此时可以先在衬底基板上形成电极,然后再形成彩膜层,其他的具体操作可以参照常规工艺进行,在此不再一一赘述。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、 或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种彩膜基板,其特征在于,包括:
    衬底基板;
    彩膜层,所述彩膜层设在所述衬底基板的一侧,包括黑矩阵和多个彩色滤光片,所述黑矩阵限定出多个亚像素开口,所述彩色滤光片一一对应的设在所述亚像素开口中;
    多个纹理识别单元,多个所述纹理识别单元设在所述衬底基板上,每个所述纹理识别单元包括薄膜晶体管和光传感器,所述光传感器与所述薄膜晶体管电连接;
    其中,多个所述纹理识别单元在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
  2. 根据权利要求1所述的彩膜基板,其特征在于,多个所述纹理识别单元设在所述衬底基板远离所述彩膜层的一侧。
  3. 根据权利要求1所述的彩膜基板,其特征在于,所述彩膜层设在多个所述纹理识别单元远离所述衬底基板的一侧。
  4. 根据权利要求1-3中任一项所述的彩膜基板,其特征在于,所述薄膜晶体管在所述衬底基板上的正投影位于所述光传感器在所述衬底基板上的正投影内。
  5. 根据权利要求1-4中任一项所述的彩膜基板,其特征在于,每个所述光传感器与至少一个亚像素对应设置。
  6. 根据权利要求1-5中任一项所述的彩膜基板,其特征在于,每个所述光传感器与多个亚像素对应设置,且每个所述光传感器被构造为网状结构。
  7. 根据权利要求6所述的彩膜基板,其特征在于,所述光传感器具有多个镂空区域,每个所述镂空区域在所述衬底基板上的正投影覆盖一个所述亚像素开口在所述衬底基板上的正投影。
  8. 根据权利要求7所述的彩膜基板,其特征在于,多个所述纹理识别单元与多个像素一一对应设置,其中,每个所述像素包括至少2个所述亚像素。
  9. 根据权利要求7或8所述的彩膜基板,其特征在于,所述薄膜晶体管在所述彩膜层上的正投影位于多个所述像素之间的黑矩阵上。
  10. 根据权利要求1-9中任一项所述的彩膜基板,其特征在于,
    所述纹理识别单元包括:
    栅极线;
    源极线,所述源极线与所述栅极线交叉设置并限定出所述薄膜晶体管;
    所述光传感器包括:
    底电极,所述底电极设在所述薄膜晶体管远离所述衬底基板的一侧,且通过第二过孔与所述薄膜晶体管中的漏极电连接;
    光敏材料层,所述光敏材料层设在所述底电极远离所述衬底基板的表面上;
    顶电极,所述顶电极设在所述光敏材料层远离所述衬底基板的表面上。
  11. 根据权利要求1-10中任一项所述的彩膜基板,其特征在于,所述光传感器满足以下条件的至少之一:
    所述光敏材料层的有效感光面积不小于1600μm 2
    所述光敏材料层为有机-无机混合薄膜;
    所述光敏材料层的最佳响应波长为700~850nm;所述光敏材料层的厚度为10-20微米;
    所述光传感器的探测精度大于等于300dpi。
  12. 一种显示装置,其特征在于,包括:
    权利要求1~11中任一项所述的彩膜基板;
    阵列基板,所述阵列基板与所述彩膜基板相对设置;
    液晶层,所述液晶层密封设置在彩膜基板和所述阵列基板之间。
  13. 根据权利要求12所述的显示装置,其特征在于,所述纹理识别单元复用为触控单元。
  14. 根据权利要求12或13所述的显示装置,其特征在于,还包括:
    触控控制电路,所述触控控制电路通过薄膜晶体管层中的栅极线和源极线与所述纹理识别单元电连接,被构造为通过所述光传感器检测第一触摸物体反射光,并将多个光传感器检测到的所述第一触摸物体反射光的强度转化为触控电流信号,基于所述纹理识别单元的位置和所述触控电流信号确定触摸位置。
  15. 根据权利要求14所述的液晶显示装置,其特征在于,还包括:
    纹理识别控制电路,所述纹理识别控制电路通过所述栅极线和所述源极线与所述纹理识别单元电连接,被构造为所述触控控制电路检测到触摸操作时,通过所述光传感器检测第二触摸物体反射光,并将每个所述光传感器检测到的所述第二触摸物体反射光的强度转化为纹理识别电流信号,基于所述纹理识别电流信号确定纹理图像。
  16. 根据权利要求15所述的液晶显示装置,其特征在于,还包括:
    计算电路,所述计算电路与所述纹理识别控制电路电连接,用于在确定所述纹理图像之前,对所述纹理识别电流信号进行计算处理。
PCT/CN2020/140334 2020-03-03 2020-12-28 彩膜基板和显示装置 WO2021174973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010139365.8A CN111258107B (zh) 2020-03-03 2020-03-03 显示装置
CN202010139365.8 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021174973A1 true WO2021174973A1 (zh) 2021-09-10

Family

ID=70949471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140334 WO2021174973A1 (zh) 2020-03-03 2020-12-28 彩膜基板和显示装置

Country Status (2)

Country Link
CN (1) CN111258107B (zh)
WO (1) WO2021174973A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258107B (zh) * 2020-03-03 2021-11-26 京东方科技集团股份有限公司 显示装置
CN112987357A (zh) * 2021-02-04 2021-06-18 Tcl华星光电技术有限公司 显示面板及其制备方法
CN113050324B (zh) * 2021-04-06 2022-11-08 维沃移动通信有限公司 显示模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058719A (ko) * 2001-12-31 2003-07-07 비오이 하이디스 테크놀로지 주식회사 광센서를 구비한 박막트랜지스터 액정표시장치
CN105095883A (zh) * 2015-08-28 2015-11-25 京东方科技集团股份有限公司 一种显示面板及其指纹识别的控制方法
CN110187800A (zh) * 2019-05-17 2019-08-30 深圳市华星光电半导体显示技术有限公司 一种彩膜基板及其制备方法
CN110361888A (zh) * 2019-07-18 2019-10-22 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示面板、显示装置
CN110543043A (zh) * 2019-10-09 2019-12-06 Oppo广东移动通信有限公司 显示屏及电子设备
CN110850630A (zh) * 2019-11-29 2020-02-28 厦门天马微电子有限公司 一种显示面板及其制作方法、显示装置
CN111258107A (zh) * 2020-03-03 2020-06-09 京东方科技集团股份有限公司 彩膜基板和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672995B (zh) * 2009-09-29 2011-04-06 友达光电股份有限公司 感测方法
CN108398822B (zh) * 2018-03-23 2021-09-07 厦门天马微电子有限公司 触控显示基板、显示面板和显示装置
CN109828694B (zh) * 2019-03-13 2022-03-01 信利半导体有限公司 一种具有识别和检测功能的显示设备
CN110909720B (zh) * 2019-12-18 2023-08-25 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058719A (ko) * 2001-12-31 2003-07-07 비오이 하이디스 테크놀로지 주식회사 광센서를 구비한 박막트랜지스터 액정표시장치
CN105095883A (zh) * 2015-08-28 2015-11-25 京东方科技集团股份有限公司 一种显示面板及其指纹识别的控制方法
CN110187800A (zh) * 2019-05-17 2019-08-30 深圳市华星光电半导体显示技术有限公司 一种彩膜基板及其制备方法
CN110361888A (zh) * 2019-07-18 2019-10-22 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示面板、显示装置
CN110543043A (zh) * 2019-10-09 2019-12-06 Oppo广东移动通信有限公司 显示屏及电子设备
CN110850630A (zh) * 2019-11-29 2020-02-28 厦门天马微电子有限公司 一种显示面板及其制作方法、显示装置
CN111258107A (zh) * 2020-03-03 2020-06-09 京东方科技集团股份有限公司 彩膜基板和显示装置

Also Published As

Publication number Publication date
CN111258107B (zh) 2021-11-26
CN111258107A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021174973A1 (zh) 彩膜基板和显示装置
WO2020024742A1 (en) Array substrate, display screen, and electronic device
US20210406501A1 (en) Fingerprint identification device, display panel and fabrication method thereof, and display device
JP2007304245A (ja) 液晶表示装置
WO2011021477A1 (ja) 光センサ、半導体装置、及び液晶パネル
TWI695205B (zh) 影像感測顯示裝置以及影像處理方法
KR20090113795A (ko) 액정 표시 장치
CN111582010B (zh) 使电子装置接收指纹数据的方法及相关的电子装置
KR20130037072A (ko) 광터치 스크린 장치 및 그 제조 방법
WO2020150938A1 (zh) 光电传感器及其制备方法
WO2022007094A1 (zh) 显示装置及其控制方法
TW201942727A (zh) 感測板及具有感測板的顯示器
WO2020248716A1 (zh) 显示背板及其制作方法和全面屏指纹识别显示装置
TWI389256B (zh) 主動元件陣列基板的製造方法
CN110112199B (zh) 影像感测显示装置以及影像处理方法
WO2010058629A1 (ja) 液晶表示装置、電子機器
US20210406505A1 (en) Texture recognition device and manufacturing method thereof, color filter substrate and manufacturing method thereof
CN108701230B (zh) 生物识别传感器、显示设备、制造生物识别传感器的方法
WO2021204093A1 (zh) 一种显示屏和电子设备
JP3587426B2 (ja) 液晶表示装置及びその製造方法
CN113540155A (zh) 一种显示屏和电子设备
KR100501070B1 (ko) 이미지입력부를 갖는 액정표시 패널 및 그 제조방법
CN112666734B (zh) 液晶显示面板及显示装置
US20220358782A1 (en) Texture Recognition Apparatus and Opposite Substrate
US11637136B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923483

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20923483

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20923483

Country of ref document: EP

Kind code of ref document: A1