WO2021174585A1 - 一种mems传感器封装结构 - Google Patents

一种mems传感器封装结构 Download PDF

Info

Publication number
WO2021174585A1
WO2021174585A1 PCT/CN2020/079616 CN2020079616W WO2021174585A1 WO 2021174585 A1 WO2021174585 A1 WO 2021174585A1 CN 2020079616 W CN2020079616 W CN 2020079616W WO 2021174585 A1 WO2021174585 A1 WO 2021174585A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
chip
mems
packaging
substrate
Prior art date
Application number
PCT/CN2020/079616
Other languages
English (en)
French (fr)
Inventor
柏杨
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021174585A1 publication Critical patent/WO2021174585A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the utility model relates to the technical field of electro-acoustic conversion, in particular to a MEMS sensor packaging structure.
  • MEMS sensors are based on the development of MEMS (Micro-Electro-Mechanical System) technology. They have a wide range of applications, such as MEMS microphones. Compared with other types of sensor devices, MEMS sensors have the advantages of small size and good frequency response characteristics. With the development of the field of electronic equipment, higher requirements have been put forward for the size, quality and cost of MEMS sensors.
  • MEMS Micro-Electro-Mechanical System
  • MEMS sensors are connected through wire bonding in generative manufacturing. bonding) to realize the circuit connection inside the MEMS sensor.
  • This circuit connection method not only limits the package height of the MEMS sensor, but also causes the binding wire inside the MEMS sensor to easily fall off when subjected to vibration, which will block the internal circuit of the MEMS sensor. Signal transmission.
  • the purpose of the utility model is to provide a MEMS sensor packaging structure, which aims to solve the problem that the binding wires inside the MEMS sensor are easy to fall off.
  • the utility model provides a MEMS sensor packaging structure, which includes a packaging shell, a packaging substrate enclosing a containing space with the packaging shell, a MEMS chip contained in the containing space, and an ASIC chip fixed to the packaging substrate
  • the packaging structure further includes a conductor disposed inside the packaging substrate, the MEMS chip is packaged on the side of the packaging substrate facing the housing space, and the ASIC chip is fixed on or on the packaging substrate.
  • the MEMS chip is electrically connected to one end of the conductor, and the ASIC chip is electrically connected to the other end of the conductor.
  • the conductor is a metalized through hole or a conductive wire.
  • the packaging substrate is a multi-layer substrate
  • the multi-layer substrate at least includes: an inner package base layer connected to the package shell, an outer package base layer arranged at a distance from the inner package base layer, and The package interlayer between the package inner substrate and the package outer base layer;
  • the metallized through hole or the conductive wire is arranged on the package inner base layer, or the package inner base layer and the package interlayer, and the MEMS chip is arranged on the side of the package inner base layer facing the receiving space , The MEMS chip is electrically connected to the metalized through hole or one end of the conductive wire.
  • the ASIC chip is arranged on the surface of the base layer in the package on the same side as the MEMS chip, and the ASIC chip is electrically connected to the metalized through hole or the end of the conductive wire away from the MEMS chip.
  • the ASIC chip is arranged in the package interlayer, and the ASIC chip is electrically connected to the metalized through hole or the other end of the conductive wire.
  • the ASIC chip is electrically connected to the internal circuit of the packaging substrate through the metallized through holes and the conductive wires provided in the packaging substrate.
  • the utility model provides a MEMS sensor packaging structure, which includes a packaging shell, a packaging substrate enclosing a containing space with the packaging shell, a MEMS chip contained in the containing space, and an ASIC fixed to the packaging substrate Chip, the packaging structure further includes a conductor disposed inside the packaging substrate, the MEMS chip is packaged on the side of the packaging substrate facing the housing space, and the ASIC chip is fixed on the packaging substrate or Inside the packaging substrate, the MEMS chip is electrically connected to one end of the conductor, and the ASIC chip is electrically connected to the other end of the conductor.
  • the conductor used for the electrical connection between the MEMS chip and the ASIC chip can be prevented from falling off during packaging scenarios such as drop vibration, and the chip and chip inside the MEMS sensor can be protected. Signal transmission.
  • FIG. 1 is a schematic structural diagram of a MEMS sensor packaging structure according to an embodiment of the present invention
  • FIG. 2 is an enlarged schematic diagram of the structure of part A in the schematic structural diagram of the MEMS sensor packaging structure of the embodiment of FIG. 1;
  • FIG. 3 is a schematic structural diagram of a MEMS sensor packaging structure according to another embodiment of the present invention.
  • FIG. 4 is an enlarged schematic diagram of the structure of part B in the schematic structural diagram of the MEMS sensor packaging structure of the embodiment of FIG. 3.
  • the present invention provides a MEMS sensor packaging structure, including a packaging shell 11, a packaging substrate 12 with a containing space enclosed by the packaging shell 11, a MEMS chip 13 and an ASIC contained in the containing space
  • the chip 14 the packaging structure further includes a conductor 15 arranged inside the packaging substrate 12.
  • the MEMS chip 13 is packaged on the side of the packaging substrate 12 facing the housing space.
  • the ASIC chip 14 is fixed on the packaging substrate 12 or inside the packaging substrate 12.
  • MEMS The chip 13 is electrically connected to one end of the conductor 15, and the ASIC chip 14 is electrically connected to the other end of the conductor 15.
  • the MEMS sensor is based on the development of micro-electromechanical system technology.
  • the signal transmission line between the MEMS chip 13 and the ASIC chip 14 can be prevented. Or the detachment of the binding wire causes the signal transmission to be blocked.
  • the present invention proposes a MEMS sensor packaging structure, which includes a MEMS chip 13
  • the conductor 15 that is electrically connected to the ASIC chip 14 and the conductor 15 is arranged inside the packaging substrate 12 can effectively prevent the sensor device from being easily detached when the sensor device is dropped and vibrated during packaging scenarios, and effectively guarantees
  • the electrical connection between the chips inside the sensor ensures the signal transmission between the MEMS chip 13 and the ASIC chip 14.
  • the conductor 15 is a metalized through hole or a conductive wire.
  • the conductor 15 in this embodiment is a metalized through hole or conductive wire.
  • the metalized through hole or conductive wire is packaged inside the MEMS sensor, and the MEMS chip 13 and the ASIC chip 14 pass through the metalized through hole or conductive wire.
  • the metalized through hole or conductive line is provided inside the package substrate 12.
  • the material of the metalized through hole or conductive line is copper or aluminum, and the metalized through hole can be used in a wafer The processing is completed when the packaging substrate 12 is manufactured, the processing accuracy is high, the consistency is good, mass production and manufacturing are easily realized, and the manufacturing cost is saved.
  • the packaging substrate 12 is a multi-layer substrate, and the multi-layer substrate at least includes: an inner package base layer 121 connected to the package housing 11, an outer package base layer 123 arranged opposite to the inner package base layer 121, The package interlayer 122 disposed between the package inner base layer 121 and the package outer base layer 123;
  • the metallized through holes or conductive wires are arranged in the package inner base layer 121, or between the package inner base layer 121 and the package interlayer 122, the MEMS chip is arranged on the side of the package inner base layer 121 facing the containing space, and the MEMS chip and the metallized through holes or conductive One end of the wire is electrically connected.
  • the multilayer substrate of this embodiment includes three substrate layers. The structures of the three substrate layers from close to the package housing 11 to away from the package housing 11 are the package inner base layer 121, the package interlayer 122, and the package outer base layer 123, respectively.
  • the conductor 15 (metalized through hole or conductive wire) is embedded in the multilayer substrate to fix the metalized through hole or conductive wire, which can effectively prevent the conductor 15 (metalized through hole or conductive wire) from encountering
  • the conductor 15 (metallized via or conductive wire) falling off will cause the conductor 15 (metallized via or conductive wire) to interact with the MEMS chip 13 and ASIC chip.
  • the loss of electrical connection between 14 affects the signal transmission between the MEMS chip 13 and the ASIC chip 14.
  • the conductor 15 (metallized through hole or conductive wire) is embedded in the package substrate 12 to increase the conductor 15 (metallized via or conductive wire) is in the stability of the internal structure of the MEMS sensor.
  • This embodiment does not limit the specific setting position of the conductor 15 (the position inside the package substrate 12).
  • the metal The through holes or conductive wires are arranged between the package interlayer 122 and the inner package base layer 121, and the package interlayer 122 is combined with the package inner base layer 121, so that the metalized through holes or conductive wires are fixed.
  • the package inner base layer 121 of the multi-layer substrate and the package housing 11 enclose a receiving space
  • the MEMS chip 13 is arranged on the surface of the inner package base 121 facing the receiving space
  • the MEMS chip 13 passes through the metal provided inside the multi-layer substrate.
  • the through holes or conductive wires are electrically connected to the internal circuits of the multilayer substrate.
  • the ASIC chip 14 is disposed on the surface of the inner package base layer 121 on the same side as the MEMS chip, and the ASIC chip 14 is electrically connected to the metalized through hole or the end of the conductive wire away from the MEMS chip.
  • the package inner base layer 121 and the package casing 11 enclose a receiving space, and the ASIC chip 14 is arranged on the side surface of the package inner base layer 121 facing the package casing 11, and passes through the metal provided inside the package substrate 12.
  • the through hole or conductive wire completes the electrical connection, and then the metal through hole or conductive wire is electrically connected to the MEMS chip 13 to realize the electrical connection between the ASIC chip 14 and the MEMS chip 13.
  • the ASIC chip 14 is disposed in the package interlayer 122, and the ASIC chip 14 is electrically connected to the other end of the metalized through hole or the conductive wire.
  • the ASIC chip 14 of this embodiment is arranged inside the multilayer substrate to prevent the external environment such as air impurities from corroding the circuit of the ASIC chip 14, thereby affecting the electrical performance of the ASIC chip 14.
  • the ASIC chip 14 is arranged in this embodiment In the package interlayer 122 of the multi-layer substrate, specifically, a receiving groove may be provided on the package interlayer 122, and the ASIC chip 14 can be placed in the receiving groove, so that the ASIC chip 14 can be fixed and passed through the base layer 121 of the package and the outside of the package.
  • the base layer 123 and the package interlayer 122 are combined, so that the ASIC chip 14 is embedded in the multilayer substrate, and the ASIC chip 14 is electrically connected to one end of the metallized via or conductive wire embedded in the package substrate 12, and the metallization is connected.
  • the other end of the hole or conductive wire is electrically connected to the MEMS chip to realize signal transmission between the MEMS chip 13 and the ASIC chip 14.
  • the ASIC chip 14 is electrically connected to the internal circuit of the packaging substrate 12 through metallized through holes and conductive wires provided in the packaging substrate 12.
  • the ASIC chip 14 of this embodiment is arranged inside the multilayer substrate to prevent the external environment such as air impurities from corroding the circuit of the ASIC chip 14, thereby affecting the electrical performance of the ASIC chip 14.
  • the multilayer substrate also includes internal circuits, ASIC chips 14 is electrically connected to the internal circuit through metallized vias or conductive wires, thereby realizing signal interaction between the ASIC chip 14 and the internal circuit.
  • This packaging method can not only effectively protect the electrical performance of the ASIC chip 14 and internal circuits, and prevent the ASIC chip 14 and internal circuits from being damaged by external environmental pollution or corrosion, but also increase the conductive body 15 (metallized through-hole or conductive wire). Stability inside the package structure.
  • the package casing 11 includes: a package cover plate and a package wall extending perpendicularly from the edge of the package cover plate to the direction of the package substrate 12, and the end of the package wall away from the package cover plate is opposite to the package inner base layer 121 Connect, the minimum height of the package wall is equal to the height of the chip support wall.
  • embedding the conductor 15 in the packaging substrate 12 and the chip can effectively reduce the internal space of the MEMS sensor and reduce the packaging height of the sensor.
  • the height of the package housing 11 is defined according to the chip inside the MEMS sensor, such as the height of the package housing 11 is defined according to the height of the chip supporting wall of the MEMS chip 13, thereby reducing the package height of the MEMS sensor and making the size of the MEMS sensor smaller. change.
  • the utility model provides a MEMS sensor packaging structure, which includes a packaging shell, a packaging substrate enclosing a containing space with the packaging shell, a MEMS chip contained in the containing space, and an ASIC chip fixed to the packaging substrate.
  • the packaging structure also includes Conductor set inside the packaging substrate.
  • the MEMS chip is packaged on the side of the packaging substrate facing the accommodating space.
  • the ASIC chip is fixed on the packaging substrate or inside the packaging substrate.
  • the MEMS chip is electrically connected to one end of the conductor, and the ASIC chip is connected to the conductor. The other end is electrically connected.
  • the conductor used for the electrical connection between the MEMS chip and the ASIC chip can be prevented from falling off during packaging scenarios such as drop vibration, and the chip and chip inside the MEMS sensor can be protected. Signal transmission.

Abstract

一种MEMS传感器封装结构,包括:封装壳体(11)、与封装壳体围成收容空间的封装基板(12)、收容于收容空间内的MEMS芯片(13)和ASIC芯片(14)、以及设置于封装基板内部的导电体(15);ASIC芯片与封装基板固定,MEMS芯片封装在封装基板朝向收容空间的一侧,ASIC芯片固定在封装基板上或封装基板的内部,MEMS芯片与导电体的一端电连接,ASIC芯片与导电体的另一端电连接。MEMS传感器封装结构,通过将用于MEMS芯片与ASIC芯片之间电连接的导电体设置于封装基板内部,可以防止导电体在跌落振动等封装场景时脱落,保障MEMS传感器内部的芯片之间的信号传输。

Description

一种MEMS传感器封装结构 技术领域
本实用新型涉及电声转换技术领域,尤其涉及一种MEMS传感器封装结构。
背景技术
MEMS传感器是基于MEMS(微型机电系统)技术的发展的成果,其在应用领域上比较广泛,例如MEMS麦克风;相对于其他类型的传感器件,MEMS传感器具有体积小、频响特性好等优点。随着电子设备领域的发展,对MEMS传感器的尺寸、品质及成本也提出了更高的要求。
现有技术中,MEMS传感器在生成制造中是通过绑线连接(wire bonding)的方式实现MEMS传感器内部的电路连接,这种电路连接方式不仅限定MEMS传感器的封装高度,还会因为受到振动时导致MEMS传感器内部的绑线容易脱落,这将会阻断MEMS传感器内部的信号传输。
技术问题
本实用新型的目的在于提供一种MEMS传感器封装结构,旨在解决MEMS传感器内部的绑线容易脱落的问题。
技术解决方案
本实用新型的技术方案如下:
本实用新型提供一种MEMS传感器封装结构,包括封装壳体、与所述封装壳体围成收容空间的封装基板、收容于所述收容空间内的MEMS芯片及与所述封装基板固定的ASIC芯片,所述封装结构还包括设置于所述封装基板内部的导电体,所述MEMS芯片封装在所述封装基板朝向所述收容空间的一侧,所述ASIC芯片固定在所述封装基板上或所述封装基板的内部,所述MEMS芯片与所述导电体的一端电连接,所述ASIC芯片与所述导电体的另一端电连接。
优选地,所述导电体为金属化通孔或导电线。
优选地,所述封装基板为多层基板,所述多层基板至少包括:与所述封装壳体相连接的封装内基层、与所述封装内基层相对间隔设置的封装外基层、设置于所述封装内基板与所述封装外基层之间的封装夹层;
所述金属化通孔或所述导电线设置于所述封装内基层,或所述封装内基层与所述封装夹层,所述MEMS芯片设置于所述封装内基层朝向所述收容空间的一侧,所述MEMS芯片与所述金属化通孔或所述导电线的一端电连接。
优选的,所述ASIC芯片设置于与所述MEMS芯片同侧的所述封装内基层表面,所述ASIC芯片与所述金属化通孔或所述导电线远离所述MEMS芯片的一端电连接。
优选的,所述ASIC芯片设置于所述封装夹层内,所述ASIC芯片与所述金属化通孔或所述导电线的另一端电连接。
优选的,所述ASIC芯片通过设置于所述封装基板内的所述金属化通孔及所述导电线与所述封装基板的内部电路电连接。
有益效果
本实用新型的有益效果在于:
本实用新型中提供一种MEMS传感器封装结构,包括封装壳体、与所述封装壳体围成收容空间的封装基板、收容于所述收容空间内的MEMS芯片及与所述封装基板固定的ASIC芯片,所述封装结构还包括设置于所述封装基板内部的导电体,所述MEMS芯片封装在所述封装基板朝向所述收容空间的一侧,所述ASIC芯片固定在所述封装基板上或所述封装基板的内部,所述MEMS芯片与所述导电体的一端电连接,所述ASIC芯片与所述导电体的另一端电连接。通过将用于MEMS芯片与ASIC芯片之间电连接的导电体设置于封装基板内部,可以防止MEMS传感器内部的导电体在跌落振动等封装场景时的脱落,保障MEMS传感器内部的芯片与芯片之间信号传输。
附图说明
图1为本实用新型实施例的MEMS传感器封装结构的结构示意图;
图2为图1实施例的MEMS传感器封装结构的结构示意图中的A部分结构放大示意图;
图3为本实用新型另一实施例的MEMS传感器封装结构的结构示意图;
图4为图3的实施例的MEMS传感器封装结构的结构示意图中的B部分结构放大示意图。
本发明的实施方式
下面结合附图和实施方式对本实用新型作进一步说明。
请参阅图1-4;本实用新型提供一种MEMS传感器封装结构,包括封装壳体11、与封装壳体11围成具有收容空间的封装基板12、收容于收容空间内的MEMS芯片13及ASIC芯片14,封装结构还包括设置于封装基板12内部的导电体15,MEMS芯片13封装在封装基板12朝向收容空间的一侧,ASIC芯片14固定在封装基板12上或封装基板12的内部,MEMS芯片13与导电体15的一端电连接,ASIC芯片14与导电体15的另一端电连接。
在本实用新型的实施例中,该MEMS传感器是基于微型机电系统技术发展得到的,为了实现对MEMS传感器内部信号传输线路或电路进行保护,防止MEMS芯片13与ASIC芯片14之间因为信号传输线路或绑线的脱落导致信号传输阻断。针对于现有技术中通过绑线或金丝连接(wire bonding)的方式实现传感器内部芯片之间的连接,本实用新型提出一个MEMS传感器封装结构,该封装结构包括一种用于实现MEMS芯片13与ASIC芯片14之间电连接的导电体15,并将该导电体15设置于封装基板12的内部,可有效防止传感器件在跌落振动等封装场景时内部绑线容易脱落的现象,有效保障了传感器内部的芯片之间电连接,即保障了MEMS芯片13与ASIC芯片14之间的信号传输。进一步的,将MEMS传感器内部的MEMS芯片13与ASIC芯片14之间的绑线连接方式替换为固定于封装基板12内部的导电体15进行连接,可有效减少MEMS传感器内部的占用空间,使得MEMS传感器可根据内部的MEMS芯片13等芯片的高度调节传感器封装壳体11的高度,进而降低MEMS传感器的封装高度,使得MEMS传感器的尺寸更小型化。
在本实用新型的实施例中,导电体15为金属化通孔或导电线。本实施例的导电体15为一种金属化通孔或导电线,将该金属化通孔或导电线封装在MEMS传感器内部,MEMS芯片13与ASIC芯片14之间通过金属化通孔或导电线进行电连接,具体的,将该金属化通孔或导电线设置于封装基板12的内部,该金属化通孔或导电线的材质为铜质或铝质,金属化通孔可在使用晶圆加工制作封装基板12时完成,加工准确度较高,一致性好,容易实现批量生产制造,节约制作成本。
在本实用新型的实施例中,封装基板12为多层基板,多层基板至少包括:与封装壳体11相连接的封装内基层121、与封装内基层121相对间隔设置的封装外基层123、设置于封装内基层121与封装外基层123之间的封装夹层122;
金属化通孔或导电线设置于封装内基层121,或封装内基层121与封装夹层122之间,MEMS芯片设置于封装内基层121朝向收容空间的一侧,MEMS芯片与金属化通孔或导电线的一端电连接。本实施例的多层基板包括三层基板层,该三层基板层自靠近封装壳体11向远离封装壳体11方向的结构分别为封装内基层121、封装夹层122及封装外基层123,通过将导电体15(金属化通孔或导电线)内嵌于该多层基板内部,使得金属化通孔或导电线得到固定,可有效防止导电体15(金属化通孔或导电线)在遇到跌落振动等封装场景或外力因素影响时的脱落现象,该导电体15(金属化通孔或导电线)脱落会使得导电体15(金属化通孔或导电线)与MEMS芯片13及ASIC芯片14之间的失去电连接,从而影响MEMS芯片13与ASIC芯片14之间的信号传输,因此,将导电体15(金属化通孔或导电线)内嵌于封装基板12内部,可增加导电体15(金属化通孔或导电线)处于MEMS传感器内部结构的稳固性,本实施例对导电体15的具体设立位置(封装基板12内部的位置)不做限定,优选的,本实施例将金属化通孔或导电线设置于封装夹层122与封装内基层121之间,通过封装夹层122与封装内基层121合并,使得金属化通孔或导电线得到固定。进一步的,多层基板的封装内基层121与封装壳体11围成收容空间,MEMS芯片13设置在封装内基层121朝向收容空间的一侧表面,MEMS芯片13通过设置于多层基板内部的金属化通孔或导电线与多层基板的内部电路电连接。
在本实用新型的实施中,ASIC芯片14设置于与MEMS芯片同侧的封装内基层121表面,ASIC芯片14与金属化通孔或导电线远离MEMS芯片的一端电连接。本实施例中,封装内基层121与封装壳体11围成收容空间,将ASIC芯片14设置在封装内基层121朝向封装壳体11的一侧表面,并通过与设置在封装基板12内部的金属化通孔或导电线完成电连接,进而通过该金属化通孔或导电线与MEMS芯片13进行电连接,以实现ASIC芯片14与MEMS芯片13之间的电连接。
在本实用新型的实施例中,ASIC芯片14设置于封装夹层122内,ASIC芯片14与金属化通孔或导电线的另一端电连接。本实施例的ASIC芯片14设置于多层基板内部,以防止外部环境如空气杂质对ASIC芯片14的电路造成腐蚀,从而影响ASIC芯片14的电器性能;优选的,本实施例将ASIC芯片14设置于多层基板的封装夹层122内,具体的,可在封装夹层122上设置收容槽,将ASIC芯片14安置于该收容槽内,使得ASIC芯片14得以固定,并通过封装内基层121及封装外基层123与封装夹层122进行合并,使得ASIC芯片14内嵌于该多层基板,且ASIC芯片14与内嵌于封装基板12内部的金属化通孔或导电线的一端电连接,而金属化通孔或导电线的另一端则与MEMS芯片电连接,实现MEMS芯片13与ASIC芯片14之间的信号传输。
在本实用新型的实施例中,ASIC芯片14通过设置于封装基板12内的金属化通孔及导电线与封装基板12的内部电路电连接。本实施例的ASIC芯片14设置于多层基板内部,以防止外部环境如空气杂质对ASIC芯片14的电路造成腐蚀,从而影响ASIC芯片14的电器性能;多层基板内部还包括内部电路,ASIC芯片14通过金属化通孔或导电线与该内部电路进行电连接,进而实现ASIC芯片14与内部电路之间的信号交互。这种封装方式不但可有效保护ASIC芯片14及内部电路的电气性能,防止ASIC芯片14及内部电路被外界环境污染或腐蚀等损坏现象,而且增加导电体15(金属化通孔或导电线)在封装结构内部的稳固性。
在本实用新型的实施例中,封装壳体11包括:封装盖板及自封装盖板的边缘向封装基板12方向垂直延伸的封装壁,封装壁远离封装盖板的一端与封装内基层121相连接,封装壁的最小高度等于芯片支撑壁的高度。在本实用新型中,如前实施例所示,将导电体15内嵌于封装基板12及芯片内部,可有效减少MEMS传感器的内部空间,且降低传感器的封装高度。具体的,根据MEMS传感器内部的芯片限定封装壳体11的高度,如根据MEMS芯片13的芯片支撑壁高度限定封装壳体11的高度,从而降低MEMS传感器的封装高度,使得MEMS传感器的尺寸更小型化。
本实用新型中提供一种MEMS传感器封装结构,包括封装壳体、与封装壳体围成收容空间的封装基板、收容于收容空间内的MEMS芯片及与封装基板固定的ASIC芯片,封装结构还包括设置于封装基板内部的导电体,MEMS芯片封装在封装基板朝向收容空间的一侧,ASIC芯片固定在封装基板上或封装基板的内部,MEMS芯片与导电体的一端电连接,ASIC芯片与导电体的另一端电连接。通过将用于MEMS芯片与ASIC芯片之间电连接的导电体设置于封装基板内部,可以防止MEMS传感器内部的导电体在跌落振动等封装场景时的脱落,保障MEMS传感器内部的芯片与芯片之间信号传输。
以上的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。

Claims (6)

  1. 一种MEMS传感器封装结构,包括封装壳体、与所述封装壳体围成收容空间的封装基板、收容于所述收容空间内的MEMS芯片及与所述封装基板固定的ASIC芯片,其特征在于,所述封装结构还包括设置于所述封装基板内部的导电体,所述MEMS芯片封装在所述封装基板朝向所述收容空间的一侧,所述ASIC芯片固定在所述封装基板上或所述封装基板的内部,所述MEMS芯片与所述导电体的一端电连接,所述ASIC芯片与所述导电体的另一端电连接。
  2. 如权利要求1所述的MEMS传感器封装结构,其特征在于,所述导电体为金属化通孔或导电线。
  3. 如权利要求2所述的MEMS传感器封装结构,其特征在于,所述封装基板为多层基板,所述多层基板至少包括:与所述封装壳体相连接的封装内基层、与所述封装内基层相对间隔设置的封装外基层、设置于所述封装内基板与所述封装外基层之间的封装夹层;
    所述金属化通孔或所述导电线设置于所述封装内基层,或所述封装内基层与所述封装夹层,所述MEMS芯片设置于所述封装内基层朝向所述收容空间的一侧,所述MEMS芯片与所述金属化通孔或所述导电线的一端电连接。
  4. 如权利要求3所述的MEMS传感器封装结构,其特征在于,所述ASIC芯片设置于与所述MEMS芯片同侧的所述封装内基层表面,所述ASIC芯片与所述金属化通孔或所述导电线远离所述MEMS芯片的一端电连接。
  5. 如权利要求3所述的MEMS传感器封装结构,其特征在于,所述ASIC芯片设置于所述封装夹层内,所述ASIC芯片与所述金属化通孔或所述导电线的另一端电连接。
  6. 如权利要求5所述的MEMS传感器封装结构,其特征在于,所述ASIC芯片通过设置于所述封装基板内的所述金属化通孔或所述导电线与所述封装基板的内部电路电连接。
PCT/CN2020/079616 2020-03-05 2020-03-17 一种mems传感器封装结构 WO2021174585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020264556.2 2020-03-05
CN202020264556.2U CN212559450U (zh) 2020-03-05 2020-03-05 一种mems传感器封装结构

Publications (1)

Publication Number Publication Date
WO2021174585A1 true WO2021174585A1 (zh) 2021-09-10

Family

ID=74618167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079616 WO2021174585A1 (zh) 2020-03-05 2020-03-17 一种mems传感器封装结构

Country Status (2)

Country Link
CN (1) CN212559450U (zh)
WO (1) WO2021174585A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011148B3 (de) * 2004-03-08 2005-11-10 Infineon Technologies Ag Mikrophon und Verfahren zum Herstellen eines Mikrophons
US20100195864A1 (en) * 2007-08-02 2010-08-05 Nxp B.V. Electro-acoustic transducer comprising a mems sensor
CN203788457U (zh) * 2014-04-03 2014-08-20 歌尔声学股份有限公司 Mems麦克风
CN104780490A (zh) * 2015-04-20 2015-07-15 歌尔声学股份有限公司 一种mems麦克风的封装结构及其制造方法
CN204697290U (zh) * 2015-06-09 2015-10-07 歌尔声学股份有限公司 一种mems麦克风
CN204761710U (zh) * 2015-07-01 2015-11-11 歌尔声学股份有限公司 一种mems麦克风
CN206212268U (zh) * 2016-10-19 2017-05-31 北京卓锐微技术有限公司 微机电麦克风组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011148B3 (de) * 2004-03-08 2005-11-10 Infineon Technologies Ag Mikrophon und Verfahren zum Herstellen eines Mikrophons
US20100195864A1 (en) * 2007-08-02 2010-08-05 Nxp B.V. Electro-acoustic transducer comprising a mems sensor
CN203788457U (zh) * 2014-04-03 2014-08-20 歌尔声学股份有限公司 Mems麦克风
CN104780490A (zh) * 2015-04-20 2015-07-15 歌尔声学股份有限公司 一种mems麦克风的封装结构及其制造方法
CN204697290U (zh) * 2015-06-09 2015-10-07 歌尔声学股份有限公司 一种mems麦克风
CN204761710U (zh) * 2015-07-01 2015-11-11 歌尔声学股份有限公司 一种mems麦克风
CN206212268U (zh) * 2016-10-19 2017-05-31 北京卓锐微技术有限公司 微机电麦克风组件

Also Published As

Publication number Publication date
CN212559450U (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
US7923791B2 (en) Package and packaging assembly of microelectromechanical system microphone
US8981537B2 (en) Reversible top/bottom MEMS package
US8446002B2 (en) Multilayer wiring substrate having a castellation structure
KR100665217B1 (ko) 반도체 멀티칩 패키지
US20070158826A1 (en) Semiconductor device
CN110677793B (zh) 麦克风封装结构
JP2007150507A (ja) マイクロホンパッケージ
CN210112277U (zh) 硅麦克风封装结构
CN116314065A (zh) 包括散热器的半导体封装结构及其制造方法
CN103037619A (zh) 印刷电路板组件
CN219019032U (zh) 防水防尘的单指向硅麦克风
WO2021174585A1 (zh) 一种mems传感器封装结构
TW201808019A (zh) 微機電麥克風封裝結構
CN111293094A (zh) 微型感测器
US11575995B2 (en) Semiconductor package device and method for manufacturing the same
US7652382B2 (en) Micro chip-scale-package system
WO2021237800A1 (zh) Mems 麦克风
JP2865072B2 (ja) 半導体ベアチップ実装基板
EP2076063B1 (en) Ultra thin package for electric acoustic sensor chip of micro electro mechanical system
CN112897451A (zh) 传感器封装结构及其制作方法和电子设备
KR20080068299A (ko) 반도체 모듈 및 그 제조방법
TWI760583B (zh) 微型感測器
US20110062533A1 (en) Device package substrate and method of manufacturing the same
US9656853B2 (en) MEMS chip package
JP2013539253A (ja) モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923547

Country of ref document: EP

Kind code of ref document: A1