WO2021172296A1 - ポリマーの製造方法 - Google Patents
ポリマーの製造方法 Download PDFInfo
- Publication number
- WO2021172296A1 WO2021172296A1 PCT/JP2021/006711 JP2021006711W WO2021172296A1 WO 2021172296 A1 WO2021172296 A1 WO 2021172296A1 JP 2021006711 W JP2021006711 W JP 2021006711W WO 2021172296 A1 WO2021172296 A1 WO 2021172296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- ether
- mixture
- methoxymethyl
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present invention relates to a method for producing a polymer. More specifically, the present invention relates to a method for producing a polymer for a resist underlayer film forming composition.
- microfabrication is performed by a lithography process.
- lithography process when the resist layer on the substrate is exposed to an ultraviolet laser such as KrF excimer laser or ArF excimer laser, it is desired due to the influence of the standing wave generated due to the reflection of the ultraviolet laser on the surface of the substrate. It is known that a resist pattern having a shape is not formed. In order to solve this problem, it is adopted to provide a resist underlayer film (antireflection film) between the substrate and the resist layer.
- the composition for forming such a resist underlayer film has good coverage on a so-called stepped substrate having a height difference or sparseness in the resist pattern formed on the substrate to be processed, and the film thickness difference after embedding. Is required to have a function of being able to keep the size small and to form a flat film. Further, as the resist pattern becomes finer, a polymer having a lower molecular weight (about 5,000) is required as the polymer contained in the resist underlayer film forming composition.
- X 1 represents a divalent organic group having 6 to 20 carbon atoms and having at least one aromatic ring which may be substituted with a halogeno group, a nitro group, an amino group or a hydroxy group
- X 2 Represents an organic group having 6 to 20 carbon atoms or a methoxy group having at least one aromatic ring which may be substituted with a halogeno group, a nitro group, an amino group or a hydroxy group.
- the polymer contained in the resist underlayer film forming composition can appropriately convert a functional group such as an alkoxyl group in the molecule in order to satisfy the required properties.
- a functional group such as an alkoxyl group in the molecule
- the reaction rate of the polymer is high and it is difficult to obtain a polymer having a desired molecular weight.
- the molecular weight of a polymer has a great influence on the physical properties of the obtained product.
- control of the molecular weight that is, control of the reaction rate in the polymerization reaction can be said to be a common problem in the production of polymers.
- control of the reaction rate in the polymerization reaction can be said to be a common problem in the production of polymers.
- the present invention solves the above problems. That is, the present invention includes the following. [1] A polymer in which a plurality of the same or different structural units having a methoxymethyl group and a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom or a mixture thereof) are linked (R).
- X) is the manufacturing method (A) A compound (L) having a methoxymethyl group and optionally having a phenolic hydroxyl group is reacted with a methoxymethyl group to form a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, A method comprising a step of obtaining a mixture by dissolving it in a compound (M) giving (a hydrogen atom or a mixture thereof), and (B) a step of adding an acid catalyst to the mixture to carry out a polymerization reaction.
- [2] A plurality of identical or different structural units in which the polymer (X) has a methoxymethyl group and a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom or a mixture thereof). , And a polymer containing a linking group that links the plurality of structural units.
- the compound (L) having a methoxymethyl group and may have a phenolic hydroxyl group and the compound (N) containing a functional group serving as a linking group are reacted with the methoxymethyl group.
- R is a phenyl group, may be substituted with a naphthyl group or an anthracenyl group, an oxygen atom or a carbonyl group may be interrupted, linear saturated or unsaturated or branched C 2 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic hydrocarbon group, aromatic hydrocarbon group, a hydrogen atom or mixtures thereof, the method according to any one of [1] to [4].
- [6] The method according to any one of [1] to [5], wherein the compound (M) is a glycol ether solvent and / or an alcohol solvent.
- [7] The method according to [6], wherein the compound (M) is a linear alkyl alcohol having 4 to 10 carbon atoms.
- the compound (M) is Ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, Ethylene glycol monopropyl ether, Ethylene glycol mono-n-butyl ether, Ethylene glycol mono-iso-butyl ether, Ethylene glycol mono-tert-butyl ether, Ethylene glycol phenyl ether, Propylene glycol monomethyl ether, 3-Methoxy-3methyl-1-butanol, Diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, Diethylene glycol mono-n-butyl ether, Diethylene glycol mono-iso-butyl ether, Dipropylene glycol monomethyl ether, The method according to [6], which is at least one glycol ether-based solvent selected from the group consisting of triethylene glycol mono-n-butyl ether and tetraethylene glycol mono-n-butyl ether.
- the structural unit of the polymer (X) includes an aromatic ring, a heterocycle, or a condensed ring which may have a phenolic hydroxyl group and may have a substituted or unsubstituted amino group [1].
- a method for producing a polymer for a resist underlayer film forming composition which can easily control the molecular weight and can convert a substituent in the molecule at the same time as the polymerization reaction.
- a compound (L) having a methoxymethyl group and optionally having a phenolic hydroxyl group is reacted with a methoxymethyl group to form a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom or a hydrogen atom or a hydrogen atom.
- R is a monovalent organic group, a hydrogen atom or a mixture thereof
- Step (A) In the step (A), the compound (L) having a methoxymethyl group and may have a phenolic hydroxyl group is reacted with the methoxymethyl group to form a ROCH 2 -group other than the methoxymethyl group (R is monovalent). It is a step of dissolving in a compound (M) giving an organic group, a hydrogen atom or a mixture thereof) to obtain a mixture.
- Examples of the compound (L) having a methoxymethyl group and optionally having a phenolic hydroxyl group include 3,3', 5,5'-tetramethoxymethyl-4,4'-dihydroxybiphenyl, 3,3. ', 5,5'-Tetramethoxymethyl-bisphenol A and the like can be mentioned.
- the compound (L) is not limited to one kind of compound, and two or more kinds of compounds may be used in combination.
- the compound (M) that reacts with a methoxymethyl group to give a ROCH 2 -group other than the methoxymethyl group is a non-phenolic hydroxyl group in the molecule.
- An organic compound having is preferable.
- Functional groups that can be chemically transformed into non-phenolic hydroxyl groups without having a non-phenolic hydroxyl group in the molecule such as alkoxy group (-OR), aldehyde group (-CHO), carboxyl group (-COOH) ), An ester group (-COOR), and an organic compound having a ketone group (-COR).
- the number of functional groups that can be chemically changed to a non-phenolic hydroxyl group or a non-phenolic hydroxyl group may be one or two or more in the molecule.
- the compound (M) is not limited to one kind of compound, and two or more kinds of compounds may be used in combination. Therefore, a plurality of structural units having a methoxymethyl group and a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom or a mixture thereof) may be the same or different. May be.
- R which is a monovalent organic group, is preferably substituted with a phenyl group, a naphthyl group, an anthrasenyl group, interrupted by an oxygen atom or a carbonyl group, a saturated or unsaturated linear or branched C 2 -C 20 (preferably C 2 -C 10) aliphatic hydrocarbon group, C 3 -C 20 alicyclic hydrocarbon group, aromatic hydrocarbon group (preferably ⁇ - carbon atoms is an aliphatic An aromatic hydrocarbon group having at least one hydroxyl group), or a mixture thereof.
- “Mixing” means that a plurality of ROCH 2 -groups existing in a single structural unit may be different, and the ROCH 2 -groups in each of two or more structural units are different. It also means that it is good.
- a typical saturated aliphatic hydrocarbon group is an alkyl group having 2 to 20 carbon atoms having a straight chain or a branch, and for example, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and the like.
- a cyclic alkyl group can also be used.
- a typical unsaturated aliphatic hydrocarbon group is an alkenyl group having 2 to 20 carbon atoms, for example, an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, and a 1-butenyl group.
- R is a phenyl group, may be substituted with a naphthyl group or an anthracenyl group, an oxygen atom or a carbonyl group may be interrupted, linear saturated or unsaturated or branched C 2 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic hydrocarbon group, a hydrogen atom or a mixture thereof.
- the saturated aliphatic hydrocarbon group, unsaturated aliphatic hydrocarbon group, and cyclic alkyl group may be interrupted once or twice or more by an oxygen atom and / or a carbonyl group.
- R is -CH 2 CH 2 CH 2 CH 3 groups and -CH (CH 3 ) CH 2 OCH 3 groups.
- the compound (M) is a glycol ether solvent.
- the glycol ether solvent is an organic compound having both an ether group and a hydroxyl group in one molecule.
- the compound (M) is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-iso-butyl ether, ethylene glycol mono-tert-butyl ether.
- compound (M) is an alcohol solvent. More preferably, the compound (M) is a linear alkyl alcohol having 4 to 10 carbon atoms. More preferably, compound (M) is represented by an aliphatic alcohol (eg, 1-butanol), Ar-CH 2 OH (Ar is, for example, benzene, naphthalene, anthracene, pyrene, fluorene, or m-terphenyl). It is a compound to be used. Even more preferably, compound (M) is 1-butanol.
- Examples of the organic compound having an aldehyde group include aliphatic aldehydes such as formaldehyde, paraformaldehyde, butylaldehyde, and crotonaldehyde, furfural, pyridinecarboxyaldehyde, benzaldehyde, naphthylaldehyde, anthrylaldehyde, phenanthrylaldehyde, and salicylaldehyde.
- aliphatic aldehydes such as formaldehyde, paraformaldehyde, butylaldehyde, and crotonaldehyde, furfural, pyridinecarboxyaldehyde, benzaldehyde, naphthylaldehyde, anthrylaldehyde, phenanthrylaldehyde, and salicylaldehyde.
- Examples of the organic compound having a ketone group include diphenylketone, phenylnaphthylketone, dinaphthylketone, phenyltrilketone, ditrilketone, diarylketone such as 9-fluorenone, anthraquinone, and acenaphthalquinone, and 11H-benzo [b] fluorene-11.
- Spiroketones such as -one, 9H-tribenzo [a, f, l] triindene-9,14,15-trione, indeno [1,2-b] fluorene-6,12-dione can be mentioned.
- organic compound having a carboxyl group examples include aromatic carboxylic acids such as trimesic acid.
- the ratio of the compound (M) to the compound (L) to be used is not particularly limited as long as the compound (L) can be uniformly dissolved in the compound (M), but the mass ratio is usually 1: 1 to 30: 1, preferably 2. It is in the range of 1 to 20: 1, more preferably 3: 1 to 10: 1.
- a compound (N) containing a functional group serving as a linking group may be added.
- the linking group preferably contains an alkylene group, an ether group, or a carbonyl group.
- Examples of the compound (N) include aldehydes, ketones, ROCH 2- Ar-CH 2 OR (R is a monovalent organic group, a hydrogen atom or a mixture thereof) and the like.
- Dioxane is not a compound that gives a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom, or a mixture thereof), and is also a substance harmful to the human body, so it is not used. Is preferable.
- the method, apparatus, etc. for dissolving the compound (L) in the compound (M) are not particularly limited, and known means are sufficient. Heating at a temperature below the boiling point of compound (M) promotes dissolution. It is preferable to carry out this step in an inert atmosphere, for example, a nitrogen atmosphere to prevent the polymerization reaction from being hindered by moisture in the air.
- Step (B) is a step of adding an acid catalyst to the mixture from the step (A) to carry out a polymerization reaction.
- the acid catalyst is not particularly limited as long as it is a catalyst that promotes the reaction between the methoxymethyl group of the compound (L) and the compound (M), and for example, trifluoroacetic acid, nitrate, hydrochloric acid, sulfuric acid, methanesulfonic acid, etc. Examples thereof include para-toluenesulfonic acid, phosphoric acid, trifluoromethanesulfonic acid, 1,1,1-trifluoro-N-((trifluoromethyl) sulfonyl) methanesulfonamide and the like.
- the amount of the acid catalyst used is not particularly limited, but is usually about 1-30 parts by mass, preferably about 2-20 parts by mass, and more preferably about 3-10 parts by mass with respect to 100 parts by mass of compound (L).
- the method and apparatus for carrying out the polymerization reaction are not particularly limited, and known means are sufficient. Heating at a temperature below the boiling point of compound (M) accelerates the polymerization reaction. It is preferable to carry out this step in an inert atmosphere, for example, a nitrogen atmosphere to prevent the polymerization reaction from being hindered by moisture in the air.
- Step (C) is a step of stopping the polymerization reaction on condition that the weight average molecular weight of the sample collected from the mixture during the polymerization reaction in the step (B) exceeds a given value.
- the method of collecting a sample from the mixture during the polymerization reaction is not particularly limited, and can be carried out by known means.
- the method for determining the weight average molecular weight of the sample is not particularly limited, and a known method can be used. For example, methods and devices by GPC.
- the given value is a value provided to determine the time point at which the polymerization reaction must be stopped in order to achieve the target weight average molecular weight of the final product of the polymer (X). This value varies depending on the target weight average molecular weight of the final product of the polymer (X), and is, for example, 1,000, 2,000, or 3,000.
- the means for stopping the polymerization reaction is not particularly limited, and can be carried out by known means. For example, addition of a polymerization inhibitor, heating or cooling treatment, removal of a raw material or a solvent, or suspension of supply.
- the method according to the present invention does not use dioxane throughout the entire process.
- Polymer (X) The polymer (X) thus obtained is the same or different plural having a methoxymethyl group and a ROCH 2 -group other than the methoxymethyl group (R is a monovalent organic group, a hydrogen atom or a mixture thereof). It is a polymer in which the structural units of are linked.
- the polymer (X) may optionally have a linking group that links the plurality of structural units.
- the structural unit of the polymer (X) includes an aromatic ring, a heterocycle, or a condensed ring which may have a phenolic hydroxyl group and may have a substituted or unsubstituted amino group.
- the linking group for linking the plurality of structural units preferably contains an alkylene group, an ether group, or a carbonyl group.
- the weight average molecular weight of the polymer (X) according to the present invention is not particularly limited. In terms of standard polystyrene conversion value, for example, it is 1,000 or more, for example, 2,000 or more, for example, 500,000 or less, and for example, 100,000 or less.
- the resist underlayer film forming composition can be prepared by dissolving the polymer (X) according to the present invention in an appropriate solvent, and can be used in a uniform solution state. Further, the resist underlayer film forming composition containing the polymer (X) according to the present invention further contains at least one of a cross-linking agent, an acid and / or an acid generator, a thermoacid generator and a surfactant as optional components. It may be contained. Further, a light absorbing agent, a rheology adjusting agent, an adhesion auxiliary agent and the like can be added to the resist underlayer film forming composition containing the polymer (X) according to the present invention.
- Suitable solvents, cross-linking agents, acids and / or acid generators, thermoacid generators, surfactants, light absorbers, rheology regulators, and adhesion aids are as described in Japanese Patent Application No. 2020-333333. ..
- membrane material (Y) The polymer (X) according to the present invention can also be used as a cross-linking agent for the membrane material (Y).
- the film material (Y) is as described in Japanese Patent Application No. 2020-333333.
- a resist underlayer film can be formed using the resist underlayer film forming composition according to the present invention. Details are as described in Japanese Patent Application No. 2020-333333.
- a semiconductor device can be manufactured using the resist underlayer film forming composition according to the present invention. Details are as described in Japanese Patent Application No. 2020-333333.
- Example 1 260.00 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) and 1,430 g of propylene glycol monomethyl ether (hereinafter referred to as PGME) were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 17.26 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 130.00 g of PGME was added dropwise, and after about 45 hours, it was precipitated with methanol and water. The polymer (1-I) was obtained by drying.
- PGME propylene glycol monomethyl ether
- any ROCH 2 -group containing a methoxymethyl group and a hydroxy group or ROCH 2 -group are bonded and crosslinked, but it is extremely complicated to show the state in the chemical formula. Therefore, only the structural unit is shown. The same applies hereinafter.
- the weight average molecular weight Mw measured by GPC in terms of polystyrene was about 4,500.
- the introduction of PGME was confirmed by 1 1 H-NMR.
- the obtained resin was dissolved in PGMEA, and ion exchange was carried out for 4 hours using a cation exchange resin and an anion exchange resin to obtain a target polymer solution.
- Example 1 (Tracking the reaction over time) In Example 1, after dropping methanesulfonic acid dissolved in PGME, 0.1 g of the reaction solution was sampled over time while stirring at about 90 ° C., and this was diluted with THF to dilute 3 g of the diluted solution. It was created. GPC was measured for each diluted solution, and the weight average molecular weight Mw was confirmed. The results are shown in Table 1.
- Example 2 68.99 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) and 379.44 g of PGME were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 4.57 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 34.50 g of PGME was added dropwise, and after about 47.5 hours, it was precipitated with methanol and water. The polymer (1-2) was obtained by drying. The weight average molecular weight Mw measured by GPC in terms of polystyrene was about 5,400. In addition, the introduction of PGME was confirmed by 1 1 H-NMR. The obtained resin was dissolved in PGMEA, and ion exchange was carried out for 4 hours using a cation exchange resin and an anion exchange resin to obtain a target polymer solution.
- TMOM-BP manufactured by Honshu Chemical Industry Co., Ltd.
- Example 3 30.00 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) and 165.07 g of 1-butanol (manufactured by Tokyo Chemical Industry Co., Ltd.) were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 1.99 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 15.05 g of 1-butanol was added dropwise, and after about 81.5 hours, it was mixed with methanol and water. The polymer (1-3) was obtained by precipitating and drying.
- the weight average molecular weight Mw measured by GPC in terms of polystyrene was about 3,487.
- the introduction of 1-butyl group was confirmed by 1 1 H-NMR.
- the obtained resin was dissolved in PGME, and ion exchange was carried out for 4 hours using a cation exchange resin and an anion exchange resin to obtain a target polymer solution.
- Table 2 shows the results of tracking the change over time in the weight average molecular weight Mw of the polymer (1-3) obtained by the method of Example 3 in the same procedure as in Example 1.
- Example 4 34.50 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.), 33.16 g of TM-BIP-A, and 379.44 g of PGME were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 2.29 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 34.50 g of PGME was added dropwise, and after about 125.5 hours, it was precipitated with methanol and water. And dried to obtain polymer (1-4). The weight average molecular weight Mw measured by GPC in terms of polystyrene was about 4,296.
- Table 3 shows the results of tracking the change over time in the weight average molecular weight Mw of the polymer (1-4) obtained by the method of Example 4 in the same procedure as in Example 1.
- Example 5 34.50 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.), 0.31 g of PL-LI (manufactured by Midori Chemical Co., Ltd.), and PGME 189.73 g were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 2.29 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 17.25 g of PGME was added dropwise, and after about 48 hours, it was precipitated with methanol and water. The polymer (1-5) was obtained by drying.
- the weight average molecular weight Mw measured by GPC in terms of polystyrene was about 3,978.
- the introduction of PGME was confirmed by 1 1 H-NMR.
- the obtained resin was dissolved in PGME, and ion exchange was carried out for 4 hours using a cation exchange resin and an anion exchange resin to obtain a target polymer solution.
- Table 4 shows the results of tracking the change over time in the weight average molecular weight Mw of the polymer (1-5) obtained by the method of Example 5 in the same procedure as in Example 1.
- Example 6 68.99 g of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.), 40.00 g of trimesic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), and 379.42 g of PGME were placed in a flask. Then, it was heated to about 90 ° C. under nitrogen, 4.57 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 34.49 g of PGME was added dropwise, and after about 26.5 hours, methanol, water and ammonia water were added. The polymer (1-11) was obtained by precipitating with and drying.
- the weight average molecular weight Mw measured by GPC in terms of polystyrene was about 4,200.
- the introduction of PGME was confirmed by 1 1 H-NMR.
- the obtained resin was dissolved in PGME, and ion exchange was carried out for 4 hours using a cation exchange resin and an anion exchange resin to obtain a target polymer solution.
- Comparative Example 1 since the polymerization reaction proceeded rapidly, it was difficult to control the molecular weight of the polymer. Not only that, because it uses harmful dioxane, it is not preferable as a working environment. In Comparative Example 2, the polymerization reaction proceeded more rapidly, and it was impossible to control the molecular weight of the polymer. On the contrary, in Comparative Examples 3 and 4, the polymerization reaction hardly proceeds and the practicality is poor. On the other hand, in the examples, the progress of the polymerization reaction was appropriately controlled, and as a result, the molecular weight of the polymer could be easily controlled. Moreover, in the example, the conversion of the substituent in the molecule could be performed at the same time as the polymerization reaction.
- a method for producing a polymer for a resist underlayer film forming composition which can easily control the molecular weight and can convert a substituent in the molecule at the same time as the polymerization reaction.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
で表される構造単位を有するポリマー及び溶剤を含むレジスト下層膜形成組成物が開示されている。
一般的にポリマーの分子量は、得られる製品の物性に大きく影響するため、分子量の制御、すなわち重合反応における反応速度の制御は、ポリマーの製造における共通の課題といえる。また、分子内の置換基、官能基の変換と重合反応とを同時に簡便に行うことができれば、工業的に非常に有益であることは明らかである。
[1] メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位が連結されたポリマー(X)の製造方法であって、
(A) メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)を、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程、及び
(B) 前記混合物に酸触媒を添加して重合反応を行う工程
を含む方法。
[2] ポリマー(X)が、メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位、及び前記複数の構造単位を連結する連結基を含むポリマーであり、
工程(A)が、メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)と、前記連結基となる官能基を含む化合物(N)とを、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程である、
[1]に記載の方法。
[3] 前記連結基が、アルキレン基、エーテル基、又はカルボニル基を含む、[2]に記載の方法。
[4](C) 工程(B)における重合反応中の混合物から採取した試料の重量平均分子量が1,000を超えていることを条件に重合反応を停止する工程を更に含む、[1]乃至[3]のいずれか一項に記載の方法。
[5] Rが、フェニル基、ナフチル基若しくはアントラセニル基で置換されていてもよく、酸素原子若しくはカルボニル基で中断されていてもよい、飽和若しくは不飽和の直鎖若しくは分岐のC2-C20脂肪族炭化水素基、C3-C20脂環式炭化水素基、芳香族炭化水素基、水素原子又はこれらの混合である、[1]乃至[4]のいずれか一項に記載の方法。
[6] 前記化合物(M)がグリコールエーテル系溶媒および/またはアルコール系溶媒である、[1]乃至[5]のいずれか一項に記載の方法。
[7] 前記化合物(M)が炭素数4~10の直鎖アルキルアルコールである、[6]に記載の方法。
[8] 前記化合物(M)が、
エチレングリコールモノメチルエーテル、
エチレングリコールモノエチルエーテル、
エチレングリコールモノプロピルエーテル、
エチレングリコールモノ-n-ブチルエーテル、
エチレングリコールモノ-iso-ブチルエーテル、
エチレングリコールモノ-tert-ブチルエーテル、
エチレングリコールフェニルエーテル、
プロピレングリコールモノメチルエーテル、
3-メトキシ-3メチル-1-ブタノール、
ジエチレングリコールモノメチルエーテル、
ジエチレングリコールモノエチルエーテル、
ジエチレングリコールモノ-n-ブチルエーテル、
ジエチレングリコールモノ-iso-ブチルエーテル、
ジプロピレングリコールモノメチルエーテル、
トリエチレングリコールモノ-n-ブチルエーテル、及び
テトラエチレングリコールモノ-n-ブチルエーテル
からなる群より選択される少なくとも1つのグリコールエーテル系溶媒である、[6]に記載の方法。
[9] ポリマー(X)の構造単位が、フェノール性水酸基を有してもよく、置換若しくは無置換アミノ基を有してもよい芳香族環、複素環、又は縮合環を含む、[1]乃至[8]のいずれか一項に記載の方法。
[10] ジオキサンを使用しない、[1]乃至[9]のいずれか一項に記載の方法。
メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)を、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程(A)、
前記混合物に酸触媒を添加して重合反応を行う工程(B)、及び、任意選択的に、
工程(B)における重合反応中の混合物から採取した試料の重量平均分子量が所与の値を超えていることを条件に重合反応を停止する工程(C)
を含む、メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位が連結されたポリマー(X)の製造方法に関する。
工程(A)は、メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)を、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程である。
更に好ましくは、化合物(M)は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートである。
より好ましくは、化合物(M)は炭素数4~10の直鎖アルキルアルコールである。
更に好ましくは、化合物(M)は、脂肪族アルコール(例、1-ブタノール)、Ar-CH2OH(Arは、例えば、ベンゼン、ナフタレン、アントラセン、ピレン、フルオレン、又はm-ターフェニル)で表される化合物である。
更により好ましくは、化合物(M)は1-ブタノールである。
工程(B)は、工程(A)からの混合物に酸触媒を添加して重合反応を行う工程である。
任意選択的な工程(C)は、工程(B)における重合反応中の混合物から採取した試料の重量平均分子量が所与の値を超えていることを条件に重合反応を停止する工程である。
このようにして得られるポリマー(X)は、メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位が連結されたポリマーである。ポリマー(X)は、任意選択的に前記複数の構造単位を連結する連結基を有していてもよい。
本発明に係るポリマー(X)を適当な溶剤に溶解させることによりレジスト下層膜形成組成物を調製することができ、均一な溶液状態で用いることができる。
また、本発明に係るポリマー(X)を含むレジスト下層膜形成組成物は、更に任意成分として、架橋剤、酸及び/又は酸発生剤、熱酸発生剤及び界面活性剤のうち少なくとも1つを含有してもよい。
更に、本発明に係るポリマー(X)を含むレジスト下層膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。
適当な溶剤、架橋剤、酸及び/又は酸発生剤、熱酸発生剤、界面活性剤、吸光剤、レオロジー調整剤、及び接着補助剤については特願2020-33333に記載されているとおりである。
本発明に係るポリマー(X)は、膜材料(Y)の架橋剤としても使用することができる。膜材料(Y)については特願2020-33333に記載されているとおりである。
本発明に係るレジスト下層膜形成組成物を用いてレジスト下層膜を形成することができる。詳細は特願2020-33333に記載されているとおりである。
本発明に係るレジスト下層膜形成組成物を用いて半導体装置を製造することができる。詳細は特願2020-33333に記載されているとおりである。
上記のレジスト下層膜を形成する工程をナノインプリント法によって行うことも可能である。その方法は特願2020-33333に記載されているとおりである。
装置:東ソー株式会社製HLC-8320GPC
GPCカラム:TSKgel Super-MultiporeHZ-N (2本)
カラム温度:40℃
流量:0.35ml/分
溶離液:THF
標準試料:ポリスチレン
フラスコにTMOM-BP(本州化学(株)製)260.00g、プロピレングリコールモノメチルエーテル(以後PGMEと記載)1,430gを入れた。その後、窒素下で約90℃まで加熱、130.00gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)17.26gを滴下、約45時間後にメタノールと水で沈殿させて、乾燥させることでポリマー(1-I)を得た。なお、実際の構造単位は、メトキシメチル基を含む任意のROCH2-基とヒドロキシ基、又はROCH2-基同士が結合して架橋しているのであるが、その状態を化学式に示すと極めて煩雑になるため、構造単位のみを示すにとどめた。以下、同様である。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約4,500であった。また、PGMEの導入を1H-NMRにより確認した。得られた樹脂をPGMEAに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
実施例1において、PGMEに溶解させたメタンスルホン酸を滴下した後、約90℃で撹拌しながら、経時的に0.1gの反応液をサンプリングし、これをTHFで希釈して3gの希釈液を作成した。各希釈液についてGPCを測定し、重量平均分子量Mwを確認した。結果を表1に示す。
フラスコにTMOM-BP(本州化学(株)製)68.99g、PGME379.44gを入れた。その後、窒素下で約90℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下、約47.5時間後にメタノールと水で沈殿させて、乾燥させることでポリマー(1-2)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約5,400であった。また、PGMEの導入を1H-NMRにより確認した。得られた樹脂をPGMEAに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
実施例2の方法で得られるポリマー(1-2)の重量平均分子量Mwの経時的変化を、実施例1と同様の手順で追跡したところ、上記表1と同様の結果を得た。
フラスコにTMOM-BP(本州化学(株)製)30.00g、1-ブタノール(東京化成工業(株)製)165.07gを入れた。その後、窒素下で約90℃まで加熱、15.05gの1-ブタノールに溶解させたメタンスルホン酸(東京化成工業(株)製)1.99gを滴下、約81.5時間後にメタノールと水で沈殿させて、乾燥させることでポリマー(1-3)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約3,487であった。また、1-ブチル基の導入を1H-NMRにより確認した。得られた樹脂をPGMEに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
実施例3の方法で得られるポリマー(1-3)の重量平均分子量Mwの経時的変化を、実施例1と同様の手順で追跡した結果を表2に示す。
フラスコにTMOM-BP(本州化学(株)製)34.50g、TM-BIP-A33.16g、PGME379.44gを入れた。その後、窒素下で約90℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)2.29gを滴下、約125.5時間後にメタノールと水で沈殿させて、乾燥させることでポリマー(1-4)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約4,296であった。また、PGMEの導入を1H-NMRにより確認した。得られた樹脂をPGMEに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
実施例4の方法で得られるポリマー(1-4)の重量平均分子量Mwの経時的変化を、実施例1と同様の手順で追跡した結果を表3に示す。
フラスコにTMOM-BP(本州化学(株)製)34.50g、PL-LI(みどり化学(株)製)0.31g、PGME189.73gを入れた。その後、窒素下で約90℃まで加熱、17.25gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)2.29gを滴下、約48時間後にメタノールと水で沈殿させて、乾燥させることでポリマー(1-5)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約3,978であった。また、PGMEの導入を1H-NMRにより確認した。得られた樹脂をPGMEに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
実施例5の方法で得られるポリマー(1-5)の重量平均分子量Mwの経時的変化を、実施例1と同様の手順で追跡した結果を表4に示す。
フラスコにTMOM-BP(本州化学(株)製)68.99g、トリメシン酸(東京化成工業(株)製)40.00g、PGME379.42gを入れた。その後、窒素下で約90℃まで加熱、34.49gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下、約26.5時間後にメタノールと水とアンモニア水で沈殿させて、乾燥させることでポリマー(1-11)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約4,200であった。また、PGMEの導入を1H-NMRにより確認した。得られた樹脂をPGMEに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的のポリマー溶液を得た。
フラスコにTMOM-BP(本州化学(株)製)69.00g、1,4-ジオキサン379.50gを入れた。窒素下で約90℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下した後、約90℃で撹拌しながら、経時的に0.1gの反応液をサンプリングし、THFで3gの希釈液を調製した。各希釈液についてGPCを測定し、重量平均分子量Mwを確認した。結果を表5に示す。
フラスコにTMOM-BP(本州化学(株)製)69.00g、PGMEA379.50gを入れた。窒素下で約90℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下した後、約90℃で撹拌しながら、経時的に0.1gの反応液をサンプリングし、THFで3gの希釈液を調製した。各希釈液についてGPCを測定し、重量平均分子量Mwを確認した。結果を表5に示す。
フラスコにTMOM-BP(本州化学(株)製)69.00g、PGMEA379.50gを入れた。窒素下で約75℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下した後、約75℃で撹拌しながら、経時的に0.1gの反応液をサンプリングし、THFで3gの希釈液を調製した。各希釈液についてGPCを測定し、重量平均分子量Mwを確認した。結果を表5に示す。
フラスコにTMOM-BP(本州化学(株)製)69.00g、PGMEA379.50gを入れた。窒素下で約65℃まで加熱、34.50gのPGMEに溶解させたメタンスルホン酸(東京化成工業(株)製)4.57gを滴下した後、約65℃で撹拌しながら、経時的に0.1gの反応液をサンプリングし、THFで3gの希釈液を調製した。各希釈液についてGPCを測定し、重量平均分子量Mwを確認した。結果を表5に示す。
これらに対して実施例では重合反応の進行が適切に制御され、その結果、ポリマーの分子量を容易に制御することができた。また、実施例では分子内の置換基の変換を重合反応と同時に行うことができた。
Claims (10)
- メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位が連結されたポリマー(X)の製造方法であって、
(A) メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)を、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程、及び
(B) 前記混合物に酸触媒を添加して重合反応を行う工程
を含む方法。 - ポリマー(X)が、メトキシメチル基とメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)とを有する同一又は異なる複数の構造単位、及び前記複数の構造単位を連結する連結基を含むポリマーであり、
工程(A)が、メトキシメチル基を有し、フェノール性水酸基を有してもよい化合物(L)と、前記連結基となる官能基を含む化合物(N)とを、メトキシメチル基と反応してメトキシメチル基以外のROCH2-基(Rは一価の有機基、水素原子又はこれらの混合である)を与える化合物(M)に溶解して、混合物を得る工程である、
請求項1に記載の方法。 - 前記連結基が、アルキレン基、エーテル基、又はカルボニル基を含む、請求項2に記載の方法。
- (C) 工程(B)における重合反応中の混合物から採取した試料の重量平均分子量が1,000を超えていることを条件に重合反応を停止する工程を更に含む、請求項1乃至3のいずれか一項に記載の方法。
- Rが、フェニル基、ナフチル基若しくはアントラセニル基で置換されていてもよく、酸素原子若しくはカルボニル基で中断されていてもよい、飽和若しくは不飽和の直鎖若しくは分岐のC2-C20脂肪族炭化水素基、C3-C20脂環式炭化水素基、芳香族炭化水素基、水素原子又はこれらの混合である、請求項1乃至4のいずれか一項に記載の方法。
- 前記化合物(M)がグリコールエーテル系溶媒および/またはアルコール系溶媒である、請求項1乃至5のいずれか一項に記載の方法。
- 前記化合物(M)が炭素数4~10の直鎖アルキルアルコールである、請求項6に記載の方法。
- 前記化合物(M)が、
エチレングリコールモノメチルエーテル、
エチレングリコールモノエチルエーテル、
エチレングリコールモノプロピルエーテル、
エチレングリコールモノ-n-ブチルエーテル、
エチレングリコールモノ-iso-ブチルエーテル、
エチレングリコールモノ-tert-ブチルエーテル、
エチレングリコールフェニルエーテル、
プロピレングリコールモノメチルエーテル、
3-メトキシ-3メチル-1-ブタノール、
ジエチレングリコールモノメチルエーテル、
ジエチレングリコールモノエチルエーテル、
ジエチレングリコールモノ-n-ブチルエーテル、
ジエチレングリコールモノ-iso-ブチルエーテル、
ジプロピレングリコールモノメチルエーテル、
トリエチレングリコールモノ-n-ブチルエーテル、及び
テトラエチレングリコールモノ-n-ブチルエーテル
からなる群より選択される少なくとも1つのグリコールエーテル系溶媒である、請求項6に記載の方法。 - ポリマー(X)の構造単位が、フェノール性水酸基を有してもよく、置換若しくは無置換アミノ基を有してもよい芳香族環、複素環、又は縮合環を含む、請求項1乃至8のいずれか一項に記載の方法。
- ジオキサンを使用しない、請求項1乃至9のいずれか一項に記載の方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022503623A JPWO2021172296A1 (ja) | 2020-02-28 | 2021-02-22 | |
KR1020227033254A KR20220149703A (ko) | 2020-02-28 | 2021-02-22 | 폴리머의 제조방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020033333 | 2020-02-28 | ||
JP2020-033333 | 2020-02-28 | ||
JP2020059474 | 2020-03-30 | ||
JP2020-059474 | 2020-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172296A1 true WO2021172296A1 (ja) | 2021-09-02 |
Family
ID=77490493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006711 WO2021172296A1 (ja) | 2020-02-28 | 2021-02-22 | ポリマーの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021172296A1 (ja) |
KR (1) | KR20220149703A (ja) |
WO (1) | WO2021172296A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204232A1 (ja) * | 2023-03-27 | 2024-10-03 | 日産化学株式会社 | レジスト下層膜形成組成物 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075265A1 (ja) * | 2007-12-13 | 2009-06-18 | Nissan Chemical Industries, Ltd. | レジスト下層膜形成組成物及びレジストパターンの形成方法 |
JP2015134926A (ja) * | 2009-05-20 | 2015-07-27 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 上塗りフォトレジストと共に使用するためのコーティング組成物 |
JP2019124943A (ja) * | 2015-10-31 | 2019-07-25 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
JP2021015205A (ja) * | 2019-07-12 | 2021-02-12 | 日産化学株式会社 | 高分子架橋剤を用いたレジスト下層膜形成組成物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6327481B2 (ja) | 2013-04-17 | 2018-05-23 | 日産化学工業株式会社 | レジスト下層膜形成組成物 |
-
2021
- 2021-02-22 KR KR1020227033254A patent/KR20220149703A/ko active Search and Examination
- 2021-02-22 JP JP2022503623A patent/JPWO2021172296A1/ja active Pending
- 2021-02-22 WO PCT/JP2021/006711 patent/WO2021172296A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075265A1 (ja) * | 2007-12-13 | 2009-06-18 | Nissan Chemical Industries, Ltd. | レジスト下層膜形成組成物及びレジストパターンの形成方法 |
JP2015134926A (ja) * | 2009-05-20 | 2015-07-27 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 上塗りフォトレジストと共に使用するためのコーティング組成物 |
JP2019124943A (ja) * | 2015-10-31 | 2019-07-25 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
JP2021015205A (ja) * | 2019-07-12 | 2021-02-12 | 日産化学株式会社 | 高分子架橋剤を用いたレジスト下層膜形成組成物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204232A1 (ja) * | 2023-03-27 | 2024-10-03 | 日産化学株式会社 | レジスト下層膜形成組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021172296A1 (ja) | 2021-09-02 |
KR20220149703A (ko) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105874386B (zh) | 含有具有仲氨基的酚醛清漆聚合物的抗蚀剂下层膜形成用组合物 | |
US10017664B2 (en) | Novolac resin-containing resist underlayer film-forming composition using bisphenol aldehyde | |
TWI572988B (zh) | 含有含苯基吲哚之酚醛清漆樹脂的阻劑底層膜形成組成物 | |
JP6137486B2 (ja) | 複素環を含む共重合樹脂を含むレジスト下層膜形成組成物 | |
JP6004172B2 (ja) | カルボニル基含有カルバゾールノボラックを含むリソグラフィー用レジスト下層膜形成組成物 | |
CN106133607B (zh) | 含有芳香族乙烯基化合物加成的酚醛清漆树脂的抗蚀剂下层膜形成用组合物 | |
WO2012077640A1 (ja) | 水酸基含有カルバゾールノボラック樹脂を含むレジスト下層膜形成組成物 | |
TW201620981A (zh) | 含有經芳香族羥甲基化合物反應之酚醛樹脂的阻劑下層膜形成組成物 | |
JP7373173B2 (ja) | Iii族窒化物系化合物層を有する半導体基板の製造方法 | |
TW202321321A (zh) | 阻劑下層膜形成組成物 | |
WO2021172296A1 (ja) | ポリマーの製造方法 | |
WO2021172295A1 (ja) | レジスト下層膜形成組成物 | |
CN118786391A (zh) | 抗蚀剂下层膜形成用组合物 | |
TW202348663A (zh) | 阻劑下層膜形成組成物 | |
WO2024195842A1 (ja) | レジスト下層膜形成組成物 | |
WO2024195834A1 (ja) | レジスト下層膜形成組成物 | |
WO2023189799A1 (ja) | 自己架橋性ポリマー及びレジスト下層膜形成組成物 | |
TW202436418A (zh) | 阻劑下層膜形成組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21761339 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022503623 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227033254 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21761339 Country of ref document: EP Kind code of ref document: A1 |