WO2021172189A1 - 変性水素化ブロックコポリマー - Google Patents

変性水素化ブロックコポリマー Download PDF

Info

Publication number
WO2021172189A1
WO2021172189A1 PCT/JP2021/006310 JP2021006310W WO2021172189A1 WO 2021172189 A1 WO2021172189 A1 WO 2021172189A1 JP 2021006310 W JP2021006310 W JP 2021006310W WO 2021172189 A1 WO2021172189 A1 WO 2021172189A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
hydrogenated block
modified
modified hydrogenated
unsaturated carboxylic
Prior art date
Application number
PCT/JP2021/006310
Other languages
English (en)
French (fr)
Inventor
石原 稔久
Original Assignee
Mcppイノベーション合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mcppイノベーション合同会社 filed Critical Mcppイノベーション合同会社
Priority to JP2022503328A priority Critical patent/JPWO2021172189A1/ja
Publication of WO2021172189A1 publication Critical patent/WO2021172189A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation

Definitions

  • An object of the present invention is to provide a modified hydrogenated block copolymer which is soluble in an organic solvent, has transparency, has rigidity and heat resistance, and has excellent adhesion to a substrate such as a metal. do.
  • polyolefins such as polyethylene and polypropylene are lightweight, have water resistance, chemical resistance, and insulating properties, and are easy to handle. Therefore, they are given a shape by various molding processes and are used for various industrial materials. .. Further, since polyolefins are mainly composed of carbon-hydrogen, it is generally difficult to combine them with other materials such as metal and glass, and various inventions have been made to improve the adhesiveness thereof. I came. Above all, the thermal adhesion to metals is dramatically improved by modification by acid denaturation with an organic carboxylic acid or its anhydride (Patent Documents 1 and 2).
  • Polyolefins or acid-modified polyolefins are crystalline resins, and the crystals are a factor that reduces the solubility in organic solvents. Further, such crystallinity usually inhibits the transparency of polyolefins, and the transparency and color development of the coating film are not preferable. Therefore, in each of the above inventions, studies have been made to reduce the crystallinity of polyolefins and improve their solubility. However, even with these methods, the solubility is insufficient, and the obtained polyolefins tend to be soft, which may reduce the heat resistance or make the coating film surface sticky.
  • polyolefins This tendency of polyolefins to become soft may be useful as an adhesive sandwiched between adherends, but it is often not useful from the viewpoint of a general laminate or coating film. Further, in order to improve the solubility, an invention has been made in which polyolefins are chlorinated, but the chlorination method is not simple, and there are problems in terms of transparency and generation of harmful gas during combustion.
  • the present invention is a polyolefin that is soluble in an organic solvent, has transparency, rigidity, and heat resistance, has excellent adhesion to a base material such as metal, and suppresses the generation of toxic gas during combustion. Is to provide.
  • the present inventor uses a specific hydrogenated block copolymer as a polyolefin and modifies it with an unsaturated carboxylic acid and / or an unsaturated carboxylic acid anhydride. , Found that the above problems can be solved. That is, the present invention has the following features.
  • a modified hydrogenated block polymer which is a modified product of an unsaturated carboxylic acid and / or an unsaturated carboxylic acid anhydride of a hydrogenated block polymer, wherein the hydrogenated block polymer is composed of an aromatic vinyl monomer unit. It is a hydride of a copolymer containing a polymer block composed of a polymer block and a conjugated diene monomer unit, and the hydride of the polymer block composed of the aromatic vinyl monomer unit is a hydrogenated aromatic vinyl having a hydrogenation level of 90% or more.
  • the hydride of the polymer block which is a polymer block unit and is composed of the conjugated diene monomer unit, is a modified hydrogenated block copolymer which is a hydrogenated conjugated diene polymer block unit having a hydrogenation level of 95% or more.
  • [5] The modified hydrogenated block copolymer according to any one of [1] to [4], which has a weight average molecular weight (Mw) of 5,000 to 100,000.
  • Mw weight average molecular weight
  • [6] A modified hydrogenated block copolymer solution or a modified hydrogenated block copolymer solution obtained by dissolving or suspending the modified hydrogenated block copolymer according to any one of [1] to [5] in an organic solvent at a concentration of 1 to 30% by mass. Modified hydrogenated block copolymer slurry.
  • [7] A laminate containing a modified hydrogenated block copolymer in which the modified hydrogenated block copolymer according to any one of [1] to [5] is laminated on a substrate.
  • a modified hydrogenated block copolymer-containing laminate obtained by applying the modified hydrogenated block copolymer solution or the modified hydrogenated block copolymer slurry according to [6] to a substrate and then removing the solvent to obtain a laminate.
  • Production method [14] The method for producing a modified hydrogenated block copolymer-containing laminate according to [13], wherein the layer containing the modified hydrogenated block copolymer has a thickness of 1 to 100 ⁇ m.
  • the modified hydrogenated block copolymer of the present invention is soluble in an organic solvent, and by coating on a base material such as metal, glass, or plastic, it has transparency, rigidity, and heat resistance, and is excellent.
  • a coating film having adhesive strength can be obtained, and a laminated body can be obtained.
  • the modified hydrogenated block copolymer of the present invention does not chlorinate or the like, no toxic gas is generated during combustion.
  • the solution or slurry of the present invention can be applied to a base material such as metal, glass, plastic, etc., and by removing the organic solvent, it has transparency, rigidity, heat resistance, and is good.
  • the coating film has excellent adhesive strength.
  • the laminate of the present invention is transparent, has rigidity and heat resistance, and has good adhesive strength to a base material.
  • the modified hydrogenated block copolymer of the present invention is a modified product of the hydrogenated block copolymer with an unsaturated carboxylic acid and / or an unsaturated carboxylic anhydride.
  • the hydrogenated block copolymer used as a raw material for the modified hydrogenated block copolymer of the present invention is a block copolymer containing a polymer block composed of at least one aromatic vinyl monomer unit and a polymer block composed of at least one conjugated diene monomer unit. It is a hydride. That is, the hydrogenated block copolymer has a hydrogenated aromatic vinyl polymer block unit and a hydrogenated conjugated diene polymer block unit.
  • the hydrogenated aromatic vinyl polymer block unit is a hydride of a polymer block composed of an aromatic vinyl monomer unit, and the hydrogenation level thereof is as described later.
  • the hydrogenated conjugated diene polymer block unit is a hydride of the polymer block composed of the conjugated diene monomer unit, and the hydrogenation level thereof is as described later.
  • the hydrogenated block copolymer has at least two hydrogenated aromatic vinyl polymer block units and at least one hydrogenated conjugated diene polymer block unit. The hydrogenated block copolymer is excellent in transparency and material strength.
  • block refers to a polymerization segment that is microlayer-separated from a copolymer having structurally or compositionally different polymerization segments. Therefore, for example, “having at least two block units” means having at least two polymerization segments that are microlayer-separated in the hydrogenated block copolymer.
  • the aromatic vinyl monomer used as a raw material for the aromatic vinyl monomer unit is a monomer represented by the general formula (1).
  • R is a hydrogen or alkyl group
  • Ar is a phenyl group, a biphenyl group, a halophenyl group, an alkylphenyl group, an alkylhalophenyl group, a naphthyl group, a pyridinyl group or an anthracenyl group.
  • the alkyl group may be mono- or multiple-substituted with a functional group such as a halo group, a nitro group, an amino group, a hydroxy group, a cyano group, a carbonyl group and a carboxyl group.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • the Ar is preferably a phenyl group or an alkylphenyl group, more preferably a phenyl group.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyltoluene (including all isomers, especially p-vinyltoluene), ethylstyrene, propylstyrene, butylstyrene, vinylbiphenyl, vinylnaphthalene, and vinylanthracene. (All isomers), and mixtures thereof.
  • the conjugated diene monomer used as a raw material for the conjugated diene monomer unit may be any monomer having two conjugated double bonds, and is not particularly limited.
  • Examples of the conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2-methyl-1,3 pentadiene and its analogs, and mixtures thereof.
  • Polybutadiene which is a polymer of 1,3-butadiene, has either a 1,2 configuration that gives an equivalent of 1-butene repeating units by hydrogenation, or a 1,4 configuration that gives an equivalent of ethylene repeating units by hydrogenation. Can be included.
  • the hydrogenated block copolymer composed of the aromatic vinyl monomer and the conjugated diene monomer containing 1,3-butadiene is included in the hydrogenated block copolymer used in the present invention.
  • the hydrogenated block copolymer is a functional group-free block copolymer.
  • “without functional groups” means that there are no functional groups in the block copolymer, that is, groups containing elements other than carbon and hydrogen.
  • a preferred example of the hydrogenated aromatic vinyl polymer block unit is a unit made of polystyrene hydride, and a preferred example of the hydrogenated conjugated diene polymer block unit is a unit made of hydrogenated polybutadiene. ..
  • a preferred embodiment of the hydrogenated block copolymer is a hydrogenated triblock or pentablock copolymer of styrene and butadiene, preferably free of any other functional or structural modifiers.
  • the content of the hydrogenated aromatic vinyl polymer block unit is preferably 50 to 99 mol%, more preferably 60 to 90 mol% with respect to the hydrogenated block copolymer. If the ratio of hydrogenated aromatic vinyl polymer block units is at least the above lower limit, the rigidity does not decrease, and if it is at least the above upper limit, brittleness does not deteriorate.
  • the content of the hydrogenated conjugated diene polymer block unit is preferably 1 to 50 mol%, more preferably 10 to 40 mol% with respect to the hydrogenated block copolymer. If the ratio of hydrogenated conjugated diene polymer block units is not less than the above lower limit, brittleness does not deteriorate, and if it is not more than the above upper limit, rigidity does not decrease.
  • the hydrogenated block copolymers of the present invention are triblock, multiblock, tapered blocks such as SBS, SBSBS, SIS, SISIS, and SISBS (where S stands for polystyrene, B stands for polybutadiene, and I stands for polyisoprene). And produced by hydrogenation of block copolymers, including star block copolymers.
  • the hydrogenated block copolymer of the present invention contains a segment consisting of an aromatic vinyl polymer at each end. Therefore, the hydrogenated block copolymer of the present invention will have at least two hydrogenated aromatic vinyl polymer block units. Then, at least one hydrogenated conjugated diene polymer block unit will be provided between the two hydrogenated aromatic vinyl polymer block units.
  • the pre-hydrogenated block copolymer may contain several additional blocks, which may be attached to any position on the triblock polymer backbone.
  • the linear block includes, for example, SBS, SBSB, SBBSS, and SBBSSB.
  • the copolymer may be branched and the polymerization chain may be attached at any position along the backbone of the copolymer.
  • the lower limit of the weight average molecular weight (hereinafter, abbreviated as "Mw") of the hydrogenated block copolymer is preferably 10,000 or more, more preferably 20,000 or more.
  • the upper limit of Mw is preferably 120,000 or less, more preferably 100,000 or less, further preferably 95,000 or less, particularly preferably 90,000 or less, most preferably 85,000 or less, and extremely preferably 80. It is less than 000. If Mw is not less than the above lower limit, the mechanical strength does not decrease, and if it is not more than the above upper limit, the solvent solubility of the obtained modified hydrogenated block copolymer is improved.
  • the Mw of the hydrogenated block copolymer is determined by gel permeation chromatography (GPC) measurement, and the specific measurement method thereof is as described in the section of Examples.
  • the hydrogenation level of the hydrogenated aromatic vinyl polymer block unit is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably 99.5% or more.
  • the hydrogenation level of the hydrogenation-conjugated diene polymer block unit is preferably 95% or more, more preferably 99% or more, still more preferably 99.5% or more. Such high levels of hydrogenation are preferred for exhibiting rigidity and heat resistance.
  • the hydrogenation level of the hydrogenated aromatic vinyl polymer block unit indicates the rate at which the aromatic vinyl polymer block unit is saturated by hydrogenation, and the hydrogenation level of the hydrogenation-conjugated diene polymer block unit is the conjugated diene. Shows the rate at which polymer block units are saturated by hydrogenation.
  • the hydrogenation level is determined using proton NMR.
  • the melt flow rate (MFR) of the hydrogenated block copolymer of the present invention is usually 0.1 g / 10 minutes or more, preferably 0.5 g / 10 minutes or more from the viewpoint of the molding method and the appearance of the molded product. Further, it is usually 200 g / 10 minutes or less, preferably 100 g / 10 minutes or less, and more preferably 50 g / 10 minutes or less from the viewpoint of material strength.
  • the MFR was measured according to ISO R1133 under the conditions of a measurement temperature of 230 ° C. and a measurement load of 2.16 kg.
  • the hydrogenated block copolymer may be used alone or in combination of two or more.
  • a commercially available one can be used, and specific examples thereof include Mitsubishi Chemical Corporation: Zelas (registered trademark).
  • Examples of the unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride as the modifier include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, and methyltetrahydrophthalic acid.
  • Examples thereof include unsaturated carboxylic acids such as itaconic acid, citraconic acid, crotonic acid, isocrotonic acid and nadic acids, and anhydrides thereof.
  • Specific examples of unsaturated carboxylic acid anhydrides include maleic anhydride, citraconic anhydride, and nagic anhydride.
  • nadic acids or anhydrides thereof include endosis-bicyclo [2.2.1] hept-2,3-dicarboxylic acid (nadic acid TM) and methyl-endosis-bicyclo [2.2.1] hept.
  • examples thereof include -5-ene-2,3-dicarboxylic acid (methylnadic acid TM) and its anhydrides.
  • unsaturated carboxylic acids and / or unsaturated carboxylic acid anhydrides acrylic acid, maleic acid, nadic acid, maleic anhydride, and nagic anhydride are preferable, and maleic anhydride is more preferable.
  • the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride may be used alone or in combination of two or more.
  • a modified hydrogenated block copolymer can be obtained by modifying the hydrogenated block copolymer with the unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride.
  • the denaturation method solution denaturation, melt denaturation, solid phase denaturation by irradiation with electron beam or ionizing radiation, denaturation in a supercritical fluid, or the like is preferably used. Among them, melt modification having excellent equipment and cost competitiveness is preferable, and melt kneading modification using an extruder having excellent continuous productivity is more preferable.
  • the device used at this time include a single-screw extruder, a twin-screw extruder, a Banbury mixer, and a roll mixer. Of these, single-screw extruders and twin-screw extruders with excellent continuous productivity are preferable.
  • modification of a hydrogenated block copolymer with unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride is a carbon-hydrogen in a hydrogenated conjugated dienepolymer block unit, which is one of the block units constituting the hydrogenated block copolymer. It is carried out by a graft reaction in which a bond is cleaved to generate a carbon radical, to which an unsaturated functional group is added.
  • a method of raising the temperature or a radical generator such as an azo compound, an inorganic peroxide, or an organic peroxide can also be used.
  • the radical generator it is preferable to use an organic peroxide from the viewpoint of cost and operability.
  • azo compound examples include azobisisobutyronitrile, azobisdimethylvaleronitrile, azobis (2-methylbutyronitrile), and diazodinitrophenol.
  • inorganic peroxide examples include hydrogen peroxide, potassium peroxide, sodium peroxide, calcium peroxide, magnesium peroxide, and barium peroxide.
  • organic peroxide examples include those contained in the hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester and ketone peroxide group.
  • hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide; dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylper).
  • Dialkyl peroxides such as oxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexin-3; diacyl peroxides such as lauryl peroxide and benzoyl peroxide; t-butylperoxyacetate , T-Butylperoxybenzoate, peroxyesters such as t-butylperoxyisopropylcarbonate; ketone peroxides such as cyclohexanone peroxides.
  • One of these radical generators may be used alone, or two or more of these radical generators may be used in combination.
  • the hydrogenated block copolymer is subjected to graft modification by any of melt kneading, in-solution reaction, and solid phase grafting, and the unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride described above. Graft modification by.
  • melt-kneading For modification by melt-kneading, which is generally used, hydrogenated block copolymers, unsaturated carboxylic acids and / or unsaturated carboxylic acid anhydrides, and organic peroxides are blended, charged into a kneader and an extruder, and heat-melt-kneaded. While extruding, the molten resin coming out of the tip die is cooled in a water tank or the like to obtain a modified hydrogenated block copolymer.
  • the blending ratio of the hydrogenated block copolymer and the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride is such that the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride is obtained with respect to 100 parts by mass of the hydrogenated block copolymer.
  • the substance is 0.2 to 5 parts by mass.
  • the blending ratio of the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride and the organic peroxide is such that the organic peroxide is 100 parts by mass of the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride.
  • the substance is 0.2 to 100 parts by mass.
  • melt-kneading modification condition for example, in a single-screw extruder and a twin-screw extruder, it is preferable to extrude at a temperature of 150 to 300 ° C.
  • Denaturation by reaction in solution involves adding a hydrogenated block copolymer, an unsaturated carboxylic acid and / or an unsaturated carboxylic acid anhydride, and a radical generator into an organic solvent and heating the modified hydrogenated block. It is for obtaining a copolymer.
  • the organic solvent is not particularly limited as long as it does not have a functional group such as active hydrogen that can react with a radical generator and can dissolve a hydrogenated block copolymer.
  • a functional group such as active hydrogen that can react with a radical generator and can dissolve a hydrogenated block copolymer.
  • Examples thereof include benzene, toluene, xylene, chlorobenzene, dichlorobenzene and t-butylbenzene, and dichlorobenzene is preferable from the viewpoint of solubility and stability.
  • the reaction concentration is preferably 5 to 20% by mass, although it depends on the solubility of the hydrogenated block copolymer in the organic solvent and the viscosity of the solution.
  • the reaction concentration is at least the above lower limit, the productivity is good, and when it is at least the above upper limit, the solution viscosity does not increase, and stirring and heat removal become easy.
  • the compounding ratio of the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride and the radical generator to the hydrogenated block copolymer is the same as that of the modification by melt-kneading.
  • the reaction temperature depends on the boiling point of the organic solvent and the half-life temperature of the radical generator used, but is preferably 80 to 150 ° C. When the reaction temperature is not less than the lower limit, the reaction rate does not decrease, and when the reaction temperature is not more than the upper limit, the hydrogenated block copolymer is not decomposed and the reaction is stable.
  • the reaction time depends on the target value of the graft ratio, but is preferably 1 to 10 hours. After completion of the reaction, the reaction product can be recovered by crystallization, filtration, washing, drying and recovery according to a known method.
  • a solid in the crystallization, a solid can be precipitated by lowering the temperature of the reaction solution, distilling off under reduced pressure to increase the solution concentration, or adding a poor solvent.
  • the filtration can be performed using a filtration device that combines filter paper, filter cloth, and the like. Further, devices such as a centrifugal filter, a pressure filter, and a wash and dry filter can also be used.
  • the washing it is preferable to use one that does not dissolve the modified hydrogenated block copolymer but dissolves the unreacted unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride. Specifically, methanol and acetone are preferable.
  • the drying is performed by removing the residual solvent with a hot air dryer or a vacuum dryer. By these operations, the modified hydrogenated block copolymer obtained by the reaction in solution can be used for the purpose of the present invention in the same manner as the modification by melt kneading.
  • a commonly used solid phase graft modification involves impregnating a hydrogenated block copolymer with an unsaturated carboxylic acid and / or an unsaturated carboxylic acid anhydride and a radical generator in a heated jacketed stirrer.
  • a modified hydrogenated block copolymer is obtained by performing a graft reaction in a temperature range where the hydrogenated block copolymer does not melt.
  • the unsaturated carboxylic acid and / or the unsaturated carboxylic acid anhydride is preferably in a liquid state, and when it is a powder, it is preferably heated to about the melting point and charged as a liquid.
  • the set temperature of the stirrer is preferably equal to or higher than the melting point of the unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride and lower than the glass transition point of the hydrogenated block copolymer. Therefore, the radical generator selected is preferably one that exhibits activity in the above temperature range.
  • the reaction proceeds by stirring the mixture while heating, and after completion of the reaction, the modified hydrogenated block copolymer is obtained in a solid state.
  • the blending ratio of the modified hydrogenated block copolymer and the organic peroxide is 0.01 for 100 parts by mass of the modified hydrogenated block copolymer. ⁇ 2 parts by mass.
  • the melt-kneading modification condition for example, in a single-screw extruder and a twin-screw extruder, it is preferable to extrude at a temperature of 150 to 300 ° C.
  • the modification rate of the modified hydrogenated block copolymer with the unsaturated carboxylic acid and / or unsaturated carboxylic anhydride is preferably 0.1 to 2% by mass.
  • the modification rate of the modified hydrogenated block copolymer is determined by methyl esterification treatment of the modified hydrogenated block copolymer and then using proton NMR.
  • the modified hydrogenated block copolymer of the present invention is a modified version of the hydrogenated block copolymer with an unsaturated carboxylic acid and / or an unsaturated carboxylic anhydride.
  • the hydrogenated block copolymer is a hydride of a copolymer containing a polymer block composed of an aromatic vinyl monomer unit and a polymer block composed of a conjugated diene monomer unit.
  • the hydride of the polymer block composed of the aromatic vinyl monomer unit is a hydrogenated aromatic vinyl polymer block unit having a hydrogenation level of 90% or more, and the hydride of the polymer block composed of the conjugated diene monomer unit is A hydrogenation-conjugated diene polymer block unit with a hydrogenation level of 95% or higher.
  • the hydrogenation level of the hydrogenated aromatic vinyl polymer block unit is preferably 95% or more, more preferably 98% or more, still more preferably 99.5% or more.
  • the hydrogenation level of the hydrogenation-conjugated diene polymer block unit is preferably 99% or more, more preferably 99.5% or more. Such high levels of hydrogenation are preferred for exhibiting rigidity and heat resistance.
  • the meaning of the hydrogenation level and the method for determining the hydrogenation level are the same as those described in the section of hydrogenation block copolymer.
  • the hydrogenated block copolymer has at least two hydrogenated aromatic vinyl polymer block units and at least one hydrogenated conjugated diene polymer block unit.
  • the content of the hydrogenated aromatic vinyl polymer block unit is preferably 50 to 99 mol%, more preferably 60 to 90 mol% with respect to the modified hydrogenated block copolymer. If the ratio of hydrogenated aromatic vinyl polymer block units is at least the above lower limit, the rigidity does not decrease, and if it is at least the above upper limit, brittleness does not deteriorate.
  • the content of the hydrogenated conjugated diene polymer block unit is preferably 1 to 50 mol%, more preferably 10 to 40 mol% with respect to the modified hydrogenated block copolymer. If the ratio of hydrogenated conjugated diene polymer block units is not less than the above lower limit, brittleness does not deteriorate, and if it is not more than the above upper limit, rigidity does not decrease.
  • the lower limit of Mw of the modified hydrogenated block copolymer is preferably 5,000 or more, more preferably 10,000 or more.
  • the upper limit of Mw is preferably 100,000 or less, more preferably 80,000 or less. Specifically, it is preferably 5,000 or more and 100,000 or less, more preferably 5,000 or more and 80,000 or less, or more preferably 10,000 or more and 100,000 or less, and further preferably 10,000 or more and 80,000 or less.
  • the Mw of the modified hydrogenated block copolymer is not less than the above lower limit, the material strength does not decrease, and the adhesiveness and heat resistance do not decrease, which is preferable. Further, when Mw is not more than the above upper limit, the solubility in an organic solvent does not decrease, which is preferable.
  • the Mw of the modified hydrogenated block copolymer is determined by measurement of GPC.
  • the Mw of the modified hydrogenated block copolymer can be controlled by the amount of organic peroxide used when modifying the hydrogenated block copolymer.
  • the modification operation of the hydrogenated block copolymer is as described above. Further, as in the modification operation of the hydrogenated block copolymer, the modified hydrogenated block copolymer is further blended with an organic peroxide, blended, charged into a kneader and an extruder, and extruded while being heated, melted and kneaded. A modified hydrogenated block copolymer with varying Mw can be obtained.
  • a hydrogenated block copolymer or a modified hydrogenated block copolymer is a hydrogenated conjugated diene polymer block unit, which is one of the block units constituting the hydrogenated block copolymer or the modified hydrogenated block copolymer by treating with an organic peroxide.
  • the carbon-hydrogen bond is once cleaved, and the carbon-carbon bond cleaved with ⁇ -hydrogen desorption occurs from the generated carbon radical structure, causing low molecular weight, and high molecular weight hydrogenation block copolymer or modified hydrogenation block copolymer. From this, a modified hydrogenated block copolymer having a low molecular weight can be obtained.
  • This operation may be performed after the denaturation or at the same time as the denaturation. That is, since the molecular weight is reduced at the same time as the denaturation, it is possible to reduce the molecular weight at the same time as the denaturation by adding a large amount of organic peroxide.
  • the dielectric constant of the modified hydrogenated block copolymer is preferably low. Specifically, 3.0 or less is preferable, and 2.5 or less is more preferable. If the dielectric constant is 3.0 or less, the signal transmission speed does not decrease.
  • the dielectric loss tangent of the modified hydrogenated block copolymer is preferably low. Specifically, 0.003 or less is preferable, and 0.002 or less is more preferable. If the dielectric loss tangent is 0.003 or less, the reliability of the electric signal does not decrease.
  • the modified hydrogenated block copolymer of the present invention can be dissolved or suspended in an organic solvent to form a solution or slurry.
  • the solution represents a state in which the modified hydrogenated block copolymer is dissolved in an organic solvent. That is, it represents a state in which the modified hydrogenated block copolymer is molecularly dispersed in an organic solvent.
  • the slurry represents a suspension in which particles of the modified hydrogenated block copolymer are mixed in an organic solvent.
  • polyolefins have poor solubility in organic solvents, and even if they are dissolved, they gel and are not suitable for coating.
  • the modified hydrogenated block copolymer of the present invention exhibits specific properties in this respect. Is.
  • Examples of the organic solvent in which the modified hydrogenated block copolymer of the present invention can be dissolved include aromatic solvents, aliphatic solvents, and alicyclic solvents.
  • aromatic solvents include benzene, toluene, xylene, ethylbenzene, chlorobenzene, and bromonaphthalene.
  • Examples of the aliphatic solvent include hexane, heptane, octane, nonane, and decane.
  • Examples of the alicyclic solvent include cyclopentane, cyclohexane, cycloheptane, and cyclodecane. One of these may be used alone, or two or more thereof may be used in combination. Among these, toluene and cyclohexane are preferable from the viewpoint of handleability and ease of distillation.
  • organic solvent other than the above can be added as long as the effect of the present invention is not impaired.
  • organic solvents that can be used include, for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone and benzophenone; alcohols such as methanol, ethanol, isopropyl alcohol and butanol; phenols such as phenol, cresol and naphthol; ethylene.
  • Ethers such as glycol monomethyl ether; amides such as N, N-dimethylformamide and N, N-dimethylacetamide can be mentioned.
  • the concentration of the modified hydrogenated block copolymer in the above solution or slurry is preferably 1 to 30% by mass.
  • concentration of the modified hydrogenated block copolymer is not less than the above lower limit, the solution viscosity is appropriate and suitable for coating work. If it is not more than the above upper limit, the solution viscosity is appropriate and gelation does not occur.
  • concentration of the modified hydrogenated block copolymer in the above solution or slurry is more preferably 5 to 10% by mass.
  • the solution or slurry of the present invention may contain components other than those listed above for the purpose of further improving its functionality.
  • Such other components include thermosetting resins, photocurable resins, curing accelerators, UV inhibitors, antioxidants, coupling agents, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers. , Low elasticizing agent, diluent, defoaming agent, ion trapping agent, inorganic filler, organic filler and the like.
  • the modified hydrogenated block copolymer of the present invention has good adhesive strength to a base material such as metal, glass and plastic, a non-greasy adhesive surface can be obtained, and a laminate with a base material such as metal, glass or plastic can be obtained. be able to.
  • the laminating method is not particularly determined, and known laminating methods such as melt coextrusion molding, thermal laminating processing, and insert injection molding can be used.
  • the above melt coextrusion is a method of melt coextruding the modified hydride block copolymer of the present invention with one or more other thermoplastic resins, thereby containing the modified hydride block copolymer. It is possible to manufacture a laminate to be used.
  • thermoplastic resin examples include ethylene- ⁇ -olefin copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, and ethylene- (meth) acrylic acid ester copolymer.
  • polyolefin resin such as polyethylene, polypropylene, polybutene-1 resin
  • polyamide resin such as polyphenylene ether resin, nylon 6, nylon 66
  • aromatic polyester resin such as aramid resin, polyethylene terephthalate, polybutylene terephthalate
  • poly Aliper polyester resins such as lactic acid, polybutylene succinate, and polycaprolactone
  • polycarbonate resins polyallylate resins; modified polyphenylene oxide resins; polysulfone resins; polyphenylene sulfide resins; polyether sulfone resins; polyether ketone resins; poly Ether ether ketone resin; polyimide resin; polyoxymethylene homopolymer, polyoxymethylene copolymer and other polyoxymethylene resins; polymethylmethacrylate resin; dimethylpolysiloxane, diphenylpolysiloxane, dihydroxypolysiloxane and other silicon-containing soft polymers Vinyl aromatic polymers such as polys
  • the above thermal laminating process is a method of thermally laminating the modified hydrogenated block copolymer of the present invention on a laminated base material such as metal, paper, ceramics, thermoplastic resin or thermosetting resin.
  • a laminate containing a modified hydroblock copolymer can be produced.
  • the thermal laminating process is a method in which a film made of a modified hydrogenated block copolymer produced in advance is brought into contact with the surface of a film or sheet as a laminating base material, and these are heated and fused. Specifically, it is a method of heat-sealing a plurality of films or sheets by passing them through a heating roll in a stacked state.
  • a T-die melt extrusion cast film molding method an inflation film molding method, a calendar film molding method, and an extrusion laminate molding method can be used. At this time, it can be molded as a single-layer film, or a multi-layer film can be molded by a coextrusion molding method.
  • the T-die melt extrusion cast film molding method which has excellent moldability and is easy to adjust, is preferable.
  • a modified hydrogenation block at a temperature of 200 to 300 ° C. is used from a T-type slit die having a slit width of about 0.1 to 2 mm attached to the tip of a single-screw or twin-screw extruder.
  • a film is obtained by melt-extruding the copolymer, then bringing the extruded film into contact with the surface of a cooling roll set at 20 to 80 ° C., cooling the mixture, and winding the copolymer. If necessary, the surface of the film can be subjected to corona treatment.
  • the obtained film is placed so as to be overlapped with a laminated base material such as metal, paper, ceramics, thermoplastic resin or thermosetting resin, sandwiched by a heated metal roll and a rubber roll while applying pressure, and heat-bonded. , Lamination by thermal lamination becomes possible.
  • a laminated base material such as metal, paper, ceramics, thermoplastic resin or thermosetting resin
  • the temperature of the heating roll during the heat laminating process is set as necessary, but must be equal to or higher than the glass transition point of the modified hydrogenated block copolymer. Although it depends on the processing speed of the thermal laminate, the thickness of the film and the laminate base material, and the pressure bonding pressure, it is preferable to set the temperature 10 to 50 ° C. higher than the glass transition point of the modified hydrogenated block copolymer. When the set temperature is 10 ° C. or higher, which is the glass transition point, sufficient adhesive strength can be obtained by thermal laminating. Further, when the glass transition point is 50 ° C. or lower, the film made of the modified hydrogenated block copolymer does not melt or stick to the roll.
  • the crimping pressure during the heat laminating process is preferably 1 to 40 kg / m as the line pressure between the rolls.
  • the processing speed during the heat laminating process is preferably 0.5 to 50 m / min in terms of the balance between the adhesive strength and the productivity. When the processing speed is at least the above lower limit, the productivity is sufficient and it is economically preferable. Further, if the processing speed is not more than the above upper limit, sufficient adhesive strength can be obtained.
  • a laminate can also be obtained by applying the solution or slurry of the modified hydrogenated block copolymer of the present invention to a substrate such as metal, glass or plastic, and then removing the solvent.
  • a coating method a bar coater, a blade coater, a die coater, a gravure roll coater, a spray coat and the like, as well as a brush coating can be used.
  • Examples of the base material that is the material to be coated to obtain the above-mentioned laminate include metals and alloys such as copper, aluminum, iron, stainless steel, nickel, zinc, titanium, and tungsten; glass plate, glass fiber mat, and glass. Glasses such as fiberglass cloth and glass wool; polyethylene, polypropylene, polybutene, ethylene- ⁇ olefin copolymer, propylene- ⁇ olefin copolymer, ethylene-acrylic ester copolymer, ethylene-vinyl monomer copolymer, polyamide, Examples thereof include plastics such as ethylene-vinyl acetate copolymer (EVOH). These may be plate-shaped, film-shaped, or given with other shapes, may be a single material or composite, and may be single-layered or laminated. good.
  • EVOH ethylene-vinyl acetate copolymer
  • copper is preferable from the viewpoint of electrical conductivity and economy for electronic members such as circuit boards, and iron and stainless steel are preferable from the viewpoint of economy and rigidity for handrails and plywood applications.
  • Aluminum is preferable from the viewpoint of light weight and processability for applications such as battery packaging, and polyamide and EVOH are preferable from the viewpoint of developing gas barrier properties for food packaging applications.
  • the thickness of the layer containing the modified hydrogenated block copolymer is preferably 5 to 500 ⁇ m.
  • the thickness of the layer is 5 ⁇ m or more, the strength as a layer becomes sufficient, and as a result, the adhesive strength of the laminated body becomes sufficient.
  • the thickness of the layer is 500 ⁇ m or less, heat transfer during heat laminating is sufficient, and the rigidity of the layer containing the modified hydrogenated block copolymer is not increased, resulting in an adhesive strength of the laminate. It will be sufficient and the flexibility as a laminated body will not be lost.
  • the thickness of the layer containing the modified hydrogenated block copolymer is preferably 1 to 100 ⁇ m.
  • the thickness of the layer is 1 ⁇ m or more, the adhesion strength of the coating film does not decrease. Further, when the thickness of the layer is 100 ⁇ m or less, it becomes easy to control the thickness at the time of coating, and there is no influence on the productivity.
  • the modified hydrogenated block copolymer of the present invention has the effects of being transparent, having heat resistance, excellent solubility in an organic solvent, and excellent adhesiveness to substrates such as metal, glass and plastic. Further, the solution containing the modified hydrogenated block copolymer of the present invention also has the effect of providing a laminate having excellent adhesiveness to substrates such as metal, glass and plastic. Therefore, it can be applied to various fields such as adhesives, paints, materials for civil engineering and construction, insulating materials for electrical and electronic parts, and particularly as insulating castings, laminated materials, sealing materials, etc. in the electrical and electronic fields. It is useful.
  • a laminated board for electric / electronic circuits such as a copper foil laminated board, a flexible printed circuit board, a multilayer printed wiring board, and a capacitor
  • Adhesives such as adhesives and liquid adhesives
  • semiconductor encapsulant materials such as adhesives and liquid adhesives
  • underfill materials such as interchip fills for 3D-LSI, insulating sheets, prepregs, heat dissipation substrates, and the like.
  • the modified hydrogenated block copolymer of the present invention can also be suitably used as a laminate containing a conductive metal layer such as the above-mentioned laminate for electric / electronic circuits.
  • the laminate containing the conductive metal layer is a laminate of a layer containing the modified hydride block copolymer of the present invention and a conductive metal layer, and is conductive with the layer containing the modified hydride block copolymer of the present invention. If it is a laminated metal layer, it includes a laminated body such as a circuit having a capacitor in addition to the above electric / electronic circuits.
  • a layer composed of two or more types of modified hydrogenated block copolymers may be formed in the laminate containing the conductive metal layer, and the modified hydrogenated block copolymer of the present invention is used in at least one layer. I just need to be there. Further, two or more kinds of conductive metal layers may be formed.
  • ⁇ Dielectric characteristics (dielectric constant / dielectric loss tangent)> A 2 mm ⁇ 100 mm ⁇ 100 mm press sheet was prepared at a molding temperature of 240 ° C. Using this sheet as a test piece, the dielectric constant ( ⁇ ') and the dielectric loss tangent (tan ⁇ ) were measured at a measurement frequency of 50 GHz, a temperature of 25 ° C., and a humidity of 40% using a vector network analyzer (KEYSIGHT PNA N5227A).
  • As the aluminum plate a JIS H4000 A5052P 1 mm ⁇ 70 mm ⁇ 150 mm aluminum plate was used.
  • As the stainless steel plate a JIS G4305 SUS304 BA 0.5 mm ⁇ 70 mm ⁇ 150 mm stainless steel plate was used.
  • As the copper plate a JISH3100 C1100P 0.8 mm ⁇ 25 mm ⁇ 150 mm copper plate was used.
  • a 2 mm ⁇ 40 mm ⁇ 80 mm flat plate was injection-molded at a molding temperature of 240 ° C. and a mold temperature of 40 ° C. using a Novamid 1020C manufactured by DSM and an SE-18D injection molding machine manufactured by Sumitomo Heavy Industries, Ltd.
  • the solution After wiping the surface of the metal plate and resin plate to be used with acetone, the solution is coated with a wire bar coater to a thickness of 50 ⁇ m, and warm air at 80 ° C. is blown to remove the solvent, and the solution is placed in a vacuum dryer. The pressure was reduced at 50 ° C. for 2 hours. After that, cut 100 grids with a width of 1 mm with an NT cutter on the coated surface, and then Nichiban cloth adhesive tape LS NO. After the 123 was attached, it was peeled off, and how many of the 100 grids remained were observed and evaluated for adhesiveness. The evaluation results are shown in Table 1. The greater the number of grids remaining, the better the adhesiveness.
  • Example 1 [Modified hydrogenated block copolymer (A-1)] To 100 parts by mass of the hydrogenated block copolymer (a-1), 1.3 parts by mass of maleic anhydride and 0.0065 parts by mass of an organic peroxide were mixed and sufficiently stirred. After that, using a twin-screw extruder (manufactured by Nippon Steel Co., Ltd., TEX25 ⁇ III), melt-kneading is performed at a cylinder temperature of 280 ° C., a screw rotation speed of 400 rpm, and a discharge rate of 10 kg / h, and the extruded molten strand is water-cooled and cut.
  • a twin-screw extruder manufactured by Nippon Steel Co., Ltd., TEX25 ⁇ III
  • A-1 a modified hydrogenated block copolymer (A-1) was obtained.
  • the physical characteristics of the obtained A-1 are as follows, and are also shown in Table 1.
  • -MFR 230 ° C, 2.16 kg
  • 3 g / 10 minutes-Hydrogenated aromatic vinyl polymer block Unit Hydrogenated polystyrene with a content of 65 mol% and hydrogenation level of 99.5% or more-Hydrogenated conjugated diene polymer block Unit: Hydrogenated polybutadiene block structure: pentablock structure, total hydrogenation level: 99.5% or more, hydrogenation level 99.5% or more, maleic anhydride modification rate: 1.2% by mass
  • Example 2 [Modified hydrogenated block copolymer (A-2)] 1 part by mass of organic peroxide was added to 100 parts by mass of the obtained A-1, and the mixture was sufficiently stirred. Then, it was melt-kneaded in the same manner as in Example 1 to obtain a modified hydrogenated block copolymer (A-2).
  • the physical characteristics of the obtained A-2 are shown in Table 1.
  • a toluene solution was obtained in the same manner as in Example 1 except that A-2 was used instead of A-1. All of A-2 was dissolved to become a colorless and transparent solution. Each of the above evaluations was performed using the solutions of A-2 and A-2. The evaluation results are shown in Table 1.
  • ⁇ Comparative example 2> [Modified block copolymer (a-2)] As a maleic anhydride modified product of the styrene-butadiene block copolymer hydride, Tough Tech M1943 manufactured by Asahi Kasei Corporation was used. Reference numeral a-2 is a modified maleic anhydride of the block copolymer, but the aromatic vinyl polymer block unit of the block copolymer used as a raw material is not hydrogenated. A toluene solution was obtained in the same manner as in Example 1 except that a-2 was used instead of A-1. All a-2 was dissolved to become a colorless and transparent solution. Each of the above evaluations was performed using the solutions of a-2 and a-2. The evaluation results are shown in Table 1.
  • Example 3 A three-layer film was formed using a multilayer film forming machine manufactured by Labtech Engineering at 260 ° C. and a speed of 5 m / min, using a-1 50 ⁇ m as the surface layer, a-1 10 ⁇ m as the intermediate layer, and A-1 20 ⁇ m as the sealing layer. Molded. Using a nylon / aluminum foil film and the three-layer film obtained above, set the seal layer of the three-layer film to contact the aluminum surface with a laminator manufactured by Tester Sangyo Co., Ltd., roll temperature 200 ° C, speed. Thermal laminating was performed at 0.75 m / min and a nip pressure of 0.3 MPa (linear pressure 1.5 kg / m). Then, it was cut into strips having a width of 15 mm, and a 90-degree peeling test was performed by the following method to measure the aluminum adhesive strength. The results are shown in Table 2.
  • the 90-degree peel test is measured using a normal tensile tester and a jig for the 90-degree peel test.
  • the strip test piece is fixed horizontally with a jig, and the end portion is peeled off a little in advance.
  • the strip test piece can be peeled off at an angle of 90 degrees with respect to the direction of the strip test piece. Since the peeling point moves horizontally as the peeling progresses, the jig to which the strip test piece is fixed is slid horizontally so that the peeling point is always located directly below the upper grip portion.
  • the tensile speed is 300 mm / min
  • the measurement environment is a temperature of 23 ° C. and a humidity of 40% RH.
  • the modified hydrogenated block copolymers of the present invention have good transparency and heat resistance, excellent dielectric properties, and good adhesiveness to various substrates. I understood. On the other hand, it was found that the hydrogenated block copolymer before denaturation (Comparative Example 1) has good transparency and heat resistance and excellent dielectric properties, but the adhesiveness to the substrate is not sufficient. .. It was found that the modified block copolymer in which the aromatic vinyl polymer block unit is not hydrogenated (Comparative Example 2) is inferior in transparency and heat resistance and excellent in dielectric properties, but hardly adheres to the substrate. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

有機溶媒に可溶であり、透明性、剛性、及び耐熱性を有し、金属等の基材との接着性に優れ、燃焼時に有毒ガスの発生が抑制されたポリオレフィン類を提供する。水素化ブロックコポリマーの不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性体である、変性水素化ブロックコポリマーであって、水素化ブロックコポリマーが、芳香族ビニルモノマー単位からなるポリマーブロック及び共役ジエンモノマー単位からなるポリマーブロックを含むコポリマーの水素化体であり、芳香族ビニルモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが90%以上の水素化芳香族ビニルポリマーブロック単位であり、共役ジエンモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが95%以上の水素化共役ジエンポリマーブロック単位である、変性水素化ブロックコポリマーを用いる。

Description

変性水素化ブロックコポリマー
 本発明は、有機溶媒に可溶であり、透明性を有すると共に、剛性及び耐熱性を有し、金属等の基材との接着性に優れた変性水素化ブロックコポリマーを提供することを目的とする。
 一般に、ポリエチレンやポリプロピレン等のポリオレフィン類は、軽量で耐水性や耐薬品性、絶縁性があり、取扱いも容易であるため、各種成形加工で形状が付与され、様々な工業材料に用いられている。
 また、ポリオレフィン類は主に炭素-水素から成っているため、その他の素材、例えば金属やガラス等との複合化は一般的に困難であり、その接着性を改良するために様々な発明がなされてきた。
 中でも、有機カルボン酸やその無水物による酸変性による改質により、金属類との熱接着性が飛躍的に改善している(特許文献1及び2)。
 一方、ポリオレフィン類は、耐薬品性が高い故に各種有機溶媒への溶解は困難であり、溶液としての工業的利用は一般に困難である。このため、酸変性ポリオレフィン類の溶媒溶解性を改善させるためにも様々な発明がなされている(特許文献3~5)。
特開平3-166283号公報 国際公開第2018/180862号 特開2004-217807号公報 特開2017-197651号公報 特開2003-012720号公報
 ポリオレフィン類又は酸変性ポリオレフィン類は結晶性樹脂であり、その結晶が有機溶媒への溶解性を低下させる要因である。さらに、かかる結晶性はポリオレフィン類の透明性を阻害することが通常であり、塗膜の透明性や発色性は好ましいものにはならない。このため、上記の各発明ではポリオレフィン類の結晶性を低下させ、溶解性を改良させる検討が行なわれている。
 しかしながら、これら手法でも溶解性は不十分であるのに加え、得られるポリオレフィン類が柔らかくなる傾向があり、耐熱性が低下したり、塗膜表面がべたついたりする虞がある。
 このポリオレフィン類が柔らかくなる傾向は、被着体と被着体に挟まれた状態の接着剤としては有用な場合もあるが、一般的な積層体や塗膜という観点では有用でない場合が多い。また、溶解性を向上させるために、ポリオレフィン類を塩素化する発明もなされているが、塩素化手法が簡単でない上、透明性の点や燃焼時の有害ガス発生の点で問題が生じる。
 以上のように、透明性及び耐熱性を有し、表面がべたつかず、容易に被着材に塗工や積層でき、燃焼時に有毒ガスの発生が抑制される素材が求められている。
 本発明は、このような課題を鑑みてなされたものである。即ち、本発明は、有機溶媒に可溶であり、透明性、剛性、及び耐熱性を有し、金属等の基材との接着性に優れ、燃焼時に有毒ガスの発生が抑制されたポリオレフィン類を提供することにある。
 本発明者は上記課題を解決すべく鋭意検討を行なった結果、ポリオレフィン類として、特定の水素化ブロックコポリマーを用い、これを不飽和カルボン酸及び/又は不飽和カルボン酸無水物で変性することにより、上記課題を解決し得ることを見出した。
 即ち、本発明は以下の特徴を有する。
[1]水素化ブロックコポリマーの不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性体である、変性水素化ブロックコポリマーであって、該水素化ブロックコポリマーが、芳香族ビニルモノマー単位からなるポリマーブロック及び共役ジエンモノマー単位からなるポリマーブロックを含むコポリマーの水素化体であり、前記芳香族ビニルモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが90%以上の水素化芳香族ビニルポリマーブロック単位であり、前記共役ジエンモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが95%以上の水素化共役ジエンポリマーブロック単位である、変性水素化ブロックコポリマー。
[2]前記水素化ブロックコポリマーが、前記水素化芳香族ビニルポリマーブロック単位を少なくとも2個有すると共に、前記水素化共役ジエンポリマーブロック単位を少なくとも1個有する、[1]に記載の変性水素化ブロックコポリマー。
[3]前記不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性率が0.1~2質量%である、[1]又は[2]に記載の変性水素化ブロックコポリマー。
[4]前記不飽和カルボン酸及び/又は不飽和カルボン酸無水物が、無水マレイン酸である、[1]~[3]のいずれか一項に記載の変性水素化ブロックコポリマー。
[5]重量平均分子量(Mw)が5,000~100,000である、[1]~[4]のいずれか一項に記載の変性水素化ブロックコポリマー。
[6][1]~[5]のいずれか一項に記載の変性水素化ブロックコポリマーを、有機溶媒に1~30質量%の濃度で溶解又は懸濁させた、変性水素化ブロックコポリマー溶液又は変性水素化ブロックコポリマースラリー。
[7][1]~[5]のいずれか一項に記載の変性水素化ブロックコポリマーが、基材上に積層された、変性水素化ブロックコポリマー含有積層体。
[8]前記変性水素化ブロックコポリマーを、1種又は2種以上の他の熱可塑性樹脂と溶融共押出成形した、[7]に記載の変性水素化ブロックコポリマー含有積層体。
[9]前記変性水素化ブロックコポリマーを、金属、紙、セラミックス、熱可塑性樹脂又は熱硬化性樹脂の上に熱ラミネート加工した、[7]に記載の変性水素化ブロックコポリマー含有積層体。
[10]前記変性水素化ブロックコポリマーを含む層の厚さが5~500μmである、[9]に記載の変性水素化ブロックコポリマー含有積層体。
[11][1]~[5]のいずれか一項に記載の変性水素化ブロックコポリマーを製造する方法であって、前記水素化ブロックコポリマーを、溶融混練、溶液中反応、固相グラフトのいずれかの方法によりグラフト変性する、変性水素化ブロックコポリマーの製造方法。
[12][1]~[5]のいずれか一項に記載の変性水素化ブロックコポリマーを製造する方法であって、前記水素化ブロックコポリマーを、不飽和カルボン酸及び/又は不飽和カルボン酸無水物によりグラフト変性する、変性水素化ブロックコポリマーの製造方法。
[13][6]に記載の変性水素化ブロックコポリマー溶液又は変性水素化ブロックコポリマースラリーを基材に塗工した後、溶媒を除去して積層体を得る、変性水素化ブロックコポリマー含有積層体の製造方法。
[14]前記変性水素化ブロックコポリマーを含む層の厚さが1~100μmである、[13]に記載の変性水素化ブロックコポリマー含有積層体の製造方法。
 本発明の変性水素化ブロックコポリマーは、有機溶媒に可溶であり、金属、ガラス、プラスチック等の基材に塗工することにより、透明性、剛性、及び耐熱性を有し、且つ、良好な接着強度をもった塗膜となり、積層体を得ることができる。さらに、本発明の変性水素化ブロックコポリマーは、塩素化等を行なわないので、燃焼時に有毒ガスが発生しない。
 また、本発明の溶液又はスラリーは、金属、ガラス、プラスチック等の基材に塗工することができ、有機溶媒を除去することで、透明性、剛性、及び耐熱性を有し、且つ、良好な接着強度をもった塗膜となる。
 さらに、本発明の積層体は、透明で剛性と耐熱性があり、基材に対して良好な接着強度を有する。
 以下に本発明について詳細に説明するが、以下の説明は、本発明の実施の形態の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。
 以下において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
 本発明の変性水素化ブロックコポリマーは、水素化ブロックコポリマーの、不飽和カルボン酸及び/又は不飽和カルボン無水物による変性体である。
<水素化ブロックコポリマー>
 本発明の変性水素化ブロックコポリマーの原料となる水素化ブロックコポリマーは、少なくとも1種の芳香族ビニルモノマー単位からなるポリマーブロック、及び少なくとも1種の共役ジエンモノマー単位からなるポリマーブロックを含むブロックコポリマーの水素化体である。即ち、該水素化ブロックコポリマーは、水素化芳香族ビニルポリマーブロック単位、及び、水素化共役ジエンポリマーブロック単位を有する。
 該水素化芳香族ビニルポリマーブロック単位は、芳香族ビニルモノマー単位からなるポリマーブロックの水素化体であり、その水素化レベルは後述の通りである。
 また、該水素化共役ジエンポリマーブロック単位は、共役ジエンモノマー単位からなるポリマーブロックの水素化体であり、その水素化レベルは後述の通りである。
 また、該水素化ブロックコポリマーは、前記水素化芳香族ビニルポリマーブロック単位を少なくとも2個有すると共に、前記水素化共役ジエンポリマーブロック単位を少なくとも1個有するものである。
 該水素化ブロックコポリマーは、透明性及び材料強度に優れる。
 尚、本明細書において「ブロック」とは、構造的又は組成的に異なった重合セグメントを有するコポリマーからミクロ層分離する重合セグメントをいう。このため、例えば「ブロック単位を少なくとも2個有する」とは、水素化ブロックコポリマーの中に、ミクロ層分離する重合セグメントを少なくとも2個有することをいう。
 前記の芳香族ビニルモノマー単位の原料となる芳香族ビニルモノマーは、一般式(1)で示されるモノマーである。
Figure JPOXMLDOC01-appb-C000001
 ここでRは、水素又はアルキル基、Arはフェニル基、ビフェニル基、ハロフェニル基、アルキルフェニル基、アルキルハロフェニル基、ナフチル基、ピリジニル基又はアントラセニル基である。
 前記アルキル基は、ハロ基、ニトロ基、アミノ基、ヒドロキシ基、シアノ基、カルボニル基及びカルボキシル基のような官能基で単置換若しくは多重置換されていてもよい。アルキル基の炭素数は1~6が好ましい。
 前記のArは、フェニル基又はアルキルフェニル基が好ましく、フェニル基がより好ましい。
 芳香族ビニルモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン(全ての異性体を含み、特にp-ビニルトルエン)、エチルスチレン、プロピルスチレン、ブチルスチレン、ビニルビフェニル、ビニルナフタレン、ビニルアントラセン(全ての異性体)、及びこれらの混合物が挙げられる。
 前記の共役ジエンモノマー単位の原料となる共役ジエンモノマーは、2個の共役二重結合を持つモノマーであればよく、特に限定されるものではない。
 共役ジエンモノマーとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2-メチル-1,3ペンタジエンとその類似化合物、及びこれらの混合物が挙げられる。
 前記1,3-ブタジエンの重合体であるポリブタジエンは、水素化で1-ブテン繰り返し単位の等価物を与える1,2配置、又は水素化でエチレン繰り返し単位の等価物を与える1,4配置のいずれかを含むことができる。
 前記の芳香族ビニルモノマーや、1,3-ブタジエンを含む前記共役ジエンモノマーから構成される重合性ブロックの水素化体は、本発明で使用される水素化ブロックコポリマーに含まれる。好ましくは、水素化ブロックコポリマーは官能基のないブロックコポリマーである。
 尚、「官能基のない」とはブロックコポリマー中に如何なる官能基、即ち、炭素と水素以外の元素を含む基が存在しないことを意味する。
 前記の水素化芳香族ビニルポリマーブロック単位の好ましい例としては、水素化ポリスチレンからなる単位が挙げられ、前記の水素化共役ジエンポリマーブロック単位の好ましい例としては、水素化ポリブタジエンからなる単位が挙げられる。
 そして、水素化ブロックコポリマーの好ましい一態様としては、スチレンとブタジエンの水素化トリブロック又はペンタブロックコポリマーが挙げられ、他の如何なる官能基又は構造的変性剤も含まないことが好ましい。
 水素化芳香族ビニルポリマーブロック単位の含有率は、前記水素化ブロックコポリマーに対して、好ましくは50~99モル%、より好ましくは60~90モル%である。
 水素化芳香族ビニルポリマーブロック単位の比率が上記下限以上であれば剛性が低下することがなく、上記上限以下であれば脆性が悪化することがない。
 また、水素化共役ジエンポリマーブロック単位の含有率は、前記水素化ブロックコポリマーに対して、好ましくは1~50モル%、より好ましくは10~40モル%である。
 水素化共役ジエンポリマーブロック単位の比率が上記下限以上であれば脆性が悪化することがなく、上記上限以下であれば剛性が低下することがない。
 本発明の水素化ブロックコポリマーはSBS、SBSBS、SIS、SISIS、及びSISBS(ここで、Sはポリスチレン、Bはポリブタジエン、Iはポリイソプレンを意味する。)のようなトリブロック、マルチブロック、テーパーブロック及びスターブロックコポリマーを含むブロックコポリマーの水素化によって製造される。
 本発明の水素化ブロックコポリマーはそれぞれの末端に芳香族ビニルポリマーからなるセグメントを含む。このため、本発明の水素化ブロックコポリマーは、少なくとも2個の水素化芳香族ビニルポリマーブロック単位を有することとなる。そして、この2個の水素化芳香族ビニルポリマーブロック単位の間には、少なくとも1つの水素化共役ジエンポリマーブロック単位を有することとなる。
 水素化前のブロックコポリマーは、何個かの追加ブロックを含んでいてもよく、これらのブロックはトリブロックポリマー骨格のどの位置に結合していてもよい。このように、線状ブロックは例えばSBS、SBSB、SBSBS、そしてSBSBSBを含む。コポリマーは分岐していてもよく、重合連鎖はコポリマーの骨格に沿ってどの位置に結合していてもよい。
 水素化ブロックコポリマーの重量平均分子量(以下、「Mw」と略する。)の下限は、好ましくは10,000以上、より好ましくは20,000以上である。また、Mwの上限は、好ましくは120,000以下、より好ましくは100,000以下、更に好ましくは95,000以下、特に好ましくは90,000以下、最も好ましくは85,000以下、極めて好ましくは80,000以下である。
 Mwが上記下限以上であれば機械強度が低下せず、上記上限以下であれば得られる変性水素化ブロックコポリマーの溶剤溶解性が向上する。
 水素化ブロックコポリマーのMwは、ゲルパーミエーションクロマトグラフィー(GPC)の測定によって決定され、その具体的な測定方法は実施例の項に記載される通りである。
 前記水素化芳香族ビニルポリマーブロック単位の水素化レベルは、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、特に好ましくは99.5%以上である。
 前記水素化共役ジエンポリマーブロック単位の水素化レベルは、好ましくは95%以上、より好ましくは99%以上、更に好ましくは99.5%以上である。
 このように高レベルの水素化は、剛性と耐熱性を発現させるために好ましい。
 尚、水素化芳香族ビニルポリマーブロック単位の水素化レベルとは、芳香族ビニルポリマーブロック単位が水素化によって飽和される割合を示し、水素化共役ジエンポリマーブロック単位の水素化レベルとは、共役ジエンポリマーブロック単位が水素化によって飽和される割合を示す。
 前記水素化レベルは、プロトンNMRを用いて決定される。
 本発明の水素化ブロックコポリマーのメルトフローレート(MFR)は通常0.1g/10分以上であり、成形方法や成形体の外観の観点から、好ましくは0.5g/10分以上である。また通常200g/10分以下であり、材料強度の観点から、好ましくは100g/10分以下、より好ましくは50g/10分以下である。
 MFRは、ISO R1133に従って、測定温度230℃、測定荷重2.16kgの条件で測定した。
 水素化ブロックコポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の水素化ブロックコポリマーとしては、市販のものを用いることができ、具体的には三菱ケミカル(株)製:ゼラス(商標登録)が挙げられる。
<水素化ブロックコポリマーの変性操作>
 次に、水素化ブロックコポリマーの変性操作について説明する。この変性操作は、水素化ブロックコポリマーに、変性剤として不飽和カルボン酸及び/又は不飽和カルボン無水物を添加して反応させることによって行なわれる。
 上記変性剤としての不飽和カルボン酸及び/又は不飽和カルボン酸無水物としては、例えば、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸類等の不飽和カルボン酸、及びこれらの無水物が挙げられる。
 また、不飽和カルボン酸無水物としては、具体的には、無水マレイン酸、無水シトラコン酸、無水ナジック酸類が挙げられる。
 尚、ナジック酸類又はその無水物としては、エンドシス-ビシクロ[2.2.1]ヘプト-2,3-ジカルボン酸(ナジック酸(商標))、メチル-エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸(メチルナジック酸(商標))等及びその無水物が挙げられる。
 これらの不飽和カルボン酸及び/又は不飽和カルボン酸無水物の中では、アクリル酸、マレイン酸、ナジック酸、無水マレイン酸、無水ナジック酸が好ましく、無水マレイン酸がより好ましい。
 不飽和カルボン酸及び/又は不飽和カルボン酸無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 上記水素化ブロックコポリマーを上記の不飽和カルボン酸及び/又は不飽和カルボン酸無水物で変性することにより、変性水素化ブロックコポリマーを得ることができる。変性の方法としては、溶液変性、溶融変性、電子線や電離放射線の照射による固相変性、超臨界流体中での変性等が好適に用いられる。
 中でも設備やコスト競争力に優れた溶融変性が好ましく、連続生産性に優れた押出機を用いた溶融混練変性がより好ましい。
 この時用いられる装置としては、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ロールミキサーが挙げられる。中でも連続生産性に優れた単軸押出機、二軸押出機が好ましい。
 一般に、水素化ブロックコポリマーへの不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性は、水素化ブロックコポリマーを構成するブロック単位の1つである水素化共役ジエンポリマーブロック単位の炭素-水素結合を開裂させて炭素ラジカルを発生させ、これに不飽和官能基が付加するというグラフト反応によって行なわれる。
 炭素ラジカルの発生源としては、上述した電子線や電離放射線の他、高温度とする方法や、アゾ化合物、無機過酸化物、有機過酸化物等のラジカル発生剤を用いることもできる。ラジカル発生剤としては、コストや操作性の観点から有機過酸化物を用いることが好ましい。
 上記アゾ化合物としては、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビス(2-メチルブチロニトリル)、ジアゾニトロフェノールが挙げられる。
 上記無機過酸化物としては、例えば、過酸化水素、過酸化カリウム、過酸化ナトリウム、過酸化カルシウム、過酸化マグネシウム、過酸化バリウムが挙げられる。
 上記有機過酸化物としては、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル及びケトンパーオキサイド群に含まれるものが挙げられる。
 具体的には、キュメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;ジクミルパーオキサイド、ジt-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3等のジアルキルパーオキサイド;ラウリルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド;t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエイト、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル;シクロヘキサノンパーオキサイド等のケトンパーオキサイドが挙げられる。
 これらのラジカル発生剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 前記グラフト反応による変性としては、前記水素化ブロックコポリマーを、溶融混練、溶液中反応、固相グラフトのいずれかの方法によるグラフト変性や、前記した不飽和カルボン酸及び/又は不飽和カルボン酸無水物によるグラフト変性が挙げられる。
[溶融混練による変性]
 一般的に用いられる溶融混練による変性は、水素化ブロックコポリマー、不飽和カルボン酸及び/又は不飽和カルボン酸無水物、有機過酸化物を配合し、混練機、押出機に投入し、加熱溶融混練しながら押出を行ない、先端ダイスから出てくる溶融樹脂を水槽等で冷却して変性水素化ブロックコポリマーを得るものである。
 上記水素化ブロックコポリマーと上記不飽和カルボン酸及び/又は不飽和カルボン酸無水物との配合比率は、上記水素化ブロックコポリマー100質量部に対し、上記不飽和カルボン酸及び/又は不飽和カルボン酸無水物が0.2~5質量部である。
 上記水素化ブロックコポリマーに対する上記不飽和カルボン酸及び/又は不飽和カルボン酸無水物の配合比率が上記下限以上であれば、本発明の効果を奏するために必要な所定の変性率が得られる。また、上記上限以下であれば、未反応の不飽和カルボン酸及び/又は不飽和カルボン酸無水物が残留することがなく、接着強度に悪影響を生じることもない。
 上記不飽和カルボン酸及び/又は不飽和カルボン酸無水物と上記有機過酸化物との配合比率は、上記不飽和カルボン酸及び/又は不飽和カルボン酸無水物100質量部に対し、上記有機過酸化物が0.2~100質量部である。
 上記不飽和カルボン酸及び/又は不飽和カルボン無水物に対する上記有機過酸化物の配合比率が上記下限以上であれば、本発明の効果を奏するために必要な所定の変性率が得られる。また、上記上限以下であれば、水素化ブロックコポリマーの劣化が生じず、色相が悪化することがない。
 また溶融混練変性条件としては、例えば、単軸押出機、二軸押出機においては150~300℃の温度にて押出すことが好ましい。
[溶液中反応による変性]
 一般的に用いられる溶液中反応による変性は、有機溶媒中に水素化ブロックコポリマー、不飽和カルボン酸及び/又は不飽和カルボン酸無水物、ラジカル発生剤を投入し、加熱することで変性水素化ブロックコポリマーを得るものである。
 前記有機溶媒は、ラジカル発生剤と反応し得る活性水素等の官能基を持たず、且つ水素化ブロックコポリマーを溶解し得るものであれば特に制約はない。例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、t-ブチルベンゼンが挙げられ、溶解度及び安定性の観点から、ジクロロベンゼンが好ましい。
 反応濃度は、有機溶媒中での水素化ブロックコポリマーの溶解度と、溶液の粘度にもよるが、5~20質量%が好ましい。反応濃度が前記下限以上であれば生産性が良好となり、前記上限以下であれば溶液粘度が上昇せず、攪拌や除熱が容易となる。
 水素化ブロックコポリマーに対する、不飽和カルボン酸及び/又は不飽和カルボン酸無水物、及びラジカル発生剤の配合比率は、溶融混練による変性と同様である。
 反応温度は、有機溶媒の沸点や用いるラジカル発生剤の半減期温度にもよるが、80~150℃が好ましい。反応温度が前記下限以上であれば反応速度の低下がなく、前記上限以下であれば水素化ブロックコポリマーの分解がなく、反応が安定する。
 反応時間は、グラフト率の目標値にもよるが、1~10時間が好ましい。反応終了後は、公知の方法に従って反応物を晶析、濾過、洗浄、乾燥して回収することができる。
 前記晶析は、反応溶液の温度を低下させる、減圧留去して溶液濃度を上昇させる、又は貧溶媒を投入することにより、固体を析出させることができる。
 前記濾過は、濾紙、濾布等を組み合わせた濾過装置を用いて行なうことができる。また、遠心濾過器や加圧濾過器、ウォッシュアンドドライフィルター等の装置を用いることもできる。
 前記洗浄には、変性水素化ブロックコポリマーは溶解しないが、未反応の不飽和カルボン酸及び/又は不飽和カルボン酸無水物を溶解するものを用いることが好ましい。具体的にはメタノール、アセトンが好ましい。
 前記乾燥は、熱風乾燥器や減圧乾燥器にて残留溶媒を除去することにより行なわれる。
 これらの操作により、溶液中反応により得られた変性水素化ブロックコポリマーを、溶融混練による変性と同様に、本発明の目的に使用することができる。
[固相グラフトによる変性]
 一般的に用いられる固相グラフトによる変性は、加熱ジャケット付きの撹拌機中で、不飽和カルボン酸及び/又は不飽和カルボン酸無水物、及びラジカル発生剤を、水素化ブロックコポリマーに含浸させ、次いで水素化ブロックコポリマーが溶融しない程度の温度領域で、グラフト反応を行ない、変性水素化ブロックコポリマーを得るものである。
 含浸を容易にするため、水素化ブロックコポリマーを粉体状態として投入することが好ましい。また、不飽和カルボン酸及び/又は不飽和カルボン酸無水物は液体状態であることが好ましく、粉体である場合には、融点程度まで加熱して液体として投入することが好ましい。
 撹拌機の設定温度は、不飽和カルボン酸及び/又は不飽和カルボン酸無水物の融点以上、水素化ブロックコポリマーのガラス転移点未満となることが好ましい。従って選択されるラジカル発生剤は上記温度範囲で活性を示すものが好ましい。
 反応は混合物を加熱しながら攪拌することで進行し、反応終了後、変性水素化ブロックコポリマーは固体状態で得られる。
[変性水素化ブロックコポリマーの分子量低下]
 上記変性水素化ブロックコポリマーの分子量低下を行なう場合、変性水素化ブロックコポリマーと有機過酸化物との配合比率は、上記変性水素化ブロックコポリマー100質量部に対し、上記有機過酸化物が0.01~2質量部である。
 また溶融混練変性条件としては、例えば単軸押出機、二軸押出機においては150~300℃の温度にて押出すことが好ましい。
[変性率]
 上記変性水素化ブロックコポリマーの、上記不飽和カルボン酸及び/又は不飽和カルボン無水物による変性率は0.1~2質量%が好ましい。
 変性率が上記下限以上であれば、十分な接着強度が得られる。また、上記上限以下であれば、臭気の発生や色の悪化がなく、有機溶媒への溶解性も良好となる。
 上記変性水素化ブロックコポリマーの変性率は、上記変性水素化ブロックコポリマーをメチルエステル化処理した後、プロトンNMRを用いて決定される。
<変性水素化ブロックコポリマー>
 本発明の変性水素化ブロックコポリマーは、水素化ブロックコポリマーの、不飽和カルボン酸及び/又は不飽和カルボン無水物による変性体である。
 該水素化ブロックコポリマーは、芳香族ビニルモノマー単位からなるポリマーブロック及び共役ジエンモノマー単位からなるポリマーブロックを含むコポリマーの水素化体である。
 前記芳香族ビニルモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが90%以上の水素化芳香族ビニルポリマーブロック単位であり、前記共役ジエンモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが95%以上の水素化共役ジエンポリマーブロック単位である。
 前記水素化芳香族ビニルポリマーブロック単位の水素化レベルは、好ましくは95%以上、より好ましくは98%以上、更に好ましくは99.5%以上である。
 また、前記水素化共役ジエンポリマーブロック単位の水素化レベルは、好ましくは99%以上、より好ましくは99.5%以上である。
 このように高レベルの水素化は、剛性と耐熱性を発現させるために好ましい。
 ここで、水素化レベルの意味と、水素化レベルの決定方法は、水素化ブロックコポリマーの項に記載した内容と同じである。
 前記水素化ブロックコポリマーは、前記水素化芳香族ビニルポリマーブロック単位を少なくとも2個有すると共に、前記水素化共役ジエンポリマーブロック単位を少なくとも1個有する。
 水素化芳香族ビニルポリマーブロック単位の含有率は、変性水素化ブロックコポリマーに対して、好ましくは50~99モル%、より好ましくは60~90モル%である。
 水素化芳香族ビニルポリマーブロック単位の比率が上記下限以上であれば剛性が低下することがなく、上記上限以下であれば脆性が悪化することがない。
 また、水素化共役ジエンポリマーブロック単位の含有率は、変性水素化ブロックコポリマーに対して、好ましくは1~50モル%、より好ましくは10~40モル%である。
 水素化共役ジエンポリマーブロック単位の比率が上記下限以上であれば脆性が悪化することがなく、上記上限以下であれば剛性が低下することがない。
 変性水素化ブロックコポリマーのMwの下限は、好ましくは5,000以上、より好ましくは10,000以上である。また、Mwの上限は、好ましくは100,000以下、より好ましくは80,000以下である。具体的には、5,000以上100,000以下が好ましく、5,000以上80,000以下、又は10,000以上100,000以下がより好ましく、10,000以上80,000以下が更に好ましい。
 変性水素化ブロックコポリマーのMwが上記下限以上であれば、材料強度が低下せず、接着性及び耐熱性が低下しないので好ましい。また、Mwが上記上限以下であれば、有機溶媒への溶解性が低下しないので好ましい。
 変性水素化ブロックコポリマーのMwは、GPCの測定によって決定される。
 前記変性水素化ブロックコポリマーのMwは、水素化ブロックコポリマーを変性する際に用いる有機過酸化物の量で制御することができる。
 水素化ブロックコポリマーの変性操作については前記の通りである。また、水素化ブロックコポリマーの変性操作と同様に、変性水素化ブロックコポリマーに更に有機過酸化物を配合し、ブレンドして混練機、押出機に投入し加熱溶融混練しながら押出を行なうことにより、Mwを変化させた変性水素化ブロックコポリマーを得ることができる。
 水素化ブロックコポリマーや変性水素化ブロックコポリマーは、有機過酸化物と処理することにより、水素化ブロックコポリマーや変性水素化ブロックコポリマーを構成するブロック単位の1つである、水素化共役ジエンポリマーブロック単位の炭素-水素結合が一旦開裂し、生じた炭素ラジカル構造から、β水素脱離を伴う炭素-炭素結合開裂が生じて低分子量化を引き起こし、高い分子量の水素化ブロックコポリマー又は変性水素化ブロックコポリマーから、低い分子量の変性水素化ブロックコポリマーを得ることができる。
 この操作は変性後に行なってもよいし、変性と同時に行なってもよい。即ち、分子量低下を変性と同時に行なうため、有機過酸化物を多く配合することで、変性と同時に低分子量化を生じさせることができる。
 変性水素化ブロックコポリマーの誘電率は、低いことが好ましい。具体的には、3.0以下が好ましく、2.5以下がより好ましい。誘電率が3.0以下であれば信号伝達速度が低下しない。
 変性水素化ブロックコポリマーの誘電正接は、低いことが好ましい。具体的には、0.003以下が好ましく、0.002以下がより好ましい。誘電正接が0.003以下であれば電気信号の信頼性が低下しない。
 これらの低誘電特性は、電気・電子回路用積層板等の電気・電子部品の材料と樹脂材料に要求される重要な性能である。
 近年、情報伝達量、速度の向上のため、通信周波数の高周波化が進んでいる。例えば、電気信号の伝達速度は物質の(比)誘電率の平方根に反比例するため、電気信号の伝達速度を向上させるには誘電率は低い方が好ましい。また、電気信号は伝送によって損失が発生するが、伝送損失は物質の誘電正接に比例するため、電気信号の伝送損失を低下させるためには誘電正接は低い方が好ましい。
 低い誘電率、低い誘電正接を有する物質を用いることで、高速で情報信号の減衰が少なく、通信の高い信頼性が確保できることを意味する。
<変性水素化ブロックコポリマーの溶液又はスラリー>
 本発明の変性水素化ブロックコポリマーは、有機溶媒に溶解又は懸濁させて、溶液又はスラリーとすることができる。
 ここで溶液とは、上記変性水素化ブロックコポリマーが有機溶媒中に溶解した状態を表す。即ち、変性水素化ブロックコポリマーが有機溶媒中に分子分散した状態を表す。
 また、スラリーとは、有機溶媒中に変性水素化ブロックコポリマーの粒子が混ざりこんだ懸濁体を表す。
 一般にポリオレフィン類は有機溶媒への溶解性が悪く、仮に溶けてもゲル化して塗工に適さないものであるが、本発明の変性水素化ブロックコポリマーは、この点で特異的な性質を示すものである。
 本発明の変性水素化ブロックコポリマーが溶解し得る有機溶媒としては、芳香族系の溶媒、脂肪族系の溶媒、脂環式の溶媒が挙げられる。
 芳香族系の溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、クロロベンゼン、ブロモナフタレンが挙げられる。脂肪族系の溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカンが挙げられる。脂環式の溶媒としては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロデカンが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、取扱い性や留去の容易さの観点から、トルエン、シクロヘキサンが好ましい。
 また、本発明の効果を阻害しない程度であれば上記以外の有機溶媒を添加することもできる。使用し得るその他の有機溶媒としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、ベンゾフェノン等のケトン類;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類;フェノール、クレゾール、ナフトール等のフェノール類;エチレングリコールモノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類が挙げられる。
 上記の溶液又はスラリー中の、変性水素化ブロックコポリマーの濃度としては1~30質量%が好ましい。
 上記変性水素化ブロックコポリマーの濃度が上記下限以上であれば、溶液粘度が適切となり塗工作業に好適である。また上記上限以下であれば、溶液粘度が適切であり、ゲル化が生じることもない。
 上記の溶液又はスラリー中の変性水素化ブロックコポリマーの濃度は、5~10質量%がより好ましい。
<その他の成分>
 本発明の溶液又はスラリーには、その機能性の更なる向上を目的として、以上で挙げたもの以外の成分を含んでいてもよい。
 このようなその他の成分としては、熱硬化性樹脂や光硬化性樹脂、硬化促進剤、紫外線防止剤、酸化防止剤、カップリング剤、可塑剤、フラックス、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤、無機フィラー、有機フィラー等が挙げられる。
<変性水素化ブロックコポリマーの積層体>
 本発明の変性水素化ブロックコポリマーは、金属、ガラス及びプラスチック等の基材に対する接着強度が良好であり、べたつかない接着表面が得られ、金属、ガラス又はプラスチック等の基材との積層体を得ることができる。
 積層の方法は特に決まっておらず、溶融共押出成形、熱ラミネート加工、インサートインジェクション成形等、公知の積層方法を用いることができる。
 上記の溶融共押出成形は、本発明の変性水素化ブロックコポリマーを、1種又は2種以上の他の熱可塑性樹脂と溶融共押出成形する方法であり、これにより、変性水素化ブロックコポリマーを含有する積層体を製造することができる。
 前記他の熱可塑性樹脂としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体等のエチレン-α-オレフィン共重合体;ポリエチレン、ポリプロピレン、ポリブテン-1樹脂等のポリオレフィン樹脂;ポリフェニレンエーテル系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂;アラミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル系樹脂;ポリ乳酸、ポリブチレンサクシネート、ポリカプロラクトン等の脂肪族ポリエステル系樹脂;ポリカーボネート系樹脂;ポリアリレート系樹脂;変性ポリフェニレンオキシド樹脂;ポリサルホン樹脂;ポリフェニレンサルファイド樹脂;ポリエーテルサルホン樹脂;ポリエーテルケトン樹脂;ポリエーテルエーテルケトン樹脂;ポリイミド樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリオキシメチレン系樹脂;ポリメチルメタクリレート系樹脂;ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサン等のケイ素含有軟質重合体;ポリスチレン等のビニル芳香族重合体;エチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-非共役ジエン共重合ゴム(EPDM)、エチレン-ブテン共重合ゴム(EBM)、エチレン-プロピレン-ブテン共重合ゴム等のエチレン系エラストマー;スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-エチレン/ブチレン-スチレンブロック共重合体、スチレン-エチレン/プロピレン-スチレンブロック共重合体等のスチレン系エラストマー;ポリブタジエン;水素化ビニル芳香族重合体、水素化スチレン/ブタジエン又はスチレン/イソプレンブロック共重合体を含むその他の水素化ビニル芳香族ブロック共重合体;シクロオレフィン(共)重合体が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 上記の熱ラミネート加工は、本発明の変性水素化ブロックコポリマーを、金属、紙、セラミックス、熱可塑性樹脂又は熱硬化性樹脂等のラミネート基材の上に熱ラミネート加工する方法であり、これにより、変性水素化ブロックコポリマーを含有する積層体を製造することができる。
 上記熱ラミネート加工は、予め製造しておいた変性水素化ブロックコポリマーからなるフィルムを、ラミネート基材となるフィルム又はシートの表面に接触させ、これらを加熱して融着させる方法である。具体的には、複数のフィルム又はシートを、重ねた状態で加熱ロールに通過させることにより熱融着させる方法である。
 変性水素化ブロックコポリマーをフィルムとするには、公知の方法を用いることができる。具体的にはTダイ溶融押出キャストフィルム成形法、インフレーションフィルム成形法、カレンダーフィルム成形法、押出ラミネート成形法を用いることができる。この際、単層フィルムとして成形することもできるし、共押出成形法によって複層フィルムを成形することもできる。
 中でも成形性に優れ、調整の容易なTダイ溶融押出キャストフィルム成形法が好ましい。
 Tダイ溶融押出キャストフィルム成形法においては、単軸又は二軸押出機の先端に装着した、スリット幅が0.1~2mm程度のT型スリットダイより、温度200~300℃で変性水素化ブロックコポリマーを溶融押出し、次いで20~80℃に設定した冷却用ロール表面に押出膜を接触させて冷却し、巻き取ることでフィルムが得られる。
 必要に応じて、フィルム表面にコロナ処理を施すことも可能である。
 得られたフィルムを、金属、紙、セラミックス、熱可塑性樹脂又は熱硬化性樹脂等のラミネート基材と重ねる様に配置し、加熱金属ロール及びゴムロールにて圧力をかけながら挟み込み、熱圧着させることで、熱ラミネートによる積層が可能となる。
 用いる変性水素化ブロックコポリマーからなるフィルムが複層構成である場合は、変性水素化ブロックコポリマーからなる層が、ラミネート基材と接触する様に配置する必要がある。
 熱ラミネート加工時の加熱ロールの温度は、必要に応じて設定されるが、変性水素化ブロックコポリマーのガラス転移点以上であることが必要である。熱ラミネートの加工速度や、フィルム、ラミネート基材の厚さや圧着圧力にもよるが、変性水素化ブロックコポリマーのガラス転移点より10~50℃高く設定することが好ましい。
 設定温度がガラス転移点の10℃以上であれば、熱ラミネート加工により十分な接着強度が得られる。また、ガラス転移点の50℃以下であれば、変性水素化ブロックコポリマーからなるフィルムが溶けたり、ロールに張り付くことがない。
 熱ラミネート加工時の圧着圧力は、ロール間線圧として、1~40kg/mが好ましい。圧着圧力が前記下限以上であれば、熱ラミネート加工により十分な接着強度が得られる。また、圧着圧力が前記上限以下であれば、シワが生じることなく、きれいな外観が得られる。
 熱ラミネート加工時の加工速度は、接着強度と生産性のバランスの点で、0.5~50m/分が好ましい。加工速度が前記下限以上であれば、生産性が十分であり、経済的に好ましい。また、加工速度が前記上限以下であれば、十分な接着強度が得られる。
 また、本発明の変性水素化ブロックコポリマーの溶液又はスラリーを、金属、ガラス又はプラスチック等の基材に塗工し、その後に溶媒を除去することでも積層体を得ることができる。
 塗工の方法としてはバーコーター、ブレードコーター、ダイコーター、グラビアロールコーター、スプレーコート等の他、刷毛で塗工することも可能である。
 塗工後に塗工表面より溶媒を留去することも可能である。通常はホットエアーの吹き付けによるものが好ましいが、減圧処理と加熱を組み合わせたり、同時に加圧プレスを行なうことも可能である。
 上記の積層体を得る被塗工素材である基材としては、例えば、銅、アルミニウム、鉄、ステンレス、ニッケル、亜鉛、チタン、タングステン等の金属類や合金類;ガラス板、ガラス繊維マット、ガラス繊維クロス、ガラスウール等のガラス類;ポリエチレン、ポリプロピレン、ポリブテン、エチレン-αオレフィン共重合体、プロピレン-αオレフィン共重合体、エチレン-アクリルエステル共重合体、エチレン-ビニルモノマー共重合体、ポリアミド、エチレン-酢酸ビニル共重合体(EVOH)等のプラスチックが挙げられる。
 これらは板状、フィルム状であってもその他の形状が付与されたものでもよく、単一素材であっても複合化されていてもよく、また単層であっても積層化されたものでもよい。
 これら基材の内では、回路基板等の電子部材向けであれば銅が電気伝導性や経済性の観点で好ましく、手すりや合板用途であれば鉄やステンレスが経済性、剛性の点で好ましく、電池包装等の用途であればアルミニウムが軽量性、加工性の観点で好ましく、食品包装用途であればポリアミドやEVOHがガスバリア性発現の観点で好ましい。
 熱ラミネート加工により得られた積層体において、変性水素化ブロックコポリマーを含む層の厚さは、5~500μmが好ましい。
 上記層の厚さが5μm以上であれば、層としての強度が十分となり、結果として積層体の接着強度が十分となる。
 また、上記層の厚さが500μm以下であれば、熱ラミネート加工時の熱の伝達が十分となり、また変性水素化ブロックコポリマーを含む層の剛性が高くならず、結果として積層体の接着強度が十分となり、積層体としての柔軟性が失われることもない。
 塗工により得られた積層体において、変性水素化ブロックコポリマーを含む層の厚さは、1~100μmが好ましい。
 上記層の厚さが1μm以上であれば、塗膜の密着強度が低下することがない。
 また、上記層の厚さが100μm以下であれば、塗工時の厚さの制御が容易となり、生産性への影響がない。
<用途>
 本発明の変性水素化ブロックコポリマーは、透明であり、耐熱性があって有機溶媒への溶解性に優れ、金属、ガラス及びプラスチック等の基材に対する接着性に優れるという効果を奏する。
 また、本発明の変性水素化ブロックコポリマーを含む溶液も、金属、ガラス及びプラスチック等の基材に対する接着性に優れる積層体を与えるという効果を奏する。
 このため、接着剤、塗料、土木建築用材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に、電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。
 本発明の変性水素化ブロックコポリマー又はこれを用いた溶液又はスラリーの用途の一例としては、銅箔積層板、フレキシブルプリント基板、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板;フィルム状接着剤、液状接着剤等の接着剤;半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板が挙げられる。
<導電性金属層を含有する積層体>
 本発明の変性水素化ブロックコポリマー、これを用いた溶液又はスラリーは、前述の電気・電子回路用積層板等の導電性金属層を含有する積層体としても好適に用いることができる。
 この導電性金属層を含有する積層体は、本発明の変性水素化ブロックコポリマーを含む層と導電性金属層とを積層したものであり、本発明の変性水素化ブロックコポリマーを含む層と導電性金属層とを積層したものであれば、上記電気・電子回路以外に、キャパシタを有する回路等の積層体を含む。
 尚、導電性金属層を含有する積層体中には2種以上の変性水素化ブロックコポリマーからなる層が形成されていてもよく、少なくとも1つの層において本発明の変性水素化ブロックコポリマーが用いられていればよい。また、2種以上の導電性金属層が形成されていてもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。尚、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。
<分子量>
・装置 :東ソー(株)製 GPC HLC-832GPC/HT
・検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
・カラム:昭和電工(株)製 AD806M/S 3本(カラムの較正は東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行ない、溶出体積と分子量の対数値を3次式で近似した。
・測定温度:135℃
・濃度 :20mg/10mL
・注入量:0.2ml
・溶媒 :o-ジクロロベンゼン
・流速:1.0ml/分
<ポリマーブロックの比率>
[カーボンNMRによる測定]
・装置:Bruker社製「AVANCE400分光計」
・溶媒:o-ジクロロベンゼン-h/p-ジクロロベンゼン-d混合溶媒
・濃度:0.3g/2.5mL
・測定:13C-NMR
・共鳴周波数:400MHz
・フリップ角:45度
・データ取得時間:1.5秒
・パルス繰り返し時間:15秒
・積算回数:3600
・測定温度:100℃
H照射:完全デカップリング
<水素化芳香族ビニルポリマーブロック単位の水素化レベル、水素化共役ジエンポリマーブロック単位の水素化レベル>
[プロトンNMRによる測定]
・装置:Bruker社製「AVANCE400分光計」
・溶媒:テトラクロロエタン
・濃度:0.045g/1.0mL
・測定:H-NMR
・共鳴周波数:400MHz
・フリップ角:45度
・データ取得時間:4秒
・パルス繰り返し時間:10秒
・積算回数:64
・測定温度:80℃
・水素化芳香族ビニルポリマーブロック単位の水素化レベル:6.8~7.5ppmの積分値低減率
・水素化共役ジエンポリマーブロック単位の水素化レベル:5.7~6.4ppmの積分値低減率
<変性水素化ブロックコポリマーの変性率>
[プロトンNMRによる測定]
・装置:BRUKER社製「AVANCE400分光計」
・溶媒:重o-ジクロロベンゼン
・濃度:20mg/0.62mL
・測定:H-NMR
・共鳴周波数:400MHz
・フリップ角:45度
・データ取得時間:4秒
・パルス繰り返し時間:10秒
・積算回数:64
・測定温度:120℃
・変性水素化ブロックコポリマーの変性率:変性水素化ブロックコポリマーをメチルエステル化処理した後、3.42~3.94ppmのシグナルをマレイン酸ジメチルとしてカウントし、その積分値の1/2から算出
<透明性>
 住友重機(株)製SE-18D射出成型機を用い、成形温度220℃、金型温度40℃にて2mm×40mm×80mmの平板を射出成型した。この板を用い、JIS K7105(1981)記載の測定法に準じてHAZE測定を行なった。
 測定したHAZEの値をもって透明性の評価とした。評価結果を表に示す。尚、HAZE値は低いほど透明性が良好である。
<耐熱性>
 上記で得られた板を3枚重ね、JIS K7206(1999)記載の方法にてビカット軟化温度を測定した。測定したビカット軟化温度の値をもって耐熱性の評価とした。評価結果を表に示す。尚、ビカット軟化温度は高いほど耐熱性が高い。
<誘電特性(誘電率・誘電正接)>
 成形温度240℃にて2mm×100mm×100mmのプレスシートを作成した。このシートを試験片とし、ベクトルネットワークアナライザ(KEYSIGHT PNA N5227A)を用いて、測定周波数50GHz、温度25℃、湿度40%にて誘電率(ε’)と誘電正接(tanδ)の測定を行なった。
<接着性>
 アルミニウム板として、JISH4000 A5052P 1mm×70mm×150mmのアルミ板を用いた。
 ステンレス板として、JISG4305 SUS304 BA 0.5mm×70mm×150mmのステンレス板を用いた。
 銅板として、JISH3100 C1100P 0.8mm×25mm×150mmの銅板を用いた。
 ポリアミド板として、DSM社製ノバミッド1020Cを用い、住友重機(株)製SE-18D射出成型機を用い、成形温度240℃、金型温度40℃にて2mm×40mm×80mmの平板を射出成型したものを用いた。
 EVOH板として、クラレ製エバールF101Bを用い、住友重機(株)製SE-18D射出成型機を用い、成形温度220℃、金型温度40℃にて2mm×40mm×80mmの平板を射出成型したものを用いた。
 用いる金属板及び樹脂板は、表面をアセトンで拭いた後、溶液を厚さ50μmとなるようにワイヤーバーコーターで塗工し、80℃の温風を吹き付けて溶媒を除去し、減圧乾燥器にて50℃、2時間減圧処理を行なった。
 その後、塗工面をNTカッターにて幅1mmの碁盤目を100個切り、そのうえでニチバン製布粘着テープLS NO.123を張り付けた後に剥がし、100個の碁盤目中何個残っているかを観察し、接着性評価とした。
 評価結果を表1に示す。残っている碁盤目の数が多いほど接着性は良好である。
<原材料>
[水素化ブロックコポリマー(a-1)]
 三菱ケミカル(株)製 ゼラス(商標登録)MC930
・MFR(230℃、2.16kg):1g/10分
・水素化芳香族ビニルポリマーブロック単位:含有率65モル%、水素化レベル99.5%以上の水素化ポリスチレン
・水素化共役ジエンポリマーブロック単位:含有率35モル%、水素化レベル99.5%以上の水素化ポリブタジエン
・ブロック構造:ペンタブロック構造、合計水素化レベル:99.5%以上
 水素化ブロックコポリマー(a-1)は、不飽和カルボン酸及び/又は不飽和カルボン無水物による変性がされていない水素化ブロックコポリマーである。
[有機過酸化物]
 日本油脂(株)製 パーヘキサ25B
・2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン
<実施例1>
[変性水素化ブロックコポリマー(A-1)]
 水素化ブロックコポリマー(a-1) 100質量部に対して、無水マレイン酸 1.3質量部、有機過酸化物 0.0065質量部を配合し、十分に攪拌した。
 その後、二軸押出機(日本製鋼(株)製、TEX25αIII)を使用し、シリンダー温度280℃、スクリュー回転数400rpm、吐出量10kg/hで溶融混練し、押出された溶融ストランドを水冷、カッティングすることにより、変性水素化ブロックコポリマー(A-1)を得た。
 得られたA-1の物性は下記の通りであり、表1にも示す。
・MFR(230℃、2.16kg):3g/10分
・水素化芳香族ビニルポリマーブロック単位:含有率65モル%、水素化レベル99.5%以上の水素化ポリスチレン
・水素化共役ジエンポリマーブロック単位:含有率35モル%、水素化レベル99.5%以上の水素化ポリブタジエン
・ブロック構造:ペンタブロック構造、合計水素化レベル:99.5%以上
・無水マレイン酸変性率:1.2質量%
 200mLのセパラブルフラスコに、5gのA-1と、100ml(86.2g)のトルエンを投入し、60℃に加熱して1時間攪拌した。A-1は全て溶解し無色透明の溶液となった。
 A-1及びA-1の溶液を用いて、上記の各評価を行なった。評価結果を表1に示す。
<実施例2>
[変性水素化ブロックコポリマー(A-2)]
 得られたA-1 100質量部に対して、有機過酸化物 1質量部を配合し、十分に攪拌した。
 その後、実施例1と同様に溶融混練して、変性水素化ブロックコポリマー(A-2)を得た。得られたA-2の物性を表1に示す。
 A-1の代わりにA-2を用いること以外は実施例1と同様にして、トルエン溶液を得た。A-2は全て溶解して無色透明の溶液となった。
 A-2及びA-2の溶液を用いて、上記の各評価を行なった。評価結果を表1に示す。
<比較例1>
[水素化ブロックコポリマー(a-1)]
 A-1の代わりにa-1を用いること以外は実施例1と同様にして、トルエン溶液を得た。a-1は全て溶解して無色透明の溶液となった。
 a-1及びa-1の溶液を用いて上記の各評価を行なった。評価結果を表1に示す。
<比較例2>
[変性ブロックコポリマー(a-2)]
 スチレン-ブタジエンブロック共重合体水素化物の無水マレイン酸変性体として、旭化成(株)製タフテックM1943を用いた。
 a-2は、ブロックコポリマーの無水マレイン酸変性体であるが、原料となるブロックコポリマーの芳香族ビニルポリマーブロック単位が水素化されていないものである。
 A-1の代わりにa-2を用いること以外は実施例1と同様にして、トルエン溶液を得た。a-2は全て溶解して無色透明の溶液となった。
 a-2及びa-2の溶液を用いて上記の各評価を行なった。評価結果を表1に示す。
<比較例3>
[変性ポリオレフィン(a-3)]
 プロピレン-ブテン共重合体として、三井化学(株)タフマーXM7070を用い、実施例1と同様に無水マレイン酸で変性し、酸変性プロピレン-ブテン共重合体(a-3)を得た。
 A-1の代わりにa-3を用いること以外は実施例1と同様にして、トルエン溶液を得た。a-3は全て溶解して無色透明の溶液となった。
 a-3及びa-3の溶液を用いて上記の各評価を行なった。尚、a-3は透明性及び耐熱性が劣ることから、誘電特性は評価しなかった。評価結果を表1に示す。
<比較例4>
[変性ポリエチレン(a-4)]
 酸変性ポリエチレンとして、三菱ケミカル(株)製モディックM704を用いた。
 A-1の代わりにa-4を用いること以外は実施例1と同様にして、トルエンに溶解しようとしたが、a-4の全量は溶解せず、濁ったゲル状となり、塗工に供することができなかった。このため接着性を評価することはできなかった。また、a-4は透明性及び耐熱性が劣ることから、誘電特性は評価しなかった。評価結果を表1に示す。
<比較例5>
[変性ポリプロピレン(a-5)]
 酸変性ポリプロピレンとし、三菱ケミカル(株)製モディックP908を用いた。
 A-1の代わりにa-5を用いること以外は実施例1と同様にして、トルエンに溶解しようとしたが、a-5は溶解せず、塗工に供することができなかった。このため接着性を評価することはできなかった。また、a-5は透明性が劣ることから、誘電特性は評価しなかった。評価結果を表1に示す。
<比較例6>
[ブロックコポリマー(a-6)]
 スチレン-ブタンジエンブロック共重合体水素化物として、クレイトンポリマー社製クレイトンG1652を用いた。
 a-6は、芳香族ビニルポリマーブロック単位が水素化されていなく、酸変性もされていないブロックコポリマーである。
 a-6は、従来品の耐熱性及び誘電特性のレベルを示すためのものであり、耐熱性及び誘電特性のみを評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 Labtech Engineering社製多層フィルム成形機にて260℃、速度5m/分にて、表面層としてa-1 50μm、中間層としてa-1 10μm、シール層としてA-1 20μmを用い、3層フィルムを成形した。
 テスター産業社製ラミネーターにて、ナイロン/アルミ箔 構成のフィルムと上記で得られた3層フィルムを用い、3層フィルムのシール層をアルミ面と接触する様に設定し、ロール温度200℃、速度0.75m/分、ニップ圧0.3MPa(線圧1.5kg/m)にて熱ラミネートを行なった。
 その後、幅15mmの短冊に切り出して、下記の方法で90度剥離試験を行ない、アルミ接着強度を測定した。結果を表2に示す。
[90度剥離試験]
 90度剥離試験は、通常の引張試験機と、90度剥離試験用の治具を用いて測定する。治具により上記短冊試験片を水平に固定し、予め端部を少し剥がしておく。この剥がした部分を引張試験機の上部掴み部で掴み、上方へ引張ることで、短冊試験片の向きに対して90度の角度で剥離することができる。
 剥離点は剥離の進行と共に水平に移動するので、短冊試験片を固定した治具を水平にスライドさせて、常に剥離点が上部掴み部の真下に位置するようにして剥離する。
 引張速度は300mm/分、測定環境は温度23℃、湿度40%RHである。
<比較例7>
 シール層にa-1を用いること以外は実施例3と同様にして、アルミ接着強度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表1より、本発明の変性水素化ブロックコポリマー(実施例1,2)は、良好な透明性及び耐熱性を有すると共に、誘電特性に優れ、各種基材に対して良好な接着性を示すことがわかった。
 これに対して、変性前の水素化ブロックコポリマー(比較例1)は、良好な透明性及び耐熱性を有し、誘電特性に優れるものの、基材との接着性が十分ではないことがわかった。
 芳香族ビニルポリマーブロック単位が水素化されていない変性ブロックコポリマー(比較例2)は、透明性及び耐熱性が劣り、誘電特性は優れるものの、基材との接着性が殆ど得られないことがわかった。
 変性ポリオレフィン(比較例3)は、透明性及び耐熱性が劣り、基材との接着性が十分ではないことがわかった。
 変性ポリエチレン(比較例4)及び変性ポリプロピレン(比較例5)は、溶媒に溶解しないことから、塗工による接着性を評価することができなかった。
 ブロックコポリマー(比較例6)は、従来技術を示すものである。比較例6との対比から、本発明の変性水素化ブロックコポリマーは、良好な耐熱性を有し、誘電特性は従来技術と同等以上であることがわかった。
 表2より、本発明の変性水素化ブロックコポリマーを用いた積層体(実施例3)は、アルミ箔に熱ラミネート加工することで、アルミ箔に対して良好な接着性を示すことがわかった。
 これに対して、変性前の水素化ブロックコポリマーを用いた積層体(比較例7)は、アルミ箔に熱ラミネート加工しても、アルミ箔との接着性が殆ど得られないことがわかった。

Claims (14)

  1.  水素化ブロックコポリマーの不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性体である、変性水素化ブロックコポリマーであって、
     該水素化ブロックコポリマーが、芳香族ビニルモノマー単位からなるポリマーブロック及び共役ジエンモノマー単位からなるポリマーブロックを含むコポリマーの水素化体であり、
     前記芳香族ビニルモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが90%以上の水素化芳香族ビニルポリマーブロック単位であり、前記共役ジエンモノマー単位からなるポリマーブロックの水素化体は、水素化レベルが95%以上の水素化共役ジエンポリマーブロック単位である、変性水素化ブロックコポリマー。
  2.  前記水素化ブロックコポリマーが、前記水素化芳香族ビニルポリマーブロック単位を少なくとも2個有すると共に、前記水素化共役ジエンポリマーブロック単位を少なくとも1個有する、請求項1に記載の変性水素化ブロックコポリマー。
  3.  前記不飽和カルボン酸及び/又は不飽和カルボン酸無水物による変性率が0.1~2質量%である、請求項1又は2に記載の変性水素化ブロックコポリマー。
  4.  前記不飽和カルボン酸及び/又は不飽和カルボン酸無水物が、無水マレイン酸である、請求項1~3のいずれか一項に記載の変性水素化ブロックコポリマー。
  5.  重量平均分子量(Mw)が5,000~100,000である、請求項1~4のいずれか一項に記載の変性水素化ブロックコポリマー。
  6.  請求項1~5のいずれか一項に記載の変性水素化ブロックコポリマーを、有機溶媒に1~30質量%の濃度で溶解又は懸濁させた、変性水素化ブロックコポリマー溶液又は変性水素化ブロックコポリマースラリー。
  7.  請求項1~5のいずれか一項に記載の変性水素化ブロックコポリマーが、基材上に積層された、変性水素化ブロックコポリマー含有積層体。
  8.  前記変性水素化ブロックコポリマーを、1種又は2種以上の他の熱可塑性樹脂と溶融共押出成形した、請求項7に記載の変性水素化ブロックコポリマー含有積層体。
  9.  前記変性水素化ブロックコポリマーを、金属、紙、セラミックス、熱可塑性樹脂又は熱硬化性樹脂の上に熱ラミネート加工した、請求項7に記載の変性水素化ブロックコポリマー含有積層体。
  10.  前記変性水素化ブロックコポリマーを含む層の厚さが5~500μmである、請求項9に記載の変性水素化ブロックコポリマー含有積層体。
  11.  請求項1~5のいずれか一項に記載の変性水素化ブロックコポリマーを製造する方法であって、
     前記水素化ブロックコポリマーを、溶融混練、溶液中反応、固相グラフトのいずれかの方法によりグラフト変性する、変性水素化ブロックコポリマーの製造方法。
  12.  請求項1~5のいずれか一項に記載の変性水素化ブロックコポリマーを製造する方法であって、
     前記水素化ブロックコポリマーを、不飽和カルボン酸及び/又は不飽和カルボン酸無水物によりグラフト変性する、変性水素化ブロックコポリマーの製造方法。
  13.  請求項6に記載の変性水素化ブロックコポリマー溶液又は変性水素化ブロックコポリマースラリーを基材に塗工した後、溶媒を除去して積層体を得る、変性水素化ブロックコポリマー含有積層体の製造方法。
  14.  前記変性水素化ブロックコポリマーを含む層の厚さが1~100μmである、請求項13に記載の変性水素化ブロックコポリマー含有積層体の製造方法。
PCT/JP2021/006310 2020-02-27 2021-02-19 変性水素化ブロックコポリマー WO2021172189A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503328A JPWO2021172189A1 (ja) 2020-02-27 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031586 2020-02-27
JP2020031586 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172189A1 true WO2021172189A1 (ja) 2021-09-02

Family

ID=77491549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006310 WO2021172189A1 (ja) 2020-02-27 2021-02-19 変性水素化ブロックコポリマー

Country Status (3)

Country Link
JP (1) JPWO2021172189A1 (ja)
TW (1) TW202136326A (ja)
WO (1) WO2021172189A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135177A1 (ja) * 2016-02-02 2017-08-10 日本ゼオン株式会社 酸無水物基を有するブロック共重合体水素化物及びその利用
JP2017159590A (ja) * 2016-03-10 2017-09-14 日本ゼオン株式会社 接合体及び複合接合体
WO2018207784A1 (ja) * 2017-05-12 2018-11-15 旭化成株式会社 変性ブロック共重合体、変性ブロック共重合体の製造方法、及び樹脂組成物
WO2019159672A1 (ja) * 2018-02-14 2019-08-22 日本ゼオン株式会社 酸無水物基含有ブロック共重合体、樹脂組成物、樹脂シート、および合わせガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135177A1 (ja) * 2016-02-02 2017-08-10 日本ゼオン株式会社 酸無水物基を有するブロック共重合体水素化物及びその利用
JP2017159590A (ja) * 2016-03-10 2017-09-14 日本ゼオン株式会社 接合体及び複合接合体
WO2018207784A1 (ja) * 2017-05-12 2018-11-15 旭化成株式会社 変性ブロック共重合体、変性ブロック共重合体の製造方法、及び樹脂組成物
WO2019159672A1 (ja) * 2018-02-14 2019-08-22 日本ゼオン株式会社 酸無水物基含有ブロック共重合体、樹脂組成物、樹脂シート、および合わせガラス

Also Published As

Publication number Publication date
TW202136326A (zh) 2021-10-01
JPWO2021172189A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5303854B2 (ja) 新規なセミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP2007324236A (ja) プリント配線板用フィルムに用いる樹脂組成物及びその用途
WO2021070606A1 (ja) ポリオレフィン系接着剤組成物
JP5374891B2 (ja) セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
WO2021045125A1 (ja) ポリオレフィン系接着剤組成物
JP7396932B2 (ja) 樹脂組成物及びその溶液
WO2021172189A1 (ja) 変性水素化ブロックコポリマー
KR20230157428A (ko) 접착제 조성물과, 이것을 함유하는 접착 시트, 적층체 및 프린트 배선판
JPS629135B2 (ja)
WO2024038794A1 (ja) 低誘電性樹脂組成物、接着付与剤、低誘電接着性組成物、低誘電接着性成形物、低誘電接着剤および積層体
JP2022028230A (ja) 樹脂シート及びこれを用いた回路基板材料
WO2023008524A1 (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
JP2024019126A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
CN115210317B (zh) 树脂片及使用其的电路基板材料
JP7562321B2 (ja) 樹脂複合体及びこれを用いた回路基板材料
JP7444319B1 (ja) 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板
JP2022007097A (ja) 不飽和基含有環状ポリオレフィン
JP2024109078A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
JP2024117736A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
JP2024109081A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
TW202242060A (zh) 黏接劑組成物、及含有此黏接劑之黏接片、疊層體及印刷配線板
JP2024146842A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
CN117642465A (zh) 树脂组合物、树脂片材、层叠体、片材固化物及电路基板材料
JP2023037315A (ja) 樹脂組成物、樹脂シート及びこれを用いた回路基板材料
TW202344541A (zh) 改質共軛二烯系聚合物及含有其之樹脂組合物、以及(半)硬化物、接著劑、樹脂膜、接合膜、預浸體、積層體及電子電路基板材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761059

Country of ref document: EP

Kind code of ref document: A1