WO2021171935A1 - 熱処理方法 - Google Patents

熱処理方法 Download PDF

Info

Publication number
WO2021171935A1
WO2021171935A1 PCT/JP2021/003836 JP2021003836W WO2021171935A1 WO 2021171935 A1 WO2021171935 A1 WO 2021171935A1 JP 2021003836 W JP2021003836 W JP 2021003836W WO 2021171935 A1 WO2021171935 A1 WO 2021171935A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
chamber
temperature
semiconductor wafer
treatment method
Prior art date
Application number
PCT/JP2021/003836
Other languages
English (en)
French (fr)
Inventor
和彦 布施
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2021171935A1 publication Critical patent/WO2021171935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a heat treatment method for forming an oxynitride film by irradiating a thin plate-shaped precision electronic substrate (hereinafter, simply referred to as "substrate”) such as a silicon semiconductor wafer with light to heat the substrate.
  • substrate thin plate-shaped precision electronic substrate
  • a thin film of silicon dioxide (SiO 2 ) obtained by oxidizing silicon (Si) has been widely used as a gate insulating film of a field effect transistor (FET), but in recent years, a material having a higher dielectric constant than silicon dioxide has been used. It is being replaced by the high dielectric constant film (High-k film) used.
  • the high dielectric constant film has been developed as a new stack structure together with the metal gate electrode using metal for the gate electrode in order to solve the problem that the leakage current increases with the progress of thinning of the gate insulating film. It is something that is.
  • a thin film of silicon dioxide is formed as an interface layer film (base film) between the base layer of silicon and the high dielectric constant film (for example, Patent Document 1). ). This is because when a high dielectric constant film is formed directly on the base layer of silicon, the number of defects at the interface increases and the leakage current increases. By forming a thin film of silicon dioxide between the base layer of silicon and the high dielectric constant film, the consistency of the interface is improved and the leakage current is reduced.
  • the total capacity can be increased by forming a film of silicon oxynitride (SiON) having a higher relative permittivity than silicon dioxide. Therefore, it is advantageous. Further, by using silicon oxynitride as the interface layer film, it is possible to improve the leakage current characteristics of the insulating film and reduce the interface state.
  • SiON silicon oxynitride
  • silicon oxynitride thin film it was difficult to form a high-quality, very thin silicon oxynitride thin film.
  • silicon oxynitride is formed by sputtering, deterioration of film quality is unavoidable.
  • silicon oxynitride was formed in an atmosphere furnace, a good quality film could be formed, but a very thin film having a film thickness of 2 nm or less could not be formed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment method capable of forming a high-quality thin silicon oxynitride film.
  • a first aspect of the present invention is a heat treatment method in which a silicon substrate is heated by irradiating the substrate with light to form an oxynitride film, wherein the substrate is first preheated to a preheating temperature.
  • the substrate heated to the first preheating temperature is irradiated with light in an oxidizing atmosphere, and the surface of the substrate is heated for 1 second or less to reach the surface.
  • a second millisecond annealing step of irradiating the substrate with light in a nitrided atmosphere and heating the surface of the substrate for 1 second or less to nitride the oxide film is provided.
  • the second preheating temperature is lower than the first preheating temperature.
  • the first preheating temperature is 700 ° C. or higher and 1000 ° C. or lower
  • the second preheating temperature is 500 ° C. or higher and 800 ° C. or lower.
  • the second millisecond annealing step is performed in a reduced pressure atmosphere of less than atmospheric pressure.
  • the substrate immediately after the substrate reaches the second preheating temperature in the second preheating step, the substrate is immediately subjected to the heat treatment.
  • the second millisecond annealing step is performed by irradiating with light.
  • the first millisecond annealing step and the second millisecond annealing step are performed in the same chamber, and the second aspect is described.
  • the 1-millisecond annealing step is performed in an oxidizing atmosphere containing oxygen
  • the second millisecond annealing step is performed in a nitrided atmosphere containing ammonia
  • the inside of the chamber is depressurized to reduce oxygen. Discharge.
  • the second millisecond annealing step is performed in a mixed gas of oxygen and ammonia remaining in the chamber.
  • ammonia is supplied into the chamber when the oxygen concentration in the chamber is equal to or less than the explosion limit.
  • oxygen is started to be supplied to the chamber when the substrate reaches a predetermined temperature in the first preheating step.
  • the substrate in the first preheating step and the second preheating step, is irradiated with light from a continuous lighting lamp.
  • the temperature of the substrate is raised, and in the first millisecond annealing step and the second millisecond annealing step, the substrate is irradiated with flash light from a flash lamp.
  • the surface of the substrate is heated for 1 second or less in an oxidizing atmosphere to form an oxide film on the surface, and the surface of the substrate is heated in a nitriding atmosphere. Since the oxide film is nitrided by heating for 1 second or less, a silicon oxide film is formed by heating the surface of the substrate for 1 second or less, and the silicon oxide film is nitrided to form a high-quality thin silicon oxynitride film. can do.
  • the film quality of silicon oxynitride can be improved.
  • the substrate immediately after the substrate reaches the second preheating temperature in the second preheating step, the substrate is immediately irradiated with light to execute the second millisecond annealing step. Therefore, it is prevented that nitrogen passes through the silicon oxide film, reaches the interface with the silicon base material, and reacts with silicon.
  • the inside of the chamber is depressurized and oxygen is discharged before forming the nitriding atmosphere containing ammonia, so that the explosion of ammonia can be prevented.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of the heat treatment apparatus 1 according to the present invention.
  • the heat treatment apparatus 1 of FIG. 1 is a flash lamp annealing apparatus that heats a disk-shaped semiconductor wafer W as a substrate by irradiating the semiconductor wafer W with flash light.
  • the size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, ⁇ 300 mm or ⁇ 450 mm.
  • the dimensions and numbers of each part are exaggerated or simplified as necessary for easy understanding.
  • the heat treatment apparatus 1 includes a chamber 6 for accommodating a semiconductor wafer W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL.
  • a flash heating unit 5 is provided on the upper side of the chamber 6, and a halogen heating unit 4 is provided on the lower side.
  • the heat treatment apparatus 1 includes a holding portion 7 that holds the semiconductor wafer W in a horizontal posture inside the chamber 6, a transfer mechanism 10 that transfers the semiconductor wafer W between the holding portion 7 and the outside of the apparatus. To be equipped.
  • the heat treatment apparatus 1 includes a halogen heating unit 4, a flash heating unit 5, and a control unit 3 that controls each operation mechanism provided in the chamber 6 to execute heat treatment of the semiconductor wafer W.
  • the chamber 6 is configured by mounting quartz chamber windows above and below the tubular chamber side portion 61.
  • the chamber side portion 61 has a substantially tubular shape with upper and lower openings, and the upper chamber window 63 is attached to the upper opening and closed, and the lower chamber window 64 is attached to the lower opening and closed.
  • the upper chamber window 63 constituting the ceiling portion of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window that transmits the flash light emitted from the flash heating portion 5 into the chamber 6.
  • the lower chamber window 64 constituting the floor portion of the chamber 6 is also a disk-shaped member formed of quartz, and functions as a quartz window that transmits light from the halogen heating portion 4 into the chamber 6.
  • a reflective ring 68 is attached to the upper part of the inner wall surface of the chamber side portion 61, and a reflective ring 69 is attached to the lower part.
  • the reflective rings 68 and 69 are both formed in an annular shape.
  • the upper reflective ring 68 is attached by fitting from the upper side of the chamber side portion 61.
  • the lower reflective ring 69 is attached by fitting it from the lower side of the chamber side portion 61 and fastening it with a screw (not shown). That is, both the reflective rings 68 and 69 are detachably attached to the chamber side portion 61.
  • the inner space of the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68, 69 is defined as the heat treatment space 65.
  • a recess 62 is formed on the inner wall surface of the chamber 6. That is, a recess 62 is formed which is surrounded by the central portion of the inner wall surface of the chamber side portion 61 to which the reflection rings 68 and 69 are not mounted, the lower end surface of the reflection ring 68, and the upper end surface of the reflection ring 69. ..
  • the recess 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W.
  • the chamber side 61 and the reflective rings 68 and 69 are made of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • the chamber side portion 61 is provided with a transport opening (furnace port) 66 for loading and unloading the semiconductor wafer W into and out of the chamber 6.
  • the transport opening 66 can be opened and closed by a gate valve 185.
  • the transport opening 66 is communicated with the outer peripheral surface of the recess 62. Therefore, when the gate valve 185 opens the transport opening 66, the semiconductor wafer W is carried in from the transport opening 66 through the recess 62 into the heat treatment space 65 and the semiconductor wafer W is carried out from the heat treatment space 65. It can be performed. Further, when the gate valve 185 closes the transport opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
  • the through hole 61a is a cylindrical hole for guiding infrared light emitted from the upper surface of the semiconductor wafer W held by the susceptor 74, which will be described later, to the upper radiation thermometer 25.
  • the through hole 61b is a cylindrical hole for guiding the infrared light emitted from the lower surface of the semiconductor wafer W to the lower radiation thermometer 20.
  • the through hole 61a and the through hole 61b are provided so as to be inclined with respect to the horizontal direction so that their axes in the through direction intersect with the main surface of the semiconductor wafer W held by the susceptor 74.
  • a transparent window 26 made of a calcium fluoride material that transmits infrared light in a wavelength region that can be measured by the upper radiation thermometer 25 is attached to the end of the through hole 61a on the side facing the heat treatment space 65.
  • the upper radiation thermometer 25 receives infrared light radiated from the upper surface of the semiconductor wafer W through the transparent window 26, and measures the temperature of the upper surface of the semiconductor wafer W from the intensity of the infrared light.
  • a transparent window 21 made of a barium fluoride material that transmits infrared light in a wavelength region that can be measured by the lower radiation thermometer 20 is attached to the end of the through hole 61b on the side facing the heat treatment space 65. ..
  • the lower radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W through the transparent window 21 and measures the temperature of the lower surface of the semiconductor wafer W from the intensity of the infrared light.
  • a gas supply hole 81 for supplying the processing gas to the heat treatment space 65 is formed in the upper part of the inner wall of the chamber 6.
  • the gas supply hole 81 is formed at a position above the recess 62, and may be provided in the reflection ring 68.
  • the gas supply hole 81 is communicated with the gas supply pipe 83 via a buffer space 82 formed in an annular shape inside the side wall of the chamber 6.
  • the gas supply pipe 83 is connected to the processing gas supply source 85.
  • a valve 84 is inserted in the middle of the path of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas that has flowed into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81, and is supplied from the gas supply hole 81 into the heat treatment space 65.
  • the processing gas supply source 85 is an inert gas such as nitrogen (N 2 ) or argon (Ar), or oxygen (O 2 ), ozone (O 3 ), hydrogen (H 2 ), and ammonia (NH) as the processing gas.
  • a reactive gas such as 3 ) or a mixed gas in which they are mixed can be supplied into the chamber 6.
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower part of the inner wall of the chamber 6.
  • the gas exhaust hole 86 is formed at a position below the recess 62, and may be provided in the reflection ring 69.
  • the gas exhaust hole 86 is communicated with the gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6.
  • the gas exhaust pipe 88 is connected to the exhaust unit 190.
  • a valve 89 is inserted in the middle of the path of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87.
  • a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6, or may be slit-shaped.
  • a gas exhaust pipe 191 for discharging the gas in the heat treatment space 65 is also connected to the tip of the transport opening 66.
  • the gas exhaust pipe 191 is connected to the exhaust unit 190 via a valve 192. By opening the valve 192, the gas in the chamber 6 is exhausted through the transport opening 66.
  • the exhaust unit 190 is equipped with a vacuum pump. By opening the valves 89 and 192 while operating the exhaust unit 190, the atmosphere in the chamber 6 is discharged from the gas exhaust pipes 88 and 191 to the exhaust unit 190.
  • the atmosphere of the heat treatment space 65 which is a closed space, is exhausted by the exhaust unit 190 without supplying any gas from the gas supply hole 81, the inside of the chamber 6 can be depressurized to a pressure lower than the atmospheric pressure. That is, the exhaust unit 190 also functions as a decompression unit that depressurizes the inside of the chamber 6.
  • FIG. 2 is a perspective view showing the overall appearance of the holding portion 7.
  • the holding portion 7 includes a base ring 71, a connecting portion 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all made of quartz. That is, the entire holding portion 7 is made of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is missing from the ring shape. This missing portion is provided to prevent interference between the transfer arm 11 of the transfer mechanism 10 described later and the base ring 71.
  • the base ring 71 By placing the base ring 71 on the bottom surface of the recess 62, the base ring 71 is supported on the wall surface of the chamber 6 (see FIG. 1).
  • a plurality of connecting portions 72 (four in the present embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 3 is a plan view of the susceptor 74.
  • FIG. 4 is a cross-sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76 and a plurality of substrate support pins 77.
  • the holding plate 75 is a substantially circular flat plate-shaped member made of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a plane size larger than that of the semiconductor wafer W.
  • a guide ring 76 is installed on the upper peripheral edge of the holding plate 75.
  • the guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is ⁇ 300 mm, the inner diameter of the guide ring 76 is ⁇ 320 mm.
  • the inner circumference of the guide ring 76 is a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is made of quartz similar to the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • the region inside the guide ring 76 on the upper surface of the holding plate 75 is a flat holding surface 75a for holding the semiconductor wafer W.
  • a plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In the present embodiment, a total of 12 substrate support pins 77 are erected at every 30 ° along the circumference of the outer circumference circle (inner circumference circle of the guide ring 76) of the holding surface 75a and the concentric circle.
  • the diameter of the circle in which the 12 substrate support pins 77 are arranged is smaller than the diameter of the semiconductor wafer W, and if the diameter of the semiconductor wafer W is ⁇ 300 mm, the diameter is ⁇ 270 mm to ⁇ 280 mm (this implementation). In the form, it is ⁇ 270 mm).
  • Each substrate support pin 77 is made of quartz.
  • the plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral edge portion of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the base ring 71 of the holding portion 7 is supported on the wall surface of the chamber 6, so that the holding portion 7 is mounted on the chamber 6.
  • the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
  • the semiconductor wafer W carried into the chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding portion 7 mounted on the chamber 6.
  • the semiconductor wafer W is supported by the twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the 12 substrate support pins 77 come into contact with the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the heights of the 12 substrate support pins 77 (distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) are uniform, the semiconductor wafer W is placed in a horizontal position by the 12 substrate support pins 77. Can be supported.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 from the holding surface 75a of the holding plate 75 at a predetermined interval.
  • the thickness of the guide ring 76 is larger than the height of the substrate support pin 77. Therefore, the horizontal misalignment of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 is formed with an opening 78 that penetrates vertically.
  • the opening 78 is provided for the lower radiation thermometer 20 to receive the synchrotron radiation (infrared light) radiated from the lower surface of the semiconductor wafer W. That is, the lower radiation thermometer 20 receives the light radiated from the lower surface of the semiconductor wafer W through the transparent window 21 mounted in the opening 78 and the through hole 61b of the chamber side 61, and the temperature of the semiconductor wafer W.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pin 12 of the transfer mechanism 10 described later penetrates for the transfer of the semiconductor wafer W.
  • FIG. 5 is a plan view of the transfer mechanism 10.
  • FIG. 6 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 has an arc shape that generally follows the annular recess 62.
  • Two lift pins 12 are erected on each transfer arm 11.
  • the transfer arm 11 and the lift pin 12 are made of quartz.
  • Each transfer arm 11 is rotatable by a horizontal movement mechanism 13.
  • the horizontal movement mechanism 13 includes a transfer operation position (solid line position in FIG. 5) for transferring the pair of transfer arms 11 to the holding portion 7 and the semiconductor wafer W held by the holding portion 7. It is horizontally moved to and from the retracted position (two-point chain line position in FIG. 5) that does not overlap in a plan view.
  • the horizontal movement mechanism 13 may be one in which each transfer arm 11 is rotated by an individual motor, or a pair of transfer arms 11 are interlocked and rotated by one motor using a link mechanism. It may be something to move.
  • the pair of transfer arms 11 are moved up and down together with the horizontal movement mechanism 13 by the elevating mechanism 14.
  • the elevating mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and the lift pins The upper end of 12 protrudes from the upper surface of the susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, the lift pin 12 is pulled out from the through hole 79, and the horizontal movement mechanism 13 moves the pair of transfer arms 11 so as to open each.
  • the transfer arm 11 moves to the retracted position.
  • the retracted position of the pair of transfer arms 11 is directly above the base ring 71 of the holding portion 7. Since the base ring 71 is placed on the bottom surface of the recess 62, the retracted position of the transfer arm 11 is inside the recess 62.
  • An exhaust mechanism (not shown) is also provided in the vicinity of the portion where the drive unit (horizontal movement mechanism 13 and elevating mechanism 14) of the transfer mechanism 10 is provided, and the atmosphere around the drive unit of the transfer mechanism 10 is provided. Is configured to be discharged to the outside of the chamber 6.
  • the chamber 6 is provided with two radiation thermometers (pyrometer in this embodiment), a lower radiation thermometer 20 and an upper radiation thermometer 25.
  • the lower radiation thermometer 20 is provided obliquely below the semiconductor wafer W held by the susceptor 74.
  • the lower radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W and measures the temperature of the lower surface from the intensity of the infrared light.
  • the upper radiation thermometer 25 is provided obliquely above the semiconductor wafer W held by the susceptor 74.
  • the upper radiation thermometer 25 receives infrared light radiated from the upper surface of the semiconductor wafer W, and measures the temperature of the upper surface from the intensity of the infrared light.
  • the upper radiation thermometer 25 is provided with an InSb (indium antimonide) optical element so as to be able to respond to a sudden temperature change on the upper surface of the semiconductor wafer W at the moment when the flash light is irradiated. Further, the chamber 6 is provided with a pressure gauge 95. The pressure gauge 95 measures the atmospheric pressure in the chamber 6.
  • InSb indium antimonide
  • the flash heating unit 5 provided above the chamber 6 is provided inside the housing 51 so as to cover a light source composed of a plurality of (30 in this embodiment) xenon flash lamp FL and the upper part of the light source.
  • the reflector 52 and the reflector 52 are provided.
  • a lamp light radiation window 53 is attached to the bottom of the housing 51 of the flash heating unit 5.
  • the lamp light emitting window 53 constituting the floor portion of the flash heating unit 5 is a plate-shaped quartz window made of quartz.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and the longitudinal direction thereof is along the main surface of the semiconductor wafer W held by the holding portion 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamp FL is also a horizontal plane. The region where the plurality of flash lamps FL are arranged is larger than the plane size of the semiconductor wafer W.
  • the xenon flash lamp FL is formed on a cylindrical glass tube (discharge tube) in which xenon gas is sealed inside and an anode and a cathode connected to a condenser are arranged at both ends thereof, and on the outer peripheral surface of the glass tube. It is provided with an attached trigger electrode. Since xenon gas is electrically an insulator, even if electric charges are accumulated in the condenser, electricity does not flow in the glass tube under normal conditions. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor instantly flows into the glass tube, and light is emitted by the excitation of xenon atoms or molecules at that time.
  • the electrostatic energy stored in the capacitor in advance is converted into an extremely short optical pulse of 0.1 millisecond to 100 millisecond, so that the halogen lamp HL is continuously lit. It has the feature that it can irradiate extremely strong light compared to a light source. That is, the flash lamp FL is a pulse light emitting lamp that instantaneously emits light in an extremely short time of less than 1 second.
  • An IGBT Insulated Gate Bipolar Transistor (not shown) is incorporated in the light emitting circuit of the flash lamp FL.
  • the light emission time of the flash lamp FL can be specified between 1 millisecond and 100 milliseconds.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover all of them.
  • the basic function of the reflector 52 is to reflect the flash light emitted from the plurality of flash lamps FL toward the heat treatment space 65.
  • the reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen heating unit 4 provided below the chamber 6 contains a plurality of halogen lamps HL (40 in this embodiment) inside the housing 41.
  • the halogen heating unit 4 heats the semiconductor wafer W by irradiating the heat treatment space 65 with light from below the chamber 6 through the lower chamber window 64 by a plurality of halogen lamps HL.
  • FIG. 7 is a plan view showing the arrangement of a plurality of halogen lamps HL.
  • the 40 halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in the upper stage near the holding portion 7, and 20 halogen lamps HL are also arranged in the lower stage farther from the holding portion 7 than in the upper stage.
  • Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape.
  • the 20 halogen lamps HL in both the upper and lower stages are arranged so that their longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding portion 7 (that is, along the horizontal direction). There is. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamp HL in the region facing the peripheral edge portion is higher than the region facing the central portion of the semiconductor wafer W held by the holding portion 7 in both the upper and lower stages.
  • the arrangement pitch of the halogen lamp HL is shorter in the peripheral portion than in the central portion of the lamp arrangement. Therefore, it is possible to irradiate a peripheral portion of the semiconductor wafer W, which tends to have a temperature drop during heating by light irradiation from the halogen heating unit 4, with a larger amount of light.
  • the lamp group consisting of the upper halogen lamp HL and the lamp group consisting of the lower halogen lamp HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged so that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. There is.
  • the halogen lamp HL is a filament type light source that incandescents the filament and emits light by energizing the filament arranged inside the glass tube. Inside the glass tube, a gas in which a trace amount of a halogen element (iodine, bromine, etc.) is introduced into an inert gas such as nitrogen or argon is sealed. By introducing the halogen element, it becomes possible to set the temperature of the filament to a high temperature while suppressing the breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a longer life and can continuously irradiate strong light as compared with a normal incandescent lamp.
  • a halogen element iodine, bromine, etc.
  • the halogen lamp HL is a continuously lit lamp that continuously emits light for at least 1 second or longer. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
  • a reflector 43 is provided under the two-stage halogen lamp HL in the housing 41 of the halogen heating unit 4 (FIG. 1).
  • the reflector 43 reflects the light emitted from the plurality of halogen lamps HL toward the heat treatment space 65.
  • the control unit 3 controls the above-mentioned various operating mechanisms provided in the heat treatment apparatus 1.
  • the configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 stores a CPU, which is a circuit that performs various arithmetic processes, a ROM, which is a read-only memory for storing basic programs, a RAM, which is a read / write memory for storing various information, and control software and data. It has a magnetic disk to store.
  • the processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the heat treatment apparatus 1 prevents an excessive temperature rise of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to the heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, it has various cooling structures.
  • a water cooling pipe (not shown) is provided on the wall of the chamber 6.
  • the halogen heating unit 4 and the flash heating unit 5 have an air-cooled structure in which a gas flow is formed inside to exhaust heat.
  • air is also supplied to the gap between the upper chamber window 63 and the lamp light radiating window 53 to cool the flash heating unit 5 and the upper chamber window 63.
  • FIG. 8 is a flowchart showing the procedure of the heat treatment method according to the present invention.
  • the semiconductor substrate to be processed in this embodiment is a silicon (Si) semiconductor wafer W. On the surface of the semiconductor wafer W, at least a part of the silicon of the base material is exposed. Prior to the heat treatment method according to the present invention, the surface of the semiconductor wafer W may be cleaned with hydrofluoric acid or the like to remove the natural oxide film formed on the exposed portion of silicon.
  • the processing procedure in the heat treatment apparatus 1 described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
  • the silicon semiconductor wafer W is carried into the chamber 6 of the heat treatment apparatus 1 (step S1). Specifically, the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W is carried into the heat treatment space 65 in the chamber 6 through the transfer opening 66 by a transfer robot outside the apparatus. At this time, the valve 84 is opened to supply nitrogen gas into the chamber 6 and the nitrogen gas is discharged from the transport opening 66 so as to minimize the entrainment of the external atmosphere due to the loading of the semiconductor wafer W. You may.
  • the semiconductor wafer W carried in by the transfer robot advances to a position directly above the holding portion 7 and stops. Then, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retracted position to the transfer operation position and rise, so that the lift pin 12 protrudes from the upper surface of the holding plate 75 of the susceptor 74 through the through hole 79. Receives the semiconductor wafer W. At this time, the lift pin 12 rises above the upper end of the substrate support pin 77.
  • the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. Then, when the pair of transfer arms 11 are lowered, the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding portion 7 and held in a horizontal posture from below.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. Further, the semiconductor wafer W is held by the holding portion 7 with the surface on which the silicon is exposed as the upper surface.
  • a predetermined distance is formed between the back surface (main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75.
  • the pair of transfer arms 11 lowered to the lower side of the susceptor 74 are retracted to the retracted position, that is, inside the recess 62 by the horizontal movement mechanism 13.
  • FIG. 9 is a diagram showing changes in the surface temperature of the semiconductor wafer W.
  • FIG. 10 is a timing chart showing the processing gas supply to the chamber 6.
  • FIG. 11 is a diagram showing a pressure change in the chamber 6.
  • the nitrogen supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward and is exhausted from the lower part of the heat treatment space 65, and a nitrogen atmosphere is formed in the chamber 6. Further, when the valve 192 is opened, the gas in the chamber 6 is also exhausted from the transport opening 66. Further, the atmosphere around the drive unit of the transfer mechanism 10 is also exhausted by the exhaust mechanism (not shown).
  • the 40 halogen lamps HL of the halogen heating unit 4 are turned on all at once at time t1, and the first preheating of the semiconductor wafer W is started.
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 made of quartz and is irradiated from the back surface of the semiconductor wafer W.
  • the semiconductor wafer W is heated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the recess 62, it does not interfere with heating by the halogen lamp HL.
  • the temperature of the semiconductor wafer W is measured by the lower radiation thermometer 20. That is, the lower radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78 through the transparent window 21 and measures the wafer temperature during temperature rise.
  • the measured temperature of the semiconductor wafer W is transmitted to the control unit 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W, which is raised by light irradiation from the halogen lamp HL, has reached a predetermined oxygen supply temperature T1. That is, the control unit 3 feedback-controls the output of the halogen lamp HL so that the temperature of the semiconductor wafer W becomes the oxygen supply temperature T1 based on the measured value by the lower radiation thermometer 20.
  • oxygen is introduced into the chamber 6 (step S3). .. Specifically, at the time t2 when the temperature of the semiconductor wafer W reaches the oxygen supply temperature T1, the supply of nitrogen into the chamber 6 is stopped and the supply of oxygen is started (FIG. 10).
  • an atmosphere containing oxygen that is, an oxidizing atmosphere is formed in the chamber 6.
  • the inside of the chamber 6 is switched from the inert gas atmosphere to the oxidizing atmosphere by triggering that the temperature of the semiconductor wafer W reaches the oxygen supply temperature T1. Even after the temperature of the semiconductor wafer W reaches the oxygen supply temperature T1, the temperature of the semiconductor wafer W is continuously raised by light irradiation from the halogen lamp HL.
  • the control unit 3 temporarily maintains the temperature of the semiconductor wafer W at the first preheating temperature T2. Specifically, the control unit 3 adjusts the output of the halogen lamp HL at the time t3 when the temperature of the semiconductor wafer W measured by the lower radiation thermometer 20 reaches the first preheating temperature T2, and the temperature of the semiconductor wafer W. Is maintained at approximately the first preheating temperature T2.
  • the exposed portion of silicon on the surface of the semiconductor wafer W is thermally oxidized, and the exposed portion is covered with a silicon oxide film ( (Thin film of SiO 2) grows.
  • the first preheating temperature T2 in the first preheating is 700 ° C. or higher and 1000 ° C. or lower. If the first preheating temperature T2 is less than 700 ° C., the surface temperature of the semiconductor wafer W does not reach a desired temperature during subsequent flash light irradiation. On the other hand, when the first preheating temperature T2 exceeds 1000 ° C., the silicon oxide film grows excessively and its film thickness becomes thick. Therefore, the first preheating temperature T2 is set to 700 ° C. or higher and 1000 ° C. or lower.
  • Step S4 when a predetermined time elapses after the temperature of the semiconductor wafer W reaches the first preheating temperature T2, the surface of the semiconductor wafer W is irradiated with the first flash light from the flash lamp FL of the flash heating unit 5 ( Step S4). At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and the other part is once reflected by the reflector 52 and then goes into the chamber 6, and these flash lights The semiconductor wafer W is flash-heated by irradiation.
  • the flash light emitted from the flash lamp FL is an extremely short and strong flash with an irradiation time of 1 millisecond or more and 100 milliseconds or less, in which the electrostatic energy stored in the capacitor in advance is converted into an extremely short optical pulse.
  • the flash time of the flashlamp FL is defined between 1 millisecond and 100 milliseconds by the IGBT connected to the light emitting circuit.
  • the irradiation time of the flash light is 1 millisecond or more and 100 milliseconds or less
  • the time for flash heating the surface of the semiconductor wafer W is 1 second or less.
  • the peak temperature of the surface of the semiconductor wafer W at this time is 1200 ° C. or higher and 1300 ° C. or lower, which is higher than the first preheating temperature T2.
  • the oxygen concentration in the chamber 6 when the first flash light irradiation is performed can be an appropriate value, and may be 100%.
  • the first flash light irradiation is performed in an oxidizing atmosphere containing oxygen.
  • a silicon oxide film grows on the surface of the semiconductor wafer W by irradiating the semiconductor wafer W with flash light in an oxidizing atmosphere containing oxygen and flash-heating the surface of the semiconductor wafer W for 1 second or less.
  • the film thickness of the silicon oxide film grown by the first preheating and the first flash light irradiation is 20 angstroms (2 nm) or less. Since the surface of the semiconductor wafer W reaches a high temperature of 1200 ° C. or higher during the first flash light irradiation, the consistency of the interface between the formed silicon oxide film and the silicon of the base layer is good, and the interface state is high. few.
  • a dense silicon oxide film is formed by heating to a high temperature of 1200 ° C. or higher. That is, a high-quality silicon oxide film having a small interface state and a high density is formed by flash light irradiation.
  • the pressure in the chamber 6 is approximately atmospheric pressure (about) until the time t4 when the first flash light irradiation is completed (since the flash light irradiation time is extremely short, the flash light irradiation is completed almost at the same time when the flash light irradiation is executed). It is maintained at 100 kPa) (FIG. 11).
  • the halogen lamp HL turns off almost at the same time as the first flash light irradiation is completed at time t4.
  • the temperature of the semiconductor wafer W is also lowered from the first preheating temperature T2.
  • the bulb 84 is closed and the supply of the processing gas to the chamber 6 is stopped. Even after the supply of the processing gas to the chamber 6 is stopped, the exhaust from the chamber 6 is continuously performed. By exhausting the atmosphere inside the chamber 6 without supplying gas to the chamber 6, the inside of the chamber 6 is depressurized to less than the atmospheric pressure (step S5).
  • the inside of the chamber 6 is depressurized in parallel with the temperature of the semiconductor wafer W decreasing.
  • oxygen forming an oxidizing atmosphere is discharged from the chamber 6.
  • the pressure inside the chamber 6 may be reduced, and nitrogen may be supplied into the chamber 6 to increase the replacement efficiency of the processing gas.
  • the supplied nitrogen also acts as a cooling gas, and can increase the temperature lowering rate of the semiconductor wafer W.
  • Ammonia is introduced into the chamber 6 at time t5 when the pressure gauge 95 detects that the pressure inside the chamber 6 has been reduced to 0.1 kPa (step S6). That is, the valve 84 is opened again at the time t5 when oxygen is almost completely discharged from the chamber 6, and the supply of ammonia into the chamber 6 is started.
  • the pressure in the chamber 6 rises, and a nitriding atmosphere containing ammonia is formed in the chamber 6. Even after the supply of ammonia into the chamber 6 is started, the atmosphere in the chamber 6 is continuously exhausted.
  • step S7 the halogen lamp HL is turned on again and the second preheating of the semiconductor wafer W is started (step S7).
  • the temperature of the semiconductor wafer W is raised again by being irradiated with light from the halogen lamp HL.
  • Step S6 and step S7 in FIG. 8 are steps performed in parallel.
  • the chamber 6 contained ammonia.
  • the supply flow rate of the processing gas and the exhaust flow rate from the chamber 6 are made equal to each other, and the pressure in the chamber 6 is maintained at 10 kPa. That is, the inside of the chamber 6 is maintained in a reduced pressure atmosphere of less than atmospheric pressure.
  • the surface of the semiconductor wafer W is irradiated with the second flash light from the flash lamp FL (step S8).
  • the irradiation time of the flash light in the second flash light irradiation is also adjusted in the range of 1 millisecond or more and 100 milliseconds or less.
  • the second preheating temperature T3 in the second preheating is 500 ° C. or higher and 800 ° C. or lower.
  • the second preheating temperature T3 is lower than the first preheating temperature T2. If the second preheating temperature T3 is too high, nitrogen supplied from ammonia may pass through the silicon oxide film and react with the silicon substrate to form silicon nitride (SiN). Since T3 is lower than the first preheating temperature T2, it is suppressed that nitrogen passes through the silicon oxide film and reaches the interface with the silicon substrate.
  • the flash light irradiation time is 1 millisecond or more and 100 millisecond or less, so that the flash heating time of the surface of the semiconductor wafer W is 1 second or less.
  • the second flash light irradiation is performed in a nitriding atmosphere containing ammonia.
  • the silicon oxide film formed on the surface of the semiconductor wafer W is nitrided by irradiating the semiconductor wafer W with flash light in a nitrided atmosphere containing ammonia and flash-heating the surface of the semiconductor wafer W for 1 second or less.
  • Silicon oxynitride (SiON) is formed.
  • the second flash light irradiation is performed in a decompressed atmosphere below atmospheric pressure. Thereby, the film quality of the formed silicon oxynitride can be improved.
  • the second flash light irradiation is executed immediately after the temperature of the semiconductor wafer W reaches the second preheating temperature T3 by the second preheating. That is, the surface of the semiconductor wafer W is irradiated with flash light at the same time when the semiconductor wafer W whose temperature is raised by the second preheating reaches the second preheating temperature T3. Therefore, the semiconductor wafer W is maintained at the second preheating temperature T3 for almost no time, and the nitrogen supplied from ammonia passes through the silicon oxide film and reaches the interface with the silicon base material to reach the interface with the silicon. The reaction is prevented. In addition, excessive growth of the silicon oxide film is also suppressed.
  • the silicon oxide film hardly grew in the second preheating and the second flash light irradiation performed in the atmosphere where oxygen was discharged, and the film thickness of silicon oxynitride after the completion of the second flash light irradiation was 20. It is below the angstrom.
  • the halogen lamp HL turns off almost at the same time as the second flash light irradiation is completed at time t7.
  • the temperature of the semiconductor wafer W is also lowered from the second preheating temperature T3.
  • the bulb 84 is closed and the supply of the processing gas to the chamber 6 is stopped. Even after the supply of the processing gas to the chamber 6 is stopped, the exhaust from the chamber 6 is continuously performed. By exhausting the atmosphere inside the chamber 6 without supplying gas to the chamber 6, the inside of the chamber 6 is depressurized again and ammonia is discharged.
  • step S9 At time t8 when the inside of the chamber 6 was decompressed to 0.1 kPa, the valve 84 was opened again and the supply of nitrogen into the chamber 6 was started. By supplying nitrogen into the chamber 6, the pressure in the chamber 6 rises and returns to the atmospheric pressure, and the inside of the chamber 6 is replaced with a nitrogen atmosphere (step S9).
  • the heat-treated semiconductor wafer W is carried out from the chamber 6 (step S10). Specifically, the pair of transfer arms 11 of the transfer mechanism 10 horizontally move from the retracted position to the transfer operation position again and rise, so that the lift pin 12 protrudes from the upper surface of the susceptor 74 and the semiconductor wafer after heat treatment. W is received from the susceptor 74. Subsequently, the transfer opening 66 closed by the gate valve 185 is opened, the semiconductor wafer W mounted on the lift pin 12 is carried out by a transfer robot outside the apparatus, and the semiconductor wafer W is heat-treated in the heat treatment apparatus 1. Is completed.
  • the temperature of the semiconductor wafer W is raised to the first preheating temperature T2 by irradiating light from the halogen lamp HL, and the semiconductor wafer W is irradiated with flash light in an oxygen-containing oxidizing atmosphere.
  • a silicon oxide film is formed on the surface of the semiconductor wafer W.
  • the temperature of the semiconductor wafer W is raised again to the second preheating temperature T3 by irradiating light from the halogen lamp HL, and the semiconductor wafer W is in a nitrided atmosphere containing ammonia.
  • the silicon oxide film on the surface of the semiconductor wafer W is nitrided by irradiating with flash light.
  • a silicon oxide film is formed by heating the surface of the semiconductor wafer W for 1 second or less by irradiation with flash light having an extremely short irradiation time, and since the silicon oxide film is nitrided, the quality is good and the film thickness is 20 angstroms or less.
  • a thin silicon oxynitride film can be formed.
  • the irradiation time of the second flash light irradiation is also 1 millisecond or more and 100 milliseconds or less, and the peak temperature of the surface of the semiconductor wafer W at the time of irradiation is 1200 ° C. or less, so that nitrogen passes through the silicon oxide film. It is suppressed that the silicon reaches the interface with the base material.
  • an atmosphere of a mixed gas of oxygen and ammonia may be formed in the chamber 6, and the semiconductor wafer W may be flash-heated in the atmosphere of the mixed gas.
  • the silicon oxide film is first formed in an oxidizing atmosphere containing oxygen, and then the silicon oxide film is nitrided in a nitriding atmosphere containing ammonia.
  • the depressurization in the chamber 6 is started almost at the same time as the first flash light irradiation is completed, and the pressure in the chamber 6 is reduced to 0.1 kPa to discharge oxygen. Then, since the ammonia is supplied after the oxygen is almost completely discharged from the chamber 6, the explosion of the ammonia can be prevented more reliably.
  • the semiconductor wafer W is once exposed to the atmospheric atmosphere, and impurities may be mixed. Further, if the oxidation treatment and the nitriding treatment are performed by different devices, it is necessary to replace the atmosphere in each treatment, and the treatment time as a whole becomes long.
  • the oxidation treatment and the nitriding treatment are continuously performed in one common chamber 6, it is possible to prevent impurities from being mixed due to the exposure of the semiconductor wafer W to the atmospheric atmosphere. , A good quality silicon oxynitride film can be formed. Further, since oxygen is discharged immediately after the first flash light irradiation and ammonia is supplied immediately, the overall processing time for forming the silicon oxynitride film can be shortened and the throughput can be improved.
  • oxygen is supplied after almost completely discharging oxygen from the chamber 6, but if there is no concern about the explosion of ammonia, oxygen remains in the chamber 6.
  • Ammonia may be supplied. Specifically, if the oxygen concentration in the chamber 6 is 3% or less and the oxygen is discharged to the explosion limit or less, there is no concern about explosion even if ammonia is supplied, so that oxygen remains in the chamber 6. Ammonia is supplied in the state of being. In this case, the second flash light irradiation is performed in the mixed gas of oxygen and ammonia remaining in the chamber 6. In this way, the oxygen discharge time can be shortened and the processing time as a whole can be shortened.
  • the oxidizing atmosphere is formed by oxygen, but the oxidizing atmosphere may be formed by ozone or a mixed gas of oxygen and ozone.
  • the temperature of the semiconductor wafer W reaches the second preheating temperature T3 by the second preheating, the temperature of the semiconductor wafer W is maintained at the second preheating temperature T3 for a predetermined time, and then the second flash light irradiation is performed. You may try to do.
  • the oxidation treatment and the nitriding treatment are performed in one chamber 6, but the present invention is not limited to this, and the oxidation treatment and the nitriding treatment are performed in different chambers. You can do it. However, as described above, it is possible to prevent the mixing of impurities and form a high-quality silicon oxynitride film by performing the oxidation treatment and the nitriding treatment in one chamber 6, and the treatment time as a whole is shortened. can do.
  • the surface of the semiconductor wafer W is heated for 1 second or less by irradiating the flash light with a short irradiation time from the flash lamp FL, but the semiconductor is irradiated with laser light instead of the flash light.
  • the wafer W may be heated. Since the irradiation time of the laser beam is also extremely short, the heating time of the surface of the semiconductor wafer W can be set to 1 second or less. That is, any heat source that heats the surface of the semiconductor wafer W for 1 second or less may be used.
  • the flash heating unit 5 is provided with 30 flash lamp FLs, but the present invention is not limited to this, and the number of flash lamp FLs can be any number. .. Further, the flash lamp FL is not limited to the xenon flash lamp, and may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40, and can be any number.
  • the semiconductor wafer W is preheated by using a filament type halogen lamp HL as a continuous lighting lamp that continuously emits light for 1 second or longer, but the present invention is not limited to this.
  • a discharge type arc lamp for example, a xenon arc lamp
  • a continuous lighting lamp to perform preheating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

ハロゲンランプからの光照射によって半導体ウェハーの温度を第1予備加熱温度に昇温し、その半導体ウェハーに酸素を含む酸化雰囲気中にてフラッシュ光を照射して半導体ウェハーの表面にシリコン酸化膜を形成する。続いて、半導体ウェハーを一旦降温させた後、ハロゲンランプからの光照射によって半導体ウェハーの温度を第2予備加熱温度に再度昇温し、その半導体ウェハーにアンモニアを含む窒化雰囲気中にてフラッシュ光を照射して半導体ウェハーの表面のシリコン酸化膜を窒化する。極めて照射時間の短いフラッシュ光の照射によって半導体ウェハーの表面を1秒以下加熱することによりシリコン酸化膜を形成するとともに、そのシリコン酸化膜を窒化するため、良質で薄い酸窒化シリコン膜を形成することができる。

Description

熱処理方法
 本発明は、シリコンの半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法に関する。
 従来より、電界効果トランジスタ(FET)のゲート絶縁膜としてはシリコン(Si)を酸化した二酸化ケイ素(SiO)の薄膜が広く使用されてきたが、近年は二酸化ケイ素よりも誘電率の高い材料を用いた高誘電率膜(High-k膜)に置き換えられつつある。高誘電率膜は、ゲート絶縁膜の薄膜化の進展にともなってリーク電流が増大する問題を解決するために、ゲート電極に金属を用いたメタルゲート電極とともに新たなスタック構造として開発が進められているものである。
 ゲート絶縁膜として高誘電率膜を用いる場合であっても、シリコンの基層と高誘電率膜との間に界面層膜(下地膜)として二酸化ケイ素の薄膜が形成される(例えば、特許文献1)。これは、シリコンの基層上に直接高誘電率膜を成膜すると、界面の欠陥が多くなってリーク電流が増大するためである。シリコンの基層と高誘電率膜との間に二酸化ケイ素の薄膜を形成することにより、界面の整合性が向上してリーク電流が減少する。
特開2017-045982号公報
 シリコンの基層と高誘電率膜との間に界面層膜としては、二酸化ケイ素よりもさらに比誘電率の高い酸窒化シリコン(SiON)を成膜した方がトータルとしての容量を大きくすることができるため有利である。また、界面層膜として酸窒化シリコンを使用することにより、絶縁膜のリーク電流特性を向上させるとともに界面準位を低減することもできる。
 しかしながら、良質で非常に薄い酸窒化シリコンの薄膜を成膜することは困難であった。例えば、スパッタリングによって酸窒化シリコンを成膜した場合には、膜質の低下が避けられない。また、雰囲気炉によって酸窒化シリコンを成膜すると、良質な膜を形成できるものの膜厚が2nm以下の非常に薄い膜を成膜することはできなかった。
 本発明は、上記課題に鑑みてなされたものであり、良質で薄い酸窒化シリコン膜を形成することができる熱処理方法を提供することを目的とする。
 上記課題を解決するため、この発明の第1の態様は、シリコンの基板に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法において、前記基板を第1予備加熱温度に昇温する第1予備加熱工程と、前記第1予備加熱温度に昇温されている前記基板に酸化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して当該表面に酸化膜を形成する第1ミリ秒アニール工程と、前記基板を降温させる降温工程と、前記基板を第2予備加熱温度に昇温する第2予備加熱工程と、前記第2予備加熱温度に昇温されている前記基板に窒化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して前記酸化膜を窒化する第2ミリ秒アニール工程と、を備える。
 また、第2の態様は、第1の態様に係る熱処理方法において、前記第2予備加熱温度は前記第1予備加熱温度よりも低い。
 また、第3の態様は、第2の態様に係る熱処理方法において、前記第1予備加熱温度は700℃以上1000℃以下であり、前記第2予備加熱温度は500℃以上800℃以下である。
 また、第4の態様は、第1から第3のいずれかの態様に係る熱処理方法において、前記第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われる。
 また、第5の態様は、第1から第4のいずれかの態様に係る熱処理方法において、前記第2予備加熱工程にて前記基板が前記第2予備加熱温度に到達した後、直ちに前記基板に光を照射して前記第2ミリ秒アニール工程を実行する。
 また、第6の態様は、第1から第5のいずれかの態様に係る熱処理方法において、前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程は同一のチャンバーにて行われ、前記第1ミリ秒アニール工程は酸素を含む酸化雰囲気中にて行われ、前記第2ミリ秒アニール工程はアンモニアを含む窒化雰囲気中にて行われ、前記降温工程では、前記チャンバー内を減圧して酸素を排出する。
 また、第7の態様は、第6の態様に係る熱処理方法において、前記第2ミリ秒アニール工程は、前記チャンバー内に残留する酸素とアンモニアとの混合ガス中にて行われる。
 また、第8の態様は、第7の態様に係る熱処理方法において、前記チャンバー内の酸素濃度が爆発限界以下のときに前記チャンバー内にアンモニアを供給する。
 また、第9の態様は、第6の態様に係る熱処理方法において、前記第1予備加熱工程にて前記基板が所定の温度に到達したときに前記チャンバーに酸素の供給を開始する。
 また、第10の態様は、第1から第9のいずれかの態様に係る熱処理方法において、前記第1予備加熱工程および前記第2予備加熱工程では前記基板に連続点灯ランプから光を照射して前記基板を昇温し、前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程では前記基板にフラッシュランプからフラッシュ光を照射する。
 第1から第10の態様に係る熱処理方法によれば、酸化雰囲気中にて基板の表面を1秒以下加熱して当該表面に酸化膜を形成するとともに、窒化雰囲気中にて基板の表面を1秒以下加熱して酸化膜を窒化するため、基板の表面を1秒以下加熱することによりシリコン酸化膜を形成するとともに、そのシリコン酸化膜を窒化することとなり、良質で薄い酸窒化シリコン膜を形成することができる。
 特に、第4の態様に係る熱処理方法によれば、第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われるため、酸窒化シリコンの膜質を向上させることができる。
 特に、第5の態様に係る熱処理方法によれば、第2予備加熱工程にて基板が第2予備加熱温度に到達した後、直ちに基板に光を照射して第2ミリ秒アニール工程を実行するため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達してシリコンと反応することが防止される。
 特に、第6の態様に係る熱処理方法によれば、アンモニアを含む窒化雰囲気を形成する前にチャンバー内を減圧して酸素を排出するため、アンモニアの爆発を防止することができる。
本発明に係る熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 サセプタの平面図である。 サセプタの断面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 本発明に係る熱処理方法の手順を示すフローチャートである。 半導体ウェハーの表面温度の変化を示す図である。 チャンバーに対する処理ガス供給を示すタイミングチャートである。 チャンバー内における圧力変化を示す図である。
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
 まず、本発明に係る熱処理装置について説明する。図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
 熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
 チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
 チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
 また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
 さらに、チャンバー側部61には、貫通孔61aおよび貫通孔61bが穿設されている。貫通孔61aは、後述するサセプタ74に保持された半導体ウェハーWの上面から放射された赤外光を上部放射温度計25に導くための円筒状の孔である。一方、貫通孔61bは、半導体ウェハーWの下面から放射された赤外光を下部放射温度計20に導くための円筒状の孔である。貫通孔61aおよび貫通孔61bは、それらの貫通方向の軸がサセプタ74に保持された半導体ウェハーWの主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、上部放射温度計25が測定可能な波長領域の赤外光を透過させるフッ化カルシウム材料からなる透明窓26が装着されている。上部放射温度計25は、半導体ウェハーWの上面から放射された赤外光を透明窓26を介して受光し、その赤外光の強度から半導体ウェハーWの上面の温度を測定する。また、貫通孔61bの熱処理空間65に臨む側の端部には、下部放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。下部放射温度計20は、半導体ウェハーWの下面から放射された赤外光を透明窓21を介して受光し、その赤外光の強度から半導体ウェハーWの下面の温度を測定する。
 また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガス供給源85は処理ガスとして、例えば窒素(N)、アルゴン(Ar)等の不活性ガス、または、酸素(O)、オゾン(O)、水素(H)、アンモニア(NH)等の反応性ガス、或いはそれらを混合した混合ガスをチャンバー6内に供給することができる。
 一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。
 また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
 排気部190は、真空ポンプを備える。排気部190を作動させつつ、バルブ89,192を開放することによって、チャンバー6内の雰囲気がガス排気管88,191から排気部190へと排出される。ガス供給孔81から何らのガス供給を行うことなく、排気部190によって密閉空間である熱処理空間65の雰囲気を排気すると、チャンバー6内を大気圧未満の気圧に減圧することができる。すなわち、排気部190は、チャンバー6内を減圧する減圧部としても機能するものである。
 図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
 保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
 図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
 チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
 また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
 また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、下部放射温度計20が半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、下部放射温度計20が開口部78およびチャンバー側部61の貫通孔61bに装着された透明窓21を介して半導体ウェハーWの下面から放射された光を受光して当該半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
 図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
 図1に戻り、チャンバー6には、下部放射温度計20および上部放射温度計25の2つの放射温度計(本実施形態ではパイロメーター)が設けられている。下部放射温度計20は、サセプタ74に保持された半導体ウェハーWの斜め下方に設けられている。下部放射温度計20は、半導体ウェハーWの下面から放射された赤外光を受光し、その赤外光の強度から当該下面の温度を測定する。一方、上部放射温度計25は、サセプタ74に保持された半導体ウェハーWの斜め上方に設けられている。上部放射温度計25は、半導体ウェハーWの上面から放射された赤外光を受光し、その赤外光の強度から当該上面の温度を測定する。上部放射温度計25は、フラッシュ光が照射された瞬間の半導体ウェハーWの上面の急激な温度変化に対応できるように、InSb(インジウムアンチモン)の光学素子を備えている。また、チャンバー6には圧力計95が設けられている。圧力計95は、チャンバー6内における気圧を測定する。
 チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。複数のフラッシュランプFLが配列される領域は半導体ウェハーWの平面サイズよりも大きい。
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された円筒形状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。
 フラッシュランプFLの発光回路には図示省略のIGBT(絶縁ゲートバイポーラトランジスタ)が組み込まれている。そのIGBTのゲートに印加するパルスの波形を調整することによって、フラッシュランプFLの発光時間を1ミリセカンドから100ミリセカンドの間で規定することができる。
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
 チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する。
 図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
 また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
 また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
 制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
 上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
 次に、本発明に係る熱処理方法について説明する。図8は、本発明に係る熱処理方法の手順を示すフローチャートである。本実施形態において処理対象となる半導体基板はシリコン(Si)の半導体ウェハーWである。半導体ウェハーWの表面において、少なくとも一部は基材のシリコンが露出している。なお、本発明に係る熱処理方法に先立って、半導体ウェハーWの表面にフッ酸等による洗浄処理を行ってシリコンの露出部位に形成されている自然酸化膜を除去しておくようにしても良い。以下に説明する熱処理装置1における処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
 まず、シリコンの半導体ウェハーWが熱処理装置1のチャンバー6内に搬入される(ステップS1)。具体的には、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。このときに、バルブ84を開放してチャンバー6内に窒素ガスを供給し、搬送開口部66から窒素ガスを流出させて半導体ウェハーWの搬入にともなう外部雰囲気の巻き込みを最小限に抑制するようにしても良い。
 搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
 半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、シリコンが露出している表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
 半導体ウェハーWが保持部7に保持され、ゲートバルブ185によって搬送開口部66が閉鎖されて熱処理空間65が密閉空間とされた後、第1予備加熱が開始される(ステップS2)。図9は、半導体ウェハーWの表面温度の変化を示す図である。図10は、チャンバー6に対する処理ガス供給を示すタイミングチャートである。また、図11は、チャンバー6内における圧力変化を示す図である。半導体ウェハーWがチャンバー6内に搬入された時点では、チャンバー6内に不活性ガスである窒素が供給されている。すなわち、バルブ84が開放されて処理ガス供給源85からチャンバー6内に窒素が供給される。また、バルブ89が開放されてガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素が下方へと流れて熱処理空間65の下部から排気され、チャンバー6内には窒素雰囲気が形成される。また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。
 チャンバー6内が窒素雰囲気とされた後、時刻t1にハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して半導体ウェハーWの第1予備加熱が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの裏面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
 ハロゲンランプHLによる加熱を行うときには、半導体ウェハーWの温度が下部放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を透明窓21を通して下部放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の酸素供給温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、下部放射温度計20による測定値に基づいて、半導体ウェハーWの温度が酸素供給温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。
 第1予備加熱にて半導体ウェハーWが昇温している途中で半導体ウェハーWの温度が酸素供給温度T1に到達したことが検知されると、チャンバー6内に酸素が導入される(ステップS3)。具体的には、半導体ウェハーWの温度が酸素供給温度T1に到達した時刻t2にチャンバー6内への窒素の供給が停止されるとともに、酸素の供給が開始される(図10)。チャンバー6内に酸素が供給されることによって、チャンバー6内には酸素を含む雰囲気、すなわち酸化雰囲気が形成される。本実施形態では、半導体ウェハーWの温度が酸素供給温度T1に到達したことをトリガーとして、チャンバー6内が不活性ガス雰囲気から酸化雰囲気に切り替えられるのである。半導体ウェハーWの温度が酸素供給温度T1に到達した後も半導体ウェハーWはハロゲンランプHLからの光照射によって継続して昇温される。
 次に、半導体ウェハーWの温度が第1予備加熱温度T2に到達した後、制御部3は半導体ウェハーWの温度をその第1予備加熱温度T2に暫時維持する。具体的には、下部放射温度計20によって測定される半導体ウェハーWの温度が第1予備加熱温度T2に到達した時刻t3に制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ第1予備加熱温度T2に維持している。酸素を含む酸化雰囲気中にて半導体ウェハーWの温度が第1予備加熱温度T2に維持されることにより、半導体ウェハーWの表面におけるシリコンの露出部位が熱酸化されて当該露出部位にシリコン酸化膜(SiOの薄膜)が成長する。
 第1予備加熱における第1予備加熱温度T2は700℃以上1000℃以下である。第1予備加熱温度T2が700℃未満であると、続くフラッシュ光照射時に半導体ウェハーWの表面温度が所望の温度に到達しない。一方、第1予備加熱温度T2が1000℃を超えると、シリコン酸化膜が過度に成長してその膜厚が厚くなる。このため、第1予備加熱温度T2は700℃以上1000℃以下としている。
 半導体ウェハーWの温度が第1予備加熱温度T2に到達してから所定時間が経過した時刻t4に、フラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面に第1のフラッシュ光照射を行う(ステップS4)。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
 フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が1ミリセカンド以上100ミリセカンド以下の極めて短く強い閃光である。フラッシュランプFLの発光時間は発光回路に接続されたIGBTによって1ミリセカンドから100ミリセカンドの間で規定される。半導体ウェハーWの表面に照射時間が1ミリセカンド以上100ミリセカンド以下のフラッシュ光が照射されることによって、当該表面が瞬間的にピーク温度にまで昇温した後、急速に降温する。フラッシュ光の照射時間は1ミリセカンド以上100ミリセカンド以下であるため、半導体ウェハーWの表面がフラッシュ加熱される時間は1秒以下である。このときの半導体ウェハーWの表面のピーク温度は1200℃以上1300℃以下であり、第1予備加熱温度T2よりも高温である。また、第1のフラッシュ光照射を行うときのチャンバー6内の酸素濃度は適宜の値とすることができ、100%であっても良い。
 第1のフラッシュ光照射は酸素を含む酸化雰囲気中にて実行される。酸素を含む酸化雰囲気中にて半導体ウェハーWにフラッシュ光が照射されて半導体ウェハーWの表面が1秒以下フラッシュ加熱されることにより、半導体ウェハーWの表面にてシリコン酸化膜が成長する。第1予備加熱および第1のフラッシュ光照射によって成長するシリコン酸化膜の膜厚は20オングストローム(2nm)以下である。第1のフラッシュ光照射時には半導体ウェハーWの表面が1200℃以上の高温に到達するため、形成されたシリコン酸化膜と基層のシリコンとの間の界面の整合性は良好であり、界面準位は少ない。また、1200℃以上の高温に加熱されることによって緻密なシリコン酸化膜が形成される。すなわち、フラッシュ光照射によって界面準位が少なくかつ高密度の良質なシリコン酸化膜が形成されるのである。なお、第1のフラッシュ光照射が完了する時刻t4(フラッシュ光の照射時間は極めて短いため、フラッシュ光照射は実行されるとほぼ同時に完了する)まではチャンバー6内の圧力がほぼ大気圧(約100kPa)に維持されている(図11)。
 時刻t4に第1のフラッシュ光照射が完了するのとほぼ同時にハロゲンランプHLが消灯する。ハロゲンランプHLが消灯することにより、半導体ウェハーWの温度は第1予備加熱温度T2からも降温する。また、第1のフラッシュ光照射が完了する時刻t4には、バルブ84が閉止されてチャンバー6への処理ガスの供給が停止される。チャンバー6への処理ガスの供給が停止された後もチャンバー6からの排気は継続して行われる。チャンバー6にガス供給を行うことなくチャンバー6内の雰囲気を排気することにより、チャンバー6内が大気圧未満に減圧される(ステップS5)。すなわち、時刻t4から時刻5までは、半導体ウェハーWの温度が降温するのと並行してチャンバー6内が減圧されるのである。チャンバー6内が減圧されることにより、チャンバー6から酸化雰囲気を形成していた酸素が排出される。このときに、チャンバー6内を減圧するとともに、チャンバー6内に窒素を供給して処理ガスの置換効率を高めるようにしても良い。供給された窒素は冷却ガスとしても作用し、半導体ウェハーWの降温速度を高めることもできる。
 チャンバー6内が0.1kPaにまで減圧されたことが圧力計95によって検知された時刻t5にチャンバー6内にアンモニアが導入される(ステップS6)。すなわち、チャンバー6内から酸素がほぼ完全に排出された時刻t5に再びバルブ84が開放されてチャンバー6内へのアンモニアの供給が開始される。チャンバー6内にアンモニアが供給されることによって、チャンバー6内の圧力が上昇するとともに、チャンバー6内にアンモニアを含む窒化雰囲気が形成される。なお、チャンバー6内へのアンモニアの供給が開始された後も、チャンバー6内の雰囲気は継続して排気されている。
 また、時刻t5には再びハロゲンランプHLが点灯して半導体ウェハーWの第2予備加熱が開始される(ステップS7)。半導体ウェハーWはハロゲンランプHLからの光照射を受けることによって再度昇温する。図8のステップS6とステップS7とは並行して行われる工程である。
 第2予備加熱にて半導体ウェハーWが昇温している途中でチャンバー6内の圧力が10kPaにまで復圧したことが圧力計95によって検知された時刻t6に、チャンバー6内へのアンモニアを含む処理ガスの供給流量とチャンバー6からの排気流量とが等しくされてチャンバー6内の圧力が10kPaに維持される。すなわち、チャンバー6内は大気圧未満の減圧雰囲気に維持されることとなる。
 次に、半導体ウェハーWの温度が第2予備加熱温度T3に到達した時刻t7に、フラッシュランプFLから半導体ウェハーWの表面に第2のフラッシュ光照射を行う(ステップS8)。第2のフラッシュ光照射におけるフラッシュ光の照射時間も1ミリセカンド以上100ミリセカンド以下の範囲で調整されている。
 第2予備加熱における第2予備加熱温度T3は500℃以上800℃以下である。第2予備加熱温度T3は第1予備加熱温度T2よりも低い。第2予備加熱温度T3が高すぎると、アンモニアから供給された窒素がシリコン酸化膜を通り抜けてシリコンの基材と反応して窒化シリコン(SiN)を形成するおそれがあるところ、第2予備加熱温度T3が第1予備加熱温度T2よりも低いため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達することは抑制される。
 第2のフラッシュ光照射においても、フラッシュ光の照射時間は1ミリセカンド以上100ミリセカンド以下であるため、半導体ウェハーWの表面がフラッシュ加熱される時間は1秒以下である。半導体ウェハーWの表面にフラッシュ光が照射されることによって、当該表面が瞬間的にピーク温度にまで昇温した後、急速に降温する。このときの半導体ウェハーWの表面のピーク温度は1200℃以下である。
 第2のフラッシュ光照射はアンモニアを含む窒化雰囲気中にて実行される。アンモニアを含む窒化雰囲気中にて半導体ウェハーWにフラッシュ光が照射されて半導体ウェハーWの表面が1秒以下フラッシュ加熱されることにより、半導体ウェハーWの表面に形成されていたシリコン酸化膜が窒化されて酸窒化シリコン(SiON)が形成される。
 また、第2のフラッシュ光照射は大気圧未満の減圧雰囲気にて行われる。これにより、形成される酸窒化シリコンの膜質を向上させることができる。
 さらに、第2のフラッシュ光照射は、第2予備加熱にて半導体ウェハーWの温度が第2予備加熱温度T3に到達した後直ちに実行される。すなわち、第2予備加熱にて昇温される半導体ウェハーWが第2予備加熱温度T3に到達するのと同時に半導体ウェハーWの表面にフラッシュ光が照射される。このため、半導体ウェハーWが第2予備加熱温度T3に維持されている時間はほとんど無く、アンモニアから供給された窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達してシリコンと反応することが防止される。また、シリコン酸化膜が過度に成長することも抑制される。なお、酸素が排出された雰囲気中で行われる第2予備加熱および第2のフラッシュ光照射ではシリコン酸化膜はほとんど成長せず、第2のフラッシュ光照射完了後の酸窒化シリコンの膜厚は20オングストローム以下である。
 時刻t7に第2のフラッシュ光照射が完了するのとほぼ同時にハロゲンランプHLが消灯する。ハロゲンランプHLが消灯することにより、半導体ウェハーWの温度は第2予備加熱温度T3からも降温する。また、第2のフラッシュ光照射が完了する時刻t7には、バルブ84が閉止されてチャンバー6への処理ガスの供給が停止される。チャンバー6への処理ガスの供給が停止された後もチャンバー6からの排気は継続して行われる。チャンバー6にガス供給を行うことなくチャンバー6内の雰囲気を排気することにより、チャンバー6内が再度減圧されてアンモニアが排出される。
 チャンバー6内が0.1kPaにまで減圧された時刻t8に再びバルブ84が開放されてチャンバー6内への窒素の供給が開始される。チャンバー6内に窒素が供給されることによって、チャンバー6内の圧力が上昇して大気圧にまで復圧するとともに、チャンバー6内が窒素雰囲気に置換される(ステップS9)。
 チャンバー6内の圧力が大気圧に復圧した後、熱処理後の半導体ウェハーWがチャンバー6から搬出される(ステップS10)。具体的には、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。
 本実施形態においては、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度を第1予備加熱温度T2に昇温し、その半導体ウェハーWに酸素を含む酸化雰囲気中にてフラッシュ光を照射して半導体ウェハーWの表面にシリコン酸化膜を形成している。続いて、半導体ウェハーWを一旦降温させた後、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度を第2予備加熱温度T3に再度昇温し、その半導体ウェハーWにアンモニアを含む窒化雰囲気中にてフラッシュ光を照射して半導体ウェハーWの表面のシリコン酸化膜を窒化している。極めて照射時間の短いフラッシュ光の照射によって半導体ウェハーWの表面を1秒以下加熱することによりシリコン酸化膜を形成するとともに、そのシリコン酸化膜を窒化しているため、良質で膜厚が20オングストローム以下の薄い酸窒化シリコン膜を形成することができる。特に、第2のフラッシュ光照射の照射時間も1ミリセカンド以上100ミリセカンド以下であって、照射時の半導体ウェハーWの表面のピーク温度が1200℃以下であるため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達することが抑制される。
 ところで、単に酸窒化シリコンを形成するだけであれば、チャンバー6内に酸素とアンモニアとの混合ガスの雰囲気を形成し、その混合ガスの雰囲気中にて半導体ウェハーWのフラッシュ加熱を行っても良いように考えられる。しかし、酸素とアンモニアとの混合ガスの雰囲気中で加熱処理を行うと、アンモニアが爆発する懸念がある。本実施形態においては、まず酸素を含む酸化雰囲気中にてシリコン酸化膜を形成した後に、アンモニアを含む窒化雰囲気中にてシリコン酸化膜を窒化している。このように、酸素を含む酸化雰囲気中での処理とアンモニアを含む窒化雰囲気中での処理とを分離することにより、アンモニアの爆発を防止して安全に酸窒化シリコン膜を形成することができる。
 特に、本実施形態では、第1のフラッシュ光照射が完了するのとほぼ同時にチャンバー6内の減圧を開始し、チャンバー6内の圧力を0.1kPaにまで減圧して酸素を排出している。そして、チャンバー6内から酸素をほぼ完全に排出してからアンモニアを供給しているため、より確実にアンモニアの爆発を防止することができる。
 また、酸化処理と窒化処理とを異なる装置によって個別に行うようにしても酸窒化シリコンを形成することは可能である。但し、このようすると、酸化処理が終了した後に、半導体ウェハーWが一旦大気雰囲気に曝されることとなり、不純物が混入するおそれがある。また、酸化処理と窒化処理とを異なる装置にて行うと、それぞれの処理にて雰囲気置換が必要となり、全体としての処理時間が長くなる。本実施形態においては、共通の1つのチャンバー6内にて酸化処理と窒化処理とを連続して行っているため、半導体ウェハーWを大気雰囲気に曝すことに起因した不純物の混入を防ぐことができ、良質な酸窒化シリコン膜を形成することができる。さらに、第1のフラッシュ光照射後に酸素を排出して直ぐにアンモニアを供給しているため、酸窒化シリコン膜を形成するための全体としての処理時間を短くしてスループットを向上させることができる。
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、チャンバー6内から酸素をほぼ完全に排出してからアンモニアを供給していたが、アンモニアの爆発の懸念がなければ、チャンバー6内に酸素が残留している状態でアンモニアを供給するようにしても良い。具体的には、チャンバー6内の酸素濃度が3%以下の爆発限界以下にまで酸素が排出されていれば、アンモニアを供給しても爆発の懸念はないため、チャンバー6内に酸素が残留している状態でアンモニアを供給する。この場合、チャンバー6内に残留する酸素とアンモニアとの混合ガス中にて第2のフラッシュ光照射を行うこととなる。このようにすれば、酸素の排出時間を短縮して全体としての処理時間を短くすることができる。
 また、上記実施形態においては、酸素によって酸化雰囲気を形成していたが、オゾンまたは酸素とオゾンとの混合ガスによって酸化雰囲気を形成するようにしても良い。
 また、第2予備加熱にて半導体ウェハーWの温度が第2予備加熱温度T3に到達した後、半導体ウェハーWの温度を所定時間第2予備加熱温度T3に維持してから第2のフラッシュ光照射を行うようにしても良い。
 また、上記実施形態においては、1つのチャンバー6内にて酸化処理と窒化処理とを行っていたが、これに限定されるものではなく、酸化処理と窒化処理とをそれぞれ異なるチャンバーにて行うようにしても良い。もっとも、上述したように、1つのチャンバー6内にて酸化処理と窒化処理とを行った方が不純物の混入を防止して良質な酸窒化シリコン膜を形成できるとともに、全体としての処理時間を短くすることができる。
 また、上記実施形態においては、フラッシュランプFLから照射時間の短いフラッシュ光を照射することによって半導体ウェハーWの表面を1秒以下加熱していたが、フラッシュ光に代えてレーザー光を照射して半導体ウェハーWを加熱するようにしても良い。レーザー光も照射時間が極めて短いため、半導体ウェハーWの表面の加熱時間を1秒以下とすることができる。すなわち、半導体ウェハーWの表面を1秒以下加熱する熱源であれば良い。
 また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。
 1 熱処理装置
 3 制御部
 4 ハロゲン加熱部
 5 フラッシュ加熱部
 6 チャンバー
 7 保持部
 10 移載機構
 65 熱処理空間
 74 サセプタ
 75 保持プレート
 77 基板支持ピン
 85 処理ガス供給源
 190 排気部
 FL フラッシュランプ
 HL ハロゲンランプ
 W 半導体ウェハー

Claims (10)

  1.  シリコンの基板に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法であって、
     前記基板を第1予備加熱温度に昇温する第1予備加熱工程と、
     前記第1予備加熱温度に昇温されている前記基板に酸化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して当該表面に酸化膜を形成する第1ミリ秒アニール工程と、
     前記基板を降温させる降温工程と、
     前記基板を第2予備加熱温度に昇温する第2予備加熱工程と、
     前記第2予備加熱温度に昇温されている前記基板に窒化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して前記酸化膜を窒化する第2ミリ秒アニール工程と、
    を備える熱処理方法。
  2.  請求項1記載の熱処理方法において、
     前記第2予備加熱温度は前記第1予備加熱温度よりも低い熱処理方法。
  3.  請求項2記載の熱処理方法において、
     前記第1予備加熱温度は700℃以上1000℃以下であり、
     前記第2予備加熱温度は500℃以上800℃以下である熱処理方法。
  4.  請求項1から請求項3のいずれかに記載の熱処理方法において、
     前記第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われる熱処理方法。
  5.  請求項1から請求項4のいずれかに記載の熱処理方法において、
     前記第2予備加熱工程にて前記基板が前記第2予備加熱温度に到達した後、直ちに前記基板に光を照射して前記第2ミリ秒アニール工程を実行する熱処理方法。
  6.  請求項1から請求項5のいずれかに記載の熱処理方法において、
     前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程は同一のチャンバーにて行われ、
     前記第1ミリ秒アニール工程は酸素を含む酸化雰囲気中にて行われ、
     前記第2ミリ秒アニール工程はアンモニアを含む窒化雰囲気中にて行われ、
     前記降温工程では、前記チャンバー内を減圧して酸素を排出する熱処理方法。
  7.  請求項6記載の熱処理方法において、
     前記第2ミリ秒アニール工程は、前記チャンバー内に残留する酸素とアンモニアとの混合ガス中にて行われる熱処理方法。
  8.  請求項7記載の熱処理方法において、
     前記チャンバー内の酸素濃度が爆発限界以下のときに前記チャンバー内にアンモニアを供給する熱処理方法。
  9.  請求項6記載の熱処理方法において、
     前記第1予備加熱工程にて前記基板が所定の温度に到達したときに前記チャンバーに酸素の供給を開始する熱処理方法。
  10.  請求項1から請求項9のいずれかに記載の熱処理方法において、
     前記第1予備加熱工程および前記第2予備加熱工程では前記基板に連続点灯ランプから光を照射して前記基板を昇温し、
     前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程では前記基板にフラッシュランプからフラッシュ光を照射する熱処理方法。
PCT/JP2021/003836 2020-02-25 2021-02-03 熱処理方法 WO2021171935A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029254A JP7362508B2 (ja) 2020-02-25 2020-02-25 熱処理方法
JP2020-029254 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021171935A1 true WO2021171935A1 (ja) 2021-09-02

Family

ID=77490133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003836 WO2021171935A1 (ja) 2020-02-25 2021-02-03 熱処理方法

Country Status (2)

Country Link
JP (1) JP7362508B2 (ja)
WO (1) WO2021171935A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019650A (ja) * 2003-06-25 2005-01-20 Toshiba Corp 処理装置、製造装置、処理方法及び電子装置の製造方法
JP2012191110A (ja) * 2011-03-14 2012-10-04 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2017045982A (ja) * 2015-08-26 2017-03-02 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100762A (ja) 2001-09-27 2003-04-04 Sumitomo Mitsubishi Silicon Corp シリコンウェーハの製造方法及びシリコンウェーハ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019650A (ja) * 2003-06-25 2005-01-20 Toshiba Corp 処理装置、製造装置、処理方法及び電子装置の製造方法
JP2012191110A (ja) * 2011-03-14 2012-10-04 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2017045982A (ja) * 2015-08-26 2017-03-02 株式会社Screenホールディングス 熱処理方法および熱処理装置

Also Published As

Publication number Publication date
JP7362508B2 (ja) 2023-10-17
JP2021136259A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6472247B2 (ja) 熱処理方法および熱処理装置
TW201802894A (zh) 半導體裝置之製造方法
JP6863780B2 (ja) 熱処理方法および熱処理装置
US20240128096A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP6960344B2 (ja) 熱処理方法および熱処理装置
JP2021082684A (ja) 熱処理装置
JP6963536B2 (ja) 熱処理装置および熱処理装置の雰囲気置換方法
CN111799171A (zh) 热处理方法及热处理装置
JP7042115B2 (ja) 熱処理装置および熱処理方法
WO2021171935A1 (ja) 熱処理方法
WO2021241561A1 (ja) 熱処理装置
TW202013533A (zh) 熱處理方法
JP7436253B2 (ja) 熱処理方法および熱処理装置
JP2021027226A (ja) 熱処理方法
JP6841666B2 (ja) 結晶構造制御方法および熱処理方法
JP2021136376A (ja) 熱処理方法
WO2021049283A1 (ja) 熱処理方法および熱処理装置
JP2022079227A (ja) 熱処理方法
TWI801693B (zh) 熱處理方法及熱處理裝置
JP7011980B2 (ja) 熱処理装置
JP6791693B2 (ja) 熱処理装置
JP2022047758A (ja) 金属配線形成方法
JP2020188176A (ja) 熱処理装置
JP2019068107A (ja) 熱処理方法およびゲート形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761584

Country of ref document: EP

Kind code of ref document: A1