WO2021171494A1 - 鋼材 - Google Patents
鋼材 Download PDFInfo
- Publication number
- WO2021171494A1 WO2021171494A1 PCT/JP2020/008071 JP2020008071W WO2021171494A1 WO 2021171494 A1 WO2021171494 A1 WO 2021171494A1 JP 2020008071 W JP2020008071 W JP 2020008071W WO 2021171494 A1 WO2021171494 A1 WO 2021171494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- content
- steel material
- less
- carburized
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a steel material, and more particularly to a steel material used as a material for carburized steel parts.
- the steel material used as the material for machine structural parts generally contains Mn, Cr, Mo, Ni and the like.
- a steel material having a chemical component containing the above-mentioned elements and manufactured through processes such as casting, forging, and rolling is molded by machining such as forging and cutting, and further subjected to carburizing treatment to obtain a surface layer portion. It is a carburized steel part having a carburized layer and a core portion inside the carburized layer.
- the carburizing treatment also includes a carburizing nitriding treatment unless otherwise specified.
- the forging method can be roughly divided into hot forging, warm forging, and cold forging. Warm forging is characterized by less scale generation and improved dimensional accuracy than hot forging. Cold forging has the characteristics that scale is not generated and the dimensional accuracy is close to the state after cutting.
- a method of performing a rough process by hot forging and then performing a finish process by cold forging a method of performing a light cut as a finish after performing warm forging, or a method of performing cold forging and then performing cold forging.
- a method of performing light cutting has been studied.
- hot forging is replaced with warm forging or cold forging, if the deformation resistance of the steel material is large, the surface pressure applied to the die of the forging machine increases and the die life is shortened. In this case, even if the cutting amount is reduced, the cost merit is not so great.
- cracks may occur in a portion to which a large processing is applied. Therefore, when carburized steel parts are manufactured by warm forging or cold forging, it is required to improve the limit processing rate of the steel material used as the material of the carburized steel parts.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2012-207244
- Patent Document 2 are materials for carburized steel parts for the purpose of improving cold forging property (limit workability). Propose steel materials.
- the carbonized steel described in Patent Document 1 has a chemical component of mass%, C: 0.07% to 0.13%, Si: 0.0001% to 0.50%, Mn: 0.0001% to 0.80%, S: 0.0001% to 0.100%, Cr: Over 1.30% to 5.00%, B: 0.0005% to 0.0100%, Al: 0.0001% to 1 It contains 0.0%, Ti: 0.010% to 0.10%, N: 0.0080% or less, P: 0.050% or less, O: 0.0030% or less, and the balance is Fe and It is composed of unavoidable impurities, and the content represented by mass% of each element in the chemical component satisfies the formulas (1) to (3).
- the equations (1) to (3) are as follows.
- this carburizing steel can increase the limit processing rate at the time of cold forging, and further, after the carburizing treatment, a hardened layer and core hardness equivalent to those of the conventional steel can be obtained. It is described in Patent Document 1.
- the hardened steel described in Patent Document 2 has a mass% of C: 0.05 to 0.20%, Si: 0.01 to 0.1%, Mn: 0.3 to 0.6%, P. : 0.03% or less (excluding 0%), S: 0.001 to 0.02%, Cr: 1.2 to 2.0%, Al: 0.01 to 0.1%, Ti: 0 .010 to 0.10%, N: 0.010% or less (not including 0%), B: 0.0005 to 0.005%, the balance is composed of iron and unavoidable impurities, and the diameter equivalent to a circle is 20 nm.
- the density of Ti-based precipitates less than 10 to 100 pieces / ⁇ m 2 and the density of Ti-based precipitates having a circle-equivalent diameter of 20 nm or more is 1.5 to 10 pieces / ⁇ m 2 , and the Vickers hardness is It is characterized by being 130 HV or less. It is described in Patent Document 2 that this skin-baked steel is excellent in cold forging property due to the above structure.
- cold forging is characterized in that the dimensional accuracy is close to the state after the conventional cutting, but for carburized steel parts having a complicated shape or hollow structure, some cutting is performed after the cold forging process.
- the processing process is carried out. Therefore, for steel materials that are used as materials for carburized steel parts for cold forging, not only sufficient cold forging properties, but also sufficient machinability, especially the ease with which chips generated during cutting are separated. So-called chip control is required. If the chip controllability is low and long chips are generated, the chips may wrap around the steel material or the tool, which may reduce the work efficiency of the cutting process.
- Patent Documents 1 and 2 do not study the chip controllability of the steel material after the cold forging process as described above.
- An object of the present disclosure is to provide a steel material having a large limit machining rate during cold forging and excellent chip control during cutting after cold forging.
- the steel materials according to this disclosure are The chemical composition is mass%, C: 0.11 to 0.15%, Si: 0.17 to 0.35%, Mn: 0.45 to 0.80%, S: 0.005 to 0.050%, Cr: 1.50 to less than 1.90%, B: 0.0005 to 0.0100%, Ti: 0.010 to less than 0.050%, Al: 0.010 to 0.100%, Ca: 0.0002 to 0.0030%, N: 0.0080% or less, Contains P: 0.050% or less and O: 0.0030% or less.
- the balance is composed of Fe and impurities and satisfies the formulas (1) to (4).
- the total area ratio of ferrite and pearlite is 85.0% or more, and the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is 20.0 to less than 35.0%.
- the content (mass%) of the corresponding element is substituted for each element symbol of the formulas (1) to (4), and when the corresponding element is not contained, the corresponding element symbol is "0".
- the steel material according to the present disclosure has a sufficient limit machining rate during cold forging and is excellent in chip control during cutting after cold forging.
- FIG. 1 is a schematic diagram of the microstructure of a steel material used as a material for carburized steel parts of the present embodiment.
- the present inventors conducted a study to improve the marginal processing rate of the steel material used as the material for carburized steel parts and to improve the machinability (chip controllability) after cold forging. As a result, the present inventors obtained the following findings (A) to (G).
- B is an element that enhances the hardenability of steel materials but does not solidify and strengthen ferrite. Therefore, as described above, 0.0005 to 0.0100% of B is contained in the above-mentioned chemical composition of the steel material. Further, the content of the above-mentioned hardenability improving element is made to satisfy the formula (1). As a result, it is possible to obtain sufficient core hardness in the carburized steel parts obtained by carburizing the steel material while suppressing a decrease in the limit processing rate of the steel material.
- the steel material contains Ti.
- most of the N contained in the steel material is fixed as TiN during the carburizing treatment. Therefore, it is possible to suppress B from binding to N, and a sufficient solid solution B can be secured in the steel material.
- the Ti content in the steel material is made to satisfy the formula (3). 0.004 ⁇ Ti-N ⁇ (48/14) ⁇ 0.030 (3)
- the content (mass%) of the corresponding element is substituted for each element symbol of the formula (3).
- N When the Ti content and N content in the chemical composition of the steel material satisfy the formula (3), N combines with Ti to form TiN. Therefore, it is possible to suppress the decrease of the solid solution B due to the binding of N with the solid solution B, and it is possible to secure a sufficient solid solution B in the steel material. Further, Ti that has not been bonded to N is finely dispersed and precipitated as TiC in the steel material. As a result, abnormal grain growth of austenite crystal grains during carburizing treatment is suppressed. Therefore, it is possible to suppress the generation of coarse grains of old austenite in the core portion of the carburized steel part, and it is possible to suppress a decrease in bending fatigue strength and deformation after carburizing and quenching.
- (E) B effectively enhances the hardenability of the core of carburized steel parts.
- the effect of improving hardenability due to the inclusion of B is low in the carburized layer which is the surface layer of the carburized steel parts. This is because during the carburizing treatment, nitrogen invades from the surface of the steel part, combines with the solid solution B and precipitates as BN, and reduces the amount of the solid solution B. Therefore, in order to ensure hardenability in the carburized layer, which is the surface layer of the carburized steel part, the chemical composition of the steel material satisfies the formula (2) as described above.
- a cutting process may be performed on the steel material after cold forging.
- the S content is 0.005 to 0.050%.
- MnS is formed and the machinability of the steel material is enhanced.
- the Ca content is 0.0002 to 0.0030%.
- the sulfide in the steel material is spheroidized. Therefore, the cold forging property of the steel material is improved, and the limit machining rate is increased.
- the steel material satisfies the above-mentioned chemical composition and the formulas (1) to (3) are satisfied, if the Ca content is too high with respect to the S content, a part of Ca is dissolved in the sulfide. Instead, it forms an oxide. Ca oxide lowers the marginal processing rate of steel materials.
- Ca / S in the chemical composition can be set in an appropriate range, it is possible to suppress the formation of oxides while promoting the miniaturization and spheroidization of sulfides. As a result, the cold forging property of the steel material can be improved. Specifically, if the chemical composition of the steel material satisfies the formulas (1) to (3) and further satisfies the formula (4), sufficient cold forging property can be obtained. 0.03 ⁇ Ca / S ⁇ 0.15 (4) Here, the content (mass%) of the corresponding element is substituted for each element symbol of the formula (4).
- (G) Among the carburized steel parts, there are carburized steel parts such as hollow splines that require a lot of cutting for intermediate members after cold forging.
- the steel material is required to have excellent chip control property as described above.
- the chip controllability is a characteristic that means the ease of cutting chips generated during cutting and the ease of separating chips from the chip tool and steel material. .. As described above, when the C content is kept low, the cold forging property of the steel material is improved, but the chip control property is lowered.
- the total area ratio of ferrite and pearlite is 85.0% or more, and the pearlite grains have an area of 200 ⁇ m 2 or more.
- the total area ratio of is 20.0% or more.
- the steel material contains a large number of coarse pearlite grains.
- the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more in the microstructure is set to 20.0% or more.
- the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more is set to 35.0% or less. In this case, sufficient chip controllability can be obtained in the cutting process after cold forging while ensuring a sufficient limit processing rate in the steel material used as the material for the carburized steel parts.
- the steel material according to the present embodiment completed based on the above knowledge has the following constitution.
- the chemical composition is mass%, C: 0.11 to 0.15%, Si: 0.17 to 0.35%, Mn: 0.45 to 0.80%, S: 0.005 to 0.050%, Cr: 1.50 to less than 1.90%, B: 0.0005 to 0.0100%, Ti: 0.010 to less than 0.050%, Al: 0.010 to 0.100%, Ca: 0.0002 to 0.0030%, N: 0.0080% or less, Contains P: 0.050% or less and O: 0.0030% or less.
- the balance is composed of Fe and impurities and satisfies the formulas (1) to (4).
- the total area ratio of ferrite and pearlite is 85.0% or more, and the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is 20.0 to less than 35.0%.
- Steel material 0.200 ⁇ C + 0.194 x Si + 0.065 x Mn + 0.012 x Cr + 0.033 x Mo + 0.067 x Ni + 0.097 x Cu + 0.078 x Al ⁇ 0.235 (1) 16.0 ⁇ (0.70 x Si + 1) x (5.1 x Mn + 1) x (2.2 x Cr + 1) x (3.0 x Mo + 1) x (0.36 x Ni + 1) ⁇ 29.0 (2) 0.004 ⁇ Ti-N ⁇ (48/14) ⁇ 0.030 (3) 0.03 ⁇ Ca / S ⁇ 0.15 (4)
- the content (mass%) of the corresponding element is substituted for each element symbol of the formulas (1) to (4), and when the corresponding element is not contained, the corresponding element symbol is "
- the chemical composition is Nb: 0.002 to 0.100%, V: 0.001 to 0.300%, Mo: 0.005 to 0.500%, Ni: 0.005 to 0.500%, Cu: 0.005 to 0.500%, Mg: 0.0001 to 0.0035% and Rare earth element (REM): 0.001-0.005%, Containing one element or two or more elements selected from the group consisting of Steel material.
- REM Rare earth element
- the steel material of this embodiment is a material for carburized steel parts.
- the steel material of the present embodiment is cold forged and then carburized to obtain carburized steel parts.
- the chemical composition of the steel material of the present embodiment contains the following elements.
- Carbon (C) increases the hardness of the core of the carburized steel part.
- the C content of the conventional steel material used for carburized steel parts is about 0.20%, but in the steel material of the present embodiment, the C content is 0.15% in order to increase the limit processing rate. It is as follows. Therefore, the C content is 0.11 to 0.15%.
- the preferable lower limit of the C content is 0.12%.
- the preferable upper limit of the C content is 0.14%.
- Si 0.17 to 0.35%
- Silicon (Si) increases the temper softening resistance of carburized steel parts and increases the fatigue strength of carburized steel parts. If the Si content is less than 0.17%, this effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Si content exceeds 0.35%, the hardness of the steel material before cold forging becomes excessively high even if the content of other elements is within the range of this embodiment, and the limit processing rate becomes high. descend. Therefore, the Si content is 0.17 to 0.35%. From the viewpoint of further increasing the fatigue strength, the lower limit of the Si content is preferably 0.18%, more preferably 0.20%, further preferably 0.22%, still more preferably 0.25%. be. From the viewpoint of further increasing the critical processing rate, the upper limit of the Si content is preferably 0.33%, more preferably 0.30%, still more preferably 0.28%.
- Mn 0.45 to 0.80%
- Manganese (Mn) enhances the hardenability of steel and enhances the core hardness of carburized steel parts. If the Mn content is less than 0.45%, sufficient hardenability cannot be obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content exceeds 0.80%, the hardness of the steel material before cold forging becomes excessively high even if the other element content is within the range of the present embodiment, and the limit processing rate becomes high. descend. Therefore, the Mn content is 0.45 to 0.80%.
- the preferred lower limit of the Mn content is 0.47%, more preferably 0.50%.
- the preferred upper limit of the Mn content is 0.70%, more preferably 0.65%, still more preferably 0.60%.
- S 0.005 to 0.050% Sulfur (S) combines with Mn in steel to form MnS, which enhances chip control of the steel material. If the S content is less than 0.005%, the above effect cannot be sufficiently obtained even if the other element content is within the range of the present embodiment. On the other hand, if the S content exceeds 0.050%, MnS becomes the starting point of cracking during cold forging even if the content of other elements is within the range of the present embodiment, and the critical processing rate decreases. Therefore, the S content is 0.005 to 0.050%.
- the lower limit of the S content is preferably 0.006%, more preferably 0.008%, still more preferably 0.010%.
- the preferred upper limit of the S content is 0.040%, more preferably 0.030%, still more preferably 0.025%, still more preferably 0.020%.
- Chromium (Cr) enhances hardenability of steel and enhances core hardness of carburized steel parts. Compared with Mn, Mo, and Ni, which enhance hardenability, Cr can enhance hardenability while suppressing an increase in hardness of the steel material. If the Cr content is less than 1.50%, sufficient hardenability cannot be obtained even if the content of other elements is within the range of the present embodiment. On the other hand, when the Cr content is 1.90% or more, the hardness of the steel material before cold forging becomes excessively high even if the content of other elements is within the range of this embodiment, and the limit machining rate Decreases. Therefore, the Cr content is less than 1.50 to 1.90%.
- the lower limit of the Cr content is preferably 1.55%, more preferably 1.60%, still more preferably 1.65%, still more preferably 1.70%.
- the preferred upper limit of the Cr content is 1.88%, more preferably 1.85%.
- B 0.0005 to 0.0100% Boron (B), when dissolved in austenite, greatly enhances the hardenability of steel even in trace amounts. Therefore, the hardness of the core of the carburized steel part is increased. Further, since B exerts the above effect by containing a small amount, the hardness of ferrite in the steel material is unlikely to increase. That is, it is possible to improve hardenability while maintaining a high limit processing rate of steel materials. If the B content is less than 0.0005%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the B content exceeds 0.0100%, the above effect is saturated. Therefore, the B content is 0.0005 to 0.0100%.
- the lower limit of the B content is preferably 0.0007%, more preferably 0.0010%, still more preferably 0.0012%, still more preferably 0.0014%.
- the preferred upper limit of the B content is 0.0080%, more preferably 0.0060%, still more preferably 0.0050%, still more preferably 0.0040%, still more preferably 0.0030. %.
- Titanium (Ti) fixes N in steel as TiN.
- Ti 0.010 to less than 0.050%
- Ti fixes N in steel as TiN.
- the formation of BN is suppressed and the solid solution B can be secured.
- Ti further combines with C to form TiC, and the pinning effect suppresses the coarsening of austenite crystal grains during heating of the carburizing treatment. If the Ti content is less than 0.010%, these effects cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
- the Ti content is 0.050% or more, TiC is excessively generated even if the content of other elements is within the range of this embodiment. In this case, the hardness of the steel material before cold forging becomes excessively high, and the critical machining rate decreases.
- the Ti content is less than 0.010 to 0.050%.
- the preferred lower limit of the Ti content is 0.015%, more preferably 0.018%, even more preferably 0.020%, even more preferably 0.022%, even more preferably 0.024. %, More preferably 0.025%.
- the preferred upper limit of the Ti content is 0.048%, more preferably 0.045%.
- Al 0.010% to 0.100%
- Aluminum (Al) deoxidizes steel. Al further combines with N to form AlN, and the pinning effect suppresses the coarsening of austenite crystal grains during heating of the carburizing treatment. This increases the fatigue strength of the carburized steel parts. If the Al content is less than 0.010%, these effects cannot be sufficiently obtained even if the other element content is within the range of the present embodiment. On the other hand, if the Al content exceeds 0.100%, coarse oxides are formed in the steel even if the content of other elements is within the range of this embodiment, and the fatigue strength of the carburized steel parts increases. descend. Therefore, the Al content is 0.010 to 0.100%.
- the lower limit of the Al content is preferably 0.014%, more preferably 0.018%, still more preferably 0.020%.
- the preferred upper limit of the Al content is 0.090%, more preferably 0.070%, still more preferably 0.060%, still more preferably 0.050%, still more preferably 0.040. %.
- Ca 0.0002% -0.0030% Calcium (Ca) dissolves in sulfide in steel to make the sulfide fine and spheroidal. As a result, the cold forging property of the steel material is enhanced, and the limit machining rate is increased. If the Ca content is less than 0.0002%, this effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content exceeds 0.0030%, coarse oxides are formed in the steel even if the content of other elements is within the range of the present embodiment. In this case, the limit processing rate of the steel material is rather lowered. Therefore, the Ca content is 0.0002 to 0.0030%.
- the lower limit of the Ca content is preferably 0.0005%, more preferably 0.0007%.
- the preferred upper limit of the Ca content is 0.0025%, more preferably 0.0022%, still more preferably 0.0020%.
- N 0.0080% or less Nitrogen (N) is an impurity that is inevitably contained. That is, the N content is more than 0%. N combines with B to form BN and reduces the amount of solid solution B. If the N content exceeds 0.0080%, even if the Ti content in the steel material is within the range of the present embodiment, Ti cannot sufficiently fix N, and BN is excessively generated. As a result, the hardenability of the steel material is reduced. If the N content exceeds 0.0080%, coarse TiN is further generated, and the coarse TiN becomes the starting point of cracking during cold forging. Therefore, the limit processing rate of the steel material is lowered. Therefore, the N content is 0.0080% or less.
- the preferred upper limit of the N content is 0.0075%, more preferably 0.0070%, still more preferably 0.0065%.
- the N content is preferably as low as possible. However, excessive reduction of N content increases manufacturing costs. Therefore, when considering normal industrial production, the preferable lower limit of the N content is 0.0001%, more preferably 0.0005%, still more preferably 0.0010%, still more preferably 0. It is 0030%.
- P 0.050% or less Phosphorus (P) is an impurity that is inevitably contained. That is, the P content is more than 0%. P lowers the hot workability of the steel material. P further reduces the fatigue strength of the carburized steel part. Therefore, the P content is 0.050% or less.
- the preferred upper limit of the P content is 0.035%, more preferably 0.028%, still more preferably 0.020%.
- the P content is preferably as low as possible. However, excessive reduction of P content increases manufacturing costs. Therefore, when considering normal industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.005%.
- Oxygen (O) is an impurity that is inevitably contained. That is, the O content is more than 0%. O forms an oxide, lowers the limit processing rate of the steel material, and lowers the fatigue strength of the carburized steel part. Therefore, the O content is 0.0030% or less.
- the preferred upper limit of the O content is 0.0028%, more preferably 0.0026%, still more preferably 0.0023%.
- the O content is preferably as low as possible. However, excessive reduction of O content increases manufacturing costs. Therefore, when considering normal industrial production, the preferable lower limit of the O content is 0.0001%, more preferably 0.0005%, still more preferably 0.0007%.
- the rest of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
- the impurities are those mixed from ore, scrap, or the manufacturing environment as a raw material when the steel material is industrially manufactured, and are allowed as long as they do not adversely affect the steel material of the present embodiment. Means what is done.
- the chemical composition of the steel material of the present embodiment further comprises one or two elements selected from the group consisting of Nb, V, Mo, Ni, Cu, Mg, and a rare earth element (REM) instead of a part of Fe.
- Nb, V, Mo, Ni, Cu and Mg all increase the fatigue strength of carburized steel parts made of steel.
- Nb and V form carbides and / or carbonitrides to increase the strength of the core of the carburized steel part and increase the fatigue strength of the carburized steel part.
- Mo, Ni and Cu enhance the hardenability of steel materials and increase the strength of carburized steel parts.
- Mg refines the oxide and suppresses the occurrence of cracks caused by the coarse oxide, thereby increasing the fatigue strength of the carburized steel parts.
- REM controls the morphology of sulfide to increase the limit processing rate of steel materials.
- Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When contained, Nb combines with C and N to form carbides and / or carbonitrides, and the pinning effect suppresses the coarsening of austenite grains during heating of the carburizing treatment. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content exceeds 0.100%, coarse carbides and / or carbonitrides are formed, and the limit processing rate of the steel material is lowered. Therefore, the Nb content is 0.100% or less. That is, the Nb content is 0 to 0.100%.
- the preferable lower limit of the Nb content is 0.001%, more preferably 0.002%, still more preferably 0.004%, still more preferably 0.010%.
- the preferred upper limit of the Nb content is 0.080%, more preferably 0.060%, still more preferably 0.050%.
- V 0.300% or less Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms carbides in the steel and precipitates in ferrite, increasing the strength of the core of the carburized steel component. If even a small amount of V is contained, the above effect can be obtained to some extent. However, if the V content exceeds 0.300%, the cold forging property of the steel material is lowered and the critical machining rate is lowered. Therefore, the V content is 0.300% or less. That is, the V content is 0 to 0.300%.
- the lower limit of the V content is preferably 0.001%, more preferably 0.003%, still more preferably 0.004%, still more preferably 0.005%.
- the preferred upper limit of the V content is 0.280%, more preferably 0.250%, still more preferably 0.230%, still more preferably 0.200%, still more preferably 0.180. %, More preferably 0.150%, even more preferably 0.130%, still more preferably 0.100%.
- Mo 0.500% or less Molybdenum (Mo) is an optional element and may not be contained. That is, the Mo content may be 0%. When contained, Mo enhances the hardenability of steel and increases the martensite fraction of carburized steel parts. Furthermore, when the carburizing treatment by gas carburizing is carried out, Mo does not generate oxides and nitrides during the carburizing treatment. Therefore, Mo suppresses the formation of an oxide layer, a nitride layer and an abnormal carburizing layer in the carburized layer. If even a small amount of Mo is contained, these effects can be obtained to some extent. However, if the Mo content exceeds 0.500%, the hardness of the steel material becomes excessively high, and the critical processing rate decreases.
- the Mo content is 0.500% or less. That is, the Mo content is 0 to 0.500%.
- the lower limit of the Mo content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%, still more preferably 0.020%, still more preferably 0.050%. %.
- the preferred upper limit of the Mo content is 0.400%, more preferably 0.300%, and even more preferably 0.200%.
- Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of steel and increases the martensite fraction of carburized steel parts. Furthermore, when the carburizing treatment by gas carburizing is carried out, Ni does not generate oxides and nitrides during the carburizing treatment. Therefore, Ni suppresses the formation of an oxide layer, a nitride layer and an abnormal carburizing layer in the carburized layer. If even a small amount of Ni is contained, the above effect can be obtained to some extent. However, if the Ni content exceeds 0.500%, the hardness of the steel material becomes excessively high, and the critical processing rate decreases.
- the Ni content is 0.500% or less. That is, the Ni content is 0 to 0.500%.
- the lower limit of the Ni content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%, still more preferably 0.020%, still more preferably 0.050%. %.
- the preferred upper limit of the Ni content is 0.400%, more preferably 0.300%, and even more preferably 0.200%.
- Cu 0.500% or less Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of steel and increases the martensite fraction of carburized steel parts. Furthermore, when the carburizing treatment by gas carburizing is carried out, Cu does not generate oxides and nitrides during the carburizing treatment. Therefore, Cu suppresses the formation of an oxide layer, a nitride layer, and an abnormal carburizing layer on the surface of the carburized layer. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content exceeds 0.500%, the hardness of the steel material becomes excessively high, and the critical processing rate decreases.
- the Cu content is 0.500% or less. That is, the Cu content is 0 to 0.500%.
- the preferred lower limit of the Cu content is 0.001%, more preferably 0.005%, even more preferably 0.010%, even more preferably 0.020%, still more preferably 0.050%. %.
- the preferred upper limit of the Cu content is 0.400%, more preferably 0.300%.
- Mg 0.0035% or less
- Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%.
- Mg deoxidizes the steel and refines the oxide in the steel material in the same manner as Al. If the oxide in the steel material becomes finer, it is difficult to generate coarse oxide. Coarse oxides can be the starting point for fracture. Therefore, if Mg refines the oxide, the formation of coarse oxide, which is the starting point of fracture, is suppressed. As a result, the fatigue strength of the carburized steel parts is increased. The above effect can be obtained by containing even a small amount of Mg. However, if the Mg content exceeds 0.0035%, coarse oxides are formed in the steel material.
- the Mg content is 0.0035% or less. That is, the Mg content is 0 to 0.0035%.
- the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%.
- the preferred upper limit of the Mg content is 0.0032%, more preferably 0.0030%, still more preferably 0.0028%, still more preferably 0.0025%.
- the chemical composition of the steel material of the present embodiment may further contain a rare earth element (REM) instead of a part of Fe.
- REM rare earth element
- Rare earth element (REM) 0.005% or less
- Rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, REM dissolves in sulfides in steel to control the morphology of the sulfides. As a result, REM increases the marginal processing rate of steel materials. If even a small amount of REM is contained, the above effect can be obtained to some extent. However, if the REM content exceeds 0.005%, coarse oxides are formed and the fatigue strength of the carburized steel parts is lowered. Therefore, the REM content is 0.005% or less. That is, the REM content is 0 to 0.005%.
- the preferred lower limit of the REM content is 0.001%, more preferably 0.002%.
- the preferred upper limit of the REM content is 0.004%.
- the REM in the present specification refers to lutetium (Sc) having an atomic number of 21, yttrium (Y) having an atomic number of 39, and lanthanum (La) to having an atomic number of 71, which are lanthanoids. It is one or more elements selected from the group consisting of lutetium (Lu). Further, the REM content in the present specification is the total content of these elements.
- F1 C + 0.194 ⁇ Si + 0.065 ⁇ Mn + 0.012 ⁇ Cr + 0.033 ⁇ Mo + 0.067 ⁇ Ni + 0.097 ⁇ Cu + 0.078 ⁇ Al.
- F1 is an index of the hardness of the steel material and the carburized steel parts manufactured using the steel material.
- the structure of the steel material before cold forging has a significantly increased ferrite fraction as compared with the above-mentioned conventional steel material (C content is about 0.20%).
- C content is about 0.20%.
- the hardness of the steel material is greatly affected not only by the C content (pearlite fraction) but also by the hardness of ferrite.
- F1 indicates the contribution of each alloying element to the solid solution strengthening of ferrite in the steel material.
- F1 is 0.235 or more, the hardness of the steel material before cold forging is too high. In this case, the limit processing rate of the steel material decreases.
- F1 is 0.200 or less, the hardness of the core portion as a carburized steel part is insufficient. Therefore, F1 is more than 0.200 and less than 0.235. It is preferable that F1 is as low as possible within the range satisfying the hardenability index (F2) described later.
- the preferred upper limit of F1 is less than 0.230, more preferably 0.225, even more preferably 0.220, even more preferably 0.215, still more preferably 0.210.
- the F1 value is a value obtained by rounding off the fourth decimal place of the calculated value.
- B is effective in enhancing the hardenability of steel materials and increasing the hardness of the core of carburized steel parts.
- gas carburizing transformation furnace gas method
- the hardenability improving effect due to the inclusion of B is low in the carburized layer which is the surface layer portion of the carburized steel parts. This is because N in the atmospheric gas in the furnace invades the surface layer of the carburized steel parts during the carburizing treatment, and the solid solution B is precipitated as BN, and the amount of the solid solution B that contributes to the improvement of hardenability is insufficient. ..
- B can increase the hardness of the core portion of the carburized steel part, but it is difficult to contribute to the improvement of the hardness of the carburized layer of the carburized steel part. Therefore, in order to ensure hardenability in the carburized layer, which is the surface layer of the carburized steel parts, it is necessary to utilize an element for improving hardenability other than B.
- F2 is composed of elements other than B that contribute to improving hardenability.
- the carburized layer depth Vickers hardness is HV550
- C content is about 0.20% under the same carburizing treatment conditions. It is not possible to obtain a sufficient depth).
- F2 is 29.0 or more, the hardness of the steel material before cold forging increases and the critical machining rate decreases. Therefore, F2 is more than 16.0 and less than 29.0. It is preferable that F2 is as large as possible within the range satisfying the hardness index F1.
- the preferred lower limit of F2 is 16.3, more preferably 16.5, even more preferably 16.7, still more preferably 17.0, still more preferably 17.2.
- the F2 value is a value obtained by rounding off the second decimal place of the calculated value.
- F3 Ti—N ⁇ (48/14).
- F3 is an index regarding the amount of TiC precipitated. When Ti is stoichiometrically excessive with respect to N, all N is fixed as TiN. That is, F3 means an excess amount of Ti other than the amount of Ti consumed to form TiN.
- "14" in F3 is the atomic weight of N, and "48” is the atomic weight of Ti.
- F3 Most of the excess Ti amount defined in F3 is combined with C during carburizing to become TiC. This TiC has a pinning effect of preventing coarsening of austenite crystal grains during carburizing. If F3 is 0.004 or less, the amount of TiC deposited is insufficient. In this case, coarsening of crystal grains during carburizing cannot be suppressed. On the other hand, if F3 is 0.030 or more, the amount of TiC deposited becomes too large, the hardness of the steel material before cold forging increases, and the critical machining rate decreases. Therefore, F3 is greater than 0.004 and less than 0.030. The preferred lower limit of F3 is 0.006, more preferably 0.008. The preferred upper limit of F3 is 0.028, more preferably 0.0025. The F3 value is a value obtained by rounding off the fourth decimal place of the calculated value.
- F4 Ca / S.
- F4 is an index related to sulphurization and spheroidization of sulfides.
- Ca dissolves in sulfide to make the sulfide finer, and further spheroidizes the sulfide.
- the content of each element including Ca in the chemical composition of the steel material is within the above range, if the Ca content is too high with respect to the S content, a part of Ca does not dissolve in sulfide and is oxidized. It forms an object. Ca oxide lowers the marginal processing rate of steel materials.
- F4 Ca / S
- F4 is less than 0.03, even if the content of each element in the chemical composition is within the above range and F1 to F3 satisfy the formulas (1) to (3), the steel still contains.
- the Ca content is too low relative to the S content. In this case, the miniaturization and spheroidization of the sulfide are insufficient. As a result, the limit processing rate of the steel material becomes low.
- F4 is higher than 0.15, even if the content of each element in the chemical composition is within the above range and F1 to F3 satisfy the formulas (1) to (3), the steel The Ca content is too high relative to the S content in it. In this case, an excess of oxide is produced. As a result, the limit processing rate of the steel material becomes low.
- F1 to F3 satisfy the formulas (1) to (3), and F4 is 0.03 to 0.15.
- Sulfide can be sufficiently refined and spheroidized, and excessive formation of oxides can be suppressed. Therefore, in the steel material, the limit processing rate at the time of cold forging is larger than that of the conventional steel material.
- the steel material is carburized, it is possible to manufacture a carburized steel part having a carburized layer hardness and a core hardness equivalent to those of the conventional steel material.
- the preferred lower limit of F4 is 0.05, more preferably 0.06.
- the preferred upper limit of F4 is 0.14, more preferably 0.13. Note that F4 is a value obtained by rounding off the third decimal place of the calculated value.
- the matrix is mainly composed of ferrite and pearlite.
- “mainly composed of ferrite and pearlite” means that the total area ratio of ferrite and pearlite in the microstructure is 85.0 to 100.0%.
- the phases other than ferrite and pearlite are, for example, bainite, martensite, cementite and the like.
- the total area ratio of bainite, martensite and cementite is 0 to 15.0%.
- the total area ratio of ferrite and pearlite in the microstructure is 85.0 to 100.0%, and the total area ratio of bainite, martensite and cementite in the microstructure is 0 to 15.0. %.
- the balance is one or more selected from the group consisting of bainite, martensite and cementite. Is.
- ferrite, pearlite, martensite, bainite, and cementite are included in the calculation of the area ratio of the microstructure.
- the calculation of the area ratio does not include precipitates other than cementite, inclusions, and retained austenite.
- the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is less than 20.0 to 35.0%.
- the total area ratio of ferrite and pearlite is 85.0% or more, and pearlite grains having an area of 200 ⁇ m 2 or more (hereinafter, pearlite grains). If the total area ratio of (also referred to as coarse pearlite grains) is set to an appropriate amount, the chip controllability after cold forging is improved.
- FIG. 1 is a schematic view of a microstructure observation field of view of a steel material.
- a region of pearlite having the same ferrite crystal orientation is defined as a pearlite block.
- a region having the same lamella orientation in the burlite block is defined as a pearlite colony.
- FIG. 1 there are a pearlite block 21 containing pearlite colonies 21A and 21B, a pearlite block 22 containing pearlite colonies 22A and 22B, a pearlite block 23, and a pearlite block 24.
- the pearlite blocks 21 and 22 are in contact (adjacent).
- a single pearlite block or a plurality of pearlite blocks in contact with each other are defined as pearlite grains. That is, in FIG. 1, the pearlite blocks 21 and 22 are defined as one pearlite grain 2.
- a pearlite block 23 that exists alone is defined as one pearlite grain 23.
- a pearlite block 24 that exists alone is defined as one pearlite grain 24.
- the area of the perlite grains 2 is not less 200 [mu] m 2 or more
- the area of the pearlite grains 23 is not less 200 [mu] m 2 or more
- the chip controllability is improved. Significantly increased. Therefore, the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more in the microstructure is set to 20.0% or more.
- the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more is set to 35.0% or less. In this case, sufficient chip controllability can be obtained in the cutting process after cold forging while ensuring a sufficient limit processing rate in the steel material used as the material for the carburized steel parts.
- the chips are less likely to be separated during the cutting process of the steel material, and the chip controllability is lowered.
- the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is 35.0% or more, the proportion of coarse pearlite in the steel material is too large. In this case, the hardness of the steel material becomes excessively high, and the limit processing rate decreases.
- the preferable lower limit of the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more is 22.0%, more preferably 25.0%.
- the preferable upper limit of the total area ratio of the pearlite grains of 200 ⁇ m 2 or more is 33.0%, and more preferably 30.0%.
- the lower limit of the total area ratio of ferrite and pearlite in the microstructure is preferably 90.0%, more preferably 95.0%, and even more preferably 97.0%.
- the total area ratio (%) of ferrite and pearlite in the microstructure of the steel material of the present embodiment and the total area ratio (%) of pearlite grains having an area of 200 ⁇ m 2 or more are measured by the following methods.
- the steel material is bar steel or wire rod
- the center position (R / 2 position) of the radius R connecting the surface and the central axis of the cross section perpendicular to the longitudinal direction (axial direction) of the steel material (hereinafter referred to as the cross section).
- the cross section Take a sample.
- the surface corresponding to the cross section is used as the observation surface.
- the observation surface is etched with 2% alcohol nitrate (Nital corrosive liquid).
- the etched observation surface is observed using a 500x optical microscope to generate an arbitrary 20-field photographic image.
- the size of each field of view is 500 ⁇ m ⁇ 500 ⁇ m.
- each phase is identified based on the contrast.
- the total area ([mu] m 2) of the ferrite in each field and determines the total area of perlite ( ⁇ m 2).
- the ratio (%) of the total area of ferrite and the total area of pearlite in all fields of view to the total area of all fields of view is defined as the total area ratio (%) of ferrite and pearlite.
- the calculation of the area ratio of the microstructure includes ferrite, pearlite, martensite (including tempered martensite), bainite (including tempered bainite), and cementite (including spheroidized cementite).
- the calculation of the area ratio does not include precipitates other than cementite, inclusions, and retained austenite.
- the phase having a lamellar structure can be identified as pearlite by observation with an optical microscope.
- a region having a higher brightness than pearlite can be identified as ferrite.
- Regions with lower brightness (dark regions) than ferrite and pearlite can be identified as martensite and bainite.
- the pearlite grains defined above are specified, and the area of each pearlite grain is obtained. Then, the total area of pearlite grains having a size of 200 ⁇ m 2 or more is obtained. The ratio (%) of the total area of pearlite grains of 200 ⁇ m 2 or more to the total area of all fields of view is defined as the total area ratio (%) of pearlite grains of 200 ⁇ m 2 or more.
- the calculation of the area ratio of the microstructure includes ferrite, pearlite, martensite (including tempered martensite), bainite (including tempered bainite), and cementite (including spheroidized cementite).
- the calculation of the area ratio does not include precipitates other than cementite, inclusions, and retained austenite.
- each element in the chemical composition is within the above range, and the formulas (1) to (4) are satisfied.
- the total area ratio of ferrite and pearlite in the microstructure is 85.0% or more, and the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is 20.0 to less than 35.0%. Therefore, the limit machining rate at the time of cold forging can be increased, and the chip control property is excellent in the cutting process after cold forging.
- the steel material of the present embodiment is cold forged, cut, and carburized to become a carburized steel part, the hardness of the core portion can be sufficiently increased, and a carburized layer having a sufficient depth is also provided. can get.
- the method for producing the steel material of the present embodiment will be described later.
- the carburized steel part of the present embodiment is manufactured by using the steel material of the present embodiment described above. Specifically, it is manufactured by carburizing a steel material after cold forging. The method for manufacturing carburized steel parts will be described later.
- the carburized steel parts include a carburized layer and a core.
- the carburized layer is formed on the surface layer of the carburized steel part.
- the depth of the carburized layer from the surface of the carburized steel part is 0.4 mm to less than 2.0 mm.
- the depth of the carburized layer may be at least 0.4 mm or more.
- the carburized layer means a region on the surface layer of the carburized steel part where the Vickers hardness according to JIS Z 2244 (2009) is 550 HV or more.
- the core portion corresponds to a region inside the carburized steel component rather than the carburized layer.
- the chemical composition of the core is the same as the chemical composition of the carburized steel parts described above. That is, each element in the chemical composition of the core portion is within the above numerical range and satisfies the formulas (1) to (4).
- the position at a depth of 50 ⁇ m from the surface of the carburized steel part corresponds to the carburized layer.
- the Vickers hardness according to JIS Z 2244 (2009) at a depth of 50 ⁇ m from the surface of the carburized steel part is 650 to 1000 HV. That is, the Vickers hardness of the carburized layer at the above position is 650 to 1000 HV.
- the carburized layer is formed by carburizing treatment, and the Vickers hardness of the carburized layer is higher than that of the steel material used as the material.
- the position at a depth of 2.0 mm from the surface of the carburized steel part corresponds to the core portion.
- the Vickers hardness according to JIS Z 2244: 2009 at a depth of 2.0 mm from the surface of the carburized steel part is 250 to 500 HV. That is, the Vickers hardness of the core portion at the above position is 250 to 500 HV.
- the Vickers hardness of carburized steel parts is measured by the following method.
- the cross section perpendicular to any surface of the carburized steel part is the measurement surface.
- the Vickers hardness at a depth of 50 ⁇ m from the surface and the Vickers hardness at a depth of 0.4 mm from the surface are tested for Vickers hardness in accordance with JIS Z 2244 (2009) using a micro Vickers hardness tester. To be calculated by.
- the test force is 0.49N.
- the Vickers hardness HV at 10 points at a depth of 50 ⁇ m is measured.
- the arithmetic mean of the 10 measurement results is defined as the Vickers hardness HV at a depth of 50 ⁇ m.
- the Vickers hardness HV at 10 points is measured at a depth of 0.4 mm from the surface.
- the arithmetic mean of the 10 measurement results is defined as the Vickers hardness HV at a depth of 0.4 mm. If the Vickers hardness at the 0.4 mm depth position is 550 HV or more, it is determined that the carburized layer depth is at least 0.4 mm or more.
- the Vickers hardness at a depth of 2.0 mm from the surface is determined by a Vickers hardness test based on JIS Z 2244 (2009) using a Vickers hardness tester. The test force is 0.49N. Measure Vickers hardness HV at 10 points at a depth of 2.0 mm. The arithmetic mean of the 10 measurement results is defined as the Vickers hardness HV at a depth of 2.0 mm.
- Carburized steel parts are applied as machine structural parts used in mining machines, construction machines, automobiles, etc., for example.
- Mechanical structural parts are, for example, gears, shafts, pulleys and the like.
- An example of the method for manufacturing a steel material of the present embodiment includes a material preparation process and a hot working process. Hereinafter, each step will be described.
- a material having a chemical composition satisfying the above formulas (1) to (4) is prepared.
- the material is produced, for example, by the following method.
- a molten steel having a chemical composition satisfying the above formulas (1) to (4) is produced.
- a material (slab or ingot) is manufactured by a casting method using the molten steel.
- a slab (bloom) is produced by a well-known continuous casting method using the molten steel.
- the ingot is manufactured by a well-known ingot forming method using the molten steel.
- the material (bloom or ingot) prepared in the material preparation process is hot-worked to produce a steel material.
- the shape of the steel material is not particularly limited, but is, for example, steel bar or wire rod. In the following description, as an example, a case where the steel material is bar steel will be described. However, even if the steel material has a shape other than steel bar, it can be manufactured by the same hot working process.
- the hot working process includes a rough rolling process and a finish rolling process.
- the material is hot-processed to produce billets.
- a bulk rolling mill is used for the rough rolling process. Billets are manufactured by performing slab rolling on the material with a slab rolling mill.
- a continuous rolling mill is installed downstream of the ingot rolling mill, hot rolling is further performed on the billet after the ingot rolling using the continuous rolling mill to produce a smaller billet. You may.
- horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row.
- the heating temperature in the heating furnace in the rough rolling step is not particularly limited, but is, for example, 1100 to 1300 ° C.
- the billet is first heated using a heating furnace.
- the billets after heating are hot-rolled using a continuous rolling mill to produce steel bars, which are steel materials.
- the heating temperature in the heating furnace or the soaking furnace is defined as T1 (° C.), and the holding time in the heating furnace and the soaking furnace is defined as t1 (hours).
- the heating temperature T1 is the furnace temperature
- the holding time t1 is the staying time (hours) of the billet in the furnace.
- the preferable heating temperature T1 is 1200 to 1250 ° C.
- the preferable holding time t1 is 1.5 to 15.0 hours. Even if the heating temperature T1 and the holding time t1 are out of the above ranges, if the finishing temperature T2 and the average cooling rate CR described later are within appropriate ranges, a steel material having the above configuration can be manufactured.
- the material temperature on the exit side of the stand where the final rolling was performed is defined as the finish temperature T2.
- the finishing temperature T2 is the surface temperature (° C.) of the material measured by a temperature gauge installed on the outlet side of the stand where the final reduction was performed.
- the thermometer is, for example, a radiation thermometer.
- the finish temperature T2 and the average cooling rate CR after finish rolling are set in the following ranges, respectively.
- Finishing temperature T2 1020 to 1100 ° C
- the finishing temperature is usually set to 1000 ° C. or lower in order to reduce the manufacturing cost.
- the lower limit of the finishing temperature T2 is intentionally set to 1020 ° C. to increase the total area ratio of the coarse pearlite grains.
- the finishing temperature T2 is less than 1020 ° C., the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more is less than 20.0% even when the cooling described later is carried out, and the chip controllability is lowered. do.
- the finishing temperature T2 is 1020 to 1100 ° C.
- the preferred lower limit of the finishing temperature T2 is 1025 ° C, more preferably 1030 ° C.
- the preferred upper limit of the finishing temperature T2 is 1090 ° C, more preferably 1080 ° C.
- Average cooling rate from finishing temperature T2 to steel temperature reaching 600 ° C CR 2.0 ° C / sec or less
- the pearlite transformation is almost completed by the time the steel temperature reaches 600 ° C.
- the average cooling rate CR is 2.0 ° C./sec or less
- the average cooling rate CR is a cooling rate of cooling rate or less in the atmosphere.
- the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more is 20.0% or more, and sufficient chip controllability can be obtained.
- the average cooling rate CR exceeds 2.0 ° C./sec, the cooling rate is too fast.
- the pearlite grains defined above become finer, and the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more is less than 20.0%. As a result, the chip controllability of the steel material is reduced. If the average cooling rate CR is further increased, bainite and / or martensite is formed in the microstructure of the steel material. In this case, the total area ratio of ferrite and pearlite in the microstructure becomes less than 85.0%, and the critical processing ratio decreases.
- the average cooling rate CR is measured by the following method.
- the steel material after finish rolling is transported downstream on a transfer line.
- a plurality of temperature gauges are arranged along the transport line on the transport line, and it is possible to measure the temperature of the steel material at each position of the transport line. Based on a plurality of temperature gauges arranged along the transport line, the time required for the steel material temperature to reach the finishing temperature T2 to 600 ° C. is obtained, and the average cooling rate CR (° C./sec) is obtained.
- the average cooling rate CR can be adjusted by arranging a plurality of slow cooling covers on the transport line at intervals.
- the method for cooling the steel material after the temperature of the steel material becomes less than 600 ° C. is not particularly limited.
- the steel material of the present embodiment having the above configuration can be manufactured.
- a cold forging step of cold forging the steel material of the present embodiment to manufacture an intermediate member, a cutting process of cutting the intermediate member, and a carburizing treatment of the intermediate member are performed. Includes a carburizing process and a tempering process.
- the carburizing treatment also includes a carburizing nitriding treatment.
- Cold forging process the steel material manufactured by the above-mentioned manufacturing method is cold forged to give it a shape, and an intermediate member is manufactured.
- the cold forging conditions such as the working rate and the strain rate in this cold forging step are not particularly limited, and suitable conditions may be appropriately selected.
- the carburizing treatment also includes a carburizing nitriding treatment.
- a well-known carburizing process is carried out.
- the carburizing step includes a carburizing step, a diffusion step, and a quenching step.
- the carburizing treatment conditions in the carburizing step and the diffusion step may be adjusted as appropriate.
- the carburizing temperature in the carburizing step and the diffusion step is, for example, 830 to 1100 ° C.
- the carbon potential in the carburizing step and the diffusion step is, for example, 0.5 to 1.2%.
- the holding time in the carburizing step is, for example, 60 minutes or more, and the holding time in the diffusion step is 30 minutes or more. It is preferable that the carbon potential in the diffusion step is lower than the carbon potential in the carburizing step.
- the conditions in the carburizing step and the diffusion step are not limited to the above-mentioned conditions.
- a well-known quenching step is carried out.
- the intermediate member after the diffusion step is held at a quenching temperature equal to or higher than the Ar3 transformation point.
- the holding time at the quenching temperature is not particularly limited, but is, for example, 30 to 60 minutes.
- the quenching temperature is lower than the carburizing temperature.
- the temperature of the quenching medium is preferably room temperature to 200 ° C.
- the quenching medium is, for example, water or oil. Further, if necessary, subzero treatment may be carried out after quenching.
- tempering process A well-known tempering process is carried out on the intermediate member after the carburizing process.
- the tempering temperature is, for example, 100 to 200 ° C.
- the holding time at the tempering temperature is, for example, 90 to 150 minutes.
- the carburized steel parts after the tempering step may be further subjected to grinding or shot peening.
- grinding a precise shape can be imparted to the carburized steel part.
- shot peening treatment compressive residual stress is introduced into the surface layer portion of the carburized steel part. Compressive residual stress suppresses the generation and growth of fatigue cracks. Therefore, the fatigue strength of carburized steel parts is increased.
- the carburized steel part is a gear, the fatigue strength of the tooth root and the tooth surface of the carburized steel part can be improved.
- the shot peening process may be carried out by a well-known method.
- the shot peening treatment is preferably carried out under the condition that, for example, shot grains having a diameter of 0.7 mm or less are used and the arc height is 0.4 mm or more.
- the effects of one aspect of the present invention will be described more specifically by way of examples.
- the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the steel material and carburized steel parts of the present embodiment. Therefore, the present invention is not limited to this one-condition example.
- the present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
- the molten steel with the chemical composition shown in Table 1 was prepared.
- the molten steel was cast by continuous casting to obtain slabs.
- a blank column in Table 1 means that the corresponding element content was below the detection limit. That is, the blank portion means that the minimum digit of the corresponding element content was below the detection limit.
- the smallest digit is the third decimal place. Therefore, the Nb content of steel number A means that it was not detected in the number of digits up to the third decimal place (the significant figure was 0% in the content up to the third decimal place).
- a finish rolling process was carried out to manufacture steel bars with a diameter of 80 mm (steel materials used as materials for carburized steel parts).
- the heating temperature T1 of each test number in the finish rolling step is as shown in Table 2.
- the holding time t1 was 1.5 to 3.0 hours in all the test numbers.
- the average cooling rate CR from the finishing temperature T2 and the finishing temperature T2 of each test number to the steel material temperature reaching 600 ° C. is as shown in Table 2.
- the total area of the ferrite in the field of view [mu] m 2), and to determine the total area of perlite ( ⁇ m 2).
- the ratio (%) of the total area of ferrite and the total area of pearlite in all fields of view to the total area of all fields of view was defined as the total area ratio (%) of ferrite and pearlite ("" in Table 2 ". Equivalent to "ferrite + pearlite total area ratio").
- the pearlite grains defined above were specified in all the visual fields, and the area of each pearlite grain was determined. Then, the total area of pearlite grains having a size of 200 ⁇ m 2 or more was determined. The ratio (%) of the total area of pearlite grains of 200 ⁇ m 2 or more to the total area of all fields of view was defined as the total area ratio (%) of pearlite grains of 200 ⁇ m 2 or more (“total area of coarse pearlite grains” in Table 2). Equivalent to "rate”.).
- the phases observed in each test number other than ferrite and pearlite are shown. "-" In the column indicates that no phase other than ferrite and pearlite was observed in the matrix in the microstructure.
- M + B in the column indicates that martensite and / or bainite was observed in addition to ferrite and pearlite in the matrix in the microstructure.
- C in the column indicates that cementite was observed in addition to ferrite and pearlite in the matrix in the microstructure.
- Table 2 shows the total area ratio of ferrite and pearlite of each test number and the total area ratio (%) of pearlite grains having an area of 200 ⁇ m 2 or more of each test number.
- a limit compression test was carried out as an evaluation test of the limit work rate (cold forging property) of steel materials. Specifically, a plurality of critical compressibility measurement test pieces were collected from the steel material (steel bar) of each test number. The limit compression test piece had a diameter of 6 mm and a length of 9 mm. The longitudinal direction of the critical compressibility measurement test piece was parallel to the longitudinal direction of the steel bars of each test number. Further, the central axis of the critical compression test piece corresponded to the R / 2 position of the steel bar of each test number. A notch was formed in the circumferential direction at the center position in the longitudinal direction of the test piece. The notch angle was 30 degrees, the notch depth was 0.8 mm, and the radius of curvature of the notch tip was 0.15 mm.
- a 500 ton hydraulic press was used for the limit compression test.
- the limit compression test was carried out on the prepared limit compression rate measurement test piece by the following method. Each test piece was cold compressed using a restraint die at a rate of 10 mm / min. Compression was stopped when microcracks of 0.5 mm or more occurred in the vicinity of the notch, and the compression rate (%) at that time was calculated. This measurement was performed a total of 10 times to determine the compressibility (%) at which the cumulative breakage probability was 50%. The obtained compression rate was defined as the limit compression rate (%).
- Table 2 shows the critical compressibility (%) of each test number.
- the limit compressibility of the conventional steel material used as a material for carburized steel parts is about 65%.
- the outer circumference of the test piece for turning was turned using an NC lathe.
- the details of the tools used in the test and the machining conditions were as follows.
- the chip controllability was evaluated by the following method. All chips discharged in any 10 seconds during the machinability test were collected. The length of the collected chips was examined, and 10 chips were selected in order from the longest one. The total weight of the 10 selected chips was defined as "chip weight”. When the total number of chips was less than 10 as a result of the chips being connected for a long time, the total weight of the collected chips was measured, and the value converted into the number of 10 pieces was defined as "chip weight”. For example, when the total number of chips is 7, and the total weight thereof is 12 g, the chip weight is calculated to be 12 g ⁇ 10 pieces / 7 pieces.
- Chip controllability was evaluated as follows based on the chip weight of each test number. Chip weight is 10g or less: Evaluation E (Excellent) Chip weight is more than 10g and less than 15g: Evaluation G (Good) Chip weight over 15g: Rating B (Bad) When the evaluation was "E” or "G”, it was judged that the chip controllability was high. On the other hand, when the evaluation was "B”, it was judged that the chip controllability was low. The evaluation results are shown in Table 2.
- Carburized steel parts evaluation test Carburized steel parts were manufactured using the steel materials of each test number, and the hardness of the core and the depth of the carburized layer were investigated. Specifically, test pieces having a diameter of 20 mm and a length of 30 mm were collected from the steel bars of each test number. The center of the test piece almost coincided with the center of the steel bar of each test number. The collected test pieces were carburized by the metamorphic furnace gas method (gas carburizing treatment). In the gas carburizing treatment, the carbon potential was set to 0.8% and the carbon potential was maintained at 950 ° C. for 5 hours (300 minutes). Subsequently, it was held at 850 ° C. for 0.5 hours.
- gas carburizing treatment the carbon potential was set to 0.8% and the carbon potential was maintained at 950 ° C. for 5 hours (300 minutes). Subsequently, it was held at 850 ° C. for 0.5 hours.
- test piece was immersed in an oil tank at 130 ° C. and oil-quenched.
- the hardened test piece was tempered at 150 ° C. for 90 minutes.
- the Vickers hardness at a depth of 50 ⁇ m from the surface and the Vickers hardness at a depth of 0.4 mm from the surface are measured by a Vickers hardness tester.
- the test force was 0.49N.
- the Vickers hardness HV at 10 points at a depth of 50 ⁇ m was measured.
- the arithmetic mean value of the 10 measurement results was defined as the Vickers hardness HV at a depth position of 50 ⁇ m.
- Vickers hardness HV at 10 points at a depth of 0.4 mm was measured.
- the average value of the 10 measurement results was defined as the Vickers hardness HV at the 0.4 mm depth position.
- the hardness at a depth of 0.4 mm from the surface is 550 HV or more, it is judged that the carburized layer exists up to at least 0.4 mm from the surface. That is, it was judged that the carburized layer was formed sufficiently deep. Further, when the Vickers hardness at a depth of 50 ⁇ m from the surface was 650 to 1000 HV, it was judged that the hardness of the carburized layer of the carburized steel part was sufficient. The measurement results are shown in Table 2.
- the Vickers hardness and chemical composition of the core of the carburized steel parts were measured by the following method. On the cut surface perpendicular to the longitudinal direction of the carburized steel part, the Vickers hardness at a depth of 2.0 mm from the surface was determined by a Vickers hardness test based on JIS Z 2244 (2009) using a Vickers hardness tester. .. The test force was 0.49N. The measurement was performed 10 times at a depth position of 2.0 mm. The arithmetic mean of the 10 measurement results was defined as the Vickers hardness (HV) at a depth of 2.0 mm from the surface. The obtained Vickers hardness is shown in Table 2. When the Vickers hardness at the 2.0 mm depth position was 250 to 500 HV, it was judged that the core hardness was sufficiently high.
- the chemical composition of the core at a depth of 2.0 mm from the surface was quantitatively analyzed for elements with atomic numbers 5 and above using EPMA (Electron probe MicroAnalyzer). Then, when the chemical composition of the core portion is the same as the chemical composition of the steel material which is the material of the carburized steel parts, it is judged that the chemical composition is equivalent. The determination results are shown in Table 2.
- the old austenite crystal grains were observed at a depth of 2.0 mm from the surface. Specifically, the cut surface perpendicular to the longitudinal direction of the carburized steel part was used as the observation surface. After mirror polishing the observation surface, etching was performed with a saturated aqueous solution of picric acid. The old austenite crystal grains were identified by observing the field of view (300 ⁇ m ⁇ 300 ⁇ m) including the position at a depth of 2.0 mm from the surface of the etched observation surface with an optical microscope (400 times).
- the crystal grain size of each old austenite crystal grain was determined by a circle-equivalent diameter ( ⁇ m) in accordance with JIS G 0551 (2013).
- ⁇ m circle-equivalent diameter
- the crystal grain size number 4 specified in JIS is present.
- the carburized layer had a depth of at least 0.4 mm or more.
- the Vickers hardness of the carburized layer at a depth of 50 ⁇ m was 650 to 1000 HV.
- the Vickers hardness of the core portion at the depth position of 2.0 mm was 250 to 500 HV, and both the carburized layer and the core portion had sufficient hardness.
- the C content was too low. Therefore, the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more was less than 20.0%. Therefore, the chip weight exceeded 15 g, and the chip controllability was low. Further, in the carburized steel part, the Vickers hardness of the core portion at the depth position of 2.0 mm was as low as less than 250 HV.
- test number 14 the C content was too high and F1 exceeded the upper limit of formula (1). Therefore, the limit processing rate of the steel material for carburized steel parts was low.
- the Si and Mn contents were too low. Further, F1 was less than the lower limit of the formula (1), and F2 was less than the lower limit of the formula (2). Therefore, in the carburized steel part, the Vickers hardness of the core portion at the depth position of 2.0 mm was as low as less than 250 HV.
- test number 24 Although the chemical composition was appropriate, the finish temperature T2 in the finish rolling step was too low. Therefore, the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more was less than 20.0%. As a result, the chip weight exceeded 15 g, and the chip controllability was low.
- test number 25 Although the chemical composition was appropriate, the finish temperature T2 in the finish rolling step was too high. Therefore, the total area ratio of the pearlite grains having an area of 200 ⁇ m 2 or more exceeded 35.0%. Therefore, the limit processing rate of steel materials was low.
- test number 26 Although the chemical composition was appropriate, the average cooling rate CR in the finish rolling process was too fast. Therefore, the total area ratio of bainite and martensite increased, and as a result, the total area ratio of ferrite and pearlite became less than 85.0%. As a result, the marginal processing rate of steel materials was low.
- test number 27 Although the chemical composition was appropriate, the average cooling rate CR in the finish rolling process was too fast. Therefore, although the total area ratio of ferrite and pearlite was 85.0% or more, the total area ratio of pearlite grains having an area of 200 ⁇ m 2 or more was less than 20.0%. As a result, the chip weight exceeded 15 g, and the chip controllability was low.
- test number 32 F2 was less than the lower limit of equation (2). Therefore, in the carburized steel part, the Vickers hardness of the core portion at the depth position of 2.0 mm was as low as less than 250 HV.
- test number 36 F1 was less than the lower limit of equation (1). Therefore, in the carburized steel part, the Vickers hardness of the core portion at the depth position of 2.0 mm was as low as less than 250 HV.
- the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
限界加工率及び切りくず処理性に優れる鋼材を提供する。本実施形態の鋼材は、化学組成が、質量%で、C:0.11~0.15%、Si:0.17~0.35%、Mn:0.45~0.80%、S:0.005~0.050%、Cr:1.50~1.90%未満、B:0.0005~0.0100%、Ti:0.010~0.050%未満、Al:0.010~0.100%、Ca:0.0002%~0.0030%、N:0.0080%以下、P:0.050%以下、O:0.0030%以下、及び、残部はFe及び不純物からなり、明細書に記載の式(1)~式(4)を満たし、ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である。
Description
本発明は、鋼材に関し、さらに詳しくは、浸炭鋼部品の素材となる鋼材に関する。
機械構造用部品の素材となる鋼材には、一般に、Mn、Cr、Mo、及び、Ni等が含有される。上述の元素を含有する化学成分を有し、鋳造、鍛造、圧延等の工程を経て製造された鋼材は、鍛造、切削等の機械加工により成型され、さらに、浸炭処理を施されて、表層部の浸炭層と、浸炭層よりも内部の芯部とを備える浸炭鋼部品となる。本明細書において、浸炭処理は、特に断りがない限り、浸炭窒化処理も含む。
この浸炭鋼部品を製造するコストのうち、切削加工に関わるコストが非常に大きい。切削加工は切削の工具が高価であるだけでなく、切りくずを多量に生成するため、歩留の観点からも不利である。このため、切削加工を鍛造に置き換えることが試みられている。鍛造方法は熱間鍛造、温間鍛造、冷間鍛造に大別できる。温間鍛造はスケールの発生が少なく、熱間鍛造よりも寸法精度が改善されるという特徴がある。冷間鍛造はスケールの発生がなく、寸法精度が従前の切削後の状態に近いという特徴がある。したがって、熱間鍛造で大まかな加工を実施した後に冷間鍛造で仕上げ加工を実施する方法、温間鍛造を実施した後に仕上げとして軽度の切削を実施する方法、又は、冷間鍛造を実施した後に仕上げとして軽度の切削を実施する方法、等が検討されてきた。しかしながら、熱間鍛造を温間鍛造又は冷間鍛造に置き換えた場合、鋼材の変形抵抗が大きいと、鍛造機の金型にかかる面圧が増加し、金型寿命が低下する。この場合、切削量が低減しても、コストメリットがそれほど大きくならない。また、複雑な形状に成型する場合、大きな加工が加わる部位に割れが生じる場合がある。このため、温間鍛造又は冷間鍛造により浸炭鋼部品を製造する場合、浸炭鋼部品の素材となる鋼材の限界加工率の向上が求められる。
国際公開第2012/108460号(特許文献1)及び特開2012-207244号公報(特許文献2)は、冷間鍛造性(限界加工率)の向上を目的とした、浸炭鋼部品の素材となる鋼材を提案する。
特許文献1に記載の浸炭用鋼は、化学成分が、質量%で、C:0.07%~0.13%、Si:0.0001%~0.50%、Mn:0.0001%~0.80%、S:0.0001%~0.100%、Cr:1.30%超~5.00%、B:0.0005%~0.0100%、Al:0.0001%~1.0%、Ti:0.010%~0.10%を含有し、N:0.0080%以下、P:0.050%以下、O:0.0030%以下に制限し、残部がFe及び不可避的不純物からなり、化学成分中の各元素の質量%で示した含有量が、式(1)~式(3)を満たす。ここで、式(1)~式(3)は次のとおりである。0.10<C+0.194×Si+0.065×Mn+0.012×Cr+0.078×Al<0.235 式(1)、7.5<(0.7×Si+1)×(5.1×Mn+1)×(2.16×Cr+1)<44 式(2)、0.004<Ti-N×(48/14)<0.030 式(3)。この浸炭用鋼は、上述の化学組成を有することにより、冷間鍛造時の限界加工率を高めることができ、さらに、浸炭処理後において、従来鋼と同等の硬化層及び芯部硬さが得られる、と特許文献1には記載されている。
特許文献2に記載された肌焼鋼は、質量%で、C:0.05~0.20%、Si:0.01~0.1%、Mn:0.3~0.6%、P:0.03%以下(0%を含まない)、S:0.001~0.02%、Cr:1.2~2.0%、Al:0.01~0.1%、Ti:0.010~0.10%、N:0.010%以下(0%を含まない)、B:0.0005~0.005%を含有し、残部が鉄及び不可避不純物からなり、円相当直径20nm未満のTi系析出物の密度が10~100個/μm2であり、且つ、円相当直径20nm以上のTi系析出物の密度が1.5~10個/μm2であり、ビッカース硬さが130HV以下であることを特徴とする。この肌焼鋼は上記構成により、冷間鍛造性に優れる、と特許文献2には記載されている。
ところで、上述のとおり、冷間鍛造は、寸法精度が従前の切削後の状態に近いという特徴があるものの、複雑な形状や中空構造の浸炭鋼部品では、冷間鍛造工程後において、ある程度の切削加工工程が実施される。したがって、冷間鍛造用途の浸炭鋼部品の素材となる鋼材に対しては、十分な冷間鍛造性だけでなく、十分な被削性、特に、切削加工時に発生する切りくずの分断されやすさを示す、いわゆる切りくず処理性が要求される。切りくず処理性が低く、長い切りくずが発生すれば、切りくずが鋼材又は工具に巻き付き、切削加工の作業効率を低下させる可能性がある。特許文献1及び2では、上述のような、冷間鍛造工程後の鋼材での切りくず処理性について検討されていない。
本開示の目的は、冷間鍛造時の限界加工率が大きく、かつ、冷間鍛造後の切削加工時の切りくず処理性に優れる、鋼材を提供することである。
本開示による鋼材は、
化学組成が、質量%で、
C:0.11~0.15%、
Si:0.17~0.35%、
Mn:0.45~0.80%、
S:0.005~0.050%、
Cr:1.50~1.90%未満、
B:0.0005~0.0100%、
Ti:0.010~0.050%未満、
Al:0.010~0.100%、
Ca:0.0002~0.0030%、
N:0.0080%以下、
P:0.050%以下、及び
O:0.0030%以下、を含有し、
残部はFe及び不純物からなり、式(1)~式(4)を満たし、
ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~(4)の各元素記号には、対応する元素の含有量(質量%)が代入され、対応する元素が含有されていない場合、対応する元素記号に「0」が代入される。
化学組成が、質量%で、
C:0.11~0.15%、
Si:0.17~0.35%、
Mn:0.45~0.80%、
S:0.005~0.050%、
Cr:1.50~1.90%未満、
B:0.0005~0.0100%、
Ti:0.010~0.050%未満、
Al:0.010~0.100%、
Ca:0.0002~0.0030%、
N:0.0080%以下、
P:0.050%以下、及び
O:0.0030%以下、を含有し、
残部はFe及び不純物からなり、式(1)~式(4)を満たし、
ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~(4)の各元素記号には、対応する元素の含有量(質量%)が代入され、対応する元素が含有されていない場合、対応する元素記号に「0」が代入される。
本開示による鋼材は、冷間鍛造時に十分な限界加工率が得られ、かつ、冷間鍛造後の切削加工時の切りくず処理性に優れる。
本発明者らは、浸炭鋼部品の素材となる鋼材の限界加工率の改善とともに、冷間鍛造後の被削性(切りくず処理性)を高めるための検討を行った。その結果、本発明者らは、次の(A)~(G)の知見を得た。
(A)C含有量が低いほど、冷間鍛造前の鋼材の限界加工率を高めることができる。しかしながら、C含有量が低すぎれば、浸炭処理後の浸炭鋼部品の疲労強度を、C含有量が0.20%程度である従来の鋼材(たとえば、JIS G 4052(2008)に規定されたSCR420)と同等レベルにすることが困難となる。鋼材の化学組成を、質量%で、C:0.11~0.15%、Si:0.17~0.35%、Mn:0.45~0.80%、S:0.005~0.050%、Cr:1.50~1.90%未満、B:0.0005~0.0100%、Ti:0.010~0.050%未満、Al:0.010~0.100%、Ca:0.0002~0.0030%、N:0.0080%以下、P:0.050%以下、O:0.0030%以下、Nb:0~0.100%、V:0~0.300%、Mo:0~0.500%、Ni:0~0.500%、Cu:0~0.500%、Mg:0~0.0035%、希土類元素(REM):0~0.005%、及び、残部はFe及び不純物からなる化学組成とすれば、C含有量が従来の鋼材よりも低くても、浸炭鋼部品として必要な芯部硬さを得ることができる可能性がある。
(B)上述の化学組成を有する鋼材において、できるだけ大きな浸炭層深さと芯部硬さとを得るためには、浸炭鋼部品の芯部のミクロ組織において、マルテンサイト分率を高めるのが好ましい。浸炭鋼部品の芯部のミクロ組織でのマルテンサイト分率を高めるためには、Mn、Cr、Mo、Ni等の鋼の焼入れ性を向上する合金元素(焼入れ向上元素)の含有量を、式(2)を満たすように含有することが必要である。
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
ここで、式(2)の各元素記号には、対応する元素の含有量(質量%)が代入される。
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
ここで、式(2)の各元素記号には、対応する元素の含有量(質量%)が代入される。
(C)しかしながら、上述の焼入れ性向上元素の含有量が増加すれば、焼入れ性向上元素がフェライトを固溶強化する。そのため、鋼材の硬さが高まる。鋼材の硬さが高まれば、冷間鍛造性が低下し、限界加工率が低下する。
Bは鋼材の焼入れ性を高めるものの、フェライトを固溶強化しない元素である。そこで、上述のとおり、鋼材の上述の化学組成にBを0.0005~0.0100%含有させる。さらに、上述の焼入れ性向上元素の含有量が式(1)を満たすようにする。これにより、鋼材の限界加工率の低下を抑制しつつ、その鋼材を浸炭処理して得られる浸炭鋼部品において、十分な芯部硬さを得ることができる。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
ここで、式(1)の各元素記号には、対応する元素の含有量(質量%)が代入される。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
ここで、式(1)の各元素記号には、対応する元素の含有量(質量%)が代入される。
(D)Bの焼入れ性向上効果を安定して得るためには、浸炭処理時において、鋼材中に十分な固溶Bを確保する必要がある。そこで、上述のとおり、鋼材にTiを含有させる。この場合、浸炭処理時において、鋼材中に含まれる大部分のNはTiNとして固定される。そのため、BがNと結合するのを抑制することができ、鋼材中に十分な固溶Bを確保できる。上記効果を得るために、鋼材中のTi含有量が式(3)を満たすようにする。
0.004<Ti-N×(48/14)<0.030 (3)
ここで、式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
0.004<Ti-N×(48/14)<0.030 (3)
ここで、式(3)の各元素記号には、対応する元素の含有量(質量%)が代入される。
鋼材の化学組成中のTi含有量及びN含有量が式(3)を満たす場合、NはTiと結合してTiNを形成する。そのため、Nが固溶Bと結合することにより固溶Bが低減するのを抑制でき、鋼材中に十分な固溶Bを確保できる。さらに、Nと結合しなかったTiがTiCとして鋼材中に微細に分散して析出する。これにより、浸炭処理時のオーステナイト結晶粒の異常粒成長を抑制する。そのため、浸炭鋼部品の芯部において、旧オーステナイトの粗粒の発生を抑制でき、曲げ疲労強度低下や浸炭焼入れ後の変形を抑制できる。
(E)Bは、浸炭鋼部品の芯部の焼入れ性を有効に高める。しかしながら、変成炉ガス方式のガス浸炭を行う場合、浸炭鋼部品の表層部である浸炭層では、B含有による焼入れ性向上効果が低い。これは、浸炭処理時において、鋼部品の表面から窒素が侵入して、固溶Bと結合してBNとして析出し、固溶B量を低減するためである。したがって、浸炭鋼部品の表層部である浸炭層で焼入れ性を確保するために、上述のとおり、鋼材の化学組成が、式(2)を満たすようにする。
(F)鋼材を用いて浸炭鋼部品を製造する場合、冷間鍛造後の鋼材に対して切削加工を実施する場合がある。本実施形態では、上述の化学組成に示すとおり、S含有量を0.005~0.050%とする。これにより、MnSが形成され、鋼材の被削性が高まる。しかしながら、MnSが延伸すれば、冷間鍛造性が低下する。そこで、Ca含有量を0.0002~0.0030%含有する。この場合、鋼材中の硫化物が球状化する。そのため、鋼材の冷間鍛造性が高まり、限界加工率が高まる。しかしながら、鋼材が上述の化学組成を満たし、かつ、式(1)~式(3)を満たしても、S含有量に対するCa含有量が高すぎれば、Caの一部が硫化物に固溶せず、酸化物を形成してしまう。Ca酸化物は鋼材の限界加工率を低下する。化学組成中のCa/Sを適切な範囲に設定できれば、硫化物の微細化及び球状化を促進しつつ、酸化物の生成を抑制することができる。その結果、鋼材の冷間鍛造性を高めることができる。具体的には、鋼材の化学組成が式(1)~式(3)を満たし、さらに、式(4)を満たせば、十分な冷間鍛造性が得られる。
0.03≦Ca/S≦0.15 (4)
ここで、式(4)の各元素記号には、対応する元素の含有量(質量%)が代入される。
0.03≦Ca/S≦0.15 (4)
ここで、式(4)の各元素記号には、対応する元素の含有量(質量%)が代入される。
(G)浸炭鋼部品の中には、中空のスプライン等、冷間鍛造後の中間部材に対して多くの切削加工が必要な浸炭鋼部品が存在する。このような多くの切削加工が必要な浸炭鋼部品を製造する場合、鋼材には、上述のとおり、優れた切りくず処理性が求められる。本明細書において、切りくず処理性とは、切削時に生成する切りくずの分断のしやすさを意味し、切りくずの工具及び鋼材からの切りくずの離脱のしやすさを意味する特性である。上述のとおり、C含有量を低く抑えた場合、鋼材の冷間鍛造性が高まるものの、切りくず処理性が低下する。
そこで、上述の式(1)~式(4)の化学組成を有する鋼材のミクロ組織において、フェライト及びパーライトの総面積率を85.0%以上とし、かつ、200μm2以上の面積を有するパーライト粒の総面積率を20.0%以上とする。主としてフェライト及びパーライトからなるミクロ組織を有する鋼材の切りくず処理性を高めるためには、鋼材中に粗大なパーライト粒が多い方が好ましい。本発明者らが検討した結果、上述の式(1)~式(4)の化学組成を有する鋼材では、200μm2以上の面積を有するパーライト粒の総面積率を20.0%以上とすれば、切りくず処理性が顕著に高まることを初めて知見した。したがって、ミクロ組織中において、200μm2以上の面積を有するパーライト粒の総面積率を20.0%以上とする。一方、200μm2以上の面積を有するパーライト粒の総面積率が高すぎれば、鋼材の限界加工率が低下してしまう。そこで、200μm2以上の面積を有するパーライト粒の総面積率を35.0%以下とする。この場合、浸炭鋼部品の素材となる鋼材において十分な限界加工率を確保しつつ、冷間鍛造後の切削加工において十分な切りくず処理性が得られる。
以上の知見に基づいて完成した本実施形態による鋼材は、次の構成を有する。
[1]
化学組成が、質量%で、
C:0.11~0.15%、
Si:0.17~0.35%、
Mn:0.45~0.80%、
S:0.005~0.050%、
Cr:1.50~1.90%未満、
B:0.0005~0.0100%、
Ti:0.010~0.050%未満、
Al:0.010~0.100%、
Ca:0.0002~0.0030%、
N:0.0080%以下、
P:0.050%以下、及び
O:0.0030%以下、を含有し、
残部はFe及び不純物からなり、式(1)~式(4)を満たし、
ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である、
鋼材。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~(4)の各元素記号には、対応する元素の含有量(質量%)が代入され、対応する元素が含有されていない場合、対応する元素記号に「0」が代入される。
化学組成が、質量%で、
C:0.11~0.15%、
Si:0.17~0.35%、
Mn:0.45~0.80%、
S:0.005~0.050%、
Cr:1.50~1.90%未満、
B:0.0005~0.0100%、
Ti:0.010~0.050%未満、
Al:0.010~0.100%、
Ca:0.0002~0.0030%、
N:0.0080%以下、
P:0.050%以下、及び
O:0.0030%以下、を含有し、
残部はFe及び不純物からなり、式(1)~式(4)を満たし、
ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である、
鋼材。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~(4)の各元素記号には、対応する元素の含有量(質量%)が代入され、対応する元素が含有されていない場合、対応する元素記号に「0」が代入される。
[2]
[1]に記載の鋼材であって、
前記化学組成は、Feの一部に代えて、
Nb:0.100%以下、
V:0.300%以下、
Mo:0.500%以下、
Ni:0.500%以下、
Cu:0.500%以下、
Mg:0.0035%以下、及び、
希土類元素(REM):0.005%以下、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。
[1]に記載の鋼材であって、
前記化学組成は、Feの一部に代えて、
Nb:0.100%以下、
V:0.300%以下、
Mo:0.500%以下、
Ni:0.500%以下、
Cu:0.500%以下、
Mg:0.0035%以下、及び、
希土類元素(REM):0.005%以下、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。
[3]
[2]に記載の鋼材であって、
前記化学組成は、
Nb:0.002~0.100%、
V:0.001~0.300%、
Mo:0.005~0.500%、
Ni:0.005~0.500%、
Cu:0.005~0.500%、
Mg:0.0001~0.0035%、及び、
希土類元素(REM):0.001~0.005%、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。
[2]に記載の鋼材であって、
前記化学組成は、
Nb:0.002~0.100%、
V:0.001~0.300%、
Mo:0.005~0.500%、
Ni:0.005~0.500%、
Cu:0.005~0.500%、
Mg:0.0001~0.0035%、及び、
希土類元素(REM):0.001~0.005%、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。
以下、本実施形態の鋼材の詳細を説明する。本明細書において、元素に関する「%」は、特に断りがない限り、質量%を意味する。
[鋼材の化学組成]
本実施形態の鋼材は、浸炭鋼部品の素材である。本実施形態の鋼材は冷間鍛造された後、浸炭処理されて、浸炭鋼部品となる。本実施形態の鋼材の化学組成は、次の元素を含有する。
本実施形態の鋼材は、浸炭鋼部品の素材である。本実施形態の鋼材は冷間鍛造された後、浸炭処理されて、浸炭鋼部品となる。本実施形態の鋼材の化学組成は、次の元素を含有する。
C:0.11~0.15%
炭素(C)は、浸炭鋼部品の芯部の硬さを高める。C含有量が0.11%未満であれば、他の元素含有量が本実施形態の範囲内であっても、浸炭鋼部品の芯部の硬さが低下し、さらに、切りくず処理性が低下する。一方、浸炭鋼部品に用いられてきた従前の鋼材のC含有量は0.20%程度であるが、本実施形態の鋼材では、限界加工率を高めるために、C含有量を0.15%以下とする。したがって、C含有量は0.11~0.15%である。C含有量の好ましい下限は0.12%である。C含有量の好ましい上限は0.14%である。
炭素(C)は、浸炭鋼部品の芯部の硬さを高める。C含有量が0.11%未満であれば、他の元素含有量が本実施形態の範囲内であっても、浸炭鋼部品の芯部の硬さが低下し、さらに、切りくず処理性が低下する。一方、浸炭鋼部品に用いられてきた従前の鋼材のC含有量は0.20%程度であるが、本実施形態の鋼材では、限界加工率を高めるために、C含有量を0.15%以下とする。したがって、C含有量は0.11~0.15%である。C含有量の好ましい下限は0.12%である。C含有量の好ましい上限は0.14%である。
Si:0.17~0.35%
シリコン(Si)は、浸炭鋼部品の焼戻し軟化抵抗を高め、浸炭鋼部品の疲労強度を高める。Si含有量が0.17%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Si含有量が0.35%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Si含有量は0.17~0.35%である。疲労強度をさらに高める観点では、Si含有量の好ましい下限は0.18%であり、さらに好ましくは0.20%であり、さらに好ましくは0.22%であり、さらに好ましくは0.25%である。限界加工率をさらに高める観点では、Si含有量の好ましい上限は0.33%であり、さらに好ましくは0.30%であり、さらに好ましくは0.28%である。
シリコン(Si)は、浸炭鋼部品の焼戻し軟化抵抗を高め、浸炭鋼部品の疲労強度を高める。Si含有量が0.17%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Si含有量が0.35%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Si含有量は0.17~0.35%である。疲労強度をさらに高める観点では、Si含有量の好ましい下限は0.18%であり、さらに好ましくは0.20%であり、さらに好ましくは0.22%であり、さらに好ましくは0.25%である。限界加工率をさらに高める観点では、Si含有量の好ましい上限は0.33%であり、さらに好ましくは0.30%であり、さらに好ましくは0.28%である。
Mn:0.45~0.80%
マンガン(Mn)は、鋼の焼入性を高め、浸炭鋼部品の芯部硬さを高める。Mn含有量が0.45%未満であれば、他の元素含有量が本実施形態の範囲内であっても、十分な焼入れ性が得られない。一方、Mn含有量が0.80%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Mn含有量は0.45~0.80%である。Mn含有量の好ましい下限は0.47%であり、さらに好ましくは0.50%である。Mn含有量の好ましい上限は0.70%であり、さらに好ましくは0.65%であり、さらに好ましくは0.60%である。
マンガン(Mn)は、鋼の焼入性を高め、浸炭鋼部品の芯部硬さを高める。Mn含有量が0.45%未満であれば、他の元素含有量が本実施形態の範囲内であっても、十分な焼入れ性が得られない。一方、Mn含有量が0.80%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Mn含有量は0.45~0.80%である。Mn含有量の好ましい下限は0.47%であり、さらに好ましくは0.50%である。Mn含有量の好ましい上限は0.70%であり、さらに好ましくは0.65%であり、さらに好ましくは0.60%である。
S:0.005~0.050%
硫黄(S)は、鋼中のMnと結合してMnSを形成し、鋼材の切りくず処理性を高める。S含有量が0.005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、S含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造時にMnSが割れの起点となり、限界加工率が低下する。したがって、S含有量は0.005~0.050%である。S含有量の好ましい下限は0.006%であり、さらに好ましくは0.008%であり、さらに好ましくは0.010%である。S含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%である。
硫黄(S)は、鋼中のMnと結合してMnSを形成し、鋼材の切りくず処理性を高める。S含有量が0.005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、S含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造時にMnSが割れの起点となり、限界加工率が低下する。したがって、S含有量は0.005~0.050%である。S含有量の好ましい下限は0.006%であり、さらに好ましくは0.008%であり、さらに好ましくは0.010%である。S含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%である。
Cr:1.50~1.90%未満
クロム(Cr)は、鋼の焼入性を高め、浸炭鋼部品の芯部硬さを高める。Crは、焼入れ性を高めるMn、Mo、Niと比較して、鋼材の硬さの上昇を押さえつつ、焼入れ性を高めることができる。Cr含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、十分な焼入れ性が得られない。一方、Cr含有量が1.90%以上になれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Cr含有量は1.50~1.90%未満である。Cr含有量の好ましい下限は1.55%であり、さらに好ましくは1.60%であり、さらに好ましくは1.65%であり、さらに好ましくは1.70%である。Cr含有量の好ましい上限は1.88%であり、さらに好ましくは1.85%である。
クロム(Cr)は、鋼の焼入性を高め、浸炭鋼部品の芯部硬さを高める。Crは、焼入れ性を高めるMn、Mo、Niと比較して、鋼材の硬さの上昇を押さえつつ、焼入れ性を高めることができる。Cr含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、十分な焼入れ性が得られない。一方、Cr含有量が1.90%以上になれば、他の元素含有量が本実施形態の範囲内であっても、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Cr含有量は1.50~1.90%未満である。Cr含有量の好ましい下限は1.55%であり、さらに好ましくは1.60%であり、さらに好ましくは1.65%であり、さらに好ましくは1.70%である。Cr含有量の好ましい上限は1.88%であり、さらに好ましくは1.85%である。
B:0.0005~0.0100%
ホウ素(B)は、オーステナイトに固溶した場合、微量でも鋼の焼入性を大きく高める。そのため、浸炭鋼部品の芯部硬さを高める。Bはさらに、微量の含有により上記効果を発揮するため、鋼材中のフェライトの硬さが上昇しにくい。つまり、鋼材の限界加工率を高く維持しつつ、焼入れ性を高めることができる。B含有量が0.0005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、B含有量が0.0100%を超えれば、上記効果が飽和する。したがって、B含有量は0.0005~0.0100%である。B含有量の好ましい下限は0.0007%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0012%あり、さらに好ましくは0.0014%である。B含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%である。
ホウ素(B)は、オーステナイトに固溶した場合、微量でも鋼の焼入性を大きく高める。そのため、浸炭鋼部品の芯部硬さを高める。Bはさらに、微量の含有により上記効果を発揮するため、鋼材中のフェライトの硬さが上昇しにくい。つまり、鋼材の限界加工率を高く維持しつつ、焼入れ性を高めることができる。B含有量が0.0005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、B含有量が0.0100%を超えれば、上記効果が飽和する。したがって、B含有量は0.0005~0.0100%である。B含有量の好ましい下限は0.0007%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0012%あり、さらに好ましくは0.0014%である。B含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%である。
Ti:0.010~0.050%未満
チタン(Ti)は、鋼中のNをTiNとして固定する。これにより、BNの形成が抑制され、固溶Bを確保することができる。Tiはさらに、Cと結合してTiCを形成し、ピンニング効果により、浸炭処理の加熱時においてオーステナイト結晶粒が粗大化するのを抑制する。Ti含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Ti含有量が0.050%以上であれば、他の元素含有量が本実施形態の範囲内であっても、TiCが過剰に生成する。この場合、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Ti含有量は0.010~0.050%未満である。Ti含有量の好ましい下限は0.015%であり、さらに好ましくは0.018%であり、さらに好ましくは0.020%であり、さらに好ましくは0.022%であり、さらに好ましくは0.024%であり、さらに好ましくは0.025%である。Ti含有量の好ましい上限は0.048%であり、さらに好ましくは0.045%である。
チタン(Ti)は、鋼中のNをTiNとして固定する。これにより、BNの形成が抑制され、固溶Bを確保することができる。Tiはさらに、Cと結合してTiCを形成し、ピンニング効果により、浸炭処理の加熱時においてオーステナイト結晶粒が粗大化するのを抑制する。Ti含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Ti含有量が0.050%以上であれば、他の元素含有量が本実施形態の範囲内であっても、TiCが過剰に生成する。この場合、冷間鍛造前の鋼材の硬さが過剰に高くなり、限界加工率が低下する。したがって、Ti含有量は0.010~0.050%未満である。Ti含有量の好ましい下限は0.015%であり、さらに好ましくは0.018%であり、さらに好ましくは0.020%であり、さらに好ましくは0.022%であり、さらに好ましくは0.024%であり、さらに好ましくは0.025%である。Ti含有量の好ましい上限は0.048%であり、さらに好ましくは0.045%である。
Al:0.010%~0.100%
アルミニウム(Al)は、鋼を脱酸する。Alはさらに、Nと結合してAlNを形成し、ピンニング効果により、浸炭処理の加熱時にオーステナイト結晶粒が粗大化するのを抑制する。これにより、浸炭鋼部品の疲労強度が高まる。Al含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼中に粗大な酸化物が形成して、浸炭鋼部品の疲労強度が低下する。したがって、Al含有量は0.010~0.100%である。Al含有量の好ましい下限は0.014%であり、さらに好ましくは0.018%であり、さらに好ましくは0.020%である。Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.070%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%であり、さらに好ましくは0.040%である。
アルミニウム(Al)は、鋼を脱酸する。Alはさらに、Nと結合してAlNを形成し、ピンニング効果により、浸炭処理の加熱時にオーステナイト結晶粒が粗大化するのを抑制する。これにより、浸炭鋼部品の疲労強度が高まる。Al含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼中に粗大な酸化物が形成して、浸炭鋼部品の疲労強度が低下する。したがって、Al含有量は0.010~0.100%である。Al含有量の好ましい下限は0.014%であり、さらに好ましくは0.018%であり、さらに好ましくは0.020%である。Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.070%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%であり、さらに好ましくは0.040%である。
Ca:0.0002%~0.0030%
カルシウム(Ca)は、鋼中の硫化物に固溶して、硫化物を微細かつ球状化する。これにより、鋼材の冷間鍛造性が高まり、限界加工率が高まる。Ca含有量が0.0002%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Ca含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼中に粗大な酸化物が生成する。この場合、鋼材の限界加工率がかえって低下する。したがって、Ca含有量は0.0002~0.0030%である。Ca含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0007%である。Ca含有量の好ましい上限は0.0025%であり、さらに好ましくは0.0022%であり、さらに好ましくは0.0020%である。
カルシウム(Ca)は、鋼中の硫化物に固溶して、硫化物を微細かつ球状化する。これにより、鋼材の冷間鍛造性が高まり、限界加工率が高まる。Ca含有量が0.0002%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Ca含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼中に粗大な酸化物が生成する。この場合、鋼材の限界加工率がかえって低下する。したがって、Ca含有量は0.0002~0.0030%である。Ca含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0007%である。Ca含有量の好ましい上限は0.0025%であり、さらに好ましくは0.0022%であり、さらに好ましくは0.0020%である。
N:0.0080%以下
窒素(N)は不可避に含有される不純物である。つまり、N含有量は0%超である。NはBと結合してBNを形成し、固溶B量を低減する。N含有量が0.0080%を超えれば、鋼材中のTi含有量が本実施形態の範囲内であっても、TiがNを十分に固定することができなくなり、BNが過剰に生成する。その結果、鋼材の焼入れ性が低下する。N含有量が0.0080%を超えればさらに、粗大なTiNが生成して、冷間鍛造時に粗大なTiNが割れの起点となる。そのため、鋼材の限界加工率が低下する。したがって、N含有量は0.0080%以下である。N含有量の好ましい上限は0.0075%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0065%である。N含有量はできるだけ低い方が好ましい。しかしながら、N含有量の過剰な低減は、製造コストを高める。したがって、通常の工業生産を考慮した場合、N含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0030%である。
窒素(N)は不可避に含有される不純物である。つまり、N含有量は0%超である。NはBと結合してBNを形成し、固溶B量を低減する。N含有量が0.0080%を超えれば、鋼材中のTi含有量が本実施形態の範囲内であっても、TiがNを十分に固定することができなくなり、BNが過剰に生成する。その結果、鋼材の焼入れ性が低下する。N含有量が0.0080%を超えればさらに、粗大なTiNが生成して、冷間鍛造時に粗大なTiNが割れの起点となる。そのため、鋼材の限界加工率が低下する。したがって、N含有量は0.0080%以下である。N含有量の好ましい上限は0.0075%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0065%である。N含有量はできるだけ低い方が好ましい。しかしながら、N含有量の過剰な低減は、製造コストを高める。したがって、通常の工業生産を考慮した場合、N含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0030%である。
P:0.050%以下
燐(P)は不可避に含有される不純物である。つまり、P含有量は0%超である。Pは鋼材の熱間加工性を低下する。Pはさらに、浸炭鋼部品の疲労強度を低下する。したがって、P含有量は0.050%以下である。P含有量の好ましい上限は0.035%であり、さらに好ましくは0.028%であり、さらに好ましくは0.020%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、製造コストを高める。したがって、通常の工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%である。
燐(P)は不可避に含有される不純物である。つまり、P含有量は0%超である。Pは鋼材の熱間加工性を低下する。Pはさらに、浸炭鋼部品の疲労強度を低下する。したがって、P含有量は0.050%以下である。P含有量の好ましい上限は0.035%であり、さらに好ましくは0.028%であり、さらに好ましくは0.020%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、製造コストを高める。したがって、通常の工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%である。
O:0.0030%以下
酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。Oは、酸化物を形成し、鋼材の限界加工率を低下し、浸炭鋼部品の疲労強度を低下する。したがって、O含有量は0.0030%以下である。O含有量の好ましい上限は0.0028%であり、さらに好ましくは0.0026%であり、さらに好ましくは0.0023%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の過剰な低減は製造コストを高める。したがって、通常の工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0007%である。
酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。Oは、酸化物を形成し、鋼材の限界加工率を低下し、浸炭鋼部品の疲労強度を低下する。したがって、O含有量は0.0030%以下である。O含有量の好ましい上限は0.0028%であり、さらに好ましくは0.0026%であり、さらに好ましくは0.0023%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の過剰な低減は製造コストを高める。したがって、通常の工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0007%である。
本実施の形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態の鋼材に悪影響を与えない範囲で許容されるものを意味する。
[任意元素(optional elements)について]
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Nb、V、Mo、Ni、Cu、Mg、及び、希土類元素(REM)からなる群から選択される1元素又は2元素以上を含有してもよい。これらの元素のうち、Nb、V、Mo、Ni、Cu及びMgはいずれも、鋼材を素材とする浸炭鋼部品の疲労強度を高める。具体的には、Nb及びVは、炭化物及び/又は炭窒化物を形成して浸炭鋼部品の芯部の強度を高め、浸炭鋼部品の疲労強度を高める。Mo、Ni及びCuは鋼材の焼入れ性を高め、浸炭鋼部品の強度を高める。Mgは、酸化物を微細化し、粗大酸化物に起因した割れの発生を抑制することにより、浸炭鋼部品の疲労強度を高める。上記元素のうち、REMは、硫化物の形態を制御して鋼材の限界加工率を高める。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Nb、V、Mo、Ni、Cu、Mg、及び、希土類元素(REM)からなる群から選択される1元素又は2元素以上を含有してもよい。これらの元素のうち、Nb、V、Mo、Ni、Cu及びMgはいずれも、鋼材を素材とする浸炭鋼部品の疲労強度を高める。具体的には、Nb及びVは、炭化物及び/又は炭窒化物を形成して浸炭鋼部品の芯部の強度を高め、浸炭鋼部品の疲労強度を高める。Mo、Ni及びCuは鋼材の焼入れ性を高め、浸炭鋼部品の強度を高める。Mgは、酸化物を微細化し、粗大酸化物に起因した割れの発生を抑制することにより、浸炭鋼部品の疲労強度を高める。上記元素のうち、REMは、硫化物の形態を制御して鋼材の限界加工率を高める。
Nb:0.100%以下
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及びNと結合して炭化物及び/又は炭窒化物を形成し、ピンニング効果により浸炭処理の加熱時のオーステナイト結晶粒の粗大化を抑制する。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が0.100%を超えれば、粗大な炭化物及び/又は炭窒化物が生成して、鋼材の限界加工率が低下する。したがって、Nb含有量は0.100%以下である。つまり、Nb含有量は0~0.100%である。Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.004%であり、さらに好ましくは0.010%である。Nb含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及びNと結合して炭化物及び/又は炭窒化物を形成し、ピンニング効果により浸炭処理の加熱時のオーステナイト結晶粒の粗大化を抑制する。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が0.100%を超えれば、粗大な炭化物及び/又は炭窒化物が生成して、鋼材の限界加工率が低下する。したがって、Nb含有量は0.100%以下である。つまり、Nb含有量は0~0.100%である。Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.004%であり、さらに好ましくは0.010%である。Nb含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。
V:0.300%以下
バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは鋼材中で炭化物を形成し、フェライト中に析出して、浸炭鋼部品の芯部の強度を高める。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が0.300%を超えれば、鋼材の冷間鍛造性が低下し、限界加工率が低下する。したがって、V含有量は0.300%以下である。つまり、V含有量は0~0.300%である。V含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%であり、さらに好ましくは0.005%である。V含有量の好ましい上限は0.280%であり、さらに好ましくは0.250%であり、さらに好ましくは0.230%であり、さらに好ましくは0.200%であり、さらに好ましくは0.180%であり、さらに好ましくは0.150%であり、さらに好ましくは0.130%であり、さらに好ましくは0.100%である。
バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは鋼材中で炭化物を形成し、フェライト中に析出して、浸炭鋼部品の芯部の強度を高める。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が0.300%を超えれば、鋼材の冷間鍛造性が低下し、限界加工率が低下する。したがって、V含有量は0.300%以下である。つまり、V含有量は0~0.300%である。V含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%であり、さらに好ましくは0.005%である。V含有量の好ましい上限は0.280%であり、さらに好ましくは0.250%であり、さらに好ましくは0.230%であり、さらに好ましくは0.200%であり、さらに好ましくは0.180%であり、さらに好ましくは0.150%であり、さらに好ましくは0.130%であり、さらに好ましくは0.100%である。
Mo:0.500%以下
モリブデン(Mo)は任意元素であり、含有されなくてもよい。つまり、Mo含有量は0%であってもよい。含有される場合、Moは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Moはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Moは、浸炭層中に酸化物層、窒化物層及び浸炭異常層が生成するのを抑制する。Moが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Mo含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Mo含有量は0.500%以下である。つまり、Mo含有量は0~0.500%である。Mo含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Mo含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%であり、さらに好ましくは0.200%である。
モリブデン(Mo)は任意元素であり、含有されなくてもよい。つまり、Mo含有量は0%であってもよい。含有される場合、Moは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Moはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Moは、浸炭層中に酸化物層、窒化物層及び浸炭異常層が生成するのを抑制する。Moが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Mo含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Mo含有量は0.500%以下である。つまり、Mo含有量は0~0.500%である。Mo含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Mo含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%であり、さらに好ましくは0.200%である。
Ni:0.500%以下
ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。含有される場合、Niは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Niはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Niは、浸炭層中に酸化物層、窒化物層及び浸炭異常層が生成するのを抑制する。Niが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ni含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Ni含有量は0.500%以下である。つまり、Ni含有量は0~0.500%である。Ni含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Ni含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%であり、さらに好ましくは0.200%である。
ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。含有される場合、Niは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Niはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Niは、浸炭層中に酸化物層、窒化物層及び浸炭異常層が生成するのを抑制する。Niが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ni含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Ni含有量は0.500%以下である。つまり、Ni含有量は0~0.500%である。Ni含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Ni含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%であり、さらに好ましくは0.200%である。
Cu:0.500%以下
銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。含有される場合、Cuは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Cuはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Cuは、浸炭層表面の酸化物層、窒化物層、浸炭異常層の形成を抑制する。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Cu含有量は0.500%以下である。つまり、Cu含有量は0~0.500%である。Cu含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Cu含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%である。Cuを含有する場合、Ni含有量をCu含有量の1/2以上とすれば、鋼材の熱間加工性がさらに高まる。
銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。含有される場合、Cuは鋼の焼入性を高め、浸炭鋼部品のマルテンサイト分率を高める。Cuはさらに、ガス浸炭による浸炭処理を実施する場合、浸炭処理時において酸化物及び窒化物を生成しない。そのため、Cuは、浸炭層表面の酸化物層、窒化物層、浸炭異常層の形成を抑制する。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が0.500%を超えれば、鋼材の硬さが過剰に高まり、限界加工率が低下する。したがって、Cu含有量は0.500%以下である。つまり、Cu含有量は0~0.500%である。Cu含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.050%である。Cu含有量の好ましい上限は0.400%であり、さらに好ましくは0.300%である。Cuを含有する場合、Ni含有量をCu含有量の1/2以上とすれば、鋼材の熱間加工性がさらに高まる。
Mg:0.0035%以下
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、MgはAlと同様に、鋼を脱酸し、鋼材中の酸化物を微細化する。鋼材中の酸化物が微細化すれば、粗大酸化物が生成しにくい。粗大酸化物は破壊の起点となり得る。そのため、Mgが酸化物を微細化すれば、破壊起点となる粗大酸化物の生成が抑制される。その結果、浸炭鋼部品の疲労強度が高まる。Mgを少しでも含有すれば、上記効果が得られる。しかしながら、Mg含有量が0.0035%を超えれば、鋼材中に粗大な酸化物が生成する。この場合、鋼材の限界加工率がかえって低下する。したがって、Mg含有量は0.0035%以下である。つまり、Mg含有量は0~0.0035%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0032%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0028%であり、さらに好ましくは0.0025%である。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、MgはAlと同様に、鋼を脱酸し、鋼材中の酸化物を微細化する。鋼材中の酸化物が微細化すれば、粗大酸化物が生成しにくい。粗大酸化物は破壊の起点となり得る。そのため、Mgが酸化物を微細化すれば、破壊起点となる粗大酸化物の生成が抑制される。その結果、浸炭鋼部品の疲労強度が高まる。Mgを少しでも含有すれば、上記効果が得られる。しかしながら、Mg含有量が0.0035%を超えれば、鋼材中に粗大な酸化物が生成する。この場合、鋼材の限界加工率がかえって低下する。したがって、Mg含有量は0.0035%以下である。つまり、Mg含有量は0~0.0035%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0032%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0028%であり、さらに好ましくは0.0025%である。
本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、希土類元素(REM)を含有してもよい。
希土類元素(REM):0.005%以下
希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMは鋼中の硫化物に固溶して、硫化物の形態を制御する。その結果、REMは鋼材の限界加工率を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が0.005%を超えれば、粗大な酸化物が生成して、浸炭鋼部品の疲労強度が低下する。したがって、REM含有量は0.005%以下である。つまり、REM含有量は0~0.005%である。REM含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。REM含有量の好ましい上限は0.004%である。
希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMは鋼中の硫化物に固溶して、硫化物の形態を制御する。その結果、REMは鋼材の限界加工率を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が0.005%を超えれば、粗大な酸化物が生成して、浸炭鋼部品の疲労強度が低下する。したがって、REM含有量は0.005%以下である。つまり、REM含有量は0~0.005%である。REM含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。REM含有量の好ましい上限は0.004%である。
なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素である。また、本明細書におけるREM含有量とは、これら元素の合計含有量である。
[式(1)~式(4)について]
本実施形態の鋼材の化学組成はさらに、式(1)~式(4)を満たす。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~式(4)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が任意元素であり、含有されていない場合、その元素記号には「0」が代入される。以下、各式について説明する。
本実施形態の鋼材の化学組成はさらに、式(1)~式(4)を満たす。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~式(4)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が任意元素であり、含有されていない場合、その元素記号には「0」が代入される。以下、各式について説明する。
[式(1)について]
F1=C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Alと定義する。F1は鋼材、及び、この鋼材を用いて製造される浸炭鋼部品の硬さの指標である。
F1=C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Alと定義する。F1は鋼材、及び、この鋼材を用いて製造される浸炭鋼部品の硬さの指標である。
C含有量が低い場合、冷間鍛造前の鋼材の組織は、上記した従来の鋼材(C含有量が0.20%程度)よりも、フェライト分率が大幅に増加している。この場合、鋼材の硬さは、C含有量(パーライト分率)のみならず、フェライトの硬さにも大きく影響を受ける。F1は、鋼材中のフェライトの固溶強化に及ぼす各合金元素の寄与を示す。
F1が0.235以上であれば、冷間鍛造前の鋼材の硬さが高すぎる。この場合、鋼材の限界加工率が低下する。一方、F1が0.200以下であれば、浸炭鋼部品としての芯部硬さが不足する。したがって、F1は、0.200超~0.235未満である。F1は、後述する焼入れ性指標(F2)を満たす範囲でなるべく低い方が好ましい。F1の好ましい上限は0.230未満であり、さらに好ましくは0.225であり、さらに好ましくは0.220であり、さらに好ましくは0.215であり、さらに好ましくは0.210である。なおF1値は、算出された値の小数第4位を四捨五入して得られた値である。
[式(2)について]
F2=(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)と定義する。F2は鋼材の焼入れ性に関する指標である。
F2=(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)と定義する。F2は鋼材の焼入れ性に関する指標である。
上述の通り、Bは、鋼材の焼入れ性を高め、浸炭鋼部品の芯部の硬さを高めるのに有効である。一方で、浸炭処理としてガス浸炭(変成炉ガス方式)を実施する場合、浸炭鋼部品の表層部である浸炭層では、B含有による焼入れ性向上効果が低い。これは、浸炭処理時に炉内雰囲気ガス中のNが浸炭鋼部品の表層部に侵入して、固溶BがBNとして析出し、焼入れ性向上に寄与する固溶B量が不足するためである。したがって、ガス浸炭処理を実施する場合、Bは浸炭鋼部品の芯部の硬さを高めることはできるものの、浸炭鋼部品の浸炭層の硬さの向上には寄与しにくい。したがって、浸炭鋼部品の表層部である浸炭層で焼入れ性を確保するには、B以外の焼入性向上元素を活用する必要がある。
F2はB以外の焼入れ性向上に寄与する元素で構成されている。F2が16.0以下の場合、同一の浸炭処理条件で、上記した従来の鋼材(C含有量が0.20%程度)と比較して、同等以上の浸炭層深さ(ビッカース硬さがHV550以上となる深さ)を十分に得ることができない。一方、F2が29.0以上であれば、冷間鍛造前の鋼材の硬さが上昇し、限界加工率が低下する。したがって、F2は、16.0超~29.0未満である。F2は、硬さ指標F1を満たす範囲内でできるだけ大きい方が好ましい。F2の好ましい下限は16.3であり、さらに好ましくは16.5であり、さらに好ましくは16.7であり、さらに好ましくは17.0であり、さらに好ましくは17.2である。なおF2値は、算出された値の小数第2位を四捨五入して得られた値である。
[式(3)について]
F3=Ti-N×(48/14)と定義する。F3は、TiC析出量に関する指標である。TiがNに対して化学量論的に過剰に含有された場合、Nは全てTiNとして固定される。つまり、F3は、TiNを形成するために消費されたTi量以外の過剰なTi量を意味する。F3中の「14」はNの原子量であり、「48」はTiの原子量を示す。
F3=Ti-N×(48/14)と定義する。F3は、TiC析出量に関する指標である。TiがNに対して化学量論的に過剰に含有された場合、Nは全てTiNとして固定される。つまり、F3は、TiNを形成するために消費されたTi量以外の過剰なTi量を意味する。F3中の「14」はNの原子量であり、「48」はTiの原子量を示す。
F3で定義される過剰なTi量は、浸炭処理時にそのほとんどがCと結合してTiCとなる。このTiCは、浸炭処理時にオーステナイト結晶粒の粗大化を防止するピンニング効果を有する。F3が0.004以下であれば、TiCの析出量が不足する。この場合、浸炭処理時の結晶粒粗大化を抑制できない。一方、F3が0.030以上であれば、TiCの析出量が多くなりすぎ、冷間鍛造前の鋼材の硬さが上昇し、限界加工率が低下する。したがって、F3は0.004超~0.030未満である。F3の好ましい下限は0.006であり、さらに好ましくは0.008である。F3の好ましい上限は0.028であり、さらに好ましくは0.0025である。なおF3値は、算出された値の小数第4位を四捨五入して得られた値である。
[式(4)について]
F4=Ca/Sと定義する。F4は硫化物の微細化及び球状化に関する指標である。上述のとおり、Caは硫化物に固溶して硫化物を微細化し、さらに、硫化物を球状化する。しかしながら、鋼材の化学組成のCaを含む各元素の含有量が上記範囲内であっても、S含有量に対するCa含有量が高すぎれば、Caの一部が硫化物に固溶せず、酸化物を形成してしまう。Ca酸化物は鋼材の限界加工率を低下する。F4(=Ca/S)を適切な範囲に設定できれば、硫化物の微細化及び球状化を促進しつつ、酸化物の生成を抑制することができる。その結果、鋼材の冷間鍛造性及び限界加工率を高めることができる。そのため、鋼材から、複雑な浸炭鋼部品への成型が可能となる。
F4=Ca/Sと定義する。F4は硫化物の微細化及び球状化に関する指標である。上述のとおり、Caは硫化物に固溶して硫化物を微細化し、さらに、硫化物を球状化する。しかしながら、鋼材の化学組成のCaを含む各元素の含有量が上記範囲内であっても、S含有量に対するCa含有量が高すぎれば、Caの一部が硫化物に固溶せず、酸化物を形成してしまう。Ca酸化物は鋼材の限界加工率を低下する。F4(=Ca/S)を適切な範囲に設定できれば、硫化物の微細化及び球状化を促進しつつ、酸化物の生成を抑制することができる。その結果、鋼材の冷間鍛造性及び限界加工率を高めることができる。そのため、鋼材から、複雑な浸炭鋼部品への成型が可能となる。
F4が0.03未満であれば、化学組成中の各元素含有量が上述の範囲内であって、かつ、F1~F3が式(1)~式(3)を満たしても、鋼中のS含有量に対するCa含有量が低すぎる。この場合、硫化物の微細化及び球状化が不十分となる。その結果、鋼材の限界加工率が低くなる。一方、F4が0.15よりも高ければ、化学組成中の各元素含有量が上述の範囲内であって、かつ、F1~F3が式(1)~式(3)を満たしても、鋼中のS含有量に対するCa含有量が高すぎる。この場合、酸化物が過剰に生成する。その結果、鋼材の限界加工率が低くなる。化学組成中の各元素含有量が上述の範囲内であって、かつ、F1~F3が式(1)~式(3)を満たし、かつ、F4が0.03~0.15であれば、硫化物を十分に微細化及び球状化することができ、酸化物の過剰な生成も抑制できる。そのため、鋼材において、従来の鋼材よりも冷間鍛造時の限界加工率が大きくなる。さらに、鋼材を浸炭処理した場合、従来の鋼材と同等の浸炭層硬さ及び芯部硬さを有する浸炭鋼部品を製造することができる。F4の好ましい下限は0.05であり、さらに好ましくは0.06である。F4の好ましい上限は0.14であり、さらに好ましくは0.13である。なお、F4は、算出された値の小数第3位を四捨五入して得られた値である。
[鋼材のミクロ組織]
浸炭鋼部品の素材である鋼材のミクロ組織のうち、介在物及び析出物を除く部分をマトリックス(母相)と定義する。鋼材のマトリックスは、主としてフェライト及びパーライトからなる。ここで、「主としてフェライト及びパーライトからなる」とは、ミクロ組織におけるフェライト及びパーライトの総面積率が85.0~100.0%であることを意味する。マトリックスにおいて、フェライト及びパーライト以外の相(Phase)はたとえば、ベイナイト、マルテンサイト、及び、セメンタイト等である。本実施形態の鋼材のミクロ組織において、ベイナイト、マルテンサイト及びセメンタイトの総面積率は0~15.0%である。要するに、本実施形態の鋼材において、ミクロ組織におけるフェライト及びパーライトの総面積率は85.0~100.0%であり、ミクロ組織におけるベイナイト、マルテンサイト及びセメンタイトの総面積率は0~15.0%である。なお、本実施形態の鋼材のミクロ組織において、フェライト及びパーライトの総面積率が100.0%未満である場合、残部はベイナイト、マルテンサイト及びセメンタイトからなる群から選択される1種又は2種以上である。なお、ミクロ組織の面積率の算出には、フェライト、パーライト、マルテンサイト、ベイナイト、セメンタイトを含める。一方で、上記面積率の算出には、セメンタイト以外の析出物、介在物、及び、残留オーステナイトを含めない。
浸炭鋼部品の素材である鋼材のミクロ組織のうち、介在物及び析出物を除く部分をマトリックス(母相)と定義する。鋼材のマトリックスは、主としてフェライト及びパーライトからなる。ここで、「主としてフェライト及びパーライトからなる」とは、ミクロ組織におけるフェライト及びパーライトの総面積率が85.0~100.0%であることを意味する。マトリックスにおいて、フェライト及びパーライト以外の相(Phase)はたとえば、ベイナイト、マルテンサイト、及び、セメンタイト等である。本実施形態の鋼材のミクロ組織において、ベイナイト、マルテンサイト及びセメンタイトの総面積率は0~15.0%である。要するに、本実施形態の鋼材において、ミクロ組織におけるフェライト及びパーライトの総面積率は85.0~100.0%であり、ミクロ組織におけるベイナイト、マルテンサイト及びセメンタイトの総面積率は0~15.0%である。なお、本実施形態の鋼材のミクロ組織において、フェライト及びパーライトの総面積率が100.0%未満である場合、残部はベイナイト、マルテンサイト及びセメンタイトからなる群から選択される1種又は2種以上である。なお、ミクロ組織の面積率の算出には、フェライト、パーライト、マルテンサイト、ベイナイト、セメンタイトを含める。一方で、上記面積率の算出には、セメンタイト以外の析出物、介在物、及び、残留オーステナイトを含めない。
さらに、本実施形態の鋼材のミクロ組織において、200μm2以上の面積を有するパーライト粒(pearlite grain)の総面積率が20.0~35.0%未満である。上述のとおり、式(1)~式(4)を満たす化学組成を有する鋼材のミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であっても、ミクロ組織中のパーライト粒が微細であれば、切削加工時に切りくずが分断されにくい。式(1)~式(4)を満たす化学組成を有する鋼材のミクロ組織において、フェライト及びパーライトの総面積率を85.0%以上とし、かつ、200μm2以上の面積を有するパーライト粒(以下、粗大パーライト粒ともいう)の総面積率を適切な量とすれば、冷間鍛造後の切りくず処理性が高まる。
ここで、本明細書におけるパーライト粒を次のとおり規定する。図1は鋼材のミクロ組織観察視野の模式図である。図1を参照して、ミクロ組織観察視野において、パーライトのうちフェライトの結晶方位が同じ領域をパーライトブロックと定義する。そして、バーライトブロック中においてラメラ配向が同じ領域をパーライトコロニーと定義する。図1では、パーライトコロニー21A及び21Bを含むパーライトブロック21と、パーライトコロニー22A及び22Bを含むパーライトブロック22と、パーライトブロック23と、パーライトブロック24とが存在する。そして、観察視野において、パーライトブロック21及び22は接触(隣接)している。本明細書においては、単独のパーライトブロック、又は、接触している複数のパーライトブロックを、パーライト粒と定義する。つまり、図1において、パーライトブロック21及び22は、1つのパーライト粒2と定義する。一方、単独で存在する(つまり、他のパーライトブロックと接触していない)パーライトブロック23を1つのパーライト粒23と定義する。同じく、単独で存在するパーライトブロック24を1つのパーライト粒24と定義する。したがって、パーライト粒2の面積が200μm2以上であり、パーライト粒23の面積が200μm2以上であり、パーライト粒24の面積が200μm2以上である場合、この観察視野における200μm2以上の面積のパーライト粒の総面積率RP(%)は、次の式で定義される。
RP=パーライト粒2、23及び24の総面積/観察視野の面積×100
RP=パーライト粒2、23及び24の総面積/観察視野の面積×100
なお、図1では、隣り合うパーライトブロック21及び22が線接触しているため、パーライトブロック21及び22を1つのパーライト粒と認定している。しかしながら、仮に、隣り合うパーライトブロック21及び22が点接触している場合であっても、パーライトブロック21及び22を1つのパーライト粒と認定する。
上述の式(1)~式(4)の化学組成を有する鋼材のミクロ組織において、200μm2以上の面積を有するパーライト粒の総面積率が20.0%以上とすれば、切りくず処理性が顕著に高まる。したがって、ミクロ組織中において、200μm2以上の面積を有するパーライト粒の総面積率を20.0%以上とする。一方、200μm2以上の面積を有するパーライト粒の総面積率が高すぎれば、鋼材の限界加工率が低下してしまう。そこで、200μm2以上の面積を有するパーライト粒の総面積率を35.0%以下とする。この場合、浸炭鋼部品の素材となる鋼材において十分な限界加工率を確保しつつ、冷間鍛造後の切削加工において十分な切りくず処理性が得られる。
200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満であれば、鋼材の切削加工時において、切りくずが分断されにくく、切りくず処理性が低下する。一方、200μm2以上の面積を有するパーライト粒の総面積率が35.0%以上であれば、鋼材中の粗大パーライトの割合が多すぎる。この場合、鋼材の硬さが過剰に高くなり、限界加工率が低下する。
200μm2以上の面積を有するパーライト粒の総面積率の好ましい下限は22.0%であり、さらに好ましくは25.0%である。200μm2以上のパーライト粒の総面積率の好ましい上限は33.0%であり、さらに好ましくは30.0%である。なお、ミクロ組織中におけるフェライト及びパーライトの総面積率の好ましい下限は90.0%であり、さらに好ましくは95.0%であり、さらに好ましくは97.0%である。
[ミクロ組織中の総面積率の測定方法]
本実施形態の鋼材のミクロ組織中のフェライト及びパーライトの総面積率(%)、及び、200μm2以上の面積を有するパーライト粒の総面積率(%)は次の方法で測定される。
本実施形態の鋼材のミクロ組織中のフェライト及びパーライトの総面積率(%)、及び、200μm2以上の面積を有するパーライト粒の総面積率(%)は次の方法で測定される。
鋼材が棒鋼又は線材である場合、鋼材の長手方向(軸方向)に垂直な断面(以下、横断面という)のうち、表面と中心軸とを結ぶ半径Rの中央位置(R/2位置)からサンプルを採取する。採取したサンプルの表面のうち、上記横断面に相当する表面を観察面とする。観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングする。エッチングされた観察面を、500倍の光学顕微鏡を用いて観察し、任意の20視野の写真画像を生成する。各視野のサイズは、500μm×500μmとする。
各視野において、フェライト、パーライト等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定する。特定された相のうち、各視野でのフェライトの総面積(μm2)、及び、パーライトの総面積(μm2)を求める。全ての視野の総面積に対する、全ての視野におけるフェライトの総面積とパーライトの総面積との合計面積の割合(%)を、フェライト及びパーライトの総面積率(%)と定義する。なお、ミクロ組織の面積率の算出には、フェライト、パーライト、マルテンサイト(焼戻しマルテンサイトも含む)、ベイナイト(焼戻しベイナイトも含む)、セメンタイト(球状化セメンタイトも含む)を含める。一方で、上記面積率の算出には、セメンタイト以外の析出物、介在物、及び、残留オーステナイトを含めない。なお、ナイタール腐食液で観察面を腐食した場合、光学顕微鏡観察において、ラメラ構造を有する相をパーライトと特定できる。パーライトよりも明度が高い領域(白い領域)をフェライトと特定できる。フェライト及びパーライトよりも明度が低い領域(濃い領域)をマルテンサイト及びベイナイトと特定できる。
さらに、全ての視野において、上記で定義したパーライト粒を特定し、各パーライト粒の面積を求める。そして、200μm2以上となるパーライト粒の総面積を求める。200μm2以上のパーライト粒の総面積の、全ての視野の総面積に対する割合(%)を、200μm2以上のパーライト粒の総面積率(%)と定義する。
なお、ミクロ組織の面積率の算出には、フェライト、パーライト、マルテンサイト(焼戻しマルテンサイトも含む)、ベイナイト(焼戻しベイナイトも含む)、セメンタイト(球状化セメンタイトも含む)を含める。一方で、上記面積率の算出には、セメンタイト以外の析出物、介在物、及び、残留オーステナイトを含めない。
本実施形態の鋼材は、化学組成中の各元素が上記範囲内であって、式(1)~式(4)を満たす。さらに、ミクロ組織中のフェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である。そのため、冷間鍛造時における限界加工率を高めることができ、冷間鍛造後の切削加工において、切りくず処理性に優れる。さらに、本実施形態の鋼材が冷間鍛造、切削加工及び浸炭処理が施されて浸炭鋼部品となったとき、芯部の硬さを十分に高めることができ、十分な深さの浸炭層も得られる。本実施形態の鋼材の製造方法については後述する。
[浸炭鋼部品について]
本実施形態の浸炭鋼部品は、上述の本実施形態の鋼材を用いて製造される。具体的には、冷間鍛造後の鋼材に対して浸炭処理を実施して、製造される。浸炭鋼部品の製造方法については後述する。
本実施形態の浸炭鋼部品は、上述の本実施形態の鋼材を用いて製造される。具体的には、冷間鍛造後の鋼材に対して浸炭処理を実施して、製造される。浸炭鋼部品の製造方法については後述する。
浸炭鋼部品は、浸炭層と、芯部とを備える。浸炭層は浸炭鋼部品の表層に形成されている。浸炭鋼部品の表面からの浸炭層の深さは0.4mm~2.0mm未満である。本実施形態の浸炭鋼部品では、浸炭層の深さは少なくとも0.4mm以上であればよい。本実施形態において、浸炭層は、浸炭鋼部品の表層において、JIS Z 2244(2009)に準拠したビッカース硬さが550HV以上となる領域を意味する。芯部は、浸炭鋼部品のうち、浸炭層よりも内部の領域に相当する。芯部の化学組成は、上述の浸炭鋼部品の化学組成と同じである。つまり、芯部の化学組成中の各元素は上記数値範囲内であって、式(1)~式(4)を満たす。
浸炭鋼部品において、浸炭鋼部品の表面から50μm深さ位置は浸炭層に相当する。浸炭鋼部品の表面から50μm深さ位置でのJIS Z 2244(2009)に準拠したビッカース硬さは650~1000HVである。つまり、上記位置での浸炭層のビッカース硬さは650~1000HVである。浸炭層は浸炭処理により形成され、浸炭層のビッカース硬さは、素材である鋼材よりも高くなる。
上記構成を有する浸炭鋼部品において、浸炭鋼部品の表面から2.0mm深さ位置は芯部に相当する。浸炭鋼部品の表面から2.0mm深さ位置でのJIS Z 2244:2009に準拠したビッカース硬さは250~500HVである。つまり、上記位置での芯部のビッカース硬さは250~500HVである。
浸炭鋼部品のビッカース硬さは、次の方法で測定する。浸炭鋼部品の任意の表面に垂直な断面を測定面とする。測定面において、表面から50μm深さ位置のビッカース硬さと、表面から0.4mm深さ位置のビッカース硬さとを、マイクロビッカース硬度計を用いて、JIS Z 2244(2009)に準拠したビッカース硬さ試験により求める。試験力は0.49Nとする。50μm深さ位置の10箇所のビッカース硬さHVを測定する。10個の測定結果の算術平均値を、50μm深さ位置でのビッカース硬さHVと定義する。また、測定面において、表面から0.4mm深さ位置で10箇所のビッカース硬さHVを測定する。10個の測定結果の算術平均値を、0.4mm深さ位置でのビッカース硬さHVと定義する。0.4mm深さ位置でのビッカース硬さが550HV以上であれば、浸炭層深さが少なくとも0.4mm以上であると判断する。
また、測定面において、表面から2.0mm深さ位置のビッカース硬さを、ビッカース硬度計を用いて、JIS Z 2244(2009)に準拠したビッカース硬さ試験により求める。試験力は0.49Nとする。2.0mm深さ位置で10箇所のビッカース硬さHVを測定する。10個の測定結果の算術平均値を、2.0mm深さ位置でのビッカース硬さHVと定義する。
浸炭鋼部品はたとえば、鉱山機械、建設機械、自動車等に利用される機械構造用部品として適用される。機械構造用部品はたとえば、歯車、シャフト、プーリー等である。
[鋼材の製造方法]
本実施形態の鋼材の製造方法の一例を説明する。なお、本実施形態の鋼材が上述の構成を有すれば、以下に説明する製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態の鋼材を製造する好適な一例である。
本実施形態の鋼材の製造方法の一例を説明する。なお、本実施形態の鋼材が上述の構成を有すれば、以下に説明する製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態の鋼材を製造する好適な一例である。
本実施形態の鋼材の製造方法の一例は、素材準備工程と、熱間加工工程とを含む。以下、各工程について説明する。
[素材準備工程]
素材準備工程では、上述の式(1)~式(4)を満たす化学組成を有する素材を準備する。素材はたとえば、次の方法により製造される。上述の式(1)~式(4)を満たす化学組成の溶鋼を製造する。上記溶鋼を用いて、鋳造法により素材(鋳片又はインゴット)を製造する。たとえば、上記溶鋼を用いて周知の連続鋳造法により鋳片(ブルーム)を製造する。又は、上記溶鋼を用いて周知の造塊法によりインゴットを製造する。
素材準備工程では、上述の式(1)~式(4)を満たす化学組成を有する素材を準備する。素材はたとえば、次の方法により製造される。上述の式(1)~式(4)を満たす化学組成の溶鋼を製造する。上記溶鋼を用いて、鋳造法により素材(鋳片又はインゴット)を製造する。たとえば、上記溶鋼を用いて周知の連続鋳造法により鋳片(ブルーム)を製造する。又は、上記溶鋼を用いて周知の造塊法によりインゴットを製造する。
[熱間加工工程]
熱間加工工程では、素材準備工程にて準備された素材(ブルーム又はインゴット)に対して、熱間加工を実施して、鋼材を製造する。鋼材の形状は特に限定されないが、たとえば、棒鋼又は線材である。以下の説明では、一例として、鋼材が棒鋼である場合について説明する。しかしながら、鋼材が棒鋼以外の他の形状であっても同様の熱間加工工程で製造可能である。
熱間加工工程では、素材準備工程にて準備された素材(ブルーム又はインゴット)に対して、熱間加工を実施して、鋼材を製造する。鋼材の形状は特に限定されないが、たとえば、棒鋼又は線材である。以下の説明では、一例として、鋼材が棒鋼である場合について説明する。しかしながら、鋼材が棒鋼以外の他の形状であっても同様の熱間加工工程で製造可能である。
熱間加工工程は、粗圧延工程と、仕上げ圧延工程とを含む。粗圧延工程では、素材を熱間加工してビレットを製造する。粗圧延工程はたとえば、分塊圧延機を用いる。分塊圧延機により素材に対して分塊圧延を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が設置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。以上の工程により、粗圧延工程では、素材をビレットに製造する。粗圧延工程での加熱炉での加熱温度は特に限定されないが、たとえば、1100~1300℃である。
仕上げ圧延工程では、初めに、加熱炉を用いてビレットを加熱する。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、鋼材である棒鋼を製造する。
仕上げ圧延工程において、加熱炉又は均熱炉での加熱温度をT1(℃)と定義し、加熱炉及び均熱炉での保持時間をt1(時間)と定義する。ここで、加熱温度T1は炉温とし、保持時間t1は、ビレットの炉内での滞在時間(時間)とする。このとき、好ましい加熱温度T1は1200~1250℃であり、好ましい保持時間t1は1.5~15.0時間である。なお、加熱温度T1及び保持時間t1が上記範囲を外れても、後述する仕上げ温度T2及び平均冷却速度CRが適切な範囲であれば、上述の構成を有する鋼材を製造できる。
連続圧延機を用いた仕上げ圧延において、最終の圧下を行ったスタンドでの出側での素材温度を、仕上げ温度T2と定義する。仕上げ温度T2は、最終の圧下を行ったスタンドの出側に設置された測温計により測定された素材の表面温度(℃)とする。測温計はたとえば、放射温度計である。仕上げ圧延工程において、仕上げ温度T2、及び仕上げ圧延後の平均冷却速度CRをそれぞれ、次の範囲とする。
仕上げ温度T2:1020~1100℃
従来の浸炭鋼部品用途の鋼材では、製造コストを抑えるために、通常、仕上げ温度を1000℃以下としている。しかしながら、本実施形態では、鋼材の切りくず処理性を高めるために、敢えて、仕上げ温度T2の下限を1020℃として、粗大パーライト粒の総面積率を高める。仕上げ温度T2が1020℃未満であれば、後述の冷却を実施した場合であっても、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となり、切りくず処理性が低下する。一方、仕上げ圧延温度T2が1100℃を超えれば、200μm2以上の面積を有するパーライト粒の総面積率が35.0%以上となり、限界加工率が低下する。したがって、仕上げ温度T2は1020~1100℃である。仕上げ温度T2の好ましい下限は1025℃であり、さらに好ましくは1030℃である。仕上げ温度T2の好ましい上限は1090℃であり、さらに好ましくは1080℃である。
従来の浸炭鋼部品用途の鋼材では、製造コストを抑えるために、通常、仕上げ温度を1000℃以下としている。しかしながら、本実施形態では、鋼材の切りくず処理性を高めるために、敢えて、仕上げ温度T2の下限を1020℃として、粗大パーライト粒の総面積率を高める。仕上げ温度T2が1020℃未満であれば、後述の冷却を実施した場合であっても、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となり、切りくず処理性が低下する。一方、仕上げ圧延温度T2が1100℃を超えれば、200μm2以上の面積を有するパーライト粒の総面積率が35.0%以上となり、限界加工率が低下する。したがって、仕上げ温度T2は1020~1100℃である。仕上げ温度T2の好ましい下限は1025℃であり、さらに好ましくは1030℃である。仕上げ温度T2の好ましい上限は1090℃であり、さらに好ましくは1080℃である。
仕上げ温度T2から鋼材温度が600℃になるまでの平均冷却速度CR:2.0℃/秒以下
パーライト変態は、鋼材温度が600℃になるまでにほぼ完了する。仕上げ温度T2から鋼材温度が600℃になるまでの平均冷却速度CRが2.0℃/秒以下であれば、平均冷却速度CRは大気中での放冷以下の冷却速度となる。この場合、鋼材中のミクロ組織において、200μm2以上の面積を有するパーライト粒の総面積率が20.0%以上となり、十分な切りくず処理性が得られる。一方、平均冷却速度CRが2.0℃/秒を超えれば、冷却速度が速すぎる。この場合、上述の定義のパーライト粒が微細になり、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となる。その結果、鋼材の切りくず処理性が低下する。平均冷却速度CRがさらに速くなれば、鋼材のミクロ組織において、ベイナイト及び/又はマルテンサイトが生成する。この場合、ミクロ組織中のフェライト及びパーライトの総面積率が85.0%未満となり、限界加工率が低下する。
パーライト変態は、鋼材温度が600℃になるまでにほぼ完了する。仕上げ温度T2から鋼材温度が600℃になるまでの平均冷却速度CRが2.0℃/秒以下であれば、平均冷却速度CRは大気中での放冷以下の冷却速度となる。この場合、鋼材中のミクロ組織において、200μm2以上の面積を有するパーライト粒の総面積率が20.0%以上となり、十分な切りくず処理性が得られる。一方、平均冷却速度CRが2.0℃/秒を超えれば、冷却速度が速すぎる。この場合、上述の定義のパーライト粒が微細になり、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となる。その結果、鋼材の切りくず処理性が低下する。平均冷却速度CRがさらに速くなれば、鋼材のミクロ組織において、ベイナイト及び/又はマルテンサイトが生成する。この場合、ミクロ組織中のフェライト及びパーライトの総面積率が85.0%未満となり、限界加工率が低下する。
なお、平均冷却速度CRは次の方法で測定する。仕上げ圧延後の鋼材は、搬送ラインで下流に搬送される。搬送ラインには、複数の測温計が搬送ラインに沿って配置されており、搬送ラインの各位置での鋼材温度を測定可能である。搬送ラインに沿って配置された複数の測温計に基づいて、鋼材温度が仕上げ温度T2から600℃になるまでの時間を求め、平均冷却速度CR(℃/秒)を求める。
たとえば、搬送ラインに複数の徐冷カバーを間隔を開けて配置することにより、平均冷却速度CRを調整できる。なお、鋼材温度が600℃未満となった後の鋼材の冷却方法は特に限定されない。
以上の製造工程により、上述の構成を有する本実施形態の鋼材を製造できる。
[浸炭鋼部品の製造方法]
次に、本実施形態の鋼材を素材として用いた浸炭鋼部品の製造方法の一例について説明する。本製造方法は、本実施形態の鋼材に対して冷間鍛造を実施して中間部材を製造する冷間鍛造工程と、中間部材を切削する切削加工工程と、中間部材に対して浸炭処理を実施する浸炭処理工程と、焼戻し工程とを含む。なお、本実施形態において、浸炭処理は、浸炭窒化処理も含む。
次に、本実施形態の鋼材を素材として用いた浸炭鋼部品の製造方法の一例について説明する。本製造方法は、本実施形態の鋼材に対して冷間鍛造を実施して中間部材を製造する冷間鍛造工程と、中間部材を切削する切削加工工程と、中間部材に対して浸炭処理を実施する浸炭処理工程と、焼戻し工程とを含む。なお、本実施形態において、浸炭処理は、浸炭窒化処理も含む。
[冷間鍛造工程]
冷間鍛造工程では、上述の製造方法で製造された鋼材に、冷間鍛造を実施して形状を付与し、中間部材を製造する。この冷間鍛造工程での加工率、ひずみ速度などの冷間鍛造条件は特に限定されるものではなく、適宜、好適な条件を選択すればよい。
冷間鍛造工程では、上述の製造方法で製造された鋼材に、冷間鍛造を実施して形状を付与し、中間部材を製造する。この冷間鍛造工程での加工率、ひずみ速度などの冷間鍛造条件は特に限定されるものではなく、適宜、好適な条件を選択すればよい。
[切削加工工程]
切削加工工程では、冷間鍛造工程後であって後述の浸炭処理工程前の中間部材に対して、切削加工を実施して形状を付与する。切削加工を実施することにより、冷間鍛造工程だけでは困難な、精密形状を浸炭鋼部品に付与することができる。本実施形態の鋼材を用いた場合、切削加工工程での切りくず処理性に優れる。
切削加工工程では、冷間鍛造工程後であって後述の浸炭処理工程前の中間部材に対して、切削加工を実施して形状を付与する。切削加工を実施することにより、冷間鍛造工程だけでは困難な、精密形状を浸炭鋼部品に付与することができる。本実施形態の鋼材を用いた場合、切削加工工程での切りくず処理性に優れる。
[浸炭処理工程]
浸炭処理工程では、切削加工工程後の中間部材に対して、浸炭処理を実施する。ここで、本実施形態において、浸炭処理は、浸炭窒化処理も含む。浸炭処理工程では、周知の浸炭処理を実施する。浸炭処理工程は、浸炭工程と、拡散工程と、焼入れ工程とを含む。
浸炭処理工程では、切削加工工程後の中間部材に対して、浸炭処理を実施する。ここで、本実施形態において、浸炭処理は、浸炭窒化処理も含む。浸炭処理工程では、周知の浸炭処理を実施する。浸炭処理工程は、浸炭工程と、拡散工程と、焼入れ工程とを含む。
浸炭工程及び拡散工程での浸炭処理条件は適宜調整すればよい。浸炭工程及び拡散工程での浸炭温度はたとえば、830~1100℃である。浸炭工程及び拡散工程でのカーボンポテンシャルはたとえば、0.5~1.2%である。浸炭工程での保持時間はたとえば、60分以上であり、拡散工程での保持時間は30分以上である。拡散工程でのカーボンポテンシャルは、浸炭工程でのカーボンポテンシャルよりも低くする方が好ましい。ただし、浸炭工程及び拡散工程での条件は、上述の条件に限定されない。
拡散工程後、周知の焼入れ工程を実施する。焼入れ工程では、拡散工程後の中間部材をAr3変態点以上の焼入れ温度で保持する。焼入れ温度での保持時間は特に限定されないが、たとえば、30~60分である。好ましくは、焼入れ温度は、浸炭温度よりも低い。焼入れ媒体の温度を室温~200℃とすることが好ましい。焼入れ媒体はたとえば、水や油である。また、必要に応じて焼入れ後にサブゼロ処理を実施してもよい。
[焼戻し工程]
浸炭処理工程後の中間部材に対して、周知の焼戻し工程を実施する。焼戻し温度はたとえば、100~200℃である。焼戻し温度での保持時間はたとえば、90~150分である。
浸炭処理工程後の中間部材に対して、周知の焼戻し工程を実施する。焼戻し温度はたとえば、100~200℃である。焼戻し温度での保持時間はたとえば、90~150分である。
[その他の工程]
必要に応じて、焼戻し工程後の浸炭鋼部品に対してさらに、研削加工を実施したり、ショットピーニング処理を実施してもよい。研削加工を実施することにより、精密形状を浸炭鋼部品に付与することができる。また、ショットピーニング処理を実施することにより、浸炭鋼部品の表層部に圧縮残留応力が導入される。圧縮残留応力は疲労き裂の発生及び進展を抑制する。そのため、浸炭鋼部品の疲労強度を高める。たとえば、浸炭鋼部品が歯車である場合、浸炭鋼部品の歯元及び歯面の疲労強度を向上できる。ショットピーニング処理は、周知の方法で実施すればよい。ショットピーニング処理はたとえば、直径が0.7mm以下のショット粒を用い、アークハイトが0.4mm以上の条件で実施するのが好ましい。
必要に応じて、焼戻し工程後の浸炭鋼部品に対してさらに、研削加工を実施したり、ショットピーニング処理を実施してもよい。研削加工を実施することにより、精密形状を浸炭鋼部品に付与することができる。また、ショットピーニング処理を実施することにより、浸炭鋼部品の表層部に圧縮残留応力が導入される。圧縮残留応力は疲労き裂の発生及び進展を抑制する。そのため、浸炭鋼部品の疲労強度を高める。たとえば、浸炭鋼部品が歯車である場合、浸炭鋼部品の歯元及び歯面の疲労強度を向上できる。ショットピーニング処理は、周知の方法で実施すればよい。ショットピーニング処理はたとえば、直径が0.7mm以下のショット粒を用い、アークハイトが0.4mm以上の条件で実施するのが好ましい。
実施例により本発明の一態様の効果を更に具体的に説明する。以下の実施例での条件は、本実施形態の鋼材及び浸炭鋼部品の実施可能性及び効果を確認するために採用した一条件例である。したがって、本発明はこの一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
表1に示す化学組成の溶鋼を準備した。溶鋼を連続鋳造により鋳造して鋳片を得た。
表1中の空白欄は、対応する元素含有量が検出限界未満であったことを意味する。つまり、空白部分は、対応する元素含有量の最小桁において、検出限界未満であったことを意味する。たとえば、表1中のNb含有量の場合、最小桁は小数第3位である。したがって、鋼番号AのNb含有量は、小数第3位までの桁数において、検出されなかった(有効数字が小数第3位までの含有量において、0%であった)ことを意味する。
鋳片を加熱した後、粗圧延工程である分塊圧延及びその後の連続圧延機による圧延を実施して、162mm×162mmの横断面(長手方向に垂直な断面)のビレットを製造した。分塊圧延での加熱温度は1200~1250℃であった。
製造されたビレットを用いて、仕上げ圧延工程を実施して、直径80mmの棒鋼(浸炭鋼部品の素材となる鋼材)を製造した。仕上げ圧延工程における各試験番号の加熱温度T1は表2に示すとおりであった。なお、保持時間t1はいずれの試験番号においても1.5~3.0時間であった。また、各試験番号の仕上げ温度T2、仕上げ温度T2から鋼材温度が600℃になるまでの平均冷却速度CRは表2に示すとおりであった。
[評価試験]
[ミクロ組織観察試験]
各試験番号の棒鋼のR/2位置から、ミクロ組織観察用のサンプルを採取した。サンプルの表面のうち、棒鋼の長手方向に垂直な断面に相当する表面を観察面とした。観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングした。エッチングされた観察面を、500倍の光学顕微鏡を用いて観察し、任意の20視野の写真画像を生成した。各視野のサイズは、500μm×500μmとした。フェライト、パーライト等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定した。特定された相のうち、各視野でのフェライトの総面積(μm2)、及び、パーライトの総面積(μm2)を求めた。全ての視野の総面積に対する、全ての視野におけるフェライトの総面積とパーライトの総面積との合計の割合(%)を、フェライト及びパーライトの総面積率(%)と定義した(表2中の「フェライト+パーライト総面積率」に相当。)。
[ミクロ組織観察試験]
各試験番号の棒鋼のR/2位置から、ミクロ組織観察用のサンプルを採取した。サンプルの表面のうち、棒鋼の長手方向に垂直な断面に相当する表面を観察面とした。観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングした。エッチングされた観察面を、500倍の光学顕微鏡を用いて観察し、任意の20視野の写真画像を生成した。各視野のサイズは、500μm×500μmとした。フェライト、パーライト等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定した。特定された相のうち、各視野でのフェライトの総面積(μm2)、及び、パーライトの総面積(μm2)を求めた。全ての視野の総面積に対する、全ての視野におけるフェライトの総面積とパーライトの総面積との合計の割合(%)を、フェライト及びパーライトの総面積率(%)と定義した(表2中の「フェライト+パーライト総面積率」に相当。)。
さらに、全ての視野において、上記で定義したパーライト粒を特定し、各パーライト粒の面積を求めた。そして、200μm2以上となるパーライト粒の総面積を求めた。全ての視野の総面積に対する、200μm2以上のパーライト粒の総面積の割合(%)を、200μm2以上のパーライト粒の総面積率(%)とした(表2中の「粗大パーライト粒総面積率」に相当。)。表2中の「残部組織」欄には、各試験番号において、フェライト及びパーライト以外に観察された相を示す。欄中の「-」は、ミクロ組織中のマトリックスにおいて、フェライト及びパーライト以外の相が観察されなかったことを示す。欄中の「M+B」は、ミクロ組織中のマトリックスにおいて、フェライト及びパーライト以外にマルテンサイト及び/又はベイナイトが観察されたことを示す。欄中の「C」は、ミクロ組織中のマトリックスにおいて、フェライト及びパーライト以外にセメンタイトが観察されたことを示す。
なお、上述の面積率の算出において、フェライト、パーライト、マルテンサイト及びベイナイト、セメンタイト(球状化セメンタイトも含む)を含めた。一方で、上記面積率の算出には、セメンタイト以外の析出物、介在物、及び、残留オーステナイトを含めなかった。
各試験番号のフェライト及びパーライトの総面積率、及び、各試験番号の200μm2以上の面積を有するパーライト粒の総面積率(%)を表2に示す。
[限界圧縮試験]
鋼材の限界加工率(冷間鍛造性)の評価試験として、限界圧縮試験を実施した。具体的には、各試験番号の鋼材(棒鋼)から、複数の限界圧縮率測定試験片を採取した。限界圧縮試験片の直径は6mmであり、長さは9mmであった。限界圧縮率測定試験片の長手方向は、各試験番号の棒鋼の長手方向と平行であった。また、限界圧縮試験片の中心軸は、各試験番号の棒鋼のR/2位置に相当した。試験片の長手方向の中央位置に、周方向に切欠きを形成した。切欠き角度は30度であり、切欠き深さは0.8mmであり、切欠き先端の曲率半径は0.15mmであった。
鋼材の限界加工率(冷間鍛造性)の評価試験として、限界圧縮試験を実施した。具体的には、各試験番号の鋼材(棒鋼)から、複数の限界圧縮率測定試験片を採取した。限界圧縮試験片の直径は6mmであり、長さは9mmであった。限界圧縮率測定試験片の長手方向は、各試験番号の棒鋼の長手方向と平行であった。また、限界圧縮試験片の中心軸は、各試験番号の棒鋼のR/2位置に相当した。試験片の長手方向の中央位置に、周方向に切欠きを形成した。切欠き角度は30度であり、切欠き深さは0.8mmであり、切欠き先端の曲率半径は0.15mmであった。
限界圧縮試験には、500ton油圧プレス機を用いた。作製された限界圧縮率測定試験片に対して、次の方法により限界圧縮試験を実施した。各試験片に対して、拘束ダイスを使用して10mm/分の速度で冷間圧縮を行った。切欠き近傍に0.5mm以上の微小割れが生じたときに圧縮を停止し、その時の圧縮率(%)を算出した。この測定を合計10回行い、累積破損確率が50%となる圧縮率(%)を求めた。求めた圧縮率を限界圧縮率(%)と定義した。各試験番号の限界圧縮率(%)を表2に示す。浸炭鋼部品の素材となる従来の鋼材の限界圧縮率は、約65%である。そこで、限界圧縮率が、この値よりも明らかに高い値とみなせる68%以上となる場合を、限界加工率が優れると判断した。なお、限界圧縮率が68%未満の試験番号に対しては、鋼材を素材とした浸炭鋼部品の評価試験を実施しなかった。
[被削性試験]
各試験番号の直径30mmの棒鋼に対して、冷間鍛造を模擬した冷間引抜きを実施した。具体的には、直径30mmの棒鋼に対して、減面率30.6%で冷間引抜きを実施して、直径25mmの棒鋼とした。冷間引抜き後の棒鋼を長さ50mmに切断し、旋削加工用試験片とした。
各試験番号の直径30mmの棒鋼に対して、冷間鍛造を模擬した冷間引抜きを実施した。具体的には、直径30mmの棒鋼に対して、減面率30.6%で冷間引抜きを実施して、直径25mmの棒鋼とした。冷間引抜き後の棒鋼を長さ50mmに切断し、旋削加工用試験片とした。
NC旋盤を用いて、旋削加工用試験片の外周を旋削加工した。なお、試験に使用した工具の詳細、及び、施削加工条件は次のとおりであった。
[工具]
母材材質:超硬P20種グレード
コーティング:なし
[旋削加工条件]
周速:150m/分
送り速度:0.2mm/rev
切り込み:0.4mm
潤滑:水溶性切削油を使用
母材材質:超硬P20種グレード
コーティング:なし
[旋削加工条件]
周速:150m/分
送り速度:0.2mm/rev
切り込み:0.4mm
潤滑:水溶性切削油を使用
切りくず処理性は、以下の方法で評価した。上記被削性試験中の任意の10秒間で排出された切りくずを全て回収した。回収された切りくずの長さを調べ、長いものから順に10個の切りくずを選択した。選択された10個の切りくずの総重量を「切りくず重量」と定義した。切りくずが長くつながった結果、切りくずの総数が10個未満である場合、回収された切りくずの総重量を測定し、10個の個数に換算した値を「切りくず重量」と定義した。たとえば、切りくずの総数が7個であって、その総重量が12gである場合、切りくず重量は、12g×10個/7個、と計算した。
各試験番号の切りくず重量に基づいて、次のとおり切りくず処理性を評価した。
切りくず重量が10g以下 :評価E(Excellent)
切りくず重量が10g超15g以下 :評価G(Good)
切りくず重量が15g超 :評価B(Bad)
評価が「E」又は「G」の場合、切りくず処理性が高いと判断した。一方、評価が「B」の場合、切りくず処理性が低いと判断した。評価結果を表2に示す。
切りくず重量が10g以下 :評価E(Excellent)
切りくず重量が10g超15g以下 :評価G(Good)
切りくず重量が15g超 :評価B(Bad)
評価が「E」又は「G」の場合、切りくず処理性が高いと判断した。一方、評価が「B」の場合、切りくず処理性が低いと判断した。評価結果を表2に示す。
[浸炭鋼部品評価試験]
各試験番号の鋼材を用いて浸炭鋼部品を製造し、芯部の硬さ、及び、浸炭層の深さについて調査した。具体的には、各試験番号の棒鋼から、直径20mm、長さ30mmの試験片を採取した。試験片の中心は、各試験番号の棒鋼の中心とほぼ一致した。採取した試験片に対して、変成炉ガス方式による浸炭処理(ガス浸炭処理)を実施した。ガス浸炭処理では、カーボンポテンシャルを0.8%として、950℃で5時間(300分)保持した。続いて、850℃で0.5時間保持した。以上の工程後、試験片を130℃の油槽に浸漬して油焼入れを実施した。焼入れ後の試験片に対して、150℃で90分の焼戻しを実施した。以上の製造工程により、各試験番号の鋼材を素材とした浸炭鋼部品を製造した。
各試験番号の鋼材を用いて浸炭鋼部品を製造し、芯部の硬さ、及び、浸炭層の深さについて調査した。具体的には、各試験番号の棒鋼から、直径20mm、長さ30mmの試験片を採取した。試験片の中心は、各試験番号の棒鋼の中心とほぼ一致した。採取した試験片に対して、変成炉ガス方式による浸炭処理(ガス浸炭処理)を実施した。ガス浸炭処理では、カーボンポテンシャルを0.8%として、950℃で5時間(300分)保持した。続いて、850℃で0.5時間保持した。以上の工程後、試験片を130℃の油槽に浸漬して油焼入れを実施した。焼入れ後の試験片に対して、150℃で90分の焼戻しを実施した。以上の製造工程により、各試験番号の鋼材を素材とした浸炭鋼部品を製造した。
各試験番号の浸炭鋼部品の、浸炭層及び芯部について、次の測定を実施した。具体的には、各試験番号の浸炭鋼部品の長手方向に垂直な切断面において、表面から50μm深さ位置のビッカース硬さと、表面から0.4mm深さ位置のビッカース硬さとを、ビッカース硬度計を用いて、JIS Z 2244(2009)に準拠したビッカース硬さ試験により求めた。試験力は0.49Nとした。50μm深さ位置10箇所のビッカース硬さHVを測定した。そして、10個の測定結果の算術平均値を、50μm深さ位置でのビッカース硬さHVと定義した。また、0.4mm深さ位置10箇所のビッカース硬さHVを測定した。そして、10個の測定結果の平均値を、0.4mm深さ位置でのビッカース硬さHVと定義した。
表面から深さ0.4mmの位置での硬さが550HV以上であれば、浸炭層が表面から少なくとも0.4mmまで存在すると判断した。つまり、浸炭層が十分に深く形成されていると判断した。また、表面から深さ50μmの位置でのビッカース硬さが650~1000HVの場合、浸炭鋼部品の浸炭層の硬さが十分であると判断した。測定結果を表2に示す。
上記浸炭鋼部品の芯部のビッカース硬さ及び化学組成を次の方法で測定した。浸炭鋼部品の長手方向に垂直な切断面において、表面から2.0mm深さ位置のビッカース硬さを、ビッカース硬度計を用いて、JIS Z 2244(2009)に準拠したビッカース硬さ試験により求めた。試験力は0.49Nとした。2.0mm深さ位置にて10回の測定を行った。10個の測定結果の算術平均値を、表面から2.0mm深さ位置でのビッカース硬さ(HV)と定義した。得られたビッカース硬さを表2に示す。2.0mm深さ位置でのビッカース硬さが、250~500HVである場合、芯部硬さが十分に高いと判断した。
また、表面から2.0mm深さ位置での芯部の化学組成について、EPMA(電子線マイクロアナライザ、Electron Probe MicroAnalyzer)を用いて、原子番号5番以上の元素に関して定量分析を行った。そして、芯部の化学組成が、浸炭鋼部品の素材である鋼材の化学成分と同じである場合、化学組成が同等と判断した。判定結果を表2に示す。
[浸炭鋼部品の粗粒の有無]
上記浸炭鋼部品の鋼部について、表面から深さ2.0mmの位置での、旧オーステナイト結晶粒の観察を行った。具体的には、浸炭鋼部品の長手方向に垂直な切断面を観察面とした。観察面を鏡面研磨した後、ピクリン酸飽和水溶液にてエッチングを行った。エッチングされた観察面の、表面から2.0mm深さ位置を含む視野(300μm×300μm)を光学顕微鏡(400倍)で観察して、旧オーステナイト結晶粒を特定した。特定された旧オーステナイト結晶粒に対して、JIS G 0551(2013)に準拠して、各旧―ステナイト結晶粒の結晶粒径を円相当径(μm)で求めた。旧オーステナイト結晶粒のうち、円相当径が上記JIS規定の結晶粒度番号の4番に相当する円相当径(88.4μm)を超える結晶粒が一つでも存在している場合に「粗大粒発生あり」と判定した。
上記浸炭鋼部品の鋼部について、表面から深さ2.0mmの位置での、旧オーステナイト結晶粒の観察を行った。具体的には、浸炭鋼部品の長手方向に垂直な切断面を観察面とした。観察面を鏡面研磨した後、ピクリン酸飽和水溶液にてエッチングを行った。エッチングされた観察面の、表面から2.0mm深さ位置を含む視野(300μm×300μm)を光学顕微鏡(400倍)で観察して、旧オーステナイト結晶粒を特定した。特定された旧オーステナイト結晶粒に対して、JIS G 0551(2013)に準拠して、各旧―ステナイト結晶粒の結晶粒径を円相当径(μm)で求めた。旧オーステナイト結晶粒のうち、円相当径が上記JIS規定の結晶粒度番号の4番に相当する円相当径(88.4μm)を超える結晶粒が一つでも存在している場合に「粗大粒発生あり」と判定した。
[試験結果]
表1及び表2を参照して、試験番号1~11、及び、29~31の鋼材の化学組成は、本実施形態の化学組成の範囲内であり、式(1)~式(4)を満たした。さらに、製造条件も適切であった。そのため、鋼材のミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満であった。その結果、これらの試験番号の限界圧縮率は68%以上であり、十分な限界加工率を示した。さらに、いずれの試験番号も切りくず処理性に優れた。さらに、鋼材において、浸炭層は少なくとも0.4mm以上の深さを有した。また、50μm深さ位置での浸炭層のビッカース硬さは650~1000HVであった。さらに、2.0mm深さ位置での芯部のビッカース硬さは250~500HVであり、浸炭層及び芯部ともに、十分な硬さを有した。
表1及び表2を参照して、試験番号1~11、及び、29~31の鋼材の化学組成は、本実施形態の化学組成の範囲内であり、式(1)~式(4)を満たした。さらに、製造条件も適切であった。そのため、鋼材のミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満であった。その結果、これらの試験番号の限界圧縮率は68%以上であり、十分な限界加工率を示した。さらに、いずれの試験番号も切りくず処理性に優れた。さらに、鋼材において、浸炭層は少なくとも0.4mm以上の深さを有した。また、50μm深さ位置での浸炭層のビッカース硬さは650~1000HVであった。さらに、2.0mm深さ位置での芯部のビッカース硬さは250~500HVであり、浸炭層及び芯部ともに、十分な硬さを有した。
一方、試験番号12では、F1が式(1)の上限を超えた。そのため、鋼材の限界加工率が低かった。
試験番号13及び試験番号28では、C含有量が低すぎた。そのため、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となった。そのため、切り屑重量が15gを超え、切りくず処理性が低かった。また、浸炭鋼部品において、2.0mm深さ位置での芯部のビッカース硬さが250HV未満と低かった。
試験番号14では、C含有量が高すぎ、F1が式(1)の上限を超えた。そのため、浸炭鋼部品用鋼材の限界加工率が低かった。
試験番号15では、Si及びMn含有量が低すぎた。さらにF1が式(1)の下限未満であり、F2が式(2)の下限未満であった。そのため、浸炭鋼部品において、2.0mm深さ位置での芯部のビッカース硬さが250HV未満と低かった。
試験番号16及び33では、F2が式(2)の上限を超えた。そのため、鍛造前の鋼材の限界加工率が低すぎた。
試験番号17では、F3が式(3)の下限未満であった。そのため、浸炭鋼部品の芯部において、旧オーステナイト結晶粒の一部が粗粒となった。そのため、浸炭鋼部品の疲労強度が低いことが予想された。
試験番号18及び34では、F3が式(3)の上限を超えた。そのため、鋼材の限界加工率が低かった。
試験番号19及び35では、F4が式(4)の下限未満であった。そのため、鋼材の限界加工率が低かった。
試験番号20では、F4が式(4)の上限を超えた。そのため、鋼材の限界加工率が低かった。
試験番号21では、Ti含有量が高すぎた。そのため、鋼材の限界加工率が低かった。
試験番号22では、Ca含有量が高すぎた。そのため、鋼材の限界加工率が低かった。
試験番号23では、Ca含有量が低すぎた。そのため、鋼材の限界加工率が低かった。
試験番号24では、化学組成は適切であるものの、仕上げ圧延工程での仕上げ温度T2が低すぎた。そのため、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となった。その結果、切り屑重量は15gを超え、切りくず処理性が低かった。
試験番号25では、化学組成は適切であるものの、仕上げ圧延工程での仕上げ温度T2が高すぎた。そのため、200μm2以上の面積を有するパーライト粒の総面積率が35.0%を超えた。そのため、鋼材の限界加工率が低かった。
試験番号26では、化学組成は適切であるものの、仕上げ圧延工程での平均冷却速度CRが速すぎた。そのため、ベイナイト及びマルテンサイトの総面積率が高まり、その結果、フェライト及びパーライトの総面積率が85.0%未満となった。その結果、鋼材の限界加工率が低かった。
試験番号27では、化学組成は適切であるものの、仕上げ圧延工程での平均冷却速度CRが速すぎた。そのため、フェライト及びパーライトの総面積率は85.0%以上であったものの、200μm2以上の面積を有するパーライト粒の総面積率が20.0%未満となった。その結果、切り屑重量が15gを超え、切りくず処理性が低かった。
試験番号32では、F2が式(2)の下限未満であった。そのため、浸炭鋼部品において、2.0mm深さ位置での芯部のビッカース硬さが250HV未満と低かった。
試験番号36では、F1が式(1)の下限未満であった。そのため、浸炭鋼部品において、2.0mm深さ位置での芯部のビッカース硬さが250HV未満と低かった。
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
Claims (3)
- 化学組成が、質量%で、
C:0.11~0.15%、
Si:0.17~0.35%、
Mn:0.45~0.80%、
S:0.005~0.050%、
Cr:1.50~1.90%未満、
B:0.0005~0.0100%、
Ti:0.010~0.050%未満、
Al:0.010~0.100%、
Ca:0.0002~0.0030%、
N:0.0080%以下、
P:0.050%以下、及び
O:0.0030%以下、を含有し、
残部はFe及び不純物からなり、式(1)~式(4)を満たし、
ミクロ組織において、フェライト及びパーライトの総面積率が85.0%以上であり、かつ、200μm2以上の面積を有するパーライト粒の総面積率が20.0~35.0%未満である、
鋼材。
0.200<C+0.194×Si+0.065×Mn+0.012×Cr+0.033×Mo+0.067×Ni+0.097×Cu+0.078×Al<0.235 (1)
16.0<(0.70×Si+1)×(5.1×Mn+1)×(2.2×Cr+1)×(3.0×Mo+1)×(0.36×Ni+1)<29.0 (2)
0.004<Ti-N×(48/14)<0.030 (3)
0.03≦Ca/S≦0.15 (4)
ここで、式(1)~(4)の各元素記号には、対応する元素の含有量(質量%)が代入され、対応する元素が含有されていない場合、対応する元素記号に「0」が代入される。 - 請求項1に記載の鋼材であって、
前記化学組成はさらに、Feの一部に代えて、
Nb:0.100%以下、
V:0.300%以下、
Mo:0.500%以下、
Ni:0.500%以下、
Cu:0.500%以下、
Mg:0.0035%以下、及び、
希土類元素(REM):0.005%以下、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。 - 請求項2に記載の鋼材であって、
前記化学組成は、
Nb:0.002~0.100%、
V:0.001~0.300%、
Mo:0.005~0.500%、
Ni:0.005~0.500%、
Cu:0.005~0.500%、
Mg:0.0001~0.0035%、及び、
希土類元素(REM):0.001~0.005%、
からなる群から選択される1元素又は2元素以上を含有する、
鋼材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/008071 WO2021171494A1 (ja) | 2020-02-27 | 2020-02-27 | 鋼材 |
JP2022502724A JP7269522B2 (ja) | 2020-02-27 | 2020-02-27 | 鋼材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/008071 WO2021171494A1 (ja) | 2020-02-27 | 2020-02-27 | 鋼材 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021171494A1 true WO2021171494A1 (ja) | 2021-09-02 |
Family
ID=77491107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008071 WO2021171494A1 (ja) | 2020-02-27 | 2020-02-27 | 鋼材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7269522B2 (ja) |
WO (1) | WO2021171494A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332078A (ja) * | 2003-05-09 | 2004-11-25 | Sanyo Special Steel Co Ltd | 切屑処理性に優れた機械構造用快削鋼 |
WO2012108460A1 (ja) * | 2011-02-10 | 2012-08-16 | 新日本製鐵株式会社 | 浸炭用鋼、浸炭鋼部品、及び、その製造方法 |
JP2017193767A (ja) * | 2016-04-22 | 2017-10-26 | 新日鐵住金株式会社 | 冷間鍛造用鋼およびその製造方法 |
WO2019198415A1 (ja) * | 2018-04-12 | 2019-10-17 | 日本製鉄株式会社 | 浸炭処理が行われる部品用の鋼材 |
JP2019218586A (ja) * | 2018-06-18 | 2019-12-26 | 日本製鉄株式会社 | 浸炭用鋼及び部品 |
-
2020
- 2020-02-27 JP JP2022502724A patent/JP7269522B2/ja active Active
- 2020-02-27 WO PCT/JP2020/008071 patent/WO2021171494A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332078A (ja) * | 2003-05-09 | 2004-11-25 | Sanyo Special Steel Co Ltd | 切屑処理性に優れた機械構造用快削鋼 |
WO2012108460A1 (ja) * | 2011-02-10 | 2012-08-16 | 新日本製鐵株式会社 | 浸炭用鋼、浸炭鋼部品、及び、その製造方法 |
JP2017193767A (ja) * | 2016-04-22 | 2017-10-26 | 新日鐵住金株式会社 | 冷間鍛造用鋼およびその製造方法 |
WO2019198415A1 (ja) * | 2018-04-12 | 2019-10-17 | 日本製鉄株式会社 | 浸炭処理が行われる部品用の鋼材 |
JP2019218586A (ja) * | 2018-06-18 | 2019-12-26 | 日本製鉄株式会社 | 浸炭用鋼及び部品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021171494A1 (ja) | 2021-09-02 |
JP7269522B2 (ja) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102561036B1 (ko) | 강재 | |
US20130243641A1 (en) | Rolled steel bar or wire for hot forging | |
KR101552449B1 (ko) | 열간 단조용 압연 봉강 또는 선재 | |
EP3382050A1 (en) | Steel, carburized steel component, and carburized steel component production method | |
US20180347025A1 (en) | Steel, carburized steel component, and method for manufacturing carburized steel component | |
CN113316651B (zh) | 钢材及部件 | |
CN113227424B (zh) | 作为渗碳氮化轴承部件的坯料的钢材 | |
JP7099549B2 (ja) | 鋼材 | |
CN107429359B (zh) | 热轧棒线材、部件及热轧棒线材的制造方法 | |
WO2021171494A1 (ja) | 鋼材 | |
JP7200646B2 (ja) | 浸炭部品、浸炭部品用の素形材、及び、それらの製造方法 | |
JP7151474B2 (ja) | 浸炭鋼部品用鋼材 | |
JP7368724B2 (ja) | 浸炭鋼部品用鋼材 | |
JP7368723B2 (ja) | 浸炭鋼部品用鋼材 | |
JP7156021B2 (ja) | 浸炭鋼部品用鋼材 | |
JP7417171B2 (ja) | 鋼材 | |
JP2020105601A (ja) | 浸炭鋼部品用鋼材 | |
JP7417059B2 (ja) | 高周波焼入れ窒化処理用鋼および高周波焼入れ窒化処理部品 | |
WO2022249349A1 (ja) | 鋼材、及び、その鋼材を素材とするクランクシャフト | |
JP2021161462A (ja) | 鋼材 | |
JP2023068554A (ja) | 窒化用鋼及び窒化部品 | |
CN116234938A (zh) | 钢材 | |
CN112888796A (zh) | 氮化部件粗形材及氮化部件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921524 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022502724 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921524 Country of ref document: EP Kind code of ref document: A1 |