WO2021171489A1 - Screw compressor and freezer - Google Patents

Screw compressor and freezer Download PDF

Info

Publication number
WO2021171489A1
WO2021171489A1 PCT/JP2020/008051 JP2020008051W WO2021171489A1 WO 2021171489 A1 WO2021171489 A1 WO 2021171489A1 JP 2020008051 W JP2020008051 W JP 2020008051W WO 2021171489 A1 WO2021171489 A1 WO 2021171489A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
cooling
screw compressor
motor
Prior art date
Application number
PCT/JP2020/008051
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/008051 priority Critical patent/WO2021171489A1/en
Priority to EP20922379.1A priority patent/EP4112940A4/en
Publication of WO2021171489A1 publication Critical patent/WO2021171489A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the present disclosure relates to a screw compressor and a refrigerating apparatus equipped with a cooling technique for cooling a motor in a casing.
  • the screw compressor mainly includes a screw rotor, low-pressure side bearings and high-pressure side bearings that support the screw rotor, a motor that drives the screw rotor, and a casing that houses them.
  • the motor can be placed on either the low-pressure side or the high-pressure side in the casing, but as the winding temperature of the motor stator rises, the tolerance of the compressor components to the heat-resistant temperature decreases, and reliability becomes lower. descend. Therefore, the motor is often arranged on the low pressure side for the purpose of promoting cooling of the motor. This is because when the motor is arranged on the low pressure side, the motor can be cooled by the low temperature and low pressure refrigerant gas sucked into the casing.
  • Patent Document 1 As a technique for cooling a motor with an intake gas in this way.
  • a collision member with which the flow of the refrigerant collides is provided in the casing, and the flow of the refrigerant is adjusted by colliding the refrigerant with the collision member to prevent a local temperature rise of the winding of the motor. ing.
  • Patent Document 1 the flow rate of the refrigerant is adjusted by using the collision member, but since the flow velocity of the refrigerant flowing into the casing changes according to the operating conditions, the flow rate of the refrigerant does not become the expected flow, and the motor is wound. It may not be possible to prevent the local temperature rise of the line. In this case, there is a problem that the operating range is limited.
  • the present disclosure has been made in view of the above problems, and provides a screw compressor and a freezing device capable of preventing a local temperature rise of a motor winding and expanding an operating range. The purpose.
  • the screw compressor according to the present disclosure includes a tubular casing, a screw rotor arranged to rotate in the casing, and a motor arranged in the casing to drive the screw rotor.
  • the screw compressor includes a motor.
  • a cooling hole through which an external refrigerant passes extends in the direction of the rotation axis of the screw rotor in a high temperature portion where the temperature rises locally during operation. ..
  • the refrigerating apparatus includes the above-mentioned screw compressor, a condenser, a main depressurizing device, and an evaporator, and from a refrigerant circuit in which a refrigerant circulates and a pipe between the condenser and the main depressurizing device. It is provided with a first pipe that is branched and connected to the inlet of the cooling hole of the screw compressor, and a cooling decompression device that is provided in the first pipe and depressurizes the refrigerant passing through the first pipe.
  • the cooling hole is provided in the high temperature part of the motor frame, the high temperature part can be centrally cooled by flowing the refrigerant from the outside through the cooling hole. Therefore, the high temperature portion and the motor can be stably cooled, and a local temperature rise can be prevented. As a result, the operating range can be expanded.
  • FIG. 1 is a schematic cross-sectional view taken along the line AA of FIG. It is a schematic plan view which shows the screw rotor and a pair of gate rotors of the screw compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the suction process of the compression chamber of the screw compressor of FIG. It is a figure which shows an example of the compression process of the compression chamber of the screw compressor of FIG. It is a figure which shows an example of the discharge process of the compression chamber of the screw compressor of FIG. It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view taken along the line AA of FIG. It is a schematic plan view which shows the screw rotor and a pair of gate rotors of the screw compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the suction process of the compression chamber of the screw compressor of FIG. It is a figure which shows an
  • FIG. 1 It is a figure which shows the change of the evaporation temperature and the condensation temperature in one cycle operation of a refrigerating apparatus. It is a flowchart which shows the flow of control of the cooling pressure reducing device of the refrigerating sail device which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. 1 is a schematic cross-sectional view showing an example of the screw compressor according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a schematic plan view showing a screw rotor and a pair of gate rotors of the screw compressor according to the first embodiment.
  • the screw compressor 100 of the first embodiment includes a tubular casing 2, a screw rotor 3 housed in the casing 2, and a motor for rotationally driving the screw rotor 3. It is equipped with 4.
  • the motor 4 has a stator 4a fixed inscribed in the casing 2 and a motor rotor 4b arranged inside the stator 4a.
  • the motor 4 may be a constant speed machine having a constant rotation speed or an inverter type variable speed machine whose operating capacity can be adjusted by changing the rotation speed, but this specification assumes a variable speed machine.
  • the rotation speed change is controlled by the control device 109 (see FIG. 7 described later).
  • the screw rotor 3 and the motor rotor 4b are arranged on the same axis, and both are fixed to the rotating shaft 5.
  • the screw rotor 3 is connected to a motor rotor 4b fixed to the rotary shaft 5 and is rotationally driven.
  • Both ends of the rotating shaft 5 are rotatably supported by the main bearing 11 and the auxiliary bearing 13.
  • the main bearing 11 is arranged in a main bearing housing (not shown) provided at the end of the screw rotor 3 on the discharge side (left side in FIG. 1).
  • the auxiliary bearing 13 is provided at the end of the rotary shaft 5 on the suction side (right side in FIG. 1) of the screw rotor 3.
  • the screw rotor 3 is formed in a cylindrical shape, and a plurality of screw grooves 3a are spirally formed on the outer peripheral surface. Of the plurality of screw grooves 3a, as shown in FIG. 3, the space surrounded by the inner peripheral surface of the casing 2 and the pair of gate rotors 6 engaging and engaging with the screw grooves 3a forms a compression chamber 29. doing. The gate rotor 6 rotates with the rotation of the screw rotor 3.
  • the casing 2 includes a main casing 2a and a suction casing 2b.
  • a screw rotor 3 and a motor 4 are housed in the main casing 2a.
  • the suction casing 2b is formed with a suction port (not shown) for sucking the refrigerant from the external refrigerant circuit.
  • the refrigerant sucked into the casing 2 from the suction port is referred to as a suction refrigerant.
  • the inside of the casing 2 is separated by a partition wall (not shown) into a high pressure space (not shown) that is the discharge pressure and a low pressure space (not shown) that is the suction pressure.
  • a discharge port 8 (see FIG. 3) that opens into a discharge chamber (not shown) is formed on the high-pressure space side of the casing 2.
  • the portion of the main casing 2a to which the stator 4a of the motor 4 is fixed is referred to as a motor frame 2c.
  • the motor frame 2c is formed with a holding portion 21 for holding the stator 4a as shown in FIGS. 1 and 2.
  • the holding portion 21 is a portion that protrudes from the inner peripheral surface of the motor frame 2c toward the stator 4a side and comes into contact with the outer peripheral surface of the motor 4 to hold the stator 4a.
  • the holding portions 21 are scattered in the circumferential direction, and the holding portions 21 are passages between the holding portions 21 through which the refrigerant sucked into the casing 2 passes.
  • the casing 2 has a high temperature portion 24 whose temperature rises locally during operation due to heat generated by the winding 4c of the motor 4 and lubricating oil or the like that flows into the casing 2 together with the refrigerant and accumulates in the lower part of the main casing 2a.
  • the holding portion 21 located at the high temperature portion 24 is provided with a cooling hole 22 through which the refrigerant from the external refrigerant circuit passes.
  • the refrigerant flowing into the cooling hole 22 is referred to as a cooling refrigerant.
  • the cooling hole 22 is also provided below the rotating shaft 5.
  • two cooling holes 22 are provided, but the number is arbitrary and may be one or three or more.
  • the position of the high temperature portion 24 in the motor frame 2c varies depending on the shape of the flow path of the refrigerant in the casing 2, and if the cooling hole 22 is provided in the holding portion 21 located in the high temperature portion 24. good.
  • the cooling hole 22 is formed in the motor frame 2c so as to extend in the axial direction of the rotating shaft 5. Both ends of the cooling hole 22 are opened on the side surface of the main casing 2a, one opening is an inflow port 22a into which the cooling refrigerant flows in, and the other opening is an outflow port 22b in which the cooling refrigerant flows out. ..
  • the first pipe 104 connected to the refrigerant circuit is connected to the inflow port 22a, and one end of the second pipe 106 is connected to the outflow port 22b.
  • the other end of the second pipe 106 is connected to the opening on the outer surface side of the casing 2 of the injection hole 23 provided in the main casing 2a.
  • the opening on the inner surface side of the casing 2 of the injection hole 23 communicates with the compression chamber 29.
  • FIG. 4 is a diagram showing an example of a suction process of the compression chamber of the screw compressor of FIG.
  • FIG. 5 is a diagram showing an example of a compression process of the compression chamber of the screw compressor of FIG.
  • FIG. 6 is a diagram showing an example of a discharge process of the compression chamber of the screw compressor of FIG.
  • FIG. 4 shows the state of the compression chamber 29 immediately after the completion of the suction process, in other words, the compression start. Then, when the screw rotor 3 rotates in the direction of the solid arrow, the volume of the compression chamber 29 decreases as shown in FIG.
  • the compression chamber 29 communicates with the discharge port 8 as shown in FIG. As a result, the high-pressure refrigerant gas compressed in the compression chamber 29 is discharged to the outside from the discharge port 8.
  • the cooling refrigerant from the refrigerant circuit passes through the cooling hole 22. That is, the cooling refrigerant flows from the first pipe 104 into the cooling hole 22 through the inflow port 22a and flows out from the outflow port 22b. Since the cooling hole 22 is provided in the high temperature portion 24 of the motor frame 2c, the high temperature portion 24 can be centrally cooled by flowing the cooling refrigerant through the cooling hole 22. By being able to concentrate and cool the high temperature portion 24, it is possible to suppress a local temperature rise of the motor 4.
  • the high temperature portion 24 of the motor frame 2c is a portion having a higher temperature than the other portions due to the influence of the local temperature rise of the winding 4c of the motor 4, the temperature of the high temperature portion 24 should be lowered. Therefore, the local temperature rise of the winding 4c of the motor 4 can be suppressed. Further, since the cooling hole 22 is formed in the holding portion 21 so as to extend in the axial direction of the rotating shaft 5, the motor 4 can be cooled over the entire axial direction.
  • the cooling refrigerant when the operating conditions of the motor 4 change from a low rotation speed to a high rotation speed, the cooling refrigerant always flows through the cooling hole 22 provided in the high temperature section 24. That is, the high temperature portion 24 can be centrally cooled regardless of the rotation speed of the motor 4. Therefore, the high temperature portion 24 can be cooled stably as compared with the conventional technique of preventing the local temperature rise of the winding portion of the motor by adjusting the flow of the refrigerant by using the collision member. Therefore, it is not necessary to limit the operating range so that the temperature of the winding 4c of the motor 4 is equal to or lower than the heat resistant temperature, and the operating range can be expanded. Further, it is possible to suppress the deterioration of the motor efficiency due to the temperature rise of the motor 4, and it is also possible to reduce the size of the motor 4 by force.
  • the cooling refrigerant that has flowed out from the outlet 22b is once flowed out of the casing 2, then returned to the casing 2 and then flowed into the compression chamber 29, but passes through the casing 2. It may be allowed to flow into the compression chamber 29. In short, it suffices to provide a flow path for allowing the cooling refrigerant flowing out from the outflow port 22b to flow into the compression chamber 29.
  • the cooling refrigerant may be a gas refrigerant or a two-phase refrigerant, or a liquid refrigerant, but a gas refrigerant or a two-phase refrigerant is preferable from the viewpoint of avoiding a decrease in operating capacity due to a decrease in the amount of refrigerant circulation.
  • the cooling effect is higher when the cooling refrigerant is a liquid refrigerant. Therefore, the state of the cooling refrigerant may be appropriately selected from the balance between the cooling effect and the operating capacity.
  • FIG. 7 is a diagram showing a configuration of a refrigerating apparatus according to the first embodiment.
  • the refrigerating device 110 includes the above-mentioned screw compressor 100, a condenser 101, a main depressurizing device 102, and an evaporator 103, and these are connected in order by a refrigerant pipe to include a refrigerant circuit in which a refrigerant circulates. ..
  • the refrigerating device 110 further includes a first pipe 104, a cooling decompression device 105, and a second pipe 106.
  • the first pipe 104 is a pipe that branches from the pipe between the condenser 101 and the main decompression device 102 and is connected to the inflow port 22a of the casing 2 of the screw compressor 100. Since the second pipe 106 has been described above, the repeated description will be omitted.
  • the condenser 101 cools and condenses the refrigerant gas discharged from the screw compressor 100.
  • the main decompression device 102 squeezes and expands the refrigerant liquid flowing out of the condenser 101.
  • the pressure reducing device is composed of an electronic expansion valve, a capillary tube, a temperature expansion valve, or the like.
  • the evaporator 103 evaporates the refrigerant flowing out of the main decompression device 102.
  • the cooling decompression device 105 adjusts the flow rate of the refrigerant passing through the first pipe 104.
  • the cooling pressure reducing device 105 is composed of an electronic expansion valve, a temperature expansion valve, or the like.
  • a discharge temperature sensor 107 that measures the temperature of the refrigerant discharged from the screw compressor 100 (hereinafter referred to as the discharge temperature) is provided.
  • the discharge temperature measured by the discharge temperature sensor 107 is output to the control device 109 described later.
  • the screw compressor 100 is provided with a motor frame temperature sensor 108 that measures the temperature of the motor frame 2c (hereinafter referred to as the motor frame temperature), which is the installation location of the motor 4.
  • the motor frame temperature measured by the motor frame temperature sensor 108 is output to the control device 109.
  • the refrigerating device 110 is further provided with a control device 109.
  • the control device 109 controls the entire refrigerating device 110. Further, the control device 109 controls the opening degree of the cooling decompression device 105 based on the measured values of the discharge temperature sensor 107 and the motor frame temperature sensor 108.
  • the control device 109 can be configured by hardware such as a circuit device that realizes the function, or can be configured by a computing device such as a microcomputer or a CPU and software executed on the arithmetic unit.
  • the refrigerant circulating in the refrigerant circuit is not limited to a specific refrigerant, but for example, a refrigerant having a low GWP may be selected in consideration of the impact on the environment and the like.
  • the refrigerant having a low GWP is, for example, R32, R513A, HFO-1234yf, HFO-1234ze, or a mixed refrigerant containing at least one of them.
  • the refrigerant applied to the screw compressor 100 may be a natural refrigerant such as carbon dioxide.
  • the cooling refrigerant which is the remaining refrigerant branched after passing through the condenser 101, flows into the first pipe 104 when the cooling decompression device 105 is open, is decompressed by the cooling decompression device 105, and then is decompressed. It flows into the inflow port 22a of the screw compressor 100.
  • the cooling refrigerant that has flowed into the inflow port 22a cools the high temperature section 24 in the process of passing through the cooling hole 22, and the cooling refrigerant that has cooled the high temperature section 24 passes through the second pipe 106 as described above, and then the compression chamber. It is injected into 29.
  • FIG. 8 is a diagram showing changes in the evaporation temperature and the condensation temperature during one cycle of operation of the refrigerating apparatus.
  • the portion surrounded by the dotted line indicates the operating condition portion where the discharge temperature is high.
  • the discharge temperature tends to rise transiently under the condition that the condensation temperature is high in the operating range, and the refrigerant is injected into the compression chamber 29 in order to suppress the rise in the discharge temperature.
  • This amount of refrigerant is controlled by the cooling decompression device 105.
  • the control of the cooling decompression device 105 will be described.
  • FIG. 9 is a flowchart showing a control flow of the cooling decompression device of the refrigerating sill device according to the first embodiment.
  • the discharge temperature measured by the discharge temperature sensor 107 exceeds the preset set temperature corresponding to the preset discharge temperature, or the motor frame temperature measured by the motor frame temperature sensor 108 is preset. It is determined whether or not the set temperature corresponding to the determined motor frame temperature is exceeded (step S1).
  • the control device 109 controls the cooling decompression device 105 based on the temperature that exceeds the set temperature first, and passes through the cooling hole 22.
  • the flow rate of the refrigerant to be used is adjusted (steps S2 to S5).
  • step S2 when the discharge temperature exceeds the set temperature (step S2), the control device 109 controls the cooling decompression device 105 so that the discharge temperature drops (step S3). Specifically, the control device 109 increases the opening degree of the cooling decompression device 105.
  • step S4 when the motor frame temperature exceeds the set temperature (step S4), the control device 109 controls the cooling decompression device 105 so that the motor frame temperature drops (step S5). Specifically, the control device 109 increases the opening degree of the cooling decompression device 105.
  • the control device 109 does not need to cool the motor 4. Therefore, the opening degree of the cooling decompression device 105 is closed (step S6).
  • the cooling decompression device 105 may be controlled by using the discharge superheat degree obtained by subtracting the condensation temperature from the discharge temperature. good.
  • the cooling decompression device 105 may be controlled based on an index value according to the state of the refrigerant discharged from the screw compressor 100. Specifically, when the index value exceeds the set index value, the cooling decompression device 105 may be controlled so that the discharge temperature is lowered.
  • the cooling decompression device 105 is controlled by using the discharge superheat degree, if a temperature type expansion valve is used for the cooling decompression device 105, it can be configured at a lower cost than when an electronic expansion valve is used.
  • the temperature type expansion valve is a mechanical type in which the opening degree of the valve is mechanically adjusted according to the measured value measured by the temperature sensitive cylinder (not shown), so that an electron requiring a control board is required. This is because the number of parts can be reduced as compared with the expansion valve.
  • the screw compressor 100 of the first embodiment has a tubular casing 2, a screw rotor 3 arranged to rotate in the casing 2, and a motor 4 arranged in the casing 2 to drive the screw rotor 3. And.
  • a cooling hole 22 through which a refrigerant from the outside passes passes through a high temperature portion 24 whose temperature locally rises during operation, and is a rotation shaft of the screw rotor 3. It is formed so as to extend in the direction.
  • the cooling hole 22 is provided in the high temperature portion 24 of the motor frame 2c, the high temperature portion 24 can be centrally cooled by flowing the cooling refrigerant from the outside through the cooling hole 22. Therefore, the high temperature portion 24 and the motor 4 can be stably cooled, and a local temperature rise can be prevented. As a result, the operating range can be expanded.
  • the screw compressor 100 of the first embodiment is formed so as to project inward from the inner peripheral surface of the motor frame 2c, and has a holding portion 21 that contacts the outer peripheral surface of the motor 4 to hold the motor 4.
  • a cooling hole 22 is formed in 21.
  • a plurality of cooling holes 22 are provided in the motor frame 2c. As a result, the motor 4 can be cooled more efficiently.
  • the refrigerating device 110 of the first embodiment includes the above-mentioned screw compressor 100, a condenser 101, a main decompression device 102, and an evaporator 103. Further, the refrigerating device 110 is a first unit that branches from the refrigerant circuit through which the refrigerant circulates and the piping between the condenser 101 and the main depressurizing device 102 and is connected to the inflow port 22a of the cooling hole 22 of the screw compressor 100. It is provided with a pipe 104 and a cooling decompression device 105 provided in the first pipe 104 to depressurize the refrigerant passing through the first pipe 104. As described above, by providing the screw compressor 100 described above, it is possible to obtain a refrigerating apparatus capable of expanding the operating range.
  • the refrigerating device 110 of the first embodiment includes a control device 109 that controls a cooling decompression device 105.
  • the control device 109 controls the cooling decompression device 105 based on the index value regarding the state of the refrigerant discharged from the screw compressor 100, or the cooling decompression device based on the motor frame temperature which is the temperature of the motor frame 2c. Control device 105.
  • the flow rate of the cooling refrigerant flowing into the cooling hole 22 can be adjusted, and the motor 4 can be appropriately cooled.
  • the control device 109 controls the cooling decompression device 105 so that the discharge temperature, which is the temperature of the refrigerant discharged from the screw compressor 100, is lowered, and the motor frame.
  • the cooling decompression device 105 is controlled so that the motor frame temperature is lowered. As a result, the flow rate of the cooling refrigerant flowing into the cooling hole 22 can be adjusted, and the motor 4 can be appropriately cooled.
  • the index value is the discharge temperature, which is the temperature of the refrigerant discharged from the screw compressor 100, or the discharge superheat degree obtained by subtracting the condensation temperature from the discharge temperature. As described above, the discharge temperature may be used or the discharge superheat degree may be used as the index value.
  • the refrigerating apparatus 110 of the first embodiment includes a flow path for allowing the cooling refrigerant flowing out from the outlet 22b of the cooling hole 22 to flow into the compression chamber 29.
  • Embodiment 2 Next, the second embodiment will be described.
  • the configuration in which the refrigerant after passing through the cooling hole 22 flows into the compression chamber 29 is shown, but in the second embodiment, the refrigerant after passing through the cooling hole 22 is used in the control device 109. After cooling the inverter, it is configured to flow into the compression chamber 29.
  • the second embodiment will be described focusing on the differences from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 10 is a diagram showing a configuration of a refrigerating apparatus according to a second embodiment.
  • the refrigerating device 110 of the second embodiment further includes a cooler 121 for cooling the control device 109 in addition to the refrigerating device 110 of the first embodiment shown in FIG.
  • the cooler 121 has a refrigerant pipe (not shown) through which the refrigerant passes.
  • the cooler 121 is arranged in contact with the control device 109.
  • the control device 109 includes an inverter (not shown), and the inverter component, which is an electronic component constituting the inverter, generates heat.
  • a cooler 121 is used to cool the heat. After cooling the motor 4 and passing through the cooling hole 22, the refrigerant flows through the cooler 121, and the heat transferred from the inverter component to the cooler 121 is transferred to the refrigerant, so that the control device 109 can be cooled. ..
  • the second embodiment is provided with a cooler 121 which is arranged in contact with the control device 109 and through which the refrigerant passing through the cooling hole 22 passes, so that the inverter component of the control device 109 can be cooled.
  • a cooler 121 which is arranged in contact with the control device 109 and through which the refrigerant passing through the cooling hole 22 passes, so that the inverter component of the control device 109 can be cooled.
  • the refrigerant circuit is not limited to the configuration shown in FIG. 10, and for example, a thermal efficiency mechanism may be further provided in the configuration shown in FIG.
  • a thermal efficiency mechanism for example, there is an intercooler that exchanges heat between the refrigerant between the condenser 101 and the cooling decompression device 105 and the refrigerant between the cooling decompression device 105 and the inflow port 22a.

Abstract

This screw compressor comprises: a cylindrical casing; a screw rotor disposed so as to rotate inside the casing; and a motor that is disposed inside the casing and that drives the screw rotor. In the casing, a motor frame in which the motor is accommodated has a cooling hole formed in a high temperature section of the motor frame where the temperature locally increases during operation, the cooling hole extending in a direction of the rotary axis of the screw rotor and allowing a refrigerant from the outside to pass through.

Description

スクリュー圧縮機および冷凍装置Screw compressor and refrigeration equipment
 本開示は、ケーシング内のモータを冷却する冷却技術を備えたスクリュー圧縮機および冷凍装置に関するものである。 The present disclosure relates to a screw compressor and a refrigerating apparatus equipped with a cooling technique for cooling a motor in a casing.
 スクリュー圧縮機は、主にスクリューロータと、スクリューロータを支持する低圧側軸受および高圧側軸受と、スクリューロータを駆動するモータと、これらを収納するケーシングと、を備えている。モータは、ケーシング内の低圧側と高圧側のいずれにも配置可能であるが、モータのステータの巻線温度が上昇すると、圧縮機の構成部品の耐熱温度に対する裕度も少なくなり、信頼性が低下する。このため、モータの冷却の促進を目的に、モータは低圧側に配置されるケースが多い。これは、モータを低圧側に配置すると、ケーシング内に吸入される低温且つ低圧の冷媒ガスによりモータを冷却できるためである。 The screw compressor mainly includes a screw rotor, low-pressure side bearings and high-pressure side bearings that support the screw rotor, a motor that drives the screw rotor, and a casing that houses them. The motor can be placed on either the low-pressure side or the high-pressure side in the casing, but as the winding temperature of the motor stator rises, the tolerance of the compressor components to the heat-resistant temperature decreases, and reliability becomes lower. descend. Therefore, the motor is often arranged on the low pressure side for the purpose of promoting cooling of the motor. This is because when the motor is arranged on the low pressure side, the motor can be cooled by the low temperature and low pressure refrigerant gas sucked into the casing.
 このように吸入ガスによりモータを冷却する技術として、例えば特許文献1がある。特許文献1では、冷媒の流れが衝突する衝突部材をケーシング内に設け、衝突部材に冷媒を衝突させて冷媒の流れを調整することで、モータの巻線の局所的な温度上昇を防ぐようにしている。 There is, for example, Patent Document 1 as a technique for cooling a motor with an intake gas in this way. In Patent Document 1, a collision member with which the flow of the refrigerant collides is provided in the casing, and the flow of the refrigerant is adjusted by colliding the refrigerant with the collision member to prevent a local temperature rise of the winding of the motor. ing.
特開2018-178815号公報JP-A-2018-178815
 特許文献1では、衝突部材を用いて冷媒の流れを調整しているが、ケーシング内に流入する冷媒の流速が運転条件に応じて変化するため、想定した冷媒の流れとならず、モータの巻線の局所的な温度上昇を防ぐことができない可能性がある。この場合、運転範囲の制限が生じるという課題があった。 In Patent Document 1, the flow rate of the refrigerant is adjusted by using the collision member, but since the flow velocity of the refrigerant flowing into the casing changes according to the operating conditions, the flow rate of the refrigerant does not become the expected flow, and the motor is wound. It may not be possible to prevent the local temperature rise of the line. In this case, there is a problem that the operating range is limited.
 本開示は、上記のような課題を鑑みてなされたもので、モータの巻線の局所的な温度上昇を防ぎ、運転範囲を拡大することが可能なスクリュー圧縮機および冷凍装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides a screw compressor and a freezing device capable of preventing a local temperature rise of a motor winding and expanding an operating range. The purpose.
 本開示に係るスクリュー圧縮機は、筒状のケーシングと、ケーシング内で回転するように配置されたスクリューロータと、ケーシング内に配置され、スクリューロータを駆動するモータとを備え、ケーシングのうち、モータを収容する部分であるモータフレームにおいて、運転中に局所的に温度が上昇する高温部に、外部からの冷媒が通過する冷却孔がスクリューロータの回転軸方向に延びて形成されているものである。 The screw compressor according to the present disclosure includes a tubular casing, a screw rotor arranged to rotate in the casing, and a motor arranged in the casing to drive the screw rotor. Among the casings, the screw compressor includes a motor. In the motor frame, which is a part that accommodates the casing, a cooling hole through which an external refrigerant passes extends in the direction of the rotation axis of the screw rotor in a high temperature portion where the temperature rises locally during operation. ..
 本開示に係る冷凍装置は、上記のスクリュー圧縮機と、凝縮器と、主減圧装置と、蒸発器とを備え、冷媒が循環する冷媒回路と、凝縮器と主減圧装置との間の配管から分岐し、スクリュー圧縮機の冷却孔の流入口に接続された第1配管と、第1配管に設けられ、第1配管を通過する冷媒を減圧する冷却用減圧装置とを備えたものである。 The refrigerating apparatus according to the present disclosure includes the above-mentioned screw compressor, a condenser, a main depressurizing device, and an evaporator, and from a refrigerant circuit in which a refrigerant circulates and a pipe between the condenser and the main depressurizing device. It is provided with a first pipe that is branched and connected to the inlet of the cooling hole of the screw compressor, and a cooling decompression device that is provided in the first pipe and depressurizes the refrigerant passing through the first pipe.
 本開示によれば、モータフレームの高温部に冷却孔が設けられているため、冷却孔に外部から冷媒を流すことで、高温部を集中して冷却できる。このため、高温部およびモータを安定して冷却でき、局所的な温度上昇を防ぐことができる。その結果、運転範囲を拡大することができる。 According to the present disclosure, since the cooling hole is provided in the high temperature part of the motor frame, the high temperature part can be centrally cooled by flowing the refrigerant from the outside through the cooling hole. Therefore, the high temperature portion and the motor can be stably cooled, and a local temperature rise can be prevented. As a result, the operating range can be expanded.
実施の形態1に係るスクリュー圧縮機の一例を示す概略断面図である。It is schematic cross-sectional view which shows an example of the screw compressor which concerns on Embodiment 1. FIG. 図1のA-A概略断面図である。FIG. 1 is a schematic cross-sectional view taken along the line AA of FIG. 実施の形態1に係るスクリュー圧縮機のスクリューロータと一対のゲートロータとを示す概略平面図である。It is a schematic plan view which shows the screw rotor and a pair of gate rotors of the screw compressor which concerns on Embodiment 1. FIG. 図1のスクリュー圧縮機の圧縮室の吸入工程の一例を示す図である。It is a figure which shows an example of the suction process of the compression chamber of the screw compressor of FIG. 図1のスクリュー圧縮機の圧縮室の圧縮工程の一例を示す図である。It is a figure which shows an example of the compression process of the compression chamber of the screw compressor of FIG. 図1のスクリュー圧縮機の圧縮室の吐出工程の一例を示す図である。It is a figure which shows an example of the discharge process of the compression chamber of the screw compressor of FIG. 実施の形態1に係る冷凍装置の構成を示す図である。It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 1. FIG. 冷凍装置の1サイクルの運転中における蒸発温度と凝縮温度との変化を示す図である。It is a figure which shows the change of the evaporation temperature and the condensation temperature in one cycle operation of a refrigerating apparatus. 実施の形態1に係る冷凍サイル装置の冷却用減圧装置の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of the cooling pressure reducing device of the refrigerating sail device which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍装置の構成を示す図である。It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 2.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、本開示の範囲内で適宜変更することができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, etc. of the configurations shown in each figure can be appropriately changed within the scope of the present disclosure.
実施の形態1.
[スクリュー圧縮機100]
 図1は、実施の形態1に係るスクリュー圧縮機の一例を示す概略断面図である。図2は、図1のA-A概略断面図である。図3は、実施の形態1に係るスクリュー圧縮機のスクリューロータと一対のゲートロータとを示す概略平面図である。
 実施の形態1のスクリュー圧縮機100は、図1および図2に示すように、筒状のケーシング2と、このケーシング2内に収容されたスクリューロータ3と、このスクリューロータ3を回転駆動するモータ4とを備えている。
Embodiment 1.
[Screw compressor 100]
FIG. 1 is a schematic cross-sectional view showing an example of the screw compressor according to the first embodiment. FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. FIG. 3 is a schematic plan view showing a screw rotor and a pair of gate rotors of the screw compressor according to the first embodiment.
As shown in FIGS. 1 and 2, the screw compressor 100 of the first embodiment includes a tubular casing 2, a screw rotor 3 housed in the casing 2, and a motor for rotationally driving the screw rotor 3. It is equipped with 4.
 モータ4は、ケーシング2に内接して固定されたステータ4aと、ステータ4aの内側に配置されたモータロータ4bとを有する。 The motor 4 has a stator 4a fixed inscribed in the casing 2 and a motor rotor 4b arranged inside the stator 4a.
 モータ4は、回転速度が一定な定速機でもよいし、回転速度の変更により運転容量を調整可能なインバータ式の可変速機でもよいが、本明細書では可変速機を想定している。回転数変更は制御装置109(後述の図7参照)により制御される。 The motor 4 may be a constant speed machine having a constant rotation speed or an inverter type variable speed machine whose operating capacity can be adjusted by changing the rotation speed, but this specification assumes a variable speed machine. The rotation speed change is controlled by the control device 109 (see FIG. 7 described later).
 スクリューロータ3とモータロータ4bとは互いに同一軸線上に配置されており、いずれも回転軸5に固定されている。スクリューロータ3は、回転軸5に固定されたモータロータ4bに連結されて回転駆動される。 The screw rotor 3 and the motor rotor 4b are arranged on the same axis, and both are fixed to the rotating shaft 5. The screw rotor 3 is connected to a motor rotor 4b fixed to the rotary shaft 5 and is rotationally driven.
 回転軸5は、主軸受11と副軸受13とによって両端部が回転自在に支持されている。主軸受11は、スクリューロータ3の吐出側(図1の左側)の端部に設けられた主軸受ハウジング(図示しない)内に配置されている。副軸受13は、回転軸5におけるスクリューロータ3の吸入側(図1の右側)の端部に設けられている。 Both ends of the rotating shaft 5 are rotatably supported by the main bearing 11 and the auxiliary bearing 13. The main bearing 11 is arranged in a main bearing housing (not shown) provided at the end of the screw rotor 3 on the discharge side (left side in FIG. 1). The auxiliary bearing 13 is provided at the end of the rotary shaft 5 on the suction side (right side in FIG. 1) of the screw rotor 3.
 スクリューロータ3は、円柱形状に形成され、外周面に複数のスクリュー溝3aが螺旋状に形成されている。複数のスクリュー溝3aのうち、図3に示すようにケーシング2の内周面と、このスクリュー溝3aに?合い係合する一対のゲートロータ6とによって囲まれた空間は、圧縮室29を形成している。ゲートロータ6は、スクリューロータ3の回転に伴って回転する。 The screw rotor 3 is formed in a cylindrical shape, and a plurality of screw grooves 3a are spirally formed on the outer peripheral surface. Of the plurality of screw grooves 3a, as shown in FIG. 3, the space surrounded by the inner peripheral surface of the casing 2 and the pair of gate rotors 6 engaging and engaging with the screw grooves 3a forms a compression chamber 29. doing. The gate rotor 6 rotates with the rotation of the screw rotor 3.
 ケーシング2は、メインケーシング2aと、吸入ケーシング2bとを備えている。メインケーシング2a内には、スクリューロータ3およびモータ4が収容されている。吸入ケーシング2bには、外部の冷媒回路からの冷媒を吸入する吸入口(図示しない)が形成されている。以下、吸入口からケーシング2内に吸入される冷媒を吸入冷媒という。 The casing 2 includes a main casing 2a and a suction casing 2b. A screw rotor 3 and a motor 4 are housed in the main casing 2a. The suction casing 2b is formed with a suction port (not shown) for sucking the refrigerant from the external refrigerant circuit. Hereinafter, the refrigerant sucked into the casing 2 from the suction port is referred to as a suction refrigerant.
 ケーシング2内は、隔壁(図示しない)により、吐出圧力となっている高圧空間(図示しない)と吸入圧力となっている低圧空間(図示しない)とに隔てられている。そして、ケーシング2の高圧空間側には、吐出室(図示しない)に開口する吐出口8(図3参照)が形成されている。以下では、メインケーシング2aのうち、モータ4のステータ4aが固定された部分をモータフレーム2cという。 The inside of the casing 2 is separated by a partition wall (not shown) into a high pressure space (not shown) that is the discharge pressure and a low pressure space (not shown) that is the suction pressure. A discharge port 8 (see FIG. 3) that opens into a discharge chamber (not shown) is formed on the high-pressure space side of the casing 2. In the following, the portion of the main casing 2a to which the stator 4a of the motor 4 is fixed is referred to as a motor frame 2c.
 モータフレーム2cには、図1および図2に示すようにステータ4aを保持する保持部21が形成されている。保持部21は、モータフレーム2cの内周面からステータ4a側に突出してモータ4の外周面に接触し、ステータ4aを保持する部分である。保持部21は、図2に示すように周方向に点在しており、保持部21同士の間は、ケーシング2内に吸い込まれた冷媒が通過する通路となっている。 The motor frame 2c is formed with a holding portion 21 for holding the stator 4a as shown in FIGS. 1 and 2. The holding portion 21 is a portion that protrudes from the inner peripheral surface of the motor frame 2c toward the stator 4a side and comes into contact with the outer peripheral surface of the motor 4 to hold the stator 4a. As shown in FIG. 2, the holding portions 21 are scattered in the circumferential direction, and the holding portions 21 are passages between the holding portions 21 through which the refrigerant sucked into the casing 2 passes.
 ケーシング2は、モータ4の巻線4cの発熱およびケーシング2内に冷媒とともに流入してメインケーシング2aの下部に溜まる潤滑油等により、運転中に局所的に温度が上昇する高温部24を有する。複数の保持部21のうち、高温部24に位置する保持部21には、外部の冷媒回路からの冷媒を通過させる冷却孔22が設けられている。以下、冷却孔22に流入する冷媒を冷却用冷媒という。 The casing 2 has a high temperature portion 24 whose temperature rises locally during operation due to heat generated by the winding 4c of the motor 4 and lubricating oil or the like that flows into the casing 2 together with the refrigerant and accumulates in the lower part of the main casing 2a. Of the plurality of holding portions 21, the holding portion 21 located at the high temperature portion 24 is provided with a cooling hole 22 through which the refrigerant from the external refrigerant circuit passes. Hereinafter, the refrigerant flowing into the cooling hole 22 is referred to as a cooling refrigerant.
 この例では、回転軸5より下方の部分に高温部24があるため、冷却孔22もまた、回転軸5の下方に設けられている。この例では、冷却孔22は2つ設けられているが、個数は任意であり、1つでもよいし、3つ以上でもよい。モータフレーム2cにおいて高温部24の位置がどこになるかは、ケーシング2内の冷媒の流路形状等によって様々であり、冷却孔22は、高温部24に位置する保持部21に設けられていればよい。 In this example, since the high temperature portion 24 is located below the rotating shaft 5, the cooling hole 22 is also provided below the rotating shaft 5. In this example, two cooling holes 22 are provided, but the number is arbitrary and may be one or three or more. The position of the high temperature portion 24 in the motor frame 2c varies depending on the shape of the flow path of the refrigerant in the casing 2, and if the cooling hole 22 is provided in the holding portion 21 located in the high temperature portion 24. good.
 冷却孔22は、モータフレーム2cに、回転軸5の軸方向に延びて形成されている。冷却孔22の両端は、メインケーシング2aの側面に開口しており、一方の開口は、冷却用冷媒が流入する流入口22a、他方の開口は冷却用冷媒が流出する流出口22bとなっている。流入口22aには冷媒回路に繋がる第1配管104が接続され、流出口22bには第2配管106の一端が接続されている。第2配管106の他端は、メインケーシング2aに設けられたインジェクション孔23のケーシング2の外面側の開口に接続されている。インジェクション孔23のケーシング2の内面側の開口は、圧縮室29に連通している。 The cooling hole 22 is formed in the motor frame 2c so as to extend in the axial direction of the rotating shaft 5. Both ends of the cooling hole 22 are opened on the side surface of the main casing 2a, one opening is an inflow port 22a into which the cooling refrigerant flows in, and the other opening is an outflow port 22b in which the cooling refrigerant flows out. .. The first pipe 104 connected to the refrigerant circuit is connected to the inflow port 22a, and one end of the second pipe 106 is connected to the outflow port 22b. The other end of the second pipe 106 is connected to the opening on the outer surface side of the casing 2 of the injection hole 23 provided in the main casing 2a. The opening on the inner surface side of the casing 2 of the injection hole 23 communicates with the compression chamber 29.
[圧縮動作]
 次に、本実施の形態1に係るスクリュー圧縮機100の動作について説明する。
 図4は、図1のスクリュー圧縮機の圧縮室の吸入工程の一例を示す図である。図5は、図1のスクリュー圧縮機の圧縮室の圧縮工程の一例を示す図である。図6は、図1のスクリュー圧縮機の圧縮室の吐出工程の一例を示す図である。
[Compression operation]
Next, the operation of the screw compressor 100 according to the first embodiment will be described.
FIG. 4 is a diagram showing an example of a suction process of the compression chamber of the screw compressor of FIG. FIG. 5 is a diagram showing an example of a compression process of the compression chamber of the screw compressor of FIG. FIG. 6 is a diagram showing an example of a discharge process of the compression chamber of the screw compressor of FIG.
 図4~図6に示すように、スクリューロータ3がモータ4により回転させられることで、ゲートロータ6の歯6aがスクリュー溝3a内を相対的に移動する。これにより、スクリュー溝3a内では、吸入工程、圧縮工程および吐出工程を一サイクルとして、このサイクルを繰り返すようになっている。図4~図6において点線で囲った部分はケーシング2を示しており、ケーシング2によって囲まれたスクリュー溝3aが、圧縮室29を構成している。ここでは、図4~図6においてドットのハッチングで示した圧縮室29に着目して各工程について説明する。 As shown in FIGS. 4 to 6, when the screw rotor 3 is rotated by the motor 4, the teeth 6a of the gate rotor 6 move relatively in the screw groove 3a. As a result, in the screw groove 3a, the suction step, the compression step, and the discharge step are regarded as one cycle, and this cycle is repeated. The portion surrounded by the dotted line in FIGS. 4 to 6 shows the casing 2, and the screw groove 3a surrounded by the casing 2 constitutes the compression chamber 29. Here, each process will be described by focusing on the compression chamber 29 shown by the hatching of dots in FIGS. 4 to 6.
 ケーシング2の吸入口(図示しない)から吸入された吸入冷媒は、モータ4(図1参照)の周囲を通過した後、吸入工程におけるスクリュー溝3aに流入する。図4は、吸入工程完了直後、言い換えれば圧縮開始の圧縮室29の状態を示している。そして、スクリューロータ3が実線矢印の方向に回転すると、図5に示すように圧縮室29の容積が縮小していく。 The suction refrigerant sucked from the suction port (not shown) of the casing 2 passes around the motor 4 (see FIG. 1) and then flows into the screw groove 3a in the suction step. FIG. 4 shows the state of the compression chamber 29 immediately after the completion of the suction process, in other words, the compression start. Then, when the screw rotor 3 rotates in the direction of the solid arrow, the volume of the compression chamber 29 decreases as shown in FIG.
 引き続き、スクリューロータ3が回転すると、図6に示すように、圧縮室29が吐出口8に連通する。これにより、圧縮室29内で圧縮された高圧の冷媒ガスが、吐出口8から外部へ吐出される。 Subsequently, when the screw rotor 3 rotates, the compression chamber 29 communicates with the discharge port 8 as shown in FIG. As a result, the high-pressure refrigerant gas compressed in the compression chamber 29 is discharged to the outside from the discharge port 8.
[冷却動作]
 次に、スクリュー圧縮機100における冷却動作について説明する。
 冷却孔22には、冷媒回路からの冷却用冷媒が通過する。すなわち、第1配管104から冷却用冷媒が流入口22aを介して冷却孔22に流入し、流出口22bから流出する。冷却孔22は、モータフレーム2cの高温部24に設けられているため、冷却孔22に冷却用冷媒が流れることにより、高温部24を集中して冷やすことができる。高温部24を集中して冷やすことができることで、モータ4の局所的な温度上昇を抑えることができる。つまり、モータフレーム2cの高温部24は、モータ4の巻線4cの局所的な温度上昇の影響を受けて他の部分より高温となっている部分であるため、高温部24の温度を下げることで、モータ4の巻線4cの局所的な温度上昇も抑えることができる。また、冷却孔22は、保持部21において回転軸5の軸方向に延びて形成されているため、モータ4を軸方向全体に渡って冷却できる。
[Cooling operation]
Next, the cooling operation in the screw compressor 100 will be described.
The cooling refrigerant from the refrigerant circuit passes through the cooling hole 22. That is, the cooling refrigerant flows from the first pipe 104 into the cooling hole 22 through the inflow port 22a and flows out from the outflow port 22b. Since the cooling hole 22 is provided in the high temperature portion 24 of the motor frame 2c, the high temperature portion 24 can be centrally cooled by flowing the cooling refrigerant through the cooling hole 22. By being able to concentrate and cool the high temperature portion 24, it is possible to suppress a local temperature rise of the motor 4. That is, since the high temperature portion 24 of the motor frame 2c is a portion having a higher temperature than the other portions due to the influence of the local temperature rise of the winding 4c of the motor 4, the temperature of the high temperature portion 24 should be lowered. Therefore, the local temperature rise of the winding 4c of the motor 4 can be suppressed. Further, since the cooling hole 22 is formed in the holding portion 21 so as to extend in the axial direction of the rotating shaft 5, the motor 4 can be cooled over the entire axial direction.
 ここで、モータ4の運転条件が低回転数から高回転数まで変化した場合において、冷却用冷媒は、常に、高温部24に設けられた冷却孔22を流れる。つまり、モータ4の回転数によらず、高温部24を集中して冷却できる。このため、衝突部材を用いて冷媒の流れを調整することでモータの巻線部の局所的な温度上昇を防ぐ従来技術に比べて、高温部24を安定して冷却できる。したがって、モータ4の巻線4cの温度が耐熱温度以下となるように運転範囲を制限する必要がなく、運転範囲の拡大を図ることができる。また、モータ4の温度上昇によるモータ効率の悪化を抑制することができ、強いてはモータ4のサイズダウンを図ることもできる。 Here, when the operating conditions of the motor 4 change from a low rotation speed to a high rotation speed, the cooling refrigerant always flows through the cooling hole 22 provided in the high temperature section 24. That is, the high temperature portion 24 can be centrally cooled regardless of the rotation speed of the motor 4. Therefore, the high temperature portion 24 can be cooled stably as compared with the conventional technique of preventing the local temperature rise of the winding portion of the motor by adjusting the flow of the refrigerant by using the collision member. Therefore, it is not necessary to limit the operating range so that the temperature of the winding 4c of the motor 4 is equal to or lower than the heat resistant temperature, and the operating range can be expanded. Further, it is possible to suppress the deterioration of the motor efficiency due to the temperature rise of the motor 4, and it is also possible to reduce the size of the motor 4 by force.
 冷却孔22を通過した冷却用冷媒は、流出口22bからケーシング2外に一旦流出して第2配管106を通った後、再びケーシング2内に入り、圧縮室29に流入する。つまり、冷却用冷媒は、吸込み完了前のスクリュー溝3aではなく、ガス冷媒の吸込みが完了した圧縮室29に流入する。このため、冷却用冷媒によって吸入冷媒の圧縮室29への吸い込みが阻害されて冷媒循環量が減少し、性能が低下する不都合を抑制できる。なお、ここでは、流出口22bから流出した冷却用冷媒を一旦ケーシング2外に流出させた後、再びケーシング2内に戻してから圧縮室29に流入させるようにしているが、ケーシング2内を通過させて圧縮室29に流入させるようにしてもよい。要するに、流出口22bから流出した冷却用冷媒を圧縮室29に流入させる流路を備えていればよい。 The cooling refrigerant that has passed through the cooling hole 22 once flows out of the casing 2 from the outflow port 22b, passes through the second pipe 106, then enters the casing 2 again and flows into the compression chamber 29. That is, the cooling refrigerant flows into the compression chamber 29 in which the suction of the gas refrigerant is completed, instead of the screw groove 3a before the suction is completed. Therefore, it is possible to suppress the inconvenience that the cooling refrigerant hinders the suction of the intake refrigerant into the compression chamber 29, reduces the amount of refrigerant circulation, and deteriorates the performance. Here, the cooling refrigerant that has flowed out from the outlet 22b is once flowed out of the casing 2, then returned to the casing 2 and then flowed into the compression chamber 29, but passes through the casing 2. It may be allowed to flow into the compression chamber 29. In short, it suffices to provide a flow path for allowing the cooling refrigerant flowing out from the outflow port 22b to flow into the compression chamber 29.
 ここで、冷却用冷媒は、ガス冷媒または二相冷媒でもよいし、液冷媒でもよいが、冷媒循環量の低下に伴う運転能力の低下を避ける観点からすると、ガス冷媒または二相冷媒が望ましい。しかし、冷却用冷媒を液冷媒とした方が、冷却効果が高い。したがって、冷却効果と運転能力との兼ね合いから冷却用冷媒の状態を適宜選択すればよい。 Here, the cooling refrigerant may be a gas refrigerant or a two-phase refrigerant, or a liquid refrigerant, but a gas refrigerant or a two-phase refrigerant is preferable from the viewpoint of avoiding a decrease in operating capacity due to a decrease in the amount of refrigerant circulation. However, the cooling effect is higher when the cooling refrigerant is a liquid refrigerant. Therefore, the state of the cooling refrigerant may be appropriately selected from the balance between the cooling effect and the operating capacity.
[冷媒回路]
 次に、以上のように構成されたスクリュー圧縮機100を備えた冷凍装置について説明する。
 図7は、実施の形態1に係る冷凍装置の構成を示す図である。冷凍装置110は、上記のスクリュー圧縮機100と、凝縮器101と、主減圧装置102と、蒸発器103とを備え、これらが順に冷媒配管で接続され、冷媒が循環する冷媒回路を備えている。冷凍装置110はさらに、第1配管104と、冷却用減圧装置105と、第2配管106とを備えている。第1配管104は、凝縮器101と主減圧装置102との間の配管から分岐してスクリュー圧縮機100のケーシング2の流入口22aに接続される配管である。第2配管106については上述したため、繰り返しの説明は省略する。
[Refrigerant circuit]
Next, a refrigerating apparatus including the screw compressor 100 configured as described above will be described.
FIG. 7 is a diagram showing a configuration of a refrigerating apparatus according to the first embodiment. The refrigerating device 110 includes the above-mentioned screw compressor 100, a condenser 101, a main depressurizing device 102, and an evaporator 103, and these are connected in order by a refrigerant pipe to include a refrigerant circuit in which a refrigerant circulates. .. The refrigerating device 110 further includes a first pipe 104, a cooling decompression device 105, and a second pipe 106. The first pipe 104 is a pipe that branches from the pipe between the condenser 101 and the main decompression device 102 and is connected to the inflow port 22a of the casing 2 of the screw compressor 100. Since the second pipe 106 has been described above, the repeated description will be omitted.
 凝縮器101はスクリュー圧縮機100からの吐出冷媒ガスを冷却および凝縮させるものである。主減圧装置102は、凝縮器101から流出した冷媒液を絞り膨張させるものである。減圧装置は、電子膨張弁、キャピラリーチューブまたは温度式膨張弁等で構成される。蒸発器103は、主減圧装置102を流出した冷媒を蒸発させるものである。冷却用減圧装置105は、第1配管104を通過する冷媒の流量を調整するものである。冷却用減圧装置105は、電子膨張弁または温度式膨張弁等で構成される。 The condenser 101 cools and condenses the refrigerant gas discharged from the screw compressor 100. The main decompression device 102 squeezes and expands the refrigerant liquid flowing out of the condenser 101. The pressure reducing device is composed of an electronic expansion valve, a capillary tube, a temperature expansion valve, or the like. The evaporator 103 evaporates the refrigerant flowing out of the main decompression device 102. The cooling decompression device 105 adjusts the flow rate of the refrigerant passing through the first pipe 104. The cooling pressure reducing device 105 is composed of an electronic expansion valve, a temperature expansion valve, or the like.
 スクリュー圧縮機100の吐出側には、スクリュー圧縮機100から吐出される冷媒の温度(以下、吐出温度という)を計測する吐出温度センサ107が設けられている。吐出温度センサ107で計測された吐出温度は、後述の制御装置109に出力される。また、スクリュー圧縮機100には、モータ4の設置箇所であるモータフレーム2cの温度(以下、モータフレーム温度)を計測するモータフレーム温度センサ108が設けられている。モータフレーム温度センサ108で計測されたモータフレーム温度は、制御装置109に出力される。 On the discharge side of the screw compressor 100, a discharge temperature sensor 107 that measures the temperature of the refrigerant discharged from the screw compressor 100 (hereinafter referred to as the discharge temperature) is provided. The discharge temperature measured by the discharge temperature sensor 107 is output to the control device 109 described later. Further, the screw compressor 100 is provided with a motor frame temperature sensor 108 that measures the temperature of the motor frame 2c (hereinafter referred to as the motor frame temperature), which is the installation location of the motor 4. The motor frame temperature measured by the motor frame temperature sensor 108 is output to the control device 109.
 冷凍装置110にはさらに、制御装置109を備えている。制御装置109は、冷凍装置110全体の制御を行う。また、制御装置109は、吐出温度センサ107およびモータフレーム温度センサ108の計測値に基づいて冷却用減圧装置105の開度制御を行う。制御装置109は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンまたはCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 The refrigerating device 110 is further provided with a control device 109. The control device 109 controls the entire refrigerating device 110. Further, the control device 109 controls the opening degree of the cooling decompression device 105 based on the measured values of the discharge temperature sensor 107 and the motor frame temperature sensor 108. The control device 109 can be configured by hardware such as a circuit device that realizes the function, or can be configured by a computing device such as a microcomputer or a CPU and software executed on the arithmetic unit.
 冷媒回路を循環する冷媒は、特定の冷媒に限定されるものではないが、例えば、環境への影響等を考慮して、GWPが低いものが選択されるとよい。GWPが低い冷媒は、例えば、R32、R513A、HFO-1234yf、HFO-1234zeまたは、これらのうちの少なくとも1つを含む混合冷媒である。なお、スクリュー圧縮機100に適用される冷媒は、二酸化炭素等の自然冷媒であってもよい。 The refrigerant circulating in the refrigerant circuit is not limited to a specific refrigerant, but for example, a refrigerant having a low GWP may be selected in consideration of the impact on the environment and the like. The refrigerant having a low GWP is, for example, R32, R513A, HFO-1234yf, HFO-1234ze, or a mixed refrigerant containing at least one of them. The refrigerant applied to the screw compressor 100 may be a natural refrigerant such as carbon dioxide.
[冷媒回路の動作説明]
 スクリュー圧縮機100で圧縮された高温高圧の冷媒は、凝縮器101で凝縮しながら放熱する。凝縮器101で凝縮した冷媒は、凝縮器101を通過後に分岐され、そのうちの主流冷媒は、主減圧装置102で減圧されて膨張する。主減圧装置102で膨張した冷媒は、蒸発器103で蒸発しながら吸熱する。蒸発器103で蒸発した冷媒は、スクリュー圧縮機100に吸入されて再び圧縮される。以上により1サイクルを終了する。
[Explanation of operation of refrigerant circuit]
The high-temperature and high-pressure refrigerant compressed by the screw compressor 100 dissipates heat while being condensed by the condenser 101. The refrigerant condensed in the condenser 101 is branched after passing through the condenser 101, and the mainstream refrigerant is decompressed and expanded by the main decompression device 102. The refrigerant expanded by the main decompression device 102 absorbs heat while evaporating by the evaporator 103. The refrigerant evaporated in the evaporator 103 is sucked into the screw compressor 100 and compressed again. With the above, one cycle is completed.
 一方、凝縮器101を通過後に分岐された残りの冷媒である冷却冷媒は、冷却用減圧装置105が開いているとき、第1配管104に流入し、冷却用減圧装置105で減圧された後、スクリュー圧縮機100の流入口22aに流入する。流入口22aに流入した冷却冷媒は、冷却孔22を通過する過程で高温部24を冷却し、高温部24を冷却した冷却冷媒は、上述したように第2配管106を通過した後、圧縮室29にインジェクションされる。 On the other hand, the cooling refrigerant, which is the remaining refrigerant branched after passing through the condenser 101, flows into the first pipe 104 when the cooling decompression device 105 is open, is decompressed by the cooling decompression device 105, and then is decompressed. It flows into the inflow port 22a of the screw compressor 100. The cooling refrigerant that has flowed into the inflow port 22a cools the high temperature section 24 in the process of passing through the cooling hole 22, and the cooling refrigerant that has cooled the high temperature section 24 passes through the second pipe 106 as described above, and then the compression chamber. It is injected into 29.
 図8は、冷凍装置の1サイクルの運転中における蒸発温度と凝縮温度との変化を示す図である。図8において、点線で囲った部分は、吐出温度が高い運転条件部分を示している。図8に示すように、運転範囲において凝縮温度が高い条件において吐出温度は過渡に上昇しやすく、吐出温度の上昇を抑制するために圧縮室29に冷媒をインジェクションする。この冷媒量は、冷却用減圧装置105において制御される。以下、冷却用減圧装置105の制御について説明する。 FIG. 8 is a diagram showing changes in the evaporation temperature and the condensation temperature during one cycle of operation of the refrigerating apparatus. In FIG. 8, the portion surrounded by the dotted line indicates the operating condition portion where the discharge temperature is high. As shown in FIG. 8, the discharge temperature tends to rise transiently under the condition that the condensation temperature is high in the operating range, and the refrigerant is injected into the compression chamber 29 in order to suppress the rise in the discharge temperature. This amount of refrigerant is controlled by the cooling decompression device 105. Hereinafter, the control of the cooling decompression device 105 will be described.
 図9は、実施の形態1に係る冷凍サイル装置の冷却用減圧装置の制御の流れを示すフローチャートである。
 制御装置109は、吐出温度センサ107にて計測された吐出温度が予め設定された吐出温度対応の設定温度超であるか、または、モータフレーム温度センサ108にて計測されたモータフレーム温度が予め設定されたモータフレーム温度対応の設定温度超であるかを判断する(ステップS1)。制御装置109は、吐出温度またはモータフレーム温度が、それぞれ対応の設定温度超である場合、先に設定温度超となった温度に基づいて冷却用減圧装置105を制御して、冷却孔22を通過する冷媒の流量を調整する(ステップS2~ステップS5)。
FIG. 9 is a flowchart showing a control flow of the cooling decompression device of the refrigerating sill device according to the first embodiment.
In the control device 109, the discharge temperature measured by the discharge temperature sensor 107 exceeds the preset set temperature corresponding to the preset discharge temperature, or the motor frame temperature measured by the motor frame temperature sensor 108 is preset. It is determined whether or not the set temperature corresponding to the determined motor frame temperature is exceeded (step S1). When the discharge temperature or the motor frame temperature exceeds the corresponding set temperature, the control device 109 controls the cooling decompression device 105 based on the temperature that exceeds the set temperature first, and passes through the cooling hole 22. The flow rate of the refrigerant to be used is adjusted (steps S2 to S5).
 具体的には、制御装置109は、吐出温度が設定温度超の場合(ステップS2)、吐出温度が下がるように冷却用減圧装置105を制御する(ステップS3)。詳しくは、制御装置109は冷却用減圧装置105の開度を大きくする。一方、モータフレーム温度が設定温度超である場合(ステップS4)、制御装置109は、モータフレーム温度が下がるように冷却用減圧装置105を制御する(ステップS5)。詳しくは、制御装置109は冷却用減圧装置105の開度を大きくする。 Specifically, when the discharge temperature exceeds the set temperature (step S2), the control device 109 controls the cooling decompression device 105 so that the discharge temperature drops (step S3). Specifically, the control device 109 increases the opening degree of the cooling decompression device 105. On the other hand, when the motor frame temperature exceeds the set temperature (step S4), the control device 109 controls the cooling decompression device 105 so that the motor frame temperature drops (step S5). Specifically, the control device 109 increases the opening degree of the cooling decompression device 105.
 また、制御装置109は、吐出温度センサ107にて計測された吐出温度が吐出温度対応の設定温度以下且つモータフレーム温度がモータフレーム温度対応の設定温度以下の場合、モータ4の冷却は不要であるため、冷却用減圧装置105の開度を閉じる(ステップS6)。 Further, when the discharge temperature measured by the discharge temperature sensor 107 is equal to or lower than the set temperature corresponding to the discharge temperature and the motor frame temperature is equal to or lower than the set temperature corresponding to the motor frame temperature, the control device 109 does not need to cool the motor 4. Therefore, the opening degree of the cooling decompression device 105 is closed (step S6).
 なお、ここでは、吐出温度に基づいて冷却用減圧装置105を制御する例を説明したが、吐出温度から凝縮温度を減算した吐出過熱度を用いて冷却用減圧装置105を制御するようにしてもよい。要するに、スクリュー圧縮機100から吐出される冷媒の状態に応じた指標値に基づいて冷却用減圧装置105を制御するようにすればよい。具体的には、指標値が設定指標値超の場合、吐出温度が下がるように冷却用減圧装置105を制御すればよい。吐出過熱度を用いて冷却用減圧装置105を制御する場合、冷却用減圧装置105に温度式膨張弁を用いると、電子膨張弁を用いる場合に比べて安価に構成できる。これは、温度式膨張弁は、感温筒(図示しない)にて計測される計測値に応じて弁の開度が機械的に調整される機械式であるため、制御基板が必要となる電子膨張弁に比べて部品点数が少なくすむためである。 Although an example of controlling the cooling decompression device 105 based on the discharge temperature has been described here, the cooling decompression device 105 may be controlled by using the discharge superheat degree obtained by subtracting the condensation temperature from the discharge temperature. good. In short, the cooling decompression device 105 may be controlled based on an index value according to the state of the refrigerant discharged from the screw compressor 100. Specifically, when the index value exceeds the set index value, the cooling decompression device 105 may be controlled so that the discharge temperature is lowered. When the cooling decompression device 105 is controlled by using the discharge superheat degree, if a temperature type expansion valve is used for the cooling decompression device 105, it can be configured at a lower cost than when an electronic expansion valve is used. This is because the temperature type expansion valve is a mechanical type in which the opening degree of the valve is mechanically adjusted according to the measured value measured by the temperature sensitive cylinder (not shown), so that an electron requiring a control board is required. This is because the number of parts can be reduced as compared with the expansion valve.
[効果]
 本実施の形態1のスクリュー圧縮機100は、筒状のケーシング2と、ケーシング2内で回転するように配置されたスクリューロータ3と、ケーシング2内に配置され、スクリューロータ3を駆動するモータ4とを備える。ケーシング2のうち、モータ4を収容する部分であるモータフレーム2cにおいて、運転中に局所的に温度が上昇する高温部24に、外部からの冷媒が通過する冷却孔22がスクリューロータ3の回転軸方向に延びて形成されている。このように、モータフレーム2cの高温部24に冷却孔22が設けられているため、冷却孔22に外部から冷却用冷媒を流すことで、高温部24を集中して冷却できる。このため、高温部24およびモータ4を安定して冷却でき、局所的な温度上昇を防ぐことができる。その結果、運転範囲を拡大することができる。
[effect]
The screw compressor 100 of the first embodiment has a tubular casing 2, a screw rotor 3 arranged to rotate in the casing 2, and a motor 4 arranged in the casing 2 to drive the screw rotor 3. And. In the motor frame 2c, which is a portion of the casing 2 that accommodates the motor 4, a cooling hole 22 through which a refrigerant from the outside passes passes through a high temperature portion 24 whose temperature locally rises during operation, and is a rotation shaft of the screw rotor 3. It is formed so as to extend in the direction. In this way, since the cooling hole 22 is provided in the high temperature portion 24 of the motor frame 2c, the high temperature portion 24 can be centrally cooled by flowing the cooling refrigerant from the outside through the cooling hole 22. Therefore, the high temperature portion 24 and the motor 4 can be stably cooled, and a local temperature rise can be prevented. As a result, the operating range can be expanded.
 本実施の形態1のスクリュー圧縮機100は、モータフレーム2cの内周面から内側に突出して形成され、モータ4の外周面に接触してモータ4を保持する保持部21を有し、保持部21に冷却孔22が形成されている。このように、モータ4に接触する保持部21に冷却孔22が形成されていることで、モータ4を効率良く冷却できる。 The screw compressor 100 of the first embodiment is formed so as to project inward from the inner peripheral surface of the motor frame 2c, and has a holding portion 21 that contacts the outer peripheral surface of the motor 4 to hold the motor 4. A cooling hole 22 is formed in 21. By forming the cooling hole 22 in the holding portion 21 in contact with the motor 4 in this way, the motor 4 can be efficiently cooled.
 冷却孔22は、モータフレーム2cに複数設けられている。これにより、モータ4をさらに効率良く冷却できる。 A plurality of cooling holes 22 are provided in the motor frame 2c. As a result, the motor 4 can be cooled more efficiently.
 本実施の形態1の冷凍装置110は、上記のスクリュー圧縮機100と、凝縮器101と、主減圧装置102と、蒸発器103とを備える。また、冷凍装置110は、冷媒が循環する冷媒回路と、凝縮器101と主減圧装置102との間の配管から分岐し、スクリュー圧縮機100の冷却孔22の流入口22aに接続された第1配管104と、第1配管104に設けられ、第1配管104を通過する冷媒を減圧する冷却用減圧装置105とを備える。このように、上記のスクリュー圧縮機100を備えることで、運転範囲を拡大できる冷凍装置を得ることができる。 The refrigerating device 110 of the first embodiment includes the above-mentioned screw compressor 100, a condenser 101, a main decompression device 102, and an evaporator 103. Further, the refrigerating device 110 is a first unit that branches from the refrigerant circuit through which the refrigerant circulates and the piping between the condenser 101 and the main depressurizing device 102 and is connected to the inflow port 22a of the cooling hole 22 of the screw compressor 100. It is provided with a pipe 104 and a cooling decompression device 105 provided in the first pipe 104 to depressurize the refrigerant passing through the first pipe 104. As described above, by providing the screw compressor 100 described above, it is possible to obtain a refrigerating apparatus capable of expanding the operating range.
 本実施の形態1の冷凍装置110は、冷却用減圧装置105を制御する制御装置109を備える。制御装置109は、スクリュー圧縮機100から吐出される冷媒の状態に関する指標値に基づいて冷却用減圧装置105を制御するか、または、モータフレーム2cの温度であるモータフレーム温度に基づいて冷却用減圧装置105を制御する。これにより、冷却孔22に流入する冷却用冷媒の流量を調整でき、モータ4を適切に冷却できる。 The refrigerating device 110 of the first embodiment includes a control device 109 that controls a cooling decompression device 105. The control device 109 controls the cooling decompression device 105 based on the index value regarding the state of the refrigerant discharged from the screw compressor 100, or the cooling decompression device based on the motor frame temperature which is the temperature of the motor frame 2c. Control device 105. As a result, the flow rate of the cooling refrigerant flowing into the cooling hole 22 can be adjusted, and the motor 4 can be appropriately cooled.
 制御装置109は、指標値が、予め設定された設定指標値超の場合、スクリュー圧縮機100から吐出される冷媒の温度である吐出温度が下がるように冷却用減圧装置105を制御し、モータフレーム温度が、予め設定された設定温度超の場合、モータフレーム温度が下がるように冷却用減圧装置105を制御する。これにより、冷却孔22に流入する冷却用冷媒の流量を調整でき、モータ4を適切に冷却できる。 When the index value exceeds the preset index value set in advance, the control device 109 controls the cooling decompression device 105 so that the discharge temperature, which is the temperature of the refrigerant discharged from the screw compressor 100, is lowered, and the motor frame. When the temperature exceeds a preset set temperature, the cooling decompression device 105 is controlled so that the motor frame temperature is lowered. As a result, the flow rate of the cooling refrigerant flowing into the cooling hole 22 can be adjusted, and the motor 4 can be appropriately cooled.
 指標値は、スクリュー圧縮機100から吐出される冷媒の温度である吐出温度、または吐出温度から凝縮温度を減算した吐出過熱度である。このように、指標値には、吐出温度を用いてもよいし、吐出過熱度を用いてもよい。 The index value is the discharge temperature, which is the temperature of the refrigerant discharged from the screw compressor 100, or the discharge superheat degree obtained by subtracting the condensation temperature from the discharge temperature. As described above, the discharge temperature may be used or the discharge superheat degree may be used as the index value.
 本実施の形態1の冷凍装置110は、冷却孔22の流出口22bから流出した冷却用冷媒を圧縮室29に流入させる流路を備えている。これにより、冷却用冷媒によって吸入冷媒の圧縮室29への吸い込みが阻害されて冷媒循環量が減少し、性能が低下する不都合を抑制できる。 The refrigerating apparatus 110 of the first embodiment includes a flow path for allowing the cooling refrigerant flowing out from the outlet 22b of the cooling hole 22 to flow into the compression chamber 29. As a result, it is possible to suppress the inconvenience that the suction refrigerant is hindered from being sucked into the compression chamber 29 by the cooling refrigerant, the amount of refrigerant circulation is reduced, and the performance is deteriorated.
実施の形態2.
 次に、本実施の形態2について説明する。実施の形態1においては、冷却孔22を通過後の冷媒を圧縮室29に流入させる構成を示したが、本実施の形態2では、冷却孔22を通過後の冷媒を用いて制御装置109のインバータを冷却した後、圧縮室29に流入させる構成としたものである。以下、本実施の形態2が実施の形態1と異なる点を中心に説明ものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
Next, the second embodiment will be described. In the first embodiment, the configuration in which the refrigerant after passing through the cooling hole 22 flows into the compression chamber 29 is shown, but in the second embodiment, the refrigerant after passing through the cooling hole 22 is used in the control device 109. After cooling the inverter, it is configured to flow into the compression chamber 29. Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 図10は、実施の形態2に係る冷凍装置の構成を示す図である。
 実施の形態2の冷凍装置110は、図7に示した実施の形態1の冷凍装置110にさらに、制御装置109を冷却する冷却器121を備えている。冷却器121は、冷媒が通過する冷媒配管(図示しない)を有する。冷却器121は、制御装置109に接触して配置されている。
FIG. 10 is a diagram showing a configuration of a refrigerating apparatus according to a second embodiment.
The refrigerating device 110 of the second embodiment further includes a cooler 121 for cooling the control device 109 in addition to the refrigerating device 110 of the first embodiment shown in FIG. The cooler 121 has a refrigerant pipe (not shown) through which the refrigerant passes. The cooler 121 is arranged in contact with the control device 109.
 制御装置109は、インバータ(図示しない)を備えており、インバータを構成する電子部品であるインバータ部品が発熱する。その熱を冷やすために冷却器121が用いられている。モータ4を冷却して冷却孔22を通過した後の冷媒が冷却器121を流れ、インバータ部品から冷却器121に伝わった熱が冷媒に伝達されることで、制御装置109を冷却することができる。 The control device 109 includes an inverter (not shown), and the inverter component, which is an electronic component constituting the inverter, generates heat. A cooler 121 is used to cool the heat. After cooling the motor 4 and passing through the cooling hole 22, the refrigerant flows through the cooler 121, and the heat transferred from the inverter component to the cooler 121 is transferred to the refrigerant, so that the control device 109 can be cooled. ..
 本実施の形態2によれば、実施の形態1と同様の効果が得られるとともに、以下の効果が得られる。本実施の形態2は、制御装置109に接触して配置され、冷却孔22を通過した冷媒が通過する冷却器121を備えたことにより、制御装置109のインバータ部品を冷却できる。これにより、たとえばIGBTまたはパワーモジュールなどの発熱量の多いインバータ部品の小容量が可能となり、インバータ部品の小型化およびコスト低減を図ることができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained, and the following effects can be obtained. The second embodiment is provided with a cooler 121 which is arranged in contact with the control device 109 and through which the refrigerant passing through the cooling hole 22 passes, so that the inverter component of the control device 109 can be cooled. As a result, it is possible to reduce the capacity of an inverter component that generates a large amount of heat, such as an IGBT or a power module, and it is possible to reduce the size and cost of the inverter component.
 なお、冷媒回路は図10に示した構成に限られず、例えば、図10に示した構成にさらに、熱効率機構を設けてもよい。熱効率機構としては、例えば、凝縮器101と冷却用減圧装置105との間の冷媒と、冷却用減圧装置105と流入口22aとの間の冷媒を熱交換させる中間冷却器がある。 The refrigerant circuit is not limited to the configuration shown in FIG. 10, and for example, a thermal efficiency mechanism may be further provided in the configuration shown in FIG. As a thermal efficiency mechanism, for example, there is an intercooler that exchanges heat between the refrigerant between the condenser 101 and the cooling decompression device 105 and the refrigerant between the cooling decompression device 105 and the inflow port 22a.
 2 ケーシング、2a メインケーシング、2b 吸入ケーシング、2c モータフレーム、3 スクリューロータ、3a スクリュー溝、4 モータ、4a ステータ、4b モータロータ、4c 巻線、5 回転軸、6 ゲートロータ、6a 歯、8 吐出口、11 主軸受、13 副軸受、21 保持部、22 冷却孔、22a 流入口、22b 流出口、23 インジェクション孔、24 高温部、29 圧縮室、100 スクリュー圧縮機、101 凝縮器、102 主減圧装置、103 蒸発器、104 第1配管、105 冷却用減圧装置、106 第2配管、107 吐出温度センサ、108 モータフレーム温度センサ、109 制御装置、110 冷凍装置、121 冷却器。 2 Casing, 2a Main Casing, 2b Suction Casing, 2c Motor Frame, 3 Screw Rotor, 3a Screw Groove, 4 Motor, 4a Stator, 4b Motor Rotor, 4c Winding, 5 Rotating Shaft, 6 Gate Rotor, 6a Teeth, 8 Discharge Port , 11 main bearing, 13 auxiliary bearing, 21 holding part, 22 cooling hole, 22a inlet, 22b outlet, 23 injection hole, 24 high temperature part, 29 compression chamber, 100 screw compressor, 101 condenser, 102 main decompression device , 103 Evaporator, 104 1st pipe, 105 Cooling compressor, 106 2nd pipe, 107 Discharge temperature sensor, 108 Motor frame temperature sensor, 109 Control device, 110 Refrigeration device, 121 Cooler.

Claims (9)

  1.  筒状のケーシングと、
     前記ケーシング内で回転するように配置されたスクリューロータと、
     前記ケーシング内に配置され、前記スクリューロータを駆動するモータとを備え、
     前記ケーシングのうち、前記モータを収容する部分であるモータフレームにおいて、運転中に局所的に温度が上昇する高温部に、外部からの冷媒が通過する冷却孔が前記スクリューロータの回転軸方向に延びて形成されているスクリュー圧縮機。
    With a tubular casing
    With a screw rotor arranged to rotate in the casing,
    A motor disposed in the casing and driving the screw rotor is provided.
    In the motor frame, which is a portion of the casing that houses the motor, a cooling hole through which an external refrigerant passes extends in the rotation axis direction of the screw rotor in a high temperature portion where the temperature locally rises during operation. Screw compressor formed in.
  2.  前記モータフレームの内周面から内側に突出して形成され、前記モータの外周面に接触して前記モータを保持する保持部を有し、前記保持部に前記冷却孔が形成されている請求項1記載のスクリュー圧縮機。 1. The screw compressor described.
  3.  前記冷却孔は、前記モータフレームに複数設けられている請求項1または請求項2記載のスクリュー圧縮機。 The screw compressor according to claim 1 or 2, wherein a plurality of the cooling holes are provided in the motor frame.
  4.  請求項1~請求項3のいずれか一項に記載のスクリュー圧縮機と、凝縮器と、主減圧装置と、蒸発器とを備え、冷媒が循環する冷媒回路と、
     前記凝縮器と前記主減圧装置との間の配管から分岐し、前記スクリュー圧縮機の前記冷却孔の流入口に接続された第1配管と、
     前記第1配管に設けられ、前記第1配管を通過する冷媒を減圧する冷却用減圧装置とを備えた冷凍装置。
    A refrigerant circuit comprising the screw compressor according to any one of claims 1 to 3, a condenser, a main decompression device, and an evaporator, and in which a refrigerant circulates.
    A first pipe branched from the pipe between the condenser and the main decompressor and connected to the inlet of the cooling hole of the screw compressor.
    A refrigerating device provided in the first pipe and provided with a cooling decompression device for depressurizing the refrigerant passing through the first pipe.
  5.  前記冷却用減圧装置を制御する制御装置を備え、
     前記制御装置は、
     前記スクリュー圧縮機から吐出される冷媒の状態に関する指標値に基づいて前記冷却用減圧装置を制御するか、または、前記モータフレームの温度であるモータフレーム温度に基づいて前記冷却用減圧装置を制御する請求項4記載の冷凍装置。
    A control device for controlling the cooling decompression device is provided.
    The control device is
    The cooling decompression device is controlled based on an index value relating to the state of the refrigerant discharged from the screw compressor, or the cooling decompression device is controlled based on the motor frame temperature which is the temperature of the motor frame. The refrigerating apparatus according to claim 4.
  6.  前記制御装置は、前記指標値が、予め設定された設定指標値超の場合、前記スクリュー圧縮機から吐出される冷媒の温度である吐出温度が下がるように前記冷却用減圧装置を制御し、
     前記モータフレーム温度が、予め設定された設定温度超の場合、前記モータフレーム温度が下がるように前記冷却用減圧装置を制御する請求項5記載の冷凍装置。
    When the index value exceeds a preset index value, the control device controls the cooling decompression device so that the discharge temperature, which is the temperature of the refrigerant discharged from the screw compressor, is lowered.
    The refrigerating device according to claim 5, wherein when the motor frame temperature exceeds a preset set temperature, the cooling decompression device is controlled so that the motor frame temperature is lowered.
  7.  前記指標値は、前記スクリュー圧縮機から吐出される冷媒の温度である吐出温度、または前記吐出温度から凝縮温度を減算した吐出過熱度である請求項5または請求項6記載の冷凍装置。 The refrigerating device according to claim 5 or 6, wherein the index value is a discharge temperature which is the temperature of the refrigerant discharged from the screw compressor, or a discharge superheat degree obtained by subtracting the condensation temperature from the discharge temperature.
  8.  前記冷却孔の流出口から流出した冷媒を、前記スクリュー圧縮機に設けられた冷媒の圧縮室に流入させる流路を備えた請求項5~請求項7のいずれか一項に記載の冷凍装置。 The refrigerating apparatus according to any one of claims 5 to 7, further comprising a flow path for allowing the refrigerant flowing out from the outlet of the cooling hole to flow into the compression chamber of the refrigerant provided in the screw compressor.
  9.  前記制御装置に接触して配置され、前記スクリュー圧縮機の前記冷却孔を通過した冷媒が通過する冷却器を備えた請求項5~請求項8のいずれか一項に記載の冷凍装置。 The refrigerating device according to any one of claims 5 to 8, which is arranged in contact with the control device and includes a cooler through which the refrigerant passing through the cooling hole of the screw compressor passes.
PCT/JP2020/008051 2020-02-27 2020-02-27 Screw compressor and freezer WO2021171489A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/008051 WO2021171489A1 (en) 2020-02-27 2020-02-27 Screw compressor and freezer
EP20922379.1A EP4112940A4 (en) 2020-02-27 2020-02-27 Screw compressor and freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008051 WO2021171489A1 (en) 2020-02-27 2020-02-27 Screw compressor and freezer

Publications (1)

Publication Number Publication Date
WO2021171489A1 true WO2021171489A1 (en) 2021-09-02

Family

ID=77491094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008051 WO2021171489A1 (en) 2020-02-27 2020-02-27 Screw compressor and freezer

Country Status (2)

Country Link
EP (1) EP4112940A4 (en)
WO (1) WO2021171489A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141115U (en) * 1974-09-24 1976-03-26
JP2002081391A (en) * 2000-06-23 2002-03-22 Kobe Steel Ltd Screw compressor for refrigeration device
JP2008057875A (en) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp Refrigerating cycle device
JP2015194294A (en) * 2014-03-31 2015-11-05 三菱電機株式会社 refrigerator
JP2018178815A (en) 2017-04-10 2018-11-15 日立ジョンソンコントロールズ空調株式会社 Screw compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620205A1 (en) * 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
DE102012102346A1 (en) * 2012-03-20 2013-09-26 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor
EP2873858B1 (en) * 2012-05-18 2020-08-12 Valeo Japan Co., Ltd. Electric compressor
JP2015001220A (en) * 2013-06-18 2015-01-05 ダイキン工業株式会社 Screw compressor
JP6445948B2 (en) * 2015-09-10 2018-12-26 日立ジョンソンコントロールズ空調株式会社 Screw compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141115U (en) * 1974-09-24 1976-03-26
JP2002081391A (en) * 2000-06-23 2002-03-22 Kobe Steel Ltd Screw compressor for refrigeration device
JP2008057875A (en) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp Refrigerating cycle device
JP2015194294A (en) * 2014-03-31 2015-11-05 三菱電機株式会社 refrigerator
JP2018178815A (en) 2017-04-10 2018-11-15 日立ジョンソンコントロールズ空調株式会社 Screw compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112940A4

Also Published As

Publication number Publication date
EP4112940A4 (en) 2023-04-26
EP4112940A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
KR100421390B1 (en) Turbo compressor cooling structure
JP5556499B2 (en) Two-stage boost refrigeration cycle
JP2009127902A (en) Refrigerating device and compressor
JP4949768B2 (en) Screw compressor
JP2016142418A (en) Air conditioner
CN109154455B (en) Refrigeration cycle device
JP6258422B2 (en) Compressor and control method thereof
JP2008057874A (en) Refrigerating cycle device
JP2012127565A (en) Refrigeration cycle device
WO2021171489A1 (en) Screw compressor and freezer
US20200157982A1 (en) Climate-Control System Having Oil Cooling Control System
JP2009186028A (en) Turbo refrigerator
JP2009186030A (en) Turbo refrigerator
JP5656691B2 (en) Refrigeration equipment
JP6193555B2 (en) Refrigeration cycle equipment
KR100309011B1 (en) Refrigeration cycle
CN110520623B (en) Scroll compressor, control method thereof and air conditioner
JP6160502B2 (en) Refrigeration cycle equipment
WO2017203642A1 (en) Screw compressor and refrigeration cycle device
WO2015104822A1 (en) Refrigeration cycle device
JP4241127B2 (en) Transcritical refrigerant cycle equipment
WO2018131089A1 (en) Refrigeration cycle device
KR100414104B1 (en) Turbo compressor cooling structure
WO2018003015A1 (en) Single screw compressor and refrigeration cycle device
WO2024024408A1 (en) Electric compressor and thermal management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922379

Country of ref document: EP

Effective date: 20220927

NENP Non-entry into the national phase

Ref country code: JP