WO2018003015A1 - Single screw compressor and refrigeration cycle device - Google Patents

Single screw compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2018003015A1
WO2018003015A1 PCT/JP2016/069131 JP2016069131W WO2018003015A1 WO 2018003015 A1 WO2018003015 A1 WO 2018003015A1 JP 2016069131 W JP2016069131 W JP 2016069131W WO 2018003015 A1 WO2018003015 A1 WO 2018003015A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
single screw
screw compressor
rotor
compression chamber
Prior art date
Application number
PCT/JP2016/069131
Other languages
French (fr)
Japanese (ja)
Inventor
栗田 慎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/069131 priority Critical patent/WO2018003015A1/en
Priority to TW105135850A priority patent/TWI639770B/en
Publication of WO2018003015A1 publication Critical patent/WO2018003015A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present invention relates to a technique of a single screw compressor used for a refrigerator or an air conditioner, and more particularly to a single screw compressor having a single gate rotor meshing with a screw rotor and a refrigeration cycle apparatus having the same.
  • a twin having a screw rotor having a screw groove formed on the outer peripheral surface and two gate rotors, and two gate rotors meshing with the screw groove of the screw rotor to form a pair of compression chambers
  • a gate rotor system is known.
  • a pair of compression chambers are formed above and below the rotating shaft of the screw rotor.
  • the rotating shaft is driven by an electric motor, and a series of operations from suction to discharge is performed in each compression chamber.
  • the twin gate rotor type single screw compressor cancels the action of the pressure in the compression chamber between the pair of compression chambers, and therefore has a characteristic that a gas load in the radial direction of the rotating shaft does not occur. Therefore, in the twin gate rotor type single screw compressor, there is known an advantage that the bearing supporting the rotating shaft can be reduced in size. However, since there are two gate rotors, there is a problem that the number of parts increases and the number of assembly steps is also large.
  • a single screw compressor includes a screw rotor having a screw groove formed on the outer peripheral surface and one gate rotor, and one gate rotor meshes with the screw groove of the screw rotor to form one compression chamber.
  • a method of forming see, for example, Patent Document 1.
  • the method with one gate rotor is hereinafter referred to as a mono-gate rotor method with respect to the twin gate rotor method with two gate rotors.
  • the monogate rotor system since there is one gate rotor, there is an advantage that the number of parts and the number of assembly steps can be reduced.
  • Patent Document 1 since the compression chamber is formed below the rotation shaft, there are the following problems. That is, at the time of so-called liquid back where the liquid refrigerant flows into the single screw compressor, the liquid refrigerant flows into the bottom part of the casing constituting the outer shell of the single screw compressor by its own weight. For this reason, when the compression chamber is formed below the rotation shaft, there is a drawback that it is easy to suck the refrigerant accumulated in the bottom of the sealed container. This problem can also occur in the same way, for example, when starting from a state where liquid refrigerant has accumulated in the sealed container after long-term operation stop.
  • the present invention has been made in view of the above points, and in a monogate rotor type single screw compressor, there is provided a single screw compressor and a refrigeration cycle apparatus capable of suppressing suction of liquid refrigerant into a compression chamber. The purpose is to obtain.
  • a single screw compressor according to the present invention is engaged with an electric motor, a rotating shaft driven by the electric motor, a screw rotor attached to the rotating shaft and having a plurality of screw grooves on an outer peripheral surface, and a screw groove of the screw rotor.
  • the casing divides the inside of the casing into a first space in which a motor is accommodated and fluid flows in from the outside, and a second space on the downstream side of the first space where the compression chamber is located.
  • the suction port that has the partition and communicates the first space and the second space is higher than the height position of the axis of the rotation shaft in the partition. Together provided towards the compression chamber in which is positioned higher than the height position of the axis
  • a refrigeration cycle apparatus includes the single screw compressor, a condenser, a decompression device, and an evaporator.
  • the inside of the casing is separated into the first space into which the fluid flows from the outside and the second space in which the compression chamber is located, and the suction port and the compression chamber communicating the first space and the second space. Is positioned above the height position of the axis of the rotating shaft, so that the suction of the liquid refrigerant into the compression chamber can be suppressed.
  • FIG. 1 is a schematic cross-sectional view of a monogate rotor type single screw compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view along AA in FIG. 2.
  • FIG. 3 is a schematic cross-sectional view taken along the line BB of FIG.
  • It is a figure which shows the operation
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus including a single screw compressor according to Embodiment 1 of the present invention.
  • the same reference numerals are the same or equivalent, and this is common throughout the entire specification.
  • the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
  • the refrigeration cycle apparatus 100 includes a single screw compressor 101, a condenser 103, a decompression device 104, and an evaporator 105, and includes a refrigerant circuit in which these are sequentially connected by refrigerant piping.
  • the single screw compressor 101 sucks a refrigerant as a fluid and compresses the refrigerant to a high temperature and high pressure state.
  • the single screw compressor 101 is driven by supplying electric power from an electric power supply source (not shown) to the electric motor 102.
  • the electric motor 102 may be a constant speed machine with a constant rotation speed, or an inverter type that is driven so that the operation capacity can be adjusted by changing the rotation speed.
  • the fluid may be air in addition to the refrigerant accompanying the phase change.
  • the condenser 103 cools and condenses the refrigerant gas discharged from the single screw compressor 101.
  • the decompression device 104 squeezes and expands the refrigerant liquid flowing out of the condenser 103, and includes an electronic expansion valve or a capillary tube.
  • a suction temperature sensor 120 and a suction pressure sensor 121 are provided on the suction side of the single screw compressor 101.
  • the suction temperature sensor 120 detects the temperature of the suction gas sucked into the single screw compressor 101.
  • the suction pressure sensor detects the pressure of the suction gas sucked into the single screw compressor 101. Detection values detected by the suction temperature sensor 120 and the suction pressure sensor 121 are output to the control device 110 described later.
  • the refrigeration cycle apparatus 100 further includes a control device 110.
  • the control device 110 performs opening degree control of the decompression device 104, position control of a slide valve 6 (see FIG. 2) described later, and control of the entire refrigeration cycle apparatus 100. Further, the control device 110 detects a liquid back to the suction side of the single screw compressor 101, and performs opening / closing control of a solenoid valve 9 (see FIG. 2) described later according to the detection result of the liquid back.
  • the control device 110 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • the single screw compressor 101 sucks and compresses refrigerant gas, which is a gaseous refrigerant, and then discharges it.
  • the discharge gas discharged from the single screw compressor 101 is cooled by the condenser 103.
  • the refrigerant cooled by the condenser 103 is decompressed by the decompression device 104 and expands.
  • coolant which flowed out from the decompression device 104 is heated with the evaporator 105, and becomes refrigerant gas.
  • the refrigerant gas flowing out of the evaporator 105 is sucked into the single screw compressor 101.
  • FIG. 2 is a schematic cross-sectional view of a monogate rotor type single screw compressor according to Embodiment 1 of the present invention.
  • 2 is a schematic cross-sectional view of the single screw compressor 101 installed on the installation surface cut along a plane parallel to the installation surface, and the cut surface is viewed from above. The vertical direction in FIG. This corresponds to the left-right direction of the single screw compressor 101.
  • FIG. 3 is a schematic cross-sectional view taken along the line AA in FIG. 4 is a schematic cross-sectional view taken along the line BB of FIG.
  • the single screw compressor 101 is a single screw compressor having one screw rotor 3 and has a monogate rotor structure having one gate rotor 4.
  • the single screw compressor 101 includes a casing 1, one screw rotor 3, one gate rotor 4 meshing with the screw rotor 3, an electric motor 102 that rotationally drives the screw rotor 3, a slide valve 6, and the like. It has.
  • the casing 1 accommodates the screw rotor 3, the gate rotor 4, the electric motor 102, the slide valve 6, and the like.
  • a substantially cylindrical space is formed, and a substantially columnar screw rotor 3 is arranged in this space.
  • One end of the screw rotor 3 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2).
  • a plurality of spiral screw grooves 3 a are formed on the outer peripheral surface of the screw rotor 3.
  • a rotating shaft 5 is attached to the center of the screw rotor 3 so as to rotate together.
  • the rotating shaft 5 is rotatably supported by a bearing 5 a provided in the casing 1.
  • an electric motor 102 is connected to the end of the rotating shaft 5 on the side opposite to the bearing 5a.
  • the electric motor 102 includes a stator 102a that is inscribed and fixed to the casing 1, and a motor rotor 102b that is disposed inside the stator 102a.
  • the rotating shaft 5 is connected with the motor rotor 102b, and the screw rotor 3 is rotationally driven.
  • the gate rotor 4 has a disk shape, and a plurality of teeth 4a are formed on the outer periphery.
  • the plurality of teeth 4 a are engaged with the screw grooves 3 a, and rotates with the rotation of the screw rotor 3.
  • the space surrounded by the teeth 4 a of the gate rotor 4, the screw groove 3 a and the casing 1 becomes the compression chamber 7.
  • the casing 1 has an internal space in which a low-pressure gas refrigerant flows from the evaporator 105 of the refrigerant circuit, the first space 31 in which the electric motor 102 is accommodated, and the downstream of the first space 31 in the compression chamber 7. And the second space 32 in which is located is separated by a partition wall 1b which is a part of the casing 1.
  • the casing 1 has a suction port (not shown) through which a low-pressure gas refrigerant is introduced from the refrigerant circuit, and a discharge port (not shown) that discharges compressed gas to the refrigerant circuit. 31 communicates with a suction port (not shown), and the second space 32 communicates with a discharge port (not shown).
  • a suction port 8 that communicates the first space 31 and the second space 32 is formed through the partition wall 1b.
  • the suction gas introduced into the first space 31 enters the second space 32 through the suction port 8. be introduced. That is, the suction port 8 is one of flow paths for guiding the refrigerant flowing into the casing 1 to the compression chamber 7.
  • the casing 1 is connected to the first space 31 and the second space 32 at least at one location via the outside of the casing 1, and the piping that supplies the oil accumulated in the first space 31 to the second space 32. 10 is connected.
  • the pipe 10 is provided with an electromagnetic valve 9 that opens and closes the flow path of the pipe 10. Since oil accumulates at the bottom of the casing 1, the pipe 10 and the electromagnetic valve 9 are provided below the height position of the axis O ⁇ b> 1 of the rotating shaft 5.
  • the single screw compressor 101 is provided with a slide valve 6 for adjusting the operating capacity.
  • the slide valve 6 is formed in a rod shape having a crescent-shaped cross section.
  • a slide groove 1aa extending in the direction of the rotation axis 5 of the screw rotor 3 is formed on the inner peripheral surface 1a side of the casing 1, and a slide valve 6 is slidably accommodated in the slide groove 1aa.
  • a rod (not shown) is fixed to the end face of the slide valve 6 and is movable in the axial direction parallel to the rotary shaft 5.
  • the position of the slide valve 6 is adjusted by a dedicated drive device (not shown).
  • the second space 32 in the casing 1 is further partitioned into a low pressure side that is a refrigerant suction side to the compression chamber 7 and a high pressure side that is a refrigerant discharge side.
  • a bypass passage (not shown) for communicating with the suction side in the space 32 is formed.
  • the opening area of the bypass passage (not shown) changes. That is, when the slide valve 6 moves, the opening area of the bypass passage (not shown) changes, and the flow rate of the fluid (refrigerant) sent to the suction side through the bypass passage (not shown) changes.
  • the flow rate of the fluid compressed and discharged in the compression chamber 7 changes, and the flow rate of the fluid discharged from the single screw compressor 101, that is, the operating capacity changes.
  • the first embodiment is intended to suppress the liquid refrigerant from being sucked into the compression chamber 7 at the time of liquid back or at the start-up after long-term operation stop, and adopts the following configuration. is doing. That is, as shown in FIG. 3, the suction port 8 is disposed above the height position of the axis O1 of the rotary shaft 5 in the partition wall 1b.
  • the suction port 8 When liquid refrigerant flows into the single screw compressor 101 from the evaporator 105 of the refrigerant circuit, the liquid refrigerant accumulates at the bottom in the first space 31 due to its own weight. For this reason, by providing the suction port 8 above the partition 1 b, the liquid refrigerant that has flowed into the first space 31 can be made difficult to flow into the second space 32.
  • the suction port 8 has a long hole shape extending in the circumferential direction of the rotating shaft 5, but the shape is not limited as long as a necessary opening cross-sectional area is secured.
  • the opening cross-sectional area of the suction port 8 is adjusted to ensure a necessary flow rate in consideration of the displacement of the compression chamber 7, the rotational speed of the rotary shaft 5, and the density of the working fluid.
  • the compression chamber 7 is also disposed above the height position of the axis O1 of the rotary shaft 5 in the same manner as the suction port 8. This is due to the following reason.
  • the inflow of the liquid refrigerant from the first space 31 to the second space 32 is reduced by providing the suction port 8 upward, but is not completely eliminated. Accordingly, the liquid refrigerant that has flowed into the second space 32 accumulates at the bottom of the second space 32.
  • the compression chamber 7 is also disposed above the height position of the axis O ⁇ b> 1 of the rotating shaft 5, similarly to the suction port 8.
  • the gate rotor 4 may be disposed as follows. That is, the axial center O2 of the gate rotor 4 is disposed so as to face the direction orthogonal to the axial center O1 at a position separated from the axial center O1 of the rotating shaft 5 of the screw rotor 3. Further, the gate rotor 4 may be arranged so that the radial plane of the gate rotor 4 faces in the range from 12:00 to 3 o'clock of the timepiece when the rotation shaft 5 of the screw rotor 3 is regarded as the center of the timepiece. .
  • one compression chamber 7 can be formed above the height position of the axis O1 of the rotary shaft 5.
  • the gate rotor 4 is arranged so that the radial plane of the gate rotor 4 faces the 3 o'clock direction of the watch.
  • the refrigerant that has flowed into the first space 31 contains oil for lubricating the sliding portion such as the bearing 5 a of the rotating shaft 5, and the oil also collects at the bottom of the first space 31. Therefore, it is necessary to supply oil accumulated at the bottom of the first space 31 to the second space 32 so that the sliding portion does not run out of oil. Therefore, the oil accumulated at the bottom of the first space 31 is supplied to the second space 32 through the pipe 10.
  • the electromagnetic valve 9 is opened when the single screw compressor 101 is in the liquid back state, the liquid is passed through the pipe 10.
  • the refrigerant flows into the second space 32 and the liquid refrigerant is sucked into the compression chamber 7. Therefore, in the first embodiment, control is performed so that the electromagnetic valve 9 is closed when the liquid back state is set, and is opened when the liquid back state is not set.
  • FIG. 5 is a diagram showing an operation flowchart of the single screw compressor according to Embodiment 1 of the present invention.
  • the control device 110 activates the single screw compressor 101 with the operation capacity minimized (step S1). This is intended to reduce the load on the motor 102 at the time of startup, and is a normal control.
  • the position of the slide valve 6 is adjusted so that the opening area of the bypass passage from the compression chamber 7 to the suction side is maximized. That is, within the range in which the position of the slide valve 6 can be adjusted, the position of the slide valve 6 is adjusted to a position where the displacement amount of the single screw compressor 101 is minimized, and the single screw compressor 101 is started after the adjustment.
  • step S1 the solenoid valve 9 is closed at the time of activation (step S1). This prevents liquid refrigerant from flowing into the second space 32 through the pipe 10 because the liquid refrigerant may be accumulated in the first space 31 at the time of startup after a long-term operation stop, for example. Is intention.
  • step S2 When the rotation speed of the electric motor 102 reaches the set rotation speed (step S2), the operation is performed with the operation capacity corresponding to the load on the use side of the refrigerant circuit (step S3). That is, the control device 110 adjusts the position of the slide valve 6 so as to obtain an operation capacity corresponding to the load on the use side.
  • step S4 the control device 110 performs opening / closing control of the electromagnetic valve 9 according to the liquid back detection result (step S4 to step S4). S6). This will be specifically described below.
  • the control device 110 determines whether or not a liquid back has occurred (step S4). If it is determined that a liquid back has occurred, the controller 110 transfers the liquid refrigerant from the first space 31 to the second space 32 via the pipe 10. In order to avoid inflow, the electromagnetic valve 9 is closed (step S5).
  • whether or not the liquid back has occurred is determined based on the degree of superheat of the intake gas temperature. That is, when the degree of superheating of the intake gas temperature is less than a preset value, it is determined that a liquid back has occurred. On the other hand, when the state in which the superheat degree of the intake gas temperature is equal to or higher than the set value continues for a preset time, it is determined that no liquid back has occurred.
  • the set value may be 0 ° C., or may be a temperature higher than 0 ° C., for example, 3 ° C. for safe control.
  • the degree of superheating of the intake gas temperature is obtained by subtracting the evaporation temperature from the detected value of the intake temperature sensor 120.
  • the evaporation temperature is obtained by converting the pressure of the suction pressure sensor 121 into a saturation temperature.
  • control device 110 opens the electromagnetic valve 9 (step S6).
  • step S5 After controlling the solenoid valve 9 by step S5 or step S6, it returns to step S4 again and repeats the same process. Therefore, the electromagnetic valve 9 is maintained in the closed state while the liquid back is generated, and the electromagnetic valve 9 is maintained in the open state while the liquid back is not generated.
  • step S4 it is determined in step S4 that a liquid back has occurred, and the solenoid valve 9 is switched from open to closed.
  • the degree of superheat of the intake gas temperature increases.
  • the superheat degree of the intake gas temperature may fluctuate up and down without being stable, but gradually becomes stable.
  • the solenoid valve 9 when the solenoid valve 9 is opened in a state where no liquid back is generated, the suction gas flows from the first space 31 to the second space 32 through the pipe 10, and the oil mist is added to the flow of the suction gas. And oil is sucked into the compression chamber 7 together with the refrigerant. Then, the oil mist sucked into the single screw compressor 101 flows into the oil separator (not shown) built in the single screw compressor 101 together with the compressed gas. The oil separated from the refrigerant by an oil separator (not shown) is supplied to the sliding part in the single screw compressor 101, and the oil can be circulated.
  • the suction port 8 is provided above the height position of the axis O1 of the rotation shaft 5. For this reason, even if the liquid refrigerant is accumulated in the first space 31 at the time of liquid back or at the start from the long-term operation stop, the liquid refrigerant in the first space 31 flows into the second space 32 where the compression chamber 7 is located. Can be suppressed. While the flow of the liquid refrigerant is suppressed to the second space 32 while being somewhat suppressed, the compression chamber 7 is also located above the height position of the axis O1 of the rotary shaft 5 like the suction port 8. Therefore, the liquid refrigerant can be prevented from being sucked into the compression chamber 7.
  • the inside of the casing 1 is separated into the first space 31 and the second space 32 by the partition wall 1b, it is necessary to supply the oil in the first space 31 to the second space 32.
  • This can be done with the pipe 10 provided.
  • the opening / closing timing of the electromagnetic valve 9 provided in the pipe 10 is controlled by whether or not the liquid back is generated, and when the liquid back is generated, the electromagnetic valve 9 is closed. did. For this reason, it can prevent that a liquid refrigerant flows in into the 2nd space 32 from the 1st space 31 via the piping 10, As a result, the suction
  • the electromagnetic valve 9 When the liquid back is not generated, the electromagnetic valve 9 is opened, so that the oil mist flows along with the suction gas refrigerant from the first space 31 to the second space 32 and is sucked into the compression chamber 7. I can make it.
  • the oil sucked into the compression chamber 7 flows out of the compression chamber 7 together with the refrigerant gas.
  • the oil can be captured again in an oil separator (not shown) in the single screw compressor 101, and the compression chamber The oil can be returned to 7. Therefore, there is an effect that can be effectively used for lubrication for lubricating the sliding portion.
  • the electromagnetic valve 9 is closed at the time of startup, when the liquid back is generated at the time of startup and when the liquid refrigerant is stored in the first space 31, the liquid refrigerant passes through the pipe 10 from the first space 31 to the second time. Inflow into the space 32 can be prevented.
  • the solenoid valve 9 is controlled to be closed regardless of the occurrence of liquid back at the time of startup, but this control is intended to be safety-side control with a view to startup after long-term operation stoppage. It is. For example, in the case of activation after a short stop, it may be determined to determine whether or not a liquid back has occurred at the time of activation, and to open the solenoid valve 9 when it is determined that no liquid back has occurred.
  • the single screw compressor 101 may be modified as follows with respect to the configuration shown in FIGS. In this case, the same effect can be obtained.
  • the single screw compressor 101 uses a constant speed electric motor 102 to adjust the amount of refrigerant gas sucked into the compression chamber 7 by the slide valve 6, that is, to control the operation capacity.
  • the operating capacity control method is not limited to this method.
  • the operation capacity control may be performed by rotation speed control using the inverter type electric motor 102 instead of the slide valve 6.
  • variable VI valve which is a slide valve that adjusts the timing of discharge from the compression chamber 7 and makes the volume ratio variable.
  • the volume ratio indicates the ratio between the volume of the compression chamber 7 at the completion of suction (at the start of compression) and the volume of the compression chamber 7 just before the discharge.
  • FIG. 6 is an explanatory view of a modification of the single screw compressor according to Embodiment 1 of the present invention, and is a schematic perspective view showing the vicinity of the discharge port.
  • the variable VI valve 21 forms a part of the discharge port 11, is connected to a rod 21 a and a drive device (not shown), and is movable in the direction of the rotation axis of the screw rotor 3.
  • the variable VI valve 21 moves to the suction side (the back side in FIG. 5)
  • the volume ratio decreases
  • the variable VI valve 21 moves to the discharge side (the front side in FIG. 5)
  • the volume ratio increases.
  • the electric motor 102 is configured to be able to adjust the rotation speed by inverter control.
  • the operating capacity of the single screw compressor 101 that is, the flow rate of the refrigerant discharged from the single screw compressor 101 is controlled according to the load on the usage side of the refrigerant circuit.
  • the variable VI valve 21 is controlled so as to have a volume ratio (compression ratio) at which an optimum compression efficiency is obtained with respect to the operation capacity set according to the load on the use side.
  • step S1 the rotational speed of the electric motor 102 is set to the lowest rotational speed in the operable range, and the position of the variable VI valve 21 is adjusted, so that the volume ratio becomes the lower limit volume ratio of the volume ratio settable range.
  • step S3 the rotational speed of the electric motor 102 is adjusted to a rotational speed corresponding to the load on the use side, and the position of the variable VI valve 21 is adjusted to increase energy efficiency according to the operating pressure ratio.
  • Embodiment 2 a full liquid evaporator is used as the evaporator 105 of the refrigeration cycle apparatus 100 shown in FIG.
  • Other configurations are the same as those of the first embodiment. The following description will focus on the differences of the second embodiment from the first embodiment. Configurations not described in the second embodiment are the same as those in the first embodiment.
  • the liquid refrigerant contains more oil than the gas refrigerant
  • the liquid refrigerant flows into the single screw compressor 101 when returning the oil in the full liquid evaporator 105 into the single screw compressor 101.
  • the oil can be easily and efficiently returned to the single screw compressor 101. Therefore, in the oil return operation, the temperature of the suction gas sucked into the single screw compressor 101 is lowered to the evaporation temperature that is the saturation temperature of the refrigerant in the full-liquid evaporator 105 to make the suction gas refrigerant a liquid refrigerant.
  • the operation of returning the oil in the evaporator 105 to the single screw compressor 101 together with the liquid refrigerant is performed.
  • the opening of the expansion valve as the decompression device 104 may be increased.
  • the rotational speed of the single screw compressor 101 during the oil return operation is lower than the maximum rotational speed at which the single screw compressor 101 can be operated. This is for the purpose of preventing the liquid refrigerant from suddenly returning into the single screw compressor 101.
  • the liquid refrigerant returns from the full liquid evaporator 105 into the single screw compressor 101. Therefore, when the single screw compressor 101 has a configuration in which the liquid refrigerant flows directly into the compression chamber 7, the reliability of the single screw compressor 101 due to liquid compression is reduced.
  • the single screw compressor 101 used here has a structure that suppresses the liquid refrigerant from directly flowing into the compression chamber 7 even when a liquid back occurs, and thus the reliability is impaired. There is no.
  • the refrigeration cycle apparatus 100 according to the second embodiment performs the operation according to the flowchart shown in FIG. 5 in the same manner as in the first and second embodiments when starting the single screw compressor 101 and during the steady operation. The following operation shown in FIG. 7 is performed.
  • FIG. 7 is a diagram showing an operation flowchart at the time of oil return operation in the refrigeration cycle apparatus including the single screw compressor according to Embodiment 2 of the present invention.
  • 1 casing 1a inner peripheral surface, 1aa slide groove, 1b partition wall, 3 screw rotor, 3a screw groove, 4 gate rotor, 4a teeth, 5 rotating shaft, 5a bearing, 6 slide valve, 7 compression chamber, 8 intake port, 9 Solenoid valve, 10 pipe, 11 discharge port, 21 variable VI valve, 21a rod, 31 1st space, 32 2nd space, 100 refrigeration cycle device, 101 single screw compressor, 102 electric motor, 102a stator, 102b motor rotor, 103 Condenser, 104 decompression device, 105 evaporator (full liquid evaporator), 110 control device, 120 suction temperature sensor, 121 suction pressure sensor, O1 axis, O2 axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This single screw compressor is configured such that: the inside of a casing is divided into a first space, into which fluid flows from the outside, and a second space, in which a compression chamber is located; and the compression chamber and a suction port which provides communication between the first space and the second space are located at a higher position than the axis of a rotating shaft.

Description

シングルスクリュー圧縮機及び冷凍サイクル装置Single screw compressor and refrigeration cycle equipment
 本発明は、冷凍機又は空調機等に用いられるシングルスクリュー圧縮機の技術に関し、特に、スクリューローターに噛み合うゲートローターを1つ備えた形式のシングルスクリュー圧縮機及びこれを備えた冷凍サイクル装置に関する。 The present invention relates to a technique of a single screw compressor used for a refrigerator or an air conditioner, and more particularly to a single screw compressor having a single gate rotor meshing with a screw rotor and a refrigeration cycle apparatus having the same.
 シングルスクリュー圧縮機において、外周面にスクリュー溝が形成されたスクリューローターと、2枚のゲートローターとを備え、スクリューローターのスクリュー溝に2枚のゲートローターが噛み合って一対の圧縮室を形成するツインゲートローター方式が知られている。ツインゲートローター方式では、一対の圧縮室がスクリューローターの回転軸の上下に形成され、一般的には、回転軸を電動機で駆動し、各圧縮室において、吸入から吐出までの一連の動作がなされる。 In a single screw compressor, a twin having a screw rotor having a screw groove formed on the outer peripheral surface and two gate rotors, and two gate rotors meshing with the screw groove of the screw rotor to form a pair of compression chambers A gate rotor system is known. In the twin gate rotor system, a pair of compression chambers are formed above and below the rotating shaft of the screw rotor. In general, the rotating shaft is driven by an electric motor, and a series of operations from suction to discharge is performed in each compression chamber. The
 回転軸の上下に形成された一対の圧縮室には、冷媒が同一のタイミングで吸入され、吸入開始から吐出完了まで一対の圧縮室の容積変化率は互いに同一である。このため、吸入開始から吐出完了までの、一対の圧縮室内の圧縮ガスによる内圧の大きさの推移は、互いに同じである。したがって、ツインゲートローター方式のシングルスクリュー圧縮機では、一対の圧縮室同士で圧縮室内圧の作用をキャンセルし合うため、回転軸の径方向のガス荷重が発生しない特徴をもつ。よって、ツインゲートローター方式のシングルスクリュー圧縮機においては、回転軸を支持する軸受を小型化できる利点が知られている。しかしながら、ゲートローターが2枚であるため、部品点数が増え、組立工数も多いという問題があった。 The refrigerant is sucked into the pair of compression chambers formed above and below the rotating shaft at the same timing, and the volume change rate of the pair of compression chambers is the same from the start of suction to the completion of discharge. For this reason, the transition of the magnitude of the internal pressure due to the compressed gas in the pair of compression chambers from the start of suction to the completion of discharge is the same. Therefore, the twin gate rotor type single screw compressor cancels the action of the pressure in the compression chamber between the pair of compression chambers, and therefore has a characteristic that a gas load in the radial direction of the rotating shaft does not occur. Therefore, in the twin gate rotor type single screw compressor, there is known an advantage that the bearing supporting the rotating shaft can be reduced in size. However, since there are two gate rotors, there is a problem that the number of parts increases and the number of assembly steps is also large.
 一方、シングルスクリュー圧縮機においては、外周面にスクリュー溝が形成されたスクリューローターと、1枚のゲートローターとを備え、スクリューローターのスクリュー溝に1枚のゲートローターが噛み合って一つの圧縮室を形成する方式もある(例えば、特許文献1参照)。ゲートローターが1枚の方式を、以下ではゲートローターが2枚であるツインゲートローター方式に対して、モノゲートローター方式と称呼する。モノゲートローター方式では、ゲートローターが1枚であるため、部品点数の削減、組立工数の低減が図れる利点がある。 On the other hand, a single screw compressor includes a screw rotor having a screw groove formed on the outer peripheral surface and one gate rotor, and one gate rotor meshes with the screw groove of the screw rotor to form one compression chamber. There is also a method of forming (see, for example, Patent Document 1). The method with one gate rotor is hereinafter referred to as a mono-gate rotor method with respect to the twin gate rotor method with two gate rotors. In the monogate rotor system, since there is one gate rotor, there is an advantage that the number of parts and the number of assembly steps can be reduced.
特許第5383303号公報Japanese Patent No. 5383303
 しかしながら、特許文献1では、圧縮室が回転軸の下方に形成されているため、以下の問題がある。すなわち、シングルスクリュー圧縮機内に液冷媒が流入するいわゆる液バック時に、液冷媒が自重によりシングルスクリュー圧縮機の外郭を構成するケーシングの底部に流れ込む。このため、圧縮室が回転軸の下方に形成されていると、密閉容器の底部に溜まった冷媒を吸入し易い欠点をもつ。この問題は、他に例えば、長期運転停止して密閉容器内に液冷媒が溜まった状態から起動する場合にも同様に起こりえる。そして、液冷媒が圧縮室内に吸入されて圧縮されると、圧縮室内圧が高くなり、その大きさに応じて回転軸が大きく撓み、スクリューローターの外周と、スクリューローターを収容するケーシングの内周との接触による焼き付きの不具合が発生する。 However, in Patent Document 1, since the compression chamber is formed below the rotation shaft, there are the following problems. That is, at the time of so-called liquid back where the liquid refrigerant flows into the single screw compressor, the liquid refrigerant flows into the bottom part of the casing constituting the outer shell of the single screw compressor by its own weight. For this reason, when the compression chamber is formed below the rotation shaft, there is a drawback that it is easy to suck the refrigerant accumulated in the bottom of the sealed container. This problem can also occur in the same way, for example, when starting from a state where liquid refrigerant has accumulated in the sealed container after long-term operation stop. Then, when the liquid refrigerant is sucked into the compression chamber and compressed, the pressure in the compression chamber increases, and the rotation shaft greatly bends according to the pressure, and the outer periphery of the screw rotor and the inner periphery of the casing that houses the screw rotor. There is a problem of seizure due to contact with.
 本発明は、このような点を鑑みなされたもので、モノゲートローター方式のシングルスクリュー圧縮機において、液冷媒の圧縮室内への吸入を抑制することが可能なシングルスクリュー圧縮機及び冷凍サイクル装置を得ることを目的とする。 The present invention has been made in view of the above points, and in a monogate rotor type single screw compressor, there is provided a single screw compressor and a refrigeration cycle apparatus capable of suppressing suction of liquid refrigerant into a compression chamber. The purpose is to obtain.
 本発明に係るシングルスクリュー圧縮機は、電動機と、電動機によって駆動される回転軸と、回転軸に取り付けられ、複数のスクリュー溝を外周面に有するスクリューローターと、スクリューローターのスクリュー溝と係合し、スクリューローターの回転に伴って回転する1枚のゲートローターと、電動機、回転軸、スクリューローター及びゲートローターを収容するケーシングとを備え、スクリュー溝、ゲートローター及びケーシングで囲まれた空間で圧縮室を構成しており、ケーシングは、ケーシング内を、電動機を収容し、外部から流体が流入する第1空間と、第1空間の下流側であって圧縮室が位置する第2空間とに分離する隔壁を有し、第1空間と第2空間とを連通する吸入ポートが隔壁において回転軸の軸心の高さ位置よりも上方に設けられると共に、圧縮室が回転軸の軸心の高さ位置よりも上方に位置しているものである。 A single screw compressor according to the present invention is engaged with an electric motor, a rotating shaft driven by the electric motor, a screw rotor attached to the rotating shaft and having a plurality of screw grooves on an outer peripheral surface, and a screw groove of the screw rotor. A compression chamber in a space surrounded by the screw groove, the gate rotor and the casing, comprising a single gate rotor rotating with the rotation of the screw rotor, and an electric motor, a rotating shaft, a screw rotor, and a casing containing the gate rotor. The casing divides the inside of the casing into a first space in which a motor is accommodated and fluid flows in from the outside, and a second space on the downstream side of the first space where the compression chamber is located. The suction port that has the partition and communicates the first space and the second space is higher than the height position of the axis of the rotation shaft in the partition. Together provided towards the compression chamber in which is positioned higher than the height position of the axis of the rotating shaft.
 本発明に係る冷凍サイクル装置は、上記のシングルスクリュー圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えたものである。 A refrigeration cycle apparatus according to the present invention includes the single screw compressor, a condenser, a decompression device, and an evaporator.
 本発明によれば、ケーシング内が、外部から流体が流入する第1空間と圧縮室が位置する第2空間とに分離され、第1空間と第2空間とを連通する吸入ポートと圧縮室とが回転軸の軸心の高さ位置よりも上方に位置する構成としたため、液冷媒の圧縮室内への吸入を抑制することが可能である。 According to the present invention, the inside of the casing is separated into the first space into which the fluid flows from the outside and the second space in which the compression chamber is located, and the suction port and the compression chamber communicating the first space and the second space. Is positioned above the height position of the axis of the rotating shaft, so that the suction of the liquid refrigerant into the compression chamber can be suppressed.
本発明の実施の形態1に係るシングルスクリュー圧縮機を備えた冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device provided with the single screw compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るモノゲートローター方式のシングルスクリュー圧縮機の概略断面図である。1 is a schematic cross-sectional view of a monogate rotor type single screw compressor according to Embodiment 1 of the present invention. 図2のA-A概略断面図である。FIG. 3 is a schematic cross-sectional view along AA in FIG. 2. 図2のB-B概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line BB of FIG. 本発明の実施の形態1に係るシングルスクリュー圧縮機の動作フローチャートを示す図である。It is a figure which shows the operation | movement flowchart of the single screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るシングルスクリュー圧縮機の変形例の説明図で、吐出口近傍を示す概略斜視図である。It is explanatory drawing of the modification of the single screw compressor which concerns on Embodiment 1 of this invention, and is a schematic perspective view which shows the discharge outlet vicinity. 本発明の実施の形態2に係るシングルスクリュー圧縮機を備えた冷凍サイクル装置における油戻し運転時の動作フローチャートを示す図である。It is a figure which shows the operation | movement flowchart at the time of the oil return operation | movement in the refrigerating-cycle apparatus provided with the single screw compressor which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係るシングルスクリュー圧縮機を備えた冷凍サイクル装置の冷媒回路図である。なお、図1及び以下に示す図において、同一の符号を付したものは同一又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of a refrigeration cycle apparatus including a single screw compressor according to Embodiment 1 of the present invention. In FIG. 1 and the drawings shown below, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
 冷凍サイクル装置100は、シングルスクリュー圧縮機101と、凝縮器103と、減圧装置104と、蒸発器105とを備え、これらが順に冷媒配管で接続された冷媒回路を備えている。 The refrigeration cycle apparatus 100 includes a single screw compressor 101, a condenser 103, a decompression device 104, and an evaporator 105, and includes a refrigerant circuit in which these are sequentially connected by refrigerant piping.
 シングルスクリュー圧縮機101は、流体としての冷媒を吸込み、その冷媒を圧縮して高温且つ高圧の状態にするものである。シングルスクリュー圧縮機101は、電力供給源(図示せず)から電動機102へ電力供給されることにより駆動される。電動機102は、回転速度が一定な定速機でもよいし、回転速度の変更により運転容量を調整可能に駆動されるインバータ式のものであってもよいが、実施の形態1では定速機を想定している。なお、流体は相変化を伴う冷媒の他、空気であってもよい。 The single screw compressor 101 sucks a refrigerant as a fluid and compresses the refrigerant to a high temperature and high pressure state. The single screw compressor 101 is driven by supplying electric power from an electric power supply source (not shown) to the electric motor 102. The electric motor 102 may be a constant speed machine with a constant rotation speed, or an inverter type that is driven so that the operation capacity can be adjusted by changing the rotation speed. Assumed. Note that the fluid may be air in addition to the refrigerant accompanying the phase change.
 凝縮器103はシングルスクリュー圧縮機101からの吐出冷媒ガスを冷却、凝縮させるものである。減圧装置104は、凝縮器103から流出した冷媒液を絞り膨張させるものであり、電子膨張弁又はキャピラリーチューブ等で構成される。 The condenser 103 cools and condenses the refrigerant gas discharged from the single screw compressor 101. The decompression device 104 squeezes and expands the refrigerant liquid flowing out of the condenser 103, and includes an electronic expansion valve or a capillary tube.
 シングルスクリュー圧縮機101の吸込側には、吸入温度センサ120と、吸入圧力センサ121とが設けられている。吸入温度センサ120は、シングルスクリュー圧縮機101に吸込まれる吸込ガスの温度を検出する。吸入圧力センサは、シングルスクリュー圧縮機101に吸込まれる吸込ガスの圧力を検出する。吸入温度センサ120及び吸入圧力センサ121で検知された検出値は後述の制御装置110に出力される。 A suction temperature sensor 120 and a suction pressure sensor 121 are provided on the suction side of the single screw compressor 101. The suction temperature sensor 120 detects the temperature of the suction gas sucked into the single screw compressor 101. The suction pressure sensor detects the pressure of the suction gas sucked into the single screw compressor 101. Detection values detected by the suction temperature sensor 120 and the suction pressure sensor 121 are output to the control device 110 described later.
 冷凍サイクル装置100には更に、制御装置110を備えている。制御装置110は、減圧装置104の開度制御、後述のスライドバルブ6(図2参照)の位置制御、冷凍サイクル装置100全体の制御を行う。また、制御装置110は、シングルスクリュー圧縮機101の吸入側への液バックを検知し、液バックの検知結果に応じて後述の電磁弁9(図2参照)の開閉制御を行う。制御装置110は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 The refrigeration cycle apparatus 100 further includes a control device 110. The control device 110 performs opening degree control of the decompression device 104, position control of a slide valve 6 (see FIG. 2) described later, and control of the entire refrigeration cycle apparatus 100. Further, the control device 110 detects a liquid back to the suction side of the single screw compressor 101, and performs opening / closing control of a solenoid valve 9 (see FIG. 2) described later according to the detection result of the liquid back. The control device 110 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
(冷媒回路の動作説明)
 次に、実施の形態1の冷凍サイクル装置100の動作について、図1を参照して説明する。
(Explanation of refrigerant circuit operation)
Next, operation | movement of the refrigerating-cycle apparatus 100 of Embodiment 1 is demonstrated with reference to FIG.
 シングルスクリュー圧縮機101は、ガス状の冷媒である冷媒ガスを吸込んで圧縮した後、吐出する。シングルスクリュー圧縮機101から吐出された吐出ガスは、凝縮器103で冷却される。凝縮器103で冷却された冷媒は、減圧装置104で減圧されて膨張する。そして、減圧装置104から流出した冷媒は、蒸発器105で加熱され、冷媒ガスとなる。蒸発器105から流出した冷媒ガスはシングルスクリュー圧縮機101に吸込まれる。 The single screw compressor 101 sucks and compresses refrigerant gas, which is a gaseous refrigerant, and then discharges it. The discharge gas discharged from the single screw compressor 101 is cooled by the condenser 103. The refrigerant cooled by the condenser 103 is decompressed by the decompression device 104 and expands. And the refrigerant | coolant which flowed out from the decompression device 104 is heated with the evaporator 105, and becomes refrigerant gas. The refrigerant gas flowing out of the evaporator 105 is sucked into the single screw compressor 101.
(シングルスクリュー圧縮機)
 以下、本発明の実施の形態1に係るシングルスクリュー圧縮機101について図2~図3を用いて説明する。
(Single screw compressor)
Hereinafter, a single screw compressor 101 according to Embodiment 1 of the present invention will be described with reference to FIGS.
 図2は、本発明の実施の形態1に係るモノゲートローター方式のシングルスクリュー圧縮機の概略断面図である。なお、図2は、設置面に設置したシングルスクリュー圧縮機101を設置面と平行な平面で切断し、切断面を上方から見た概略断面図であり、図2の紙面上下方向は、設置状態のシングルスクリュー圧縮機101の左右方向に相当する。図3は、図2のA-A概略断面図である。図4は、図2のB-B概略断面図である。 FIG. 2 is a schematic cross-sectional view of a monogate rotor type single screw compressor according to Embodiment 1 of the present invention. 2 is a schematic cross-sectional view of the single screw compressor 101 installed on the installation surface cut along a plane parallel to the installation surface, and the cut surface is viewed from above. The vertical direction in FIG. This corresponds to the left-right direction of the single screw compressor 101. FIG. 3 is a schematic cross-sectional view taken along the line AA in FIG. 4 is a schematic cross-sectional view taken along the line BB of FIG.
 このシングルスクリュー圧縮機101は、スクリューローター3を1つ備えたシングルスクリュー圧縮機であって、1枚のゲートローター4を有するモノゲートローター構造を有する。そして、シングルスクリュー圧縮機101は、ケーシング1と、1つのスクリューローター3と、このスクリューローター3に噛み合う1枚のゲートローター4と、スクリューローター3を回転駆動させる電動機102と、スライドバルブ6等とを備えている。ケーシング1は、スクリューローター3、ゲートローター4、電動機102及びスライドバルブ6等を収容するものである。 The single screw compressor 101 is a single screw compressor having one screw rotor 3 and has a monogate rotor structure having one gate rotor 4. The single screw compressor 101 includes a casing 1, one screw rotor 3, one gate rotor 4 meshing with the screw rotor 3, an electric motor 102 that rotationally drives the screw rotor 3, a slide valve 6, and the like. It has. The casing 1 accommodates the screw rotor 3, the gate rotor 4, the electric motor 102, the slide valve 6, and the like.
 ケーシング1内には、略円筒状の空間が形成され、この空間内に略円柱形状のスクリューローター3が配置されている。このスクリューローター3は、一端が冷媒の吸込側(図2の右側)となり、他端が吐出側(図2の左側)となる。スクリューローター3の外周面には、複数の螺旋状のスクリュー溝3aが形成されている。また、スクリューローター3の中心には、回転軸5が回転一体に取り付けられている。回転軸5は、ケーシング1に設けられた軸受5aによって回転自在に支持されている。 In the casing 1, a substantially cylindrical space is formed, and a substantially columnar screw rotor 3 is arranged in this space. One end of the screw rotor 3 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2). A plurality of spiral screw grooves 3 a are formed on the outer peripheral surface of the screw rotor 3. A rotating shaft 5 is attached to the center of the screw rotor 3 so as to rotate together. The rotating shaft 5 is rotatably supported by a bearing 5 a provided in the casing 1.
 また、回転軸5の軸受5aと反対側の端部には電動機102が連結されている。電動機102はケーシング1に内接固定されたステータ102aとステータ102aの内側に配置されたモータローター102bで構成されている。そして、モータローター102bに回転軸5が連結され、スクリューローター3が回転駆動される。 Further, an electric motor 102 is connected to the end of the rotating shaft 5 on the side opposite to the bearing 5a. The electric motor 102 includes a stator 102a that is inscribed and fixed to the casing 1, and a motor rotor 102b that is disposed inside the stator 102a. And the rotating shaft 5 is connected with the motor rotor 102b, and the screw rotor 3 is rotationally driven.
 ゲートローター4は、円板状の形状をしており、外周部には複数の歯4aが形成されている。ゲートローター4は、複数の歯4aがスクリュー溝3aに係合し、スクリューローター3の回転に伴って回転する。そして、ゲートローター4の歯4a、スクリュー溝3a及びケーシング1によって囲まれた空間が圧縮室7となる。 The gate rotor 4 has a disk shape, and a plurality of teeth 4a are formed on the outer periphery. In the gate rotor 4, the plurality of teeth 4 a are engaged with the screw grooves 3 a, and rotates with the rotation of the screw rotor 3. The space surrounded by the teeth 4 a of the gate rotor 4, the screw groove 3 a and the casing 1 becomes the compression chamber 7.
 また、ケーシング1は、その内部空間が、冷媒回路の蒸発器105から低圧のガス冷媒が流入し、電動機102が収容される第1空間31と、第1空間31の下流であって圧縮室7が位置する第2空間32とに、ケーシング1の一部である隔壁1bで分離された構造を有する。ケーシング1は、冷媒回路から低圧のガス冷媒が導入される吸入口(図示せず)と、冷媒回路へ圧縮したガスを吐出する吐出口(図示せず)とを有しており、第1空間31は吸入口(図示せず)に連通し、第2空間32は吐出口(図示せず)に連通している。隔壁1bには第1空間31と第2空間32とを連通する吸入ポート8が貫通形成されており、第1空間31に導入された吸入ガスは、吸入ポート8を介して第2空間32に導入される。つまり、吸入ポート8は、ケーシング1内に流入した冷媒を圧縮室7に導くための流路の一つである。 The casing 1 has an internal space in which a low-pressure gas refrigerant flows from the evaporator 105 of the refrigerant circuit, the first space 31 in which the electric motor 102 is accommodated, and the downstream of the first space 31 in the compression chamber 7. And the second space 32 in which is located is separated by a partition wall 1b which is a part of the casing 1. The casing 1 has a suction port (not shown) through which a low-pressure gas refrigerant is introduced from the refrigerant circuit, and a discharge port (not shown) that discharges compressed gas to the refrigerant circuit. 31 communicates with a suction port (not shown), and the second space 32 communicates with a discharge port (not shown). A suction port 8 that communicates the first space 31 and the second space 32 is formed through the partition wall 1b. The suction gas introduced into the first space 31 enters the second space 32 through the suction port 8. be introduced. That is, the suction port 8 is one of flow paths for guiding the refrigerant flowing into the casing 1 to the compression chamber 7.
 また、ケーシング1には、少なくとも一箇所に、ケーシング1の外部を介して第1空間31と第2空間32とを連通し、第1空間31に溜まった油を第2空間32に供給する配管10が接続されている。また、配管10には配管10の流路を開閉する電磁弁9が設けられている。油はケーシング1の底部に溜まることから、配管10及び電磁弁9は、回転軸5の軸心O1の高さ位置よりも下方に設けられている。 In addition, the casing 1 is connected to the first space 31 and the second space 32 at least at one location via the outside of the casing 1, and the piping that supplies the oil accumulated in the first space 31 to the second space 32. 10 is connected. The pipe 10 is provided with an electromagnetic valve 9 that opens and closes the flow path of the pipe 10. Since oil accumulates at the bottom of the casing 1, the pipe 10 and the electromagnetic valve 9 are provided below the height position of the axis O <b> 1 of the rotating shaft 5.
 また、シングルスクリュー圧縮機101には、運転容量調整用のスライドバルブ6が設けられている。スライドバルブ6は、断面形状が三日月形の棒状に形成されている。ケーシング1の内周面1a側には、スクリューローター3の回転軸5方向に延びるスライド溝1aaが形成されており、このスライド溝1aa内にスライドバルブ6が摺動可能に収納されている。スライドバルブ6の端面には、図示しないロッドが固定され、回転軸5と平行な軸方向に移動可能である。スライドバルブ6は、図示しない専用の駆動装置によって、その位置が調整される。 The single screw compressor 101 is provided with a slide valve 6 for adjusting the operating capacity. The slide valve 6 is formed in a rod shape having a crescent-shaped cross section. A slide groove 1aa extending in the direction of the rotation axis 5 of the screw rotor 3 is formed on the inner peripheral surface 1a side of the casing 1, and a slide valve 6 is slidably accommodated in the slide groove 1aa. A rod (not shown) is fixed to the end face of the slide valve 6 and is movable in the axial direction parallel to the rotary shaft 5. The position of the slide valve 6 is adjusted by a dedicated drive device (not shown).
 ケーシング1内の第2空間32は更に、圧縮室7への冷媒の吸入側となる低圧側と冷媒の吐出側となる高圧側とに区画されており、ケーシング1には、圧縮室7と第2空間32内の吸入側とを連通させるためのバイパス通路(図示せず)が形成されている。そして、スライドバルブ6の移動に伴い、バイパス通路(図示せず)の開口面積が変化するようになっている。すなわち、スライドバルブ6が移動すると、バイパス通路(図示せず)の開口面積が変化し、バイパス通路(図示せず)を通じて吸入側へ送り出される流体(冷媒)の流量が変化する。その結果、圧縮室7で圧縮されて吐出される流体の流量が変化し、シングルスクリュー圧縮機101から吐出される流体の流量、すなわち運転容量が変化するようになっている。 The second space 32 in the casing 1 is further partitioned into a low pressure side that is a refrigerant suction side to the compression chamber 7 and a high pressure side that is a refrigerant discharge side. A bypass passage (not shown) for communicating with the suction side in the space 32 is formed. As the slide valve 6 moves, the opening area of the bypass passage (not shown) changes. That is, when the slide valve 6 moves, the opening area of the bypass passage (not shown) changes, and the flow rate of the fluid (refrigerant) sent to the suction side through the bypass passage (not shown) changes. As a result, the flow rate of the fluid compressed and discharged in the compression chamber 7 changes, and the flow rate of the fluid discharged from the single screw compressor 101, that is, the operating capacity changes.
 次に、本実施の形態1の特徴的な構成について説明する。
 本実施の形態1は、液バック時又は長期運転停止からの起動時等において、液冷媒が圧縮室7内へ吸入されるのを抑制することを目的としたものであり、以下の構成を採用している。すなわち、図3に示したように、吸入ポート8を隔壁1bにおいて回転軸5の軸心O1の高さ位置よりも上方に配置している。冷媒回路の蒸発器105からシングルスクリュー圧縮機101内に液冷媒が流入した場合、液冷媒は自重により第1空間31内の底部に溜まる。このため、隔壁1bのいわば上方に吸入ポート8を設けることで、第1空間31に流入した液冷媒が第2空間32へ流入し難くすることができる。
Next, a characteristic configuration of the first embodiment will be described.
The first embodiment is intended to suppress the liquid refrigerant from being sucked into the compression chamber 7 at the time of liquid back or at the start-up after long-term operation stop, and adopts the following configuration. is doing. That is, as shown in FIG. 3, the suction port 8 is disposed above the height position of the axis O1 of the rotary shaft 5 in the partition wall 1b. When liquid refrigerant flows into the single screw compressor 101 from the evaporator 105 of the refrigerant circuit, the liquid refrigerant accumulates at the bottom in the first space 31 due to its own weight. For this reason, by providing the suction port 8 above the partition 1 b, the liquid refrigerant that has flowed into the first space 31 can be made difficult to flow into the second space 32.
 なお、ここでは、図4に示したように吸入ポート8を回転軸5の周方向に間隔を空けて3箇所に設けた構成を示したが、個数は任意である。また、ここでは、吸入ポート8を、回転軸5の周方向に延びる長孔状としたが、必要な開口断面積を確保していれば、形状は問わない。吸入ポート8の開口断面積は、圧縮室7の押しのけ量、回転軸5の回転速度、動作流体の密度を考慮し、必要な流速を確保できるよう調整される。 In addition, here, as shown in FIG. 4, a configuration in which the suction ports 8 are provided at three positions with intervals in the circumferential direction of the rotating shaft 5 is shown, but the number is arbitrary. Here, the suction port 8 has a long hole shape extending in the circumferential direction of the rotating shaft 5, but the shape is not limited as long as a necessary opening cross-sectional area is secured. The opening cross-sectional area of the suction port 8 is adjusted to ensure a necessary flow rate in consideration of the displacement of the compression chamber 7, the rotational speed of the rotary shaft 5, and the density of the working fluid.
 また、本実施の形態1において、圧縮室7もまた、吸入ポート8と同様に、回転軸5の軸心O1の高さ位置よりも上方に配置している。これは、以下の理由による。第1空間31から第2空間32への液冷媒の流入は、吸入ポート8を上方に設けることで少なくなるが、完全に無くなるわけではない。したがって、第2空間32に流入した液冷媒は第2空間32の底部に溜まる。このため、圧縮室7が回転軸5の軸心O1の高さ位置よりも下方にあると、液冷媒を吸入しやすい。よって、圧縮室7もまた、吸入ポート8と同様に、回転軸5の軸心O1の高さ位置よりも上方に配置している。 In the first embodiment, the compression chamber 7 is also disposed above the height position of the axis O1 of the rotary shaft 5 in the same manner as the suction port 8. This is due to the following reason. The inflow of the liquid refrigerant from the first space 31 to the second space 32 is reduced by providing the suction port 8 upward, but is not completely eliminated. Accordingly, the liquid refrigerant that has flowed into the second space 32 accumulates at the bottom of the second space 32. For this reason, when the compression chamber 7 is below the height position of the axis O1 of the rotation shaft 5, the liquid refrigerant is easily sucked. Therefore, the compression chamber 7 is also disposed above the height position of the axis O <b> 1 of the rotating shaft 5, similarly to the suction port 8.
 なお、圧縮室7を回転軸5の軸心O1の高さ位置よりも上方に配置するにあたっては、ゲートローター4を以下のように配置すればよい。すなわち、ゲートローター4の軸心O2が、スクリューローター3の回転軸5の軸心O1から離間した位置で軸心O1に直交する方向を向くように配置する。また、スクリューローター3の回転軸5を時計の中心と見立てたときに、ゲートローター4の径方向平面が、時計の12時から3時の範囲内を向くようにゲートローター4を配置すれば良い。そのように構成することで回転軸5の軸心O1の高さ位置よりも上方に一つの圧縮室7を形成することができる。なお、ここでは図3に示したようにゲートローター4の径方向平面が時計の3時の方向を向くようにゲートローター4を配置している。 Note that when the compression chamber 7 is disposed above the height position of the axis O1 of the rotary shaft 5, the gate rotor 4 may be disposed as follows. That is, the axial center O2 of the gate rotor 4 is disposed so as to face the direction orthogonal to the axial center O1 at a position separated from the axial center O1 of the rotating shaft 5 of the screw rotor 3. Further, the gate rotor 4 may be arranged so that the radial plane of the gate rotor 4 faces in the range from 12:00 to 3 o'clock of the timepiece when the rotation shaft 5 of the screw rotor 3 is regarded as the center of the timepiece. . With this configuration, one compression chamber 7 can be formed above the height position of the axis O1 of the rotary shaft 5. Here, as shown in FIG. 3, the gate rotor 4 is arranged so that the radial plane of the gate rotor 4 faces the 3 o'clock direction of the watch.
 ところで、第1空間31に流入した冷媒は、回転軸5の軸受5a等の摺動部を潤滑するための油を含んでおり、第1空間31の底部には油も溜まる。よって、第1空間31の底部に溜まった油を第2空間32に供給して、摺動部で油切れを起こさないようにする必要がある。そこで、第1空間31の底部に溜まった油を配管10を通じて第2空間32に供給するが、シングルスクリュー圧縮機101が液バック状態にあるときに電磁弁9を開とすると、配管10を通じて液冷媒が第2空間32に流入し、圧縮室7に液冷媒が吸入される可能性がある。よって、本実施の形態1では、液バック状態にあるときには電磁弁9を閉とし、液バック状態ではないときに開とする制御を行うようにしている。 Incidentally, the refrigerant that has flowed into the first space 31 contains oil for lubricating the sliding portion such as the bearing 5 a of the rotating shaft 5, and the oil also collects at the bottom of the first space 31. Therefore, it is necessary to supply oil accumulated at the bottom of the first space 31 to the second space 32 so that the sliding portion does not run out of oil. Therefore, the oil accumulated at the bottom of the first space 31 is supplied to the second space 32 through the pipe 10. When the electromagnetic valve 9 is opened when the single screw compressor 101 is in the liquid back state, the liquid is passed through the pipe 10. There is a possibility that the refrigerant flows into the second space 32 and the liquid refrigerant is sucked into the compression chamber 7. Therefore, in the first embodiment, control is performed so that the electromagnetic valve 9 is closed when the liquid back state is set, and is opened when the liquid back state is not set.
(動作説明)
 図5は、本発明の実施の形態1に係るシングルスクリュー圧縮機の動作フローチャートを示す図である。以下、図5を参照してシングルスクリュー圧縮機101の動作を説明する。
 まず、制御装置110は、運転容量を最小にしてシングルスクリュー圧縮機101を起動する(ステップS1)。これは、起動時の電動機102に対する負荷を小さくする意図であり、通常の制御である。ここで、運転容量を最小にするには、圧縮室7から吸入側へのバイパス通路の開口面積が最大になるようにスライドバルブ6の位置を調整する。つまり、スライドバルブ6の位置を調整できる範囲において、シングルスクリュー圧縮機101の押しのけ量が最小になる位置にスライドバルブ6の位置を調整し、調整後にシングルスクリュー圧縮機101を起動させる。
(Description of operation)
FIG. 5 is a diagram showing an operation flowchart of the single screw compressor according to Embodiment 1 of the present invention. Hereinafter, the operation of the single screw compressor 101 will be described with reference to FIG.
First, the control device 110 activates the single screw compressor 101 with the operation capacity minimized (step S1). This is intended to reduce the load on the motor 102 at the time of startup, and is a normal control. Here, in order to minimize the operating capacity, the position of the slide valve 6 is adjusted so that the opening area of the bypass passage from the compression chamber 7 to the suction side is maximized. That is, within the range in which the position of the slide valve 6 can be adjusted, the position of the slide valve 6 is adjusted to a position where the displacement amount of the single screw compressor 101 is minimized, and the single screw compressor 101 is started after the adjustment.
 また、起動時には電磁弁9を閉としておく(ステップS1)。これは、例えば長期運転停止後の起動時等には、第1空間31に液冷媒が溜まっている可能性があることから、配管10を通じて液冷媒が第2空間32に流入するのを防止する意図である。 Also, the solenoid valve 9 is closed at the time of activation (step S1). This prevents liquid refrigerant from flowing into the second space 32 through the pipe 10 because the liquid refrigerant may be accumulated in the first space 31 at the time of startup after a long-term operation stop, for example. Is intention.
 そして、電動機102の回転速度が設定回転速度に到達すると(ステップS2)、冷媒回路の利用側の負荷に応じた運転容量で運転を行う(ステップS3)。すなわち、制御装置110は、利用側の負荷に応じた運転容量となるように、スライドバルブ6の位置を調整する。 When the rotation speed of the electric motor 102 reaches the set rotation speed (step S2), the operation is performed with the operation capacity corresponding to the load on the use side of the refrigerant circuit (step S3). That is, the control device 110 adjusts the position of the slide valve 6 so as to obtain an operation capacity corresponding to the load on the use side.
 そして、電動機102の回転速度が設定回転速度に到達後、つまり起動時を過ぎた定常運転中は、制御装置110は液バック検知結果に応じて電磁弁9の開閉制御を行う(ステップS4~ステップS6)。以下、具体的に説明する。 Then, after the rotational speed of the electric motor 102 reaches the set rotational speed, that is, during the steady operation after the start-up time, the control device 110 performs opening / closing control of the electromagnetic valve 9 according to the liquid back detection result (step S4 to step S4). S6). This will be specifically described below.
 制御装置110は、液バックが発生しているかを判断し(ステップS4)、液バックが発生していると判断した場合、第1空間31から第2空間32へ配管10を介した液冷媒の流入を避けるため、電磁弁9を閉とする(ステップS5)。ここで、液バックが発生しているかどうかの判断は、吸入ガス温度の過熱度に基づいて行う。すなわち、吸入ガス温度の過熱度が予め設定した設定値未満の場合、液バックが発生していると判断する。一方、吸入ガス温度の過熱度が設定値以上の状態が予め設定した設定時間継続している場合、液バックは発生していないと判断する。設定値は0℃としてもよいし、安全側の制御とするために0℃超の温度としてもよく、例えば3℃としてもよい。なお、吸入ガス温度の過熱度は、吸入温度センサ120の検出値から蒸発温度を引くことにより求められる。また、蒸発温度は吸入圧力センサ121の圧力を飽和温度換算することにより求められる。 The control device 110 determines whether or not a liquid back has occurred (step S4). If it is determined that a liquid back has occurred, the controller 110 transfers the liquid refrigerant from the first space 31 to the second space 32 via the pipe 10. In order to avoid inflow, the electromagnetic valve 9 is closed (step S5). Here, whether or not the liquid back has occurred is determined based on the degree of superheat of the intake gas temperature. That is, when the degree of superheating of the intake gas temperature is less than a preset value, it is determined that a liquid back has occurred. On the other hand, when the state in which the superheat degree of the intake gas temperature is equal to or higher than the set value continues for a preset time, it is determined that no liquid back has occurred. The set value may be 0 ° C., or may be a temperature higher than 0 ° C., for example, 3 ° C. for safe control. Note that the degree of superheating of the intake gas temperature is obtained by subtracting the evaporation temperature from the detected value of the intake temperature sensor 120. The evaporation temperature is obtained by converting the pressure of the suction pressure sensor 121 into a saturation temperature.
 一方、制御装置110は、液バックが発生していないと判断した場合、電磁弁9を開とする(ステップS6)。 On the other hand, when it is determined that the liquid back has not occurred, the control device 110 opens the electromagnetic valve 9 (step S6).
 ステップS5又はステップS6により電磁弁9を制御した後、再びステップS4に戻り同様の処理を繰り返す。よって、液バックが発生している間は、電磁弁9は閉状態に維持され、液バックが発生していない間は、電磁弁9は開状態に維持されることになる。 After controlling the solenoid valve 9 by step S5 or step S6, it returns to step S4 again and repeats the same process. Therefore, the electromagnetic valve 9 is maintained in the closed state while the liquid back is generated, and the electromagnetic valve 9 is maintained in the open state while the liquid back is not generated.
 ここで、シングルスクリュー圧縮機101が定常運転し、液バックが発生していない状況にあるなか、例えば冷媒回路への冷媒の追加充填が行われる等、液バックが生じる事象が発生した場合について考える。この場合、吸入ガス温度の過熱度が小さくなってゆき、設定値未満に下がる。よって、ステップS4で液バックが発生していると判断されることになり、電磁弁9は開から閉に切り替えられる。そして、冷媒の追加充填が終了すると、吸入ガス温度の過熱度が上昇する。冷媒の追加充填直後は吸入ガス温度の過熱度が安定せずに上下変動する可能性があるが、次第に安定する。吸入ガス温度の過熱度が設定時間継続して安定することで、ステップS4で液バックが発生していない、と判断され、電磁弁9は閉から開に切り替えられる。 Here, consider a case where an event that causes liquid back occurs, for example, when the single screw compressor 101 is in steady operation and no liquid back is generated, for example, the refrigerant circuit is additionally charged with refrigerant. . In this case, the degree of superheating of the intake gas temperature decreases and falls below the set value. Therefore, it is determined in step S4 that a liquid back has occurred, and the solenoid valve 9 is switched from open to closed. When the additional charging of the refrigerant is completed, the degree of superheat of the intake gas temperature increases. Immediately after the additional charging of the refrigerant, the superheat degree of the intake gas temperature may fluctuate up and down without being stable, but gradually becomes stable. When the degree of superheating of the intake gas temperature is stabilized for a set time, it is determined in step S4 that no liquid back has occurred, and the solenoid valve 9 is switched from closed to open.
 以上のようにして液バックが発生していない状態で電磁弁9が開とされると、第1空間31から第2空間32に配管10を通じて吸入ガスが流れ、吸入ガスの流れに油のミストが巻き込まれ、油が圧縮室7内に冷媒と共に吸入される。そして、シングルスクリュー圧縮機101内に吸込まれた油ミストは、圧縮ガスと共にシングルスクリュー圧縮機101に内蔵された油分離器(図示せず)内に流れてゆく。油分離器(図示せず)で冷媒から分離された油は、シングルスクリュー圧縮機101内の摺動部に給油され、油を循環させることができる。 As described above, when the solenoid valve 9 is opened in a state where no liquid back is generated, the suction gas flows from the first space 31 to the second space 32 through the pipe 10, and the oil mist is added to the flow of the suction gas. And oil is sucked into the compression chamber 7 together with the refrigerant. Then, the oil mist sucked into the single screw compressor 101 flows into the oil separator (not shown) built in the single screw compressor 101 together with the compressed gas. The oil separated from the refrigerant by an oil separator (not shown) is supplied to the sliding part in the single screw compressor 101, and the oil can be circulated.
(実施の形態1の効果)
 以上説明したように、実施の形態1によれば、吸入ポート8を、回転軸5の軸心O1の高さ位置よりも上方に設けている。このため、液バック時又は長期運転停止からの起動時に第1空間31に液冷媒が溜まっていても、第1空間31内の液冷媒が圧縮室7が位置する第2空間32に流入することを抑制できる。そして、第2空間32には液冷媒の流入が抑えられつつも、幾らかは流入するが、圧縮室7も吸入ポート8と同様に回転軸5の軸心O1の高さ位置よりも上方に位置しているため、液冷媒が圧縮室7に吸入されることを抑制できる。その結果、液圧縮による圧縮室7の内圧上昇を防止できるため、回転軸5の撓みを小さく維持し、スクリューローター3の外周とケーシング1の内周との接触を防止でき、高い信頼性を確保できる効果がある。
(Effect of Embodiment 1)
As described above, according to the first embodiment, the suction port 8 is provided above the height position of the axis O1 of the rotation shaft 5. For this reason, even if the liquid refrigerant is accumulated in the first space 31 at the time of liquid back or at the start from the long-term operation stop, the liquid refrigerant in the first space 31 flows into the second space 32 where the compression chamber 7 is located. Can be suppressed. While the flow of the liquid refrigerant is suppressed to the second space 32 while being somewhat suppressed, the compression chamber 7 is also located above the height position of the axis O1 of the rotary shaft 5 like the suction port 8. Therefore, the liquid refrigerant can be prevented from being sucked into the compression chamber 7. As a result, an increase in the internal pressure of the compression chamber 7 due to liquid compression can be prevented, so that the deflection of the rotating shaft 5 can be kept small, and the contact between the outer periphery of the screw rotor 3 and the inner periphery of the casing 1 can be prevented, thereby ensuring high reliability. There is an effect that can be done.
 また、ケーシング1内は隔壁1bで第1空間31と第2空間32とに分離されるため、第1空間31内の油を第2空間32に供給する必要があり、これをケーシング1外に設けた配管10で行える。そして、配管10に設けた電磁弁9の開閉タイミングを、液バックが発生しているかどうかで制御するようにしており、液バックが発生している場合には電磁弁9を閉とするようにした。このため、配管10を介して液冷媒が第1空間31から第2空間32に流入することを防止でき、結果として、圧縮室7への液冷媒の吸入を抑制できる。 Further, since the inside of the casing 1 is separated into the first space 31 and the second space 32 by the partition wall 1b, it is necessary to supply the oil in the first space 31 to the second space 32. This can be done with the pipe 10 provided. And the opening / closing timing of the electromagnetic valve 9 provided in the pipe 10 is controlled by whether or not the liquid back is generated, and when the liquid back is generated, the electromagnetic valve 9 is closed. did. For this reason, it can prevent that a liquid refrigerant flows in into the 2nd space 32 from the 1st space 31 via the piping 10, As a result, the suction | inhalation of the liquid refrigerant to the compression chamber 7 can be suppressed.
 そして、液バックが発生していない場合に電磁弁9を開とするようにしており、これにより吸入ガス冷媒と共に油ミストを第1空間31から第2空間32に流して圧縮室7内に吸い込ませることがきる。圧縮室7内に吸い込まれた油は圧縮室7外に冷媒ガスと共に流出してゆくが、シングルスクリュー圧縮機101内の油分離器(図示せず)内で再度、油を捕捉でき、圧縮室7へ油を返すことができる。それ故、摺動部を潤滑するための給油に有効利用できる効果がある。 When the liquid back is not generated, the electromagnetic valve 9 is opened, so that the oil mist flows along with the suction gas refrigerant from the first space 31 to the second space 32 and is sucked into the compression chamber 7. I can make it. The oil sucked into the compression chamber 7 flows out of the compression chamber 7 together with the refrigerant gas. However, the oil can be captured again in an oil separator (not shown) in the single screw compressor 101, and the compression chamber The oil can be returned to 7. Therefore, there is an effect that can be effectively used for lubrication for lubricating the sliding portion.
 また、起動時には電磁弁9を閉としているため、起動時に液バックが生じる場合及び第1空間31内に液冷媒が貯留している場合に、配管10を通じて液冷媒が第1空間31から第2空間32に流入することを防止できる。なお、ここでは、起動時には液バックの発生の有無にかかわらず電磁弁9を閉とする制御としているが、この制御は、長期運転停止後の起動を視野に入れた安全側の制御とする意図である。例えば短時間停止後の起動の場合には、起動時に液バックの発生の有無を判断し、液バックが発生していないと判断した場合には電磁弁9を開とする制御としてもよい。 Further, since the electromagnetic valve 9 is closed at the time of startup, when the liquid back is generated at the time of startup and when the liquid refrigerant is stored in the first space 31, the liquid refrigerant passes through the pipe 10 from the first space 31 to the second time. Inflow into the space 32 can be prevented. Note that here, the solenoid valve 9 is controlled to be closed regardless of the occurrence of liquid back at the time of startup, but this control is intended to be safety-side control with a view to startup after long-term operation stoppage. It is. For example, in the case of activation after a short stop, it may be determined to determine whether or not a liquid back has occurred at the time of activation, and to open the solenoid valve 9 when it is determined that no liquid back has occurred.
 以上より、油をシングルスクリュー圧縮機101内で循環させながら、圧縮室7内への液冷媒の吸入を抑制できる、信頼性を確保することが可能なシングルスクリュー圧縮機101を得ることができる。 From the above, it is possible to obtain the single screw compressor 101 that can suppress the suction of the liquid refrigerant into the compression chamber 7 while circulating oil in the single screw compressor 101 and can ensure reliability.
(変形例)
 シングルスクリュー圧縮機101は、図1~図3に示した構成に対して、以下のような変形を加えても良い。この場合も同様の効果を得ることができる。
(Modification)
The single screw compressor 101 may be modified as follows with respect to the configuration shown in FIGS. In this case, the same effect can be obtained.
 本実施の形態1のシングルスクリュー圧縮機101は、一定速の電動機102を用い、スライドバルブ6によって圧縮室7内に吸入される冷媒ガス量の調整、すなわち運転容量の制御を行っていたが、運転容量の制御方法はこの方法に限られない。他に例えば、運転容量制御を、スライドバルブ6ではなく、インバータ方式の電動機102を用いた回転速度制御によって行うようにしてもよい。 The single screw compressor 101 according to the first embodiment uses a constant speed electric motor 102 to adjust the amount of refrigerant gas sucked into the compression chamber 7 by the slide valve 6, that is, to control the operation capacity. The operating capacity control method is not limited to this method. In addition, for example, the operation capacity control may be performed by rotation speed control using the inverter type electric motor 102 instead of the slide valve 6.
 また、このようにインバータ方式の電動機102を用いる場合には、圧縮室7からの吐出のタイミングを調整して容積比を可変とするスライドバルブである可変VI弁を用いる。ここで、容積比とは、吸入完了時(圧縮開始時)の圧縮室7の容積と吐出寸前の圧縮室7との容積との比を示すものである。 Further, when the inverter type electric motor 102 is used as described above, a variable VI valve which is a slide valve that adjusts the timing of discharge from the compression chamber 7 and makes the volume ratio variable is used. Here, the volume ratio indicates the ratio between the volume of the compression chamber 7 at the completion of suction (at the start of compression) and the volume of the compression chamber 7 just before the discharge.
 図6は、本発明の実施の形態1に係るシングルスクリュー圧縮機の変形例の説明図で、吐出口近傍を示す概略斜視図である。
 可変VI弁21は、吐出口11の一部を形成しており、ロッド21a及び駆動装置(図示せず)に連結され、スクリューローター3の回転軸方向に移動可能となっている。そして、可変VI弁21が吸入側(図5の紙面奥側)に移動すると、容積比が小さくなり、可変VI弁21が吐出側(図5の紙面手前側)に移動すると、容積比が大きくなる。また、電動機102は、インバータ制御により回転速度を調整することができるように構成されている。これにより、シングルスクリュー圧縮機101の運転容量、すなわちシングルスクリュー圧縮機101から吐出される冷媒の流量は、冷媒回路の利用側の負荷に応じて制御される。その際、可変VI弁21は、利用側の負荷に応じて設定される運転容量に対して、最適の圧縮効率が得られる容積比(圧縮比)になるように制御される。
FIG. 6 is an explanatory view of a modification of the single screw compressor according to Embodiment 1 of the present invention, and is a schematic perspective view showing the vicinity of the discharge port.
The variable VI valve 21 forms a part of the discharge port 11, is connected to a rod 21 a and a drive device (not shown), and is movable in the direction of the rotation axis of the screw rotor 3. When the variable VI valve 21 moves to the suction side (the back side in FIG. 5), the volume ratio decreases, and when the variable VI valve 21 moves to the discharge side (the front side in FIG. 5), the volume ratio increases. Become. Further, the electric motor 102 is configured to be able to adjust the rotation speed by inverter control. Thereby, the operating capacity of the single screw compressor 101, that is, the flow rate of the refrigerant discharged from the single screw compressor 101 is controlled according to the load on the usage side of the refrigerant circuit. At that time, the variable VI valve 21 is controlled so as to have a volume ratio (compression ratio) at which an optimum compression efficiency is obtained with respect to the operation capacity set according to the load on the use side.
 この変形例における電磁弁9の制御は図5に示したフローチャートと同様であり、ステップS1とステップS3の運転容量の調整が異なる。すなわち、ステップS1において、電動機102の回転速度を運転可能範囲の最低回転速度にすると共に、可変VI弁21の位置を調整して、容積比が、容積比の設定可能範囲の下限容積比となるようにする。また、ステップS3において、電動機102の回転速度を、利用側の負荷に応じた回転速度に調整すると共に、運転される圧力比に応じ、エネルギー効率が高くなるように可変VI弁21の位置を調整する。 The control of the electromagnetic valve 9 in this modification is the same as the flowchart shown in FIG. 5, and the adjustment of the operation capacity in step S1 and step S3 is different. That is, in step S1, the rotational speed of the electric motor 102 is set to the lowest rotational speed in the operable range, and the position of the variable VI valve 21 is adjusted, so that the volume ratio becomes the lower limit volume ratio of the volume ratio settable range. Like that. In step S3, the rotational speed of the electric motor 102 is adjusted to a rotational speed corresponding to the load on the use side, and the position of the variable VI valve 21 is adjusted to increase energy efficiency according to the operating pressure ratio. To do.
実施の形態2.
 実施の形態2は、図1に示した冷凍サイクル装置100の蒸発器105に満液式蒸発器を用いた構成としたものである。その他の構成は実施の形態1と同様である。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2. FIG.
In the second embodiment, a full liquid evaporator is used as the evaporator 105 of the refrigeration cycle apparatus 100 shown in FIG. Other configurations are the same as those of the first embodiment. The following description will focus on the differences of the second embodiment from the first embodiment. Configurations not described in the second embodiment are the same as those in the first embodiment.
 シングルスクリュー圧縮機101内の油分離器(図示せず)で冷媒と分離できなかった油は、シングルスクリュー圧縮機101外の冷媒回路内に流出し、満液式蒸発器105内に貯留されていく。このため、満液式蒸発器105を用いた冷凍サイクル装置100では、シングルスクリュー圧縮機101内の摺動部の潤滑に必要な油量を確保するため、満液式蒸発器105内の油をシングルスクリュー圧縮機101内に返す必要がある。そこで、満液式蒸発器105内の油をシングルスクリュー圧縮機101内に返油する油戻し運転を行う。 Oil that could not be separated from the refrigerant by an oil separator (not shown) in the single screw compressor 101 flows out into the refrigerant circuit outside the single screw compressor 101 and is stored in the full liquid evaporator 105. Go. For this reason, in the refrigeration cycle apparatus 100 using the full liquid evaporator 105, the oil in the full liquid evaporator 105 is used to secure the amount of oil necessary for lubrication of the sliding portion in the single screw compressor 101. It needs to be returned into the single screw compressor 101. Therefore, an oil return operation is performed in which the oil in the full liquid evaporator 105 is returned to the single screw compressor 101.
 液冷媒はガス冷媒に比べて油を多く含んでいるため、満液式蒸発器105内の油をシングルスクリュー圧縮機101内に返油するにあたっては、液冷媒をシングルスクリュー圧縮機101に流入させることで、容易に効率良く油をシングルスクリュー圧縮機101に戻すことができる。そこで、油戻し運転では、シングルスクリュー圧縮機101に吸入される吸入ガスの温度を、満液式蒸発器105における冷媒の飽和温度である蒸発温度まで下げて吸入ガス冷媒を液冷媒にし、満液式蒸発器105内の油を液冷媒と合わせてシングルスクリュー圧縮機101内に戻す運転を行う。なお、吸入ガス温度を蒸発温度まで下げるには、減圧装置104としての膨張弁の開度を広げればよい。 Since the liquid refrigerant contains more oil than the gas refrigerant, the liquid refrigerant flows into the single screw compressor 101 when returning the oil in the full liquid evaporator 105 into the single screw compressor 101. Thus, the oil can be easily and efficiently returned to the single screw compressor 101. Therefore, in the oil return operation, the temperature of the suction gas sucked into the single screw compressor 101 is lowered to the evaporation temperature that is the saturation temperature of the refrigerant in the full-liquid evaporator 105 to make the suction gas refrigerant a liquid refrigerant. The operation of returning the oil in the evaporator 105 to the single screw compressor 101 together with the liquid refrigerant is performed. In order to lower the intake gas temperature to the evaporation temperature, the opening of the expansion valve as the decompression device 104 may be increased.
 油戻し運転時のシングルスクリュー圧縮機101の回転速度は、シングルスクリュー圧縮機101の運転可能な最大回転速度より低い回転速度とする。これは、液冷媒が急激にシングルスクリュー圧縮機101内に戻ることを防止する目的である。 The rotational speed of the single screw compressor 101 during the oil return operation is lower than the maximum rotational speed at which the single screw compressor 101 can be operated. This is for the purpose of preventing the liquid refrigerant from suddenly returning into the single screw compressor 101.
 なお、油戻し運転時には、満液式蒸発器105からシングルスクリュー圧縮機101内に液冷媒が戻る液バック状態となる。よって、シングルスクリュー圧縮機101が、液冷媒が直接、圧縮室7内に流入する構成であると、液圧縮に起因するシングルスクリュー圧縮機101の信頼性低下を招く。しかし、ここで用いるシングルスクリュー圧縮機101は、上述したように、液バックが発生しても、その液冷媒が圧縮室7に直接流入することを抑制する構造であるため、信頼性を損ねることはない。 In the oil return operation, the liquid refrigerant returns from the full liquid evaporator 105 into the single screw compressor 101. Therefore, when the single screw compressor 101 has a configuration in which the liquid refrigerant flows directly into the compression chamber 7, the reliability of the single screw compressor 101 due to liquid compression is reduced. However, as described above, the single screw compressor 101 used here has a structure that suppresses the liquid refrigerant from directly flowing into the compression chamber 7 even when a liquid back occurs, and thus the reliability is impaired. There is no.
 実施の形態2の動作について説明する。実施の形態2の冷凍サイクル装置100は、シングルスクリュー圧縮機101の起動時及び定常運転中、実施の形態1、2と同様に、図5に示したフローチャートによる動作を行い、油戻し運転時には、次の図7に示す動作を行う。 The operation of the second embodiment will be described. The refrigeration cycle apparatus 100 according to the second embodiment performs the operation according to the flowchart shown in FIG. 5 in the same manner as in the first and second embodiments when starting the single screw compressor 101 and during the steady operation. The following operation shown in FIG. 7 is performed.
 図7は、本発明の実施の形態2に係るシングルスクリュー圧縮機を備えた冷凍サイクル装置における油戻し運転時の動作フローチャートを示す図である。
 制御装置110は、油戻し運転中であると判断すると(ステップS11)、電磁弁9を閉にする(ステップS12)。これにより、液冷媒が圧縮室7に流入することを抑制できる。そして、制御装置110は、油戻し運転が終了し、且つ液バックが発生していないと判断すると(ステップS13)、電磁弁9を開にする(ステップS14)。
FIG. 7 is a diagram showing an operation flowchart at the time of oil return operation in the refrigeration cycle apparatus including the single screw compressor according to Embodiment 2 of the present invention.
When determining that the oil return operation is being performed (step S11), the control device 110 closes the electromagnetic valve 9 (step S12). Thereby, liquid refrigerant can be prevented from flowing into the compression chamber 7. When the controller 110 determines that the oil return operation is finished and no liquid back has occurred (step S13), the controller 110 opens the electromagnetic valve 9 (step S14).
(実施の形態2の効果)
 実施の形態2では、実施の形態1と同様の効果が得られると共に、油戻し運転において液冷媒の状態で吸入冷媒をシングルスクリュー圧縮機101に流入させるようにしたので、シングルスクリュー圧縮機101内に油を容易に戻すことができる。
(Effect of Embodiment 2)
In the second embodiment, the same effect as in the first embodiment is obtained, and the suction refrigerant is caused to flow into the single screw compressor 101 in the state of liquid refrigerant in the oil return operation. The oil can be easily returned to.
 そして、油戻し運転中は電磁弁9を閉にすることで、配管10を介した第2空間32への液冷媒の流入を防止できる。それ故、シングルスクリュー圧縮機101の信頼性を確保しつつ、満液式蒸発器105からシングルスクリュー圧縮機101内に油を容易に戻すことができる効果がある。 And by closing the solenoid valve 9 during the oil return operation, the liquid refrigerant can be prevented from flowing into the second space 32 via the pipe 10. Therefore, there is an effect that oil can be easily returned from the full liquid evaporator 105 into the single screw compressor 101 while ensuring the reliability of the single screw compressor 101.
 1 ケーシング、1a 内周面、1aa スライド溝、1b 隔壁、3 スクリューローター、3a スクリュー溝、4 ゲートローター、4a 歯、5 回転軸、5a 軸受、6 スライドバルブ、7 圧縮室、8 吸入ポート、9 電磁弁、10 配管、11 吐出口、21 可変VI弁、21a ロッド、31 第1空間、32 第2空間、100 冷凍サイクル装置、101 シングルスクリュー圧縮機、102 電動機、102a ステータ、102b モータローター、103 凝縮器、104 減圧装置、105 蒸発器(満液式蒸発器)、110 制御装置、120 吸入温度センサ、121 吸入圧力センサ、O1 軸心、O2 軸心。 1 casing, 1a inner peripheral surface, 1aa slide groove, 1b partition wall, 3 screw rotor, 3a screw groove, 4 gate rotor, 4a teeth, 5 rotating shaft, 5a bearing, 6 slide valve, 7 compression chamber, 8 intake port, 9 Solenoid valve, 10 pipe, 11 discharge port, 21 variable VI valve, 21a rod, 31 1st space, 32 2nd space, 100 refrigeration cycle device, 101 single screw compressor, 102 electric motor, 102a stator, 102b motor rotor, 103 Condenser, 104 decompression device, 105 evaporator (full liquid evaporator), 110 control device, 120 suction temperature sensor, 121 suction pressure sensor, O1 axis, O2 axis.

Claims (9)

  1.  電動機と、
     前記電動機によって駆動される回転軸と、
     前記回転軸に取り付けられ、複数のスクリュー溝を外周面に有するスクリューローターと、
     前記スクリューローターの前記スクリュー溝と係合し、前記スクリューローターの回転に伴って回転する1枚のゲートローターと、
     前記電動機、前記回転軸、前記スクリューローター及び前記ゲートローターを収容するケーシングとを備え、
     前記スクリュー溝、前記ゲートローター及び前記ケーシングで囲まれた空間で圧縮室を構成しており、
     前記ケーシングは、前記ケーシング内を、前記電動機を収容し、外部から流体が流入する第1空間と、前記第1空間の下流側であって前記圧縮室が位置する第2空間とに分離する隔壁を有し、
     前記第1空間と前記第2空間とを連通する吸入ポートが前記隔壁において前記回転軸の軸心の高さ位置よりも上方に設けられると共に、前記圧縮室が前記回転軸の軸心の高さ位置よりも上方に位置しているシングルスクリュー圧縮機。
    An electric motor,
    A rotating shaft driven by the electric motor;
    A screw rotor attached to the rotating shaft and having a plurality of screw grooves on the outer peripheral surface;
    One gate rotor that engages with the screw groove of the screw rotor and rotates as the screw rotor rotates;
    A casing for housing the electric motor, the rotating shaft, the screw rotor, and the gate rotor;
    A space surrounded by the screw groove, the gate rotor and the casing constitutes a compression chamber,
    The casing is a partition that accommodates the electric motor and separates the casing into a first space into which a fluid flows from the outside and a second space on the downstream side of the first space where the compression chamber is located. Have
    A suction port that communicates the first space and the second space is provided above the height position of the axis of the rotary shaft in the partition wall, and the compression chamber is the height of the axis of the rotary shaft. Single screw compressor located above the position.
  2.  前記ゲートローターは、自身の軸心が前記スクリューローターの前記回転軸の軸心から離間して直交する方向を向くように配置され、且つ、前記スクリューローターの前記回転軸を時計の中心と見立てたときに前記ゲートローターの径方向平面が前記時計の12時から3時の範囲内を向くように配置されている請求項1記載のシングルスクリュー圧縮機。 The gate rotor is disposed such that its own axis is oriented in a direction perpendicular to the axis of the rotation axis of the screw rotor, and the rotation axis of the screw rotor is regarded as the center of a watch. The single screw compressor according to claim 1, wherein the gate rotor is arranged so that a radial plane of the gate rotor sometimes faces within a range from 12 o'clock to 3 o'clock of the timepiece.
  3.  前記回転軸の軸心の高さ位置よりも下方に少なくとも一つ設けられ、前記第1空間と前記第2空間とを前記ケーシングの外部を介して連通し、前記第1空間内の油を前記第2空間に供給する配管と、
     前記配管に設けられ、前記配管の流路を開閉する電磁弁とを備えた請求項1又は請求項2記載のシングルスクリュー圧縮機。
    At least one is provided below the height position of the axis of the rotating shaft, the first space and the second space are communicated via the outside of the casing, and the oil in the first space is Piping to be supplied to the second space;
    The single screw compressor according to claim 1, further comprising an electromagnetic valve provided in the pipe and opening and closing a flow path of the pipe.
  4.  前記電磁弁は、前記シングルスクリュー圧縮機への液バックが発生していない場合に開、液バックが発生している場合に閉とされる請求項3記載のシングルスクリュー圧縮機。 The single screw compressor according to claim 3, wherein the solenoid valve is opened when a liquid back to the single screw compressor is not generated, and is closed when a liquid back is generated.
  5.  起動時には前記電磁弁を閉とする請求項3記載のシングルスクリュー圧縮機。 4. The single screw compressor according to claim 3, wherein the solenoid valve is closed at the time of startup.
  6.  請求項1~請求項5の何れか一項に記載のシングルスクリュー圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the single screw compressor according to any one of claims 1 to 5, a condenser, a decompression device, and an evaporator.
  7.  前記電磁弁を制御する制御装置を備え、
     前記制御装置は、定常運転中、前記シングルスクリュー圧縮機の吸入ガス温度の過熱度が設定値未満の場合、前記電磁弁を閉とし、前記過熱度が前記設定値以上の状態が設定時間継続した場合、前記電磁弁を開とする請求項4に従属する請求項6記載の冷凍サイクル装置。
    A control device for controlling the electromagnetic valve;
    When the degree of superheat of the intake gas temperature of the single screw compressor is less than a set value during steady operation, the control device closes the solenoid valve, and the state where the degree of superheat is equal to or greater than the set value continues for a set time. The refrigeration cycle apparatus according to claim 6, which is dependent on claim 4, wherein the electromagnetic valve is opened.
  8.  前記蒸発器は満液式蒸発器である請求項6又は請求項7記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6 or 7, wherein the evaporator is a full liquid evaporator.
  9.  前記制御装置は、前記減圧装置を制御して吸入ガス温度を前記満液式蒸発器における冷媒の飽和温度まで下げる油戻し運転中、前記電磁弁を閉、前記油戻し運転が終了し、且つ液バックが発生していない場合に開とする請求項7に従属する請求項8記載の冷凍サイクル装置。 The control device controls the pressure reducing device to close the solenoid valve during the oil return operation for lowering the suction gas temperature to the saturation temperature of the refrigerant in the full liquid evaporator, the oil return operation is completed, and the liquid return operation is completed. The refrigeration cycle apparatus according to claim 8, which is dependent on claim 7 and is opened when no back is generated.
PCT/JP2016/069131 2016-06-28 2016-06-28 Single screw compressor and refrigeration cycle device WO2018003015A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/069131 WO2018003015A1 (en) 2016-06-28 2016-06-28 Single screw compressor and refrigeration cycle device
TW105135850A TWI639770B (en) 2016-06-28 2016-11-04 Single screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069131 WO2018003015A1 (en) 2016-06-28 2016-06-28 Single screw compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018003015A1 true WO2018003015A1 (en) 2018-01-04

Family

ID=60786612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069131 WO2018003015A1 (en) 2016-06-28 2016-06-28 Single screw compressor and refrigeration cycle device

Country Status (2)

Country Link
TW (1) TWI639770B (en)
WO (1) WO2018003015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574279A (en) * 2019-04-19 2021-10-29 大金工业株式会社 Screw compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325626A (en) * 1998-05-11 1999-11-26 Hitachi Ltd Oil recovery device
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325626A (en) * 1998-05-11 1999-11-26 Hitachi Ltd Oil recovery device
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574279A (en) * 2019-04-19 2021-10-29 大金工业株式会社 Screw compressor
US20220034319A1 (en) * 2019-04-19 2022-02-03 Daikin Industries, Ltd. Screw compressor
EP3933205A4 (en) * 2019-04-19 2022-05-11 Daikin Industries, Ltd. Screw compressor
US11913452B2 (en) 2019-04-19 2024-02-27 Daikin Industries, Ltd. Screw compressor
CN113574279B (en) * 2019-04-19 2024-03-29 大金工业株式会社 Screw compressor

Also Published As

Publication number Publication date
TWI639770B (en) 2018-11-01
TW201800668A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
US10378539B2 (en) System including high-side and low-side compressors
US8408024B2 (en) Fluid machine and refrigeration cycle apparatus
JP5289433B2 (en) Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle apparatus
US20110138831A1 (en) Refrigeration cycle apparatus
US20160186754A1 (en) Scroll compressor and air conditioner having the same
KR101738458B1 (en) High pressure compressor and refrigerating machine having the same
WO2017145251A1 (en) Screw compressor and refrigeration cycle device
TWI494508B (en) Screw compressor
JP2011196223A (en) Single screw compressor
JP2017518463A (en) Compression refrigerator having an axial flow compressor
JP6385708B2 (en) Screw compressor
WO2018003015A1 (en) Single screw compressor and refrigeration cycle device
JP2008106668A (en) Expander, expander-integrated compressor and refrigeration cycle device using same
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP2017186924A (en) Compressor
JP2014118907A (en) Scroll compressor
KR20190090701A (en) Refrigeration apparatus
CN109642579B (en) Screw compressor and refrigeration cycle device
EP2322804B1 (en) Multiple-stage compressor
JP2018031281A (en) Scroll type compressor
JP5752019B2 (en) Scroll compressor and refrigeration cycle apparatus
JP6875201B2 (en) Back pressure control valve and scroll compressor
WO2010122812A1 (en) Refrigeration cycle device
WO2023182457A1 (en) Screw compressor and freezer
WO2016088207A1 (en) Refrigeration cycle circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP