WO2017203642A1 - Screw compressor and refrigeration cycle device - Google Patents

Screw compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2017203642A1
WO2017203642A1 PCT/JP2016/065499 JP2016065499W WO2017203642A1 WO 2017203642 A1 WO2017203642 A1 WO 2017203642A1 JP 2016065499 W JP2016065499 W JP 2016065499W WO 2017203642 A1 WO2017203642 A1 WO 2017203642A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
screw
flow path
injection
rotor
Prior art date
Application number
PCT/JP2016/065499
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/065499 priority Critical patent/WO2017203642A1/en
Publication of WO2017203642A1 publication Critical patent/WO2017203642A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a screw compressor and a refrigeration cycle apparatus used for a refrigerant compressor of a refrigerator, and more particularly to a screw compressor having a single gate rotor combined with the screw rotor.
  • the conventional screw compressor has a screw groove formed on the outer peripheral surface and is coupled to the drive shaft of the motor, two or one gate rotor engaged with the screw groove of the screw rotor, and capacity control It is comprised by the valve, the casing, etc. (for example, refer patent document 1).
  • a structure in which a compression operation is performed using one gate rotor is referred to as a mono-gate rotor structure
  • a structure in which a compression operation is performed using two gate rotors is referred to as a twin gate rotor structure.
  • Patent Document 3 discloses a two-stage screw compressor provided with two sets of a screw rotor and a gate rotor.
  • the low-stage compression section is configured with a twin gate rotor structure
  • the high-stage compression section is configured with a monogate rotor structure.
  • the low-stage compression section includes a low-stage screw housing that rotatably surrounds the screw rotor, and the low-stage compression section includes a low-stage screw housing as a component. Housed in a corrugated casing.
  • the high-stage compression section includes a high-stage screw housing section that surrounds the screw rotor in a rotatable manner, and these are partly composed of the high-stage screw housing section. Is contained in a high-stage casing. Then, the refrigerant compressed in the low-stage compression section flows into the high-stage casing, and the high-stage compression section sucks, compresses and discharges the refrigerant flowing into the high-stage casing.
  • Japanese Patent No. 3170882 Japanese Patent Laid-Open No. 56-117056 Japanese Patent No. 5414345
  • a screw compressor having a monogate rotor structure does not have a symmetric structure around the screw rotor shaft, so that the load due to compression is not offset and the screw rotor shaft Deflection occurs. For this reason, if the clearance between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is not sufficiently secured, the outer surface of the screw rotor and the inner peripheral surface of the casing during operation due to the deflection of the screw rotor shaft due to the compressive load. There was a risk that both would come into contact with each other.
  • the gap between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing must be increased as compared with the twin gate rotor structure, and the leakage of compressed gas increases, resulting in poor performance. There was a problem. For this reason, it is important to suppress the expansion of the gap during operation.
  • the casing portion that houses the screw rotor is thermally expanded under the influence of the heat, and the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing The gap between them increases, the leakage of compressed gas increases, and the performance decreases.
  • Patent Document 2 Although discharge temperature is lowered by liquid refrigerant injection, there is no mention of reduction of a gap between the screw rotor and the casing due to thermal expansion of the casing.
  • Patent Document 3 by injecting a cooled refrigerant into the space in the high-stage casing that houses the high-stage compression section, and surrounding the high-stage screw housing section as a cooling atmosphere, The high-stage screw accommodating portion is cooled from the outside.
  • coolant is inject
  • the present invention has been made in consideration of the above-described problems.
  • a single-gate compressor having a monogate rotor structure the gap between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is caused by bending of the screw rotor shaft.
  • An object of the present invention is to provide a screw compressor and a refrigeration cycle apparatus capable of suppressing the expansion of the gap due to the thermal expansion of the casing in a portion where the width of the casing becomes wider.
  • a screw compressor according to the present invention has a casing, a screw rotor that rotates in the casing and has a plurality of screw grooves on the outer peripheral surface, and teeth that engage with the screw grooves of the screw rotor.
  • a compression rotor is formed by a space surrounded by a part of the casing, the screw groove, and the gate rotor, and a part of the casing allows the refrigerant from outside to be compressed into the compression chamber.
  • the cooling channel forms a cooling part that is enlarged in the middle of the channel and in which the expanded channel part is filled with the refrigerant.
  • a refrigeration cycle apparatus includes the screw compressor, the condenser, the main decompression device, and the evaporator, and is branched from a refrigerant circuit in which the refrigerant circulates, and a pipe between the condenser and the main decompression device, An injection pipe connected to the cooling flow path of the screw compressor via an injection decompression device, and an injection decompression device that is provided in the injection pipe and decompresses the refrigerant that passes through the injection pipe. is there.
  • the cooling passage is provided in a part of the casing constituting the compression chamber, that is, in a portion where the clearance between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is widened by the deflection of the screw rotor shaft.
  • a part of the casing is cooled by a cooling portion provided in an enlarged manner in the middle of the flow path. For this reason, increase of the clearance gap between the outer peripheral surface of a screw rotor and the internal peripheral surface of a casing can be suppressed.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention. It is a schematic sectional drawing of the screw compressor 102 which concerns on Embodiment 1 of this invention. It is a horizontal schematic sectional drawing in the XX line of FIG. FIG. 4 is an enlarged perspective view around the screw rotor of FIG. 3. It is a figure which shows the compression principle of the screw compressor 102 which concerns on Embodiment 1 of this invention. It is the figure which expand
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention.
  • the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component shown by the whole specification is an illustration to the last, and is not limited to these description.
  • the combination of the constituent elements is not limited to the combination in each embodiment, and the constituent elements described in the other embodiments can be applied to other embodiments as appropriate.
  • the pressure level is not particularly determined in relation to the absolute value, but is relatively determined in terms of the state and operation of the system, apparatus, and the like.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit in which a screw compressor 102 driven by an inverter 101, a condenser 103, a main decompression apparatus 104, and an evaporator 105 are connected in order by refrigerant piping.
  • the refrigeration cycle apparatus 100 further branches from between the condenser 103 and the main decompression apparatus 104 and is provided in an injection pipe 107 connected to the screw compressor 102 and an injection pipe 107 and passes through the injection pipe 107. And an injection decompression device 106 for decompressing the refrigerant.
  • the screw compressor 102 sucks the refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the screw compressor 102 is driven by supplying electric power from a power supply source (not shown) to the motor 7 via the inverter 101.
  • the screw compressor 102 is not limited to the one driven by the inverter 101 so that the number of rotations can be varied, and may be a constant speed.
  • the condenser 103 cools and condenses the gas discharged from the screw compressor 102.
  • the main decompression device 104 decompresses and expands the mainstream refrigerant that has flowed out of the condenser 103.
  • the main pressure reducing device 104 is constituted by a temperature-sensitive expansion valve, and the opening degree is adjusted according to the outer wall temperature on the motor 7 housing side of the casing 4 of the screw compressor 102 detected by the temperature-sensitive cylinder 104a. So-called temperature automatic expansion valve. Specifically, when the outer wall temperature rises, the temperature-sensitive expansion valve is adjusted in the opening direction, and when the outer wall temperature decreases, the temperature-sensitive expansion valve is adjusted in the closing direction.
  • the main decompression device 104 is controlled based on the outer wall temperature, but the main decompression device 104 may be controlled based on the outlet temperature of the evaporator 105.
  • the main pressure reducing device 104 is not limited to a temperature-sensitive expansion valve, and may be an electronic expansion valve that can variably adjust the opening of a throttle by a stepping motor (not shown).
  • a stepping motor not shown
  • other types may be used as long as they have a similar role, such as a mechanical expansion valve adopting a diaphragm in the pressure receiving portion, a capillary tube, or the like.
  • the evaporator 105 evaporates the mainstream refrigerant that has flowed out of the main decompression device 104.
  • the injection decompression device 106 decompresses and expands part of the refrigerant that flows out of the condenser 103 and passes through the injection pipe 107 toward the main decompression device 104.
  • the injection decompression device 106 is here constituted by a temperature-sensitive expansion valve, and is a so-called temperature automatic expansion valve whose opening degree is adjusted according to the discharge temperature detected by the temperature-sensitive cylinder 106a. Specifically, when the discharge temperature rises, the temperature-sensitive expansion valve is adjusted in the opening direction, and when the discharge temperature decreases, the temperature-sensitive expansion valve is adjusted in the closing direction.
  • the injection decompression device 106 is opened when the discharge temperature exceeds the operation control upper limit, and is adjusted so that the discharge temperature is close to the operation control upper limit.
  • the injection decompression device 106 is not limited to the temperature-sensitive expansion valve, and other types of devices may be used in the same manner as the main decompression device 104.
  • the refrigeration cycle apparatus 100 further includes a control device 108.
  • the control device 108 performs control such as control of the inverter 101, the main decompression device 104, the injection decompression device 106, and the capacity control of the screw compressor 102.
  • the refrigerant applied to the refrigeration cycle apparatus 100 of the example of this embodiment is not limited to a specific refrigerant as long as it is a refrigerant that involves a phase change between a liquid phase and a gas phase. In consideration of the influence on the environment, it is preferable to select one having a low GWP.
  • the refrigerant having a low GWP is, for example, R32, HFO-1123, HFO-1234yf, or a mixed refrigerant including at least one of them.
  • the refrigerant applied to the refrigeration cycle apparatus 100 may be a natural refrigerant such as carbon dioxide.
  • the discharge gas discharged from the screw compressor 102 is cooled by the condenser 103.
  • the refrigerant cooled by the condenser 103 is branched after passing through the condenser 103, and the mainstream refrigerant is decompressed by the main decompression device 104 and expanded.
  • coolant which flowed out from the main pressure reduction apparatus 104 is heated with the evaporator 105, and becomes refrigerant gas.
  • the refrigerant gas flowing out of the evaporator 105 is sucked into the screw compressor 102.
  • the remaining refrigerant excluding the mainstream refrigerant flows into the injection pipe 107 and is decompressed by the injection decompression device 106, which will be described later provided in the casing 4. It is injected into the compression chamber through the injection flow path.
  • the injected liquid refrigerant is mixed with the refrigerant gas being compressed and discharged from the screw compressor 102.
  • the discharge temperature can be lowered by injecting the liquid refrigerant into the compression chamber.
  • FIG. 2 is a schematic cross-sectional view of the screw compressor 102 according to Embodiment 1 of the present invention.
  • FIG. 3 is a horizontal schematic sectional view taken along line XX in FIG. The arrows in FIG. 3 indicate the direction of the refrigerant pressure.
  • FIG. 4 is an enlarged perspective view of the periphery of the screw rotor of FIG.
  • the screw compressor 102 is a single screw compressor having one screw rotor 1 and has a monogate rotor structure having one gate rotor 2.
  • the screw compressor 102 includes a single screw rotor 1, a single gate rotor 2 that engages with the screw rotor 1, a motor 7, and a casing 4 that houses these.
  • the screw rotor 1 is formed in a substantially cylindrical shape, and a plurality of screw grooves 11 are formed in a spiral shape on the outer peripheral portion, and is coupled to the screw rotor shaft 6.
  • the screw rotor shaft 6 is rotatably supported by bearings 5 a and 5 b, and the screw rotor 1 is rotationally driven by a motor 7 coupled to the screw rotor shaft 6.
  • One end of the screw rotor 1 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2).
  • the motor 7 has a stator 7 a and a rotor 7 b, the stator 7 a is fixed to the inner surface of the casing 4, and the rotor 7 b is coupled to one end of the screw rotor shaft 6.
  • the gate rotor 2 has a plurality of teeth 21 that engage with the screw grooves 11 of the screw rotor 1 formed on a gear, and is attached to the gate rotor shaft 22.
  • the gate rotor shaft 22 is rotatably supported by gate rotor bearings 23a and 23b. In the gate rotor 2, the plurality of teeth 21 are engaged with the screw grooves 11, and rotates as the screw rotor 1 rotates.
  • the casing 4 includes a screw accommodating portion 3 that forms a cylindrical space 3a (see FIG. 4) as a constituent element, and the screw rotor 1 is rotatably accommodated in the screw accommodating portion 3.
  • the screw accommodating part 3 which is a part of casing 4 has covered a part of outer peripheral surface of the screw rotor 1, as shown by the dotted line of below-mentioned FIG.5 and FIG.6, and the screw accommodating part 3 and screw
  • a compression chamber 10 is formed in a space surrounded by the screw groove 11 of the screw rotor 1 and the gate rotor 2 covered with the accommodating portion 3. That is, the compression chamber 10 is partitioned and formed by the screw accommodating portion 3 that covers the outer peripheral portion of the screw rotor 1, the screw groove 11 of the screw rotor 1, and the teeth 21 of the gate rotor 2 that engage with the screw groove 11.
  • the casing 4 has a housing portion in which a gate rotor support chamber 22a in which the gate rotor 2 is housed is formed in addition to the screw accommodating portion 3.
  • the screw accommodating portion 3 of the casing 4 is formed with an injection flow path 8 that guides refrigerant from the outside, specifically, refrigerant from the refrigerant circuit to the compression chamber 10.
  • the opening on the outside of the casing 4 of the injection flow path 8 serves as an inlet 8a to which the injection pipe 107 is connected, and the injection pipe 107 is connected thereto.
  • the opening on the opposite side of the injection flow path 8 is opened on the inner peripheral surface of the screw accommodating portion 3, and an injection port 8 b for injecting a refrigerant into the compression chamber 10 (see below). 6).
  • the injection flow path 8 is a characteristic part of the first embodiment and will be described in detail later.
  • the casing 4 is further provided with a working fluid suction port (not shown) and a discharge port 9 (see FIG. 5 described later).
  • FIG. 5 is a diagram illustrating a compression principle of the screw compressor 102 according to the first embodiment of the present invention.
  • FIG. 6 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to Embodiment 1 of the present invention.
  • FIG. 5A shows the state of the compression chamber 10 immediately after the completion of the suction stroke, in other words, the compression start of the compression start.
  • the compression chamber 10 communicates with the outside through the discharge port 9 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 10 is discharged from the discharge port 9 to the outside.
  • the liquid refrigerant decompressed by the injection decompression device 106 of the refrigerant circuit passes through the injection pipe 107 and the injection flow path 8 provided in the screw accommodating portion 3, and then serves as a coolant from the injection port 8b to the compression chamber. 10 leads.
  • the discharge temperature is lowered by injecting the liquid refrigerant into the compression chamber 10.
  • the screw compressor 102 according to the first embodiment can lower the discharge temperature, it is effective when applied to the refrigeration cycle apparatus 100 that uses a refrigerant that tends to be a high temperature such as R32. Especially noticeable.
  • the shaft diameter of the screw rotor shaft 6 is substantially the same in the monogate rotor structure and the twin gate rotor structure, in the monogate rotor structure, the radial load due to compression is not offset as described above.
  • the screw rotor shaft 6 is easily bent and bends toward the non-compressed portion.
  • the screw accommodating portion 3 is thermally expanded in the radial direction.
  • the screw clearance 12 the clearance 12 between the screw rotor portion corresponding to the compression portion and the screw accommodation portion 3 (hereinafter referred to as the screw clearance 12), corresponding to the deflection of the screw rotor shaft 6 and the thermal expansion of the screw accommodation portion 3. (See Figure 3) expands.
  • the screw accommodating portion 3 is cooled using the liquid refrigerant passing through the injection flow path 8.
  • the injection flow path 8 is enlarged in the middle of the flow path, and the expanded flow path portion is filled with liquid refrigerant to cool the screw housing section 3.
  • a cooling unit 8c is provided.
  • the injection flow path 8 constitutes the cooling flow path of the present invention.
  • the cooling unit 8c serves as a cooling source for cooling the screw storage unit 3, and the screw storage
  • the thermal expansion of the part 3 can be suppressed. Specifically, the thermal expansion of the part surrounded by the dotted line 13 in FIG. 3 can be suppressed.
  • the refrigerant flowing out of the cooling unit 8c is injected into the compression chamber 10 from the injection port 8b.
  • the injection flow path 8 is provided in the portion where the screw gap 12 is widened by the deflection of the screw rotor shaft 6 and the thermal expansion of the screw housing portion 3, that is, the screw housing portion 3.
  • the cooling part 8c is provided in the middle of the flow path of the injection flow path 8.
  • the screw gap 12 during operation can be made narrower than that of the conventional monogate rotor structure, whereby leakage of compressed gas can be suppressed, and as a result, performance can be improved. Can do.
  • the liquid refrigerant after passing through the injection flow path 8 flows into the compression chamber 10 after the start of compression. For this reason, when the technique of the said patent document 3 is applied to the screw compressor 102, obstruction
  • an on-off valve may be provided in the injection pipe 107, and for example, it may be controlled to open when the discharge temperature is higher than the set temperature and closed when the discharge temperature is lower than the set temperature.
  • FIG. FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 2 of the present invention. Here, a different part from the refrigerating-cycle apparatus 100 of Embodiment 1 is demonstrated.
  • the refrigeration cycle apparatus 100 of the second embodiment is different from the refrigeration cycle apparatus 100 of the first embodiment in the refrigerant circuit from after passing through the condenser 103 to the main decompression device 104.
  • the refrigeration cycle apparatus 100 of the second embodiment includes an intermediate cooler 109 between the condenser 103 and the main decompression device 104.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit in which the refrigerant circulates by connecting the screw compressor 102, the condenser 103, the high-pressure side flow path of the intercooler 109, the main decompression apparatus 104, and the evaporator 105 in order through refrigerant piping. It is composed.
  • the refrigeration cycle apparatus 100 further branches from between the intermediate cooler 109 and the main decompressor 104 and is connected to the screw compressor 102 via the low pressure side passage of the intermediate cooler 109, and an economizer pipe. 111, an intermediate cooler decompression device 110 that is provided upstream of the low-pressure side flow path of the intermediate cooler 109 and decompresses the refrigerant that passes through the economizer pipe 111.
  • the intermediate cooler 109 exchanges heat between the refrigerant that flows out of the condenser 103 and flows into the high-pressure side flow path of the intermediate cooler 109, and the refrigerant that flows into the low-pressure side flow path of the intermediate cooler 109.
  • the refrigerant flowing into the low-pressure side flow path of the intermediate cooler 109 is a refrigerant obtained by decompressing a part of the refrigerant after passing through the intermediate cooler 109 by the intermediate cooler decompression device 110.
  • the refrigerant that has flowed into the low-pressure side of the intercooler 109 exchanges heat with the refrigerant that has flowed into the high-pressure channel, and is then injected into the screw compressor 102.
  • the refrigerant that has flowed into the high-pressure channel of the intermediate cooler 109 is cooled by heat exchange with the refrigerant that has flowed into the low-pressure channel. That is, the high-pressure side refrigerant that has flowed out of the condenser 103 directly into the high-pressure side passage of the intermediate cooler 109 is supercooled by heat exchange with the refrigerant that has flowed into the low-pressure side passage. With this increase in supercooling, the refrigeration effect of the evaporator 105 increases.
  • the intermediate cooler decompression device 110 is controlled based on the intermediate pressure superheat, approach, discharge temperature, and the like.
  • the intercooler decompression device 110 is composed of an electronic expansion valve capable of variably adjusting the opening of the throttle by a stepping motor (not shown).
  • the intermediate pressure superheat degree is the degree of superheat at the low pressure side channel outlet of the intermediate cooler 109.
  • the approach corresponds to a in FIG.
  • FIG. 8 is a Ph diagram illustrating the approach. As shown in FIG. 8, the approach is the difference between the refrigerant temperature at the intermediate pressure MP at the outlet of the intermediate cooler decompression device 110 and the saturation conversion temperature of the intermediate pressure MP at the outlet of the intermediate cooler decompression device 110.
  • the liquid refrigerant flowing into the injection pipe 107 and decompressed by the injection decompression device 106 passes through the injection flow path 8.
  • the gas refrigerant flowing out from the low-pressure side flow path of the intermediate cooler 109 in the economizer pipe 111 passes through the injection flow path 8.
  • the temperature of the gas refrigerant flowing into the screw compressor 102 from the economizer pipe 111 is lower than the temperature of the refrigerant discharged from the screw compressor 102 and can be used as a cooling source for the screw accommodating portion 3.
  • the second embodiment can suppress the thermal expansion of the screw housing portion 3 as in the first embodiment, can locally reduce the inner diameter of the screw housing portion 3, and can suppress the leakage of the compressed gas.
  • the refrigeration effect is increased by having the intercooler 109, the performance can be improved as compared with the first embodiment.
  • FIG. FIG. 9 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 100 according to the third embodiment corresponds to a configuration in which the first embodiment and the second embodiment are combined.
  • the parts of the third embodiment different from the refrigeration cycle apparatus 100 of the first embodiment will be described.
  • the refrigeration cycle apparatus 100 of the third embodiment further includes the intercooler 109 of the second embodiment shown in FIG. 7 in addition to the refrigeration cycle apparatus 100 of the first embodiment shown in FIG.
  • An intermediate cooler decompression device 110 and an economizer pipe 111 are provided.
  • the injection decompression device 106 is adjusted based on the discharge temperature as described above, and the intermediate cooler decompression device 110 is controlled based on the intermediate pressure superheat or approach.
  • FIG. 10 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to the third embodiment of the present invention.
  • the refrigerant obtained by joining the liquid refrigerant from the injection pipe 107 and the gas refrigerant from the economizer pipe 111 passes through the injection flow path 8.
  • the injection port 8b of the third embodiment is configured to have a larger flow path cross-sectional area than the injection port 8b of the first embodiment.
  • FIG. 11 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 4 of the present invention.
  • FIG. 12 is a horizontal schematic cross-sectional view of the screw compressor 102 according to the fourth embodiment of the present invention taken along line XX in FIG.
  • FIG. 13 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to Embodiment 4 of the present invention.
  • the liquid refrigerant and the gas refrigerant are combined and passed through the injection flow path 8.
  • the injection flow path 8 of the fourth embodiment is divided into a liquid refrigerant flow path 81 through which liquid refrigerant passes and a gas refrigerant flow path 82 through which gas refrigerant passes. Are configured to pass separately.
  • An injection pipe 107 is connected to an inlet 81a which is an opening on the outside of the liquid refrigerant flow path 81. Thereby, the liquid refrigerant from the injection pipe 107 passes through the liquid refrigerant flow path 81. Further, an economizer pipe 111 is connected to an inflow port 82a which is an opening on the outside of the gas refrigerant channel 82. As a result, the gas refrigerant from the economizer pipe 111 passes through the gas refrigerant passage 82.
  • the liquid refrigerant flow path 81 and the gas refrigerant flow path 82 are provided with cooling portions 81c and 82c, respectively.
  • the cooling units 81c and 82c are configured to cool the screw accommodating unit 3 by enlarging the middle of the flow path and filling the expanded flow path portion with the liquid refrigerant.
  • the cooling part 82c is formed larger as shown in FIG.
  • the injection port 81b which is the opening on the screw rotor 1 side of the liquid refrigerant flow path 81
  • the injection port 82b which is the opening on the screw rotor 1 side of the gas refrigerant flow path 82
  • the injection port 82b has a larger channel cross-sectional area. The reason why the cross-sectional area of the flow path is larger on the side through which the gas refrigerant passes than on the side through which the liquid refrigerant passes is that the gas refrigerant hardly flows when the flow path is narrow. However, the side through which the liquid refrigerant passes may be enlarged to have the same size as the side through which the gas refrigerant passes.
  • the injection flow path 8 is divided into the liquid refrigerant flow path 81 and the gas refrigerant flow path 82, so that the flow of each of the injection port 81b and the injection port 82b is as shown in FIG.
  • the path cross-sectional area can be made smaller than the flow path cross-sectional area of the injection port 8b of the third embodiment.
  • the same effects as in the first to third embodiments can be obtained, and the injection flow path 8 is divided into the liquid refrigerant flow path 81 and the gas refrigerant flow path 82.
  • the following effects can be obtained. That is, as described above, the flow path cross-sectional areas of the injection port 81b and the injection port 82b can be made smaller than the flow path cross-sectional area of the injection port 8b of the third embodiment shown in FIG.
  • each of the injection port 81b and the injection port 82b can be sized so as not to straddle the adjacent compression chamber 10, and can be arranged along the inclination of the compression chamber 10. . For this reason, since it can aim at the one compression chamber 10, it can ensure the differential pressure

Abstract

This screw compressor is provided with a casing, a screw rotor that rotates inside the casing and that has a plurality of screw grooves in the outer peripheral surface, and one gate rotor that has teeth which engage with the screw grooves of the screw rotor and that rotates along with the rotation of the screw rotor. A compression chamber is configured in a space enclosed by a part of the casing, the screw grooves, and the gate rotor, and the part of the casing has a cooling flow channel that guides a refrigerant from the exterior to the compression chamber. The cooling flow channel is enlarged in the middle of the flow channel, and a cooling part is configured where the enlarged flow channel portion is filled with the refrigerant.

Description

スクリュー圧縮機及び冷凍サイクル装置Screw compressor and refrigeration cycle apparatus
 本発明は、冷凍機の冷媒圧縮機等に利用されるスクリュー圧縮機及び冷凍サイクル装置に関するもので、特にそのスクリューロータに組み合わされるゲートロータを1つ備えた形式のスクリュー圧縮機に関するものである。 The present invention relates to a screw compressor and a refrigeration cycle apparatus used for a refrigerant compressor of a refrigerator, and more particularly to a screw compressor having a single gate rotor combined with the screw rotor.
 従来のスクリュー圧縮機は、外周面にスクリュー溝が形成され、モータの駆動軸に結合されるスクリューロータと、このスクリューロータのスクリュー溝に係合する2枚もしくは1枚のゲートロータと、容量制御弁と、ケーシングなどとにより構成されている(例えば、特許文献1参照)。なお、以下では、1枚のゲートロータを用いて圧縮動作を行う構造をモノゲートロータ構造、2枚のゲートロータを用いて圧縮動作を行う構造をツインゲートロータ構造という。 The conventional screw compressor has a screw groove formed on the outer peripheral surface and is coupled to the drive shaft of the motor, two or one gate rotor engaged with the screw groove of the screw rotor, and capacity control It is comprised by the valve, the casing, etc. (for example, refer patent document 1). Hereinafter, a structure in which a compression operation is performed using one gate rotor is referred to as a mono-gate rotor structure, and a structure in which a compression operation is performed using two gate rotors is referred to as a twin gate rotor structure.
 この種のスクリュー圧縮機では、高低差圧の大きい運転条件やインバータによるモータ回転数増速時に、圧縮機から吐出される吐出冷媒ガスの吐出温度が高くなる。吐出温度が高くなると、冷媒及び油が劣化したり、圧縮部の冷却不足が生じたりといった問題が生じる。そこで、吐出温度の過剰な上昇を抑制するために、圧縮途中の圧縮室に液冷媒をインジェクションするようにした技術がある(例えば、特許文献2参照)。 In this type of screw compressor, the discharge temperature of the refrigerant gas discharged from the compressor becomes high when the driving conditions are high and the motor speed is increased by the inverter. When the discharge temperature increases, problems such as deterioration of the refrigerant and oil and insufficient cooling of the compression unit occur. Therefore, there is a technique in which liquid refrigerant is injected into a compression chamber in the middle of compression in order to suppress an excessive increase in discharge temperature (see, for example, Patent Document 2).
 また、特許文献3には、スクリューロータとゲートロータとの組を2組備えた二段スクリュー圧縮機が開示されている。この二段スクリュー圧縮機では、低段圧縮部がツインゲートロータ構造で構成され、高段圧縮部がモノゲートロータ構造で構成されている。 Patent Document 3 discloses a two-stage screw compressor provided with two sets of a screw rotor and a gate rotor. In this two-stage screw compressor, the low-stage compression section is configured with a twin gate rotor structure, and the high-stage compression section is configured with a monogate rotor structure.
 低段圧縮部は、スクリューロータと2枚のゲートロータの他、スクリューロータを回転可能に囲む低段スクリュー収容部を備えており、これらが低段スクリュー収容部を構成要素として一部に含む低段ケーシングに収容されている。また、高段圧縮部は、スクリューロータと1枚のゲートロータの他、スクリューロータを回転可能に囲む高段スクリュー収容部を備えており、これらが、高段スクリュー収容部を構成要素として一部に含む高段ケーシングに収容されている。そして、低段圧縮部で圧縮された冷媒が高段ケーシング内に流入し、高段ケーシング内に流入した冷媒を高段圧縮部が吸入して圧縮し、吐出するようにしている。 In addition to the screw rotor and the two gate rotors, the low-stage compression section includes a low-stage screw housing that rotatably surrounds the screw rotor, and the low-stage compression section includes a low-stage screw housing as a component. Housed in a corrugated casing. In addition to the screw rotor and one gate rotor, the high-stage compression section includes a high-stage screw housing section that surrounds the screw rotor in a rotatable manner, and these are partly composed of the high-stage screw housing section. Is contained in a high-stage casing. Then, the refrigerant compressed in the low-stage compression section flows into the high-stage casing, and the high-stage compression section sucks, compresses and discharges the refrigerant flowing into the high-stage casing.
特許第3170882号公報Japanese Patent No. 3170882 特開昭56-117056号公報Japanese Patent Laid-Open No. 56-117056 特許第5414345号公報Japanese Patent No. 5414345
 特許文献1の図1、3に示されているように、ツインゲートロータ構造のスクリュー圧縮機では、2枚一対のゲートロータがスクリューロータのスクリューロータ軸を中心として対称に配置されており、スクリューロータ軸を中心として対称の構造である。このため、圧縮による径方向の荷重が相殺され、圧縮行程においてスクリューロータ軸に径方向の圧縮荷重が作用しない構造であった。しかしながら、ゲートロータを2枚有しているため、部品点数が増え、組立工数も多いという問題があった。 As shown in FIGS. 1 and 3 of Patent Document 1, in a screw compressor having a twin gate rotor structure, a pair of two gate rotors are arranged symmetrically with respect to the screw rotor axis of the screw rotor. The structure is symmetrical about the rotor axis. For this reason, the radial load due to the compression is offset, and the radial compressive load does not act on the screw rotor shaft in the compression stroke. However, since there are two gate rotors, there are problems that the number of parts is increased and the number of assembly steps is also large.
 一方、特許文献1の図4に示されているように、モノゲートロータ構造のスクリュー圧縮機では、スクリューロータ軸を中心として対称の構造とならないため、圧縮による荷重が相殺されず、スクリューロータ軸に撓みが発生する。このため、スクリューロータの外周面とケーシングの内周面との隙間を十分に確保していなければ、圧縮荷重によるスクリューロータ軸の撓みにより、運転中にスクリューロータの外周面とケーシングの内周面とが接触し、両者が焼き付いてしまう恐れがあった。 On the other hand, as shown in FIG. 4 of Patent Document 1, a screw compressor having a monogate rotor structure does not have a symmetric structure around the screw rotor shaft, so that the load due to compression is not offset and the screw rotor shaft Deflection occurs. For this reason, if the clearance between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is not sufficiently secured, the outer surface of the screw rotor and the inner peripheral surface of the casing during operation due to the deflection of the screw rotor shaft due to the compressive load. There was a risk that both would come into contact with each other.
 このことから、モノゲートロータ構造では、ツインゲートロータ構造に比べてスクリューロータの外周面とケーシングの内周面との隙間を大きくしなければならず、圧縮ガスの漏れが増大し、性能が劣るという問題があった。このため、運転中の隙間の拡大を抑制することが重要とされている。 Therefore, in the monogate rotor structure, the gap between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing must be increased as compared with the twin gate rotor structure, and the leakage of compressed gas increases, resulting in poor performance. There was a problem. For this reason, it is important to suppress the expansion of the gap during operation.
 ところで、スクリュー圧縮機から吐出される冷媒の吐出温度が高い場合、その熱の影響を受けて、スクリューロータを収容するケーシング部分が熱膨張し、スクリューロータの外周面とケーシングの内周面との間の隙間が増大し、圧縮ガスの漏れが増大し、性能が低下する。 By the way, when the discharge temperature of the refrigerant discharged from the screw compressor is high, the casing portion that houses the screw rotor is thermally expanded under the influence of the heat, and the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing The gap between them increases, the leakage of compressed gas increases, and the performance decreases.
 特許文献2では、液冷媒のインジェクションにより吐出温度の低下を図っているものの、ケーシングの熱膨張によるスクリューロータとケーシングとの間の隙間の軽減について言及されていない。 In Patent Document 2, although discharge temperature is lowered by liquid refrigerant injection, there is no mention of reduction of a gap between the screw rotor and the casing due to thermal expansion of the casing.
 また、特許文献3では、高段圧縮部がモノゲートロータ構造のため、上述したように圧縮荷重によるスクリューロータ軸の撓みが生じる。また、高段圧縮部は高温となることから高段スクリュー収容部が熱膨張する。このため、高段圧縮部では、スクリューロータの外周面と高段スクリュー収容部の内周面との隙間が、スクリューロータ軸の撓み分に加えて更に、高段スクリュー収容部の熱膨張分が加わって広がる。よって、冷媒が高段の吸入側に漏れることになり効率が低下する。 Also, in Patent Document 3, since the high-stage compression portion has a monogate rotor structure, the screw rotor shaft is bent due to the compression load as described above. Moreover, since the high stage compression part becomes high temperature, the high stage screw accommodating part thermally expands. For this reason, in the high-stage compression section, the gap between the outer peripheral surface of the screw rotor and the inner peripheral surface of the high-stage screw housing section has a thermal expansion of the high-stage screw housing section in addition to the deflection of the screw rotor shaft. Join and spread. Therefore, the refrigerant leaks to the higher suction side and the efficiency is lowered.
 これを改善するために、特許文献3では、高段圧縮部を収容する高段ケーシング内の空間に、冷却された冷媒を注入し、高段スクリュー収容部の周囲を冷却雰囲気とすることで、高段スクリュー収容部を外側から冷却する構成としている。特許文献3において、冷却された冷媒は、圧縮室ではなく、高段圧縮部全体を収容する空間に注入されている。つまり、冷却された冷媒が注入される空間が、高段圧縮部の圧縮室内に吸入される前の冷媒が位置する、吸入空間に相当する。よって、この構成を、単一のスクリューロータを有するシングルスクリュー圧縮機に展開する場合、冷却された冷媒を、吸入空間に注入することとなり、吸込みガス風量低下といった課題が生じる。 In order to improve this, in Patent Document 3, by injecting a cooled refrigerant into the space in the high-stage casing that houses the high-stage compression section, and surrounding the high-stage screw housing section as a cooling atmosphere, The high-stage screw accommodating portion is cooled from the outside. In patent document 3, the cooled refrigerant | coolant is inject | poured into the space which accommodates the whole high stage compression part instead of a compression chamber. That is, the space into which the cooled refrigerant is injected corresponds to the suction space where the refrigerant before being sucked into the compression chamber of the high-stage compression unit is located. Therefore, when this configuration is developed in a single screw compressor having a single screw rotor, the cooled refrigerant is injected into the suction space, which causes a problem of a reduction in the amount of sucked gas air.
 本発明は、上記のような課題を考慮してなされたものであり、モノゲートロータ構造のシングルスクリュー圧縮機において、スクリューロータ軸の撓みによってスクリューロータの外周面とケーシングの内周面との隙間が広くなる部分の、ケーシングの熱膨張による隙間の拡大を抑制することが可能なスクリュー圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made in consideration of the above-described problems. In a single-gate compressor having a monogate rotor structure, the gap between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is caused by bending of the screw rotor shaft. An object of the present invention is to provide a screw compressor and a refrigeration cycle apparatus capable of suppressing the expansion of the gap due to the thermal expansion of the casing in a portion where the width of the casing becomes wider.
 本発明に係るスクリュー圧縮機は、ケーシングと、ケーシング内で回転し、複数のスクリュー溝を外周面に有するスクリューロータと、スクリューロータのスクリュー溝に係合する歯を有し、スクリューロータの回転に伴って回転する1枚のゲートロータとを備え、ケーシングの一部、スクリュー溝及びゲートロータで囲まれた空間で圧縮室を構成しており、ケーシングの一部は、外部からの冷媒を圧縮室に導く冷却流路を有し、冷却流路は、流路途中が拡大されて、その拡大流路部分に冷媒が満たされる冷却部を構成しているものである。 A screw compressor according to the present invention has a casing, a screw rotor that rotates in the casing and has a plurality of screw grooves on the outer peripheral surface, and teeth that engage with the screw grooves of the screw rotor. A compression rotor is formed by a space surrounded by a part of the casing, the screw groove, and the gate rotor, and a part of the casing allows the refrigerant from outside to be compressed into the compression chamber. The cooling channel forms a cooling part that is enlarged in the middle of the channel and in which the expanded channel part is filled with the refrigerant.
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機、凝縮器、主減圧装置及び蒸発器を備え、冷媒が循環する冷媒回路と、凝縮器と主減圧装置との間の配管から分岐し、インジェクション用減圧装置を介してスクリュー圧縮機の冷却流路に接続されるインジェクション用配管と、インジェクション用配管に設けられ、インジェクション用配管を通過する冷媒を減圧するインジェクション用減圧装置とを備えたものである。 A refrigeration cycle apparatus according to the present invention includes the screw compressor, the condenser, the main decompression device, and the evaporator, and is branched from a refrigerant circuit in which the refrigerant circulates, and a pipe between the condenser and the main decompression device, An injection pipe connected to the cooling flow path of the screw compressor via an injection decompression device, and an injection decompression device that is provided in the injection pipe and decompresses the refrigerant that passes through the injection pipe. is there.
 本発明によれば、圧縮室を構成するケーシングの一部、つまりスクリューロータ軸の撓みによってスクリューロータの外周面とケーシングの内周面との隙間が広くなる部分に冷却流路を有し、冷却流路の途中に拡大して設けた冷却部でケーシングの一部が冷却される。このため、スクリューロータの外周面とケーシングの内周面との隙間の増大を抑制できる。 According to the present invention, the cooling passage is provided in a part of the casing constituting the compression chamber, that is, in a portion where the clearance between the outer peripheral surface of the screw rotor and the inner peripheral surface of the casing is widened by the deflection of the screw rotor shaft. A part of the casing is cooled by a cooling portion provided in an enlarged manner in the middle of the flow path. For this reason, increase of the clearance gap between the outer peripheral surface of a screw rotor and the internal peripheral surface of a casing can be suppressed.
本発明の実施の形態1に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリュー圧縮機102の概略断面図である。It is a schematic sectional drawing of the screw compressor 102 which concerns on Embodiment 1 of this invention. 図2のX―X線における水平概略断面図である。It is a horizontal schematic sectional drawing in the XX line of FIG. 図3のスクリューロータ周辺の拡大斜視図である。FIG. 4 is an enlarged perspective view around the screw rotor of FIG. 3. 本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。It is a figure which shows the compression principle of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。It is the figure which expand | deployed the internal peripheral surface of the screw accommodating part 3, and the screw rotor 1 in the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device 100 provided with screw compressor 102 concerning Embodiment 2 of the present invention. アプローチを説明するP-h線図である。It is a Ph diagram illustrating the approach. 本発明の実施の形態3に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device 100 provided with screw compressor 102 concerning Embodiment 3 of the present invention. 本発明の実施の形態3に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。It is the figure which expand | deployed the internal peripheral surface of the screw accommodating part 3, and the screw rotor 1 in the screw compressor 102 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device 100 provided with screw compressor 102 concerning Embodiment 4 of the present invention. 本発明の実施の形態4に係るスクリュー圧縮機102の図2のX-X線における水平概略断面図である。It is a horizontal schematic sectional drawing in the XX line of FIG. 2 of the screw compressor 102 which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。It is the figure which expand | deployed the internal peripheral surface of the screw accommodating part 3, and the screw rotor 1 in the screw compressor 102 which concerns on Embodiment 4 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。なお、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。そして、圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. In addition, the form of the component shown by the whole specification is an illustration to the last, and is not limited to these description. In particular, the combination of the constituent elements is not limited to the combination in each embodiment, and the constituent elements described in the other embodiments can be applied to other embodiments as appropriate. The pressure level is not particularly determined in relation to the absolute value, but is relatively determined in terms of the state and operation of the system, apparatus, and the like.
 冷凍サイクル装置100はインバータ101で駆動されるスクリュー圧縮機102と、凝縮器103と、主減圧装置104と、蒸発器105とを順に冷媒配管で接続した冷媒回路を備えている。 The refrigeration cycle apparatus 100 includes a refrigerant circuit in which a screw compressor 102 driven by an inverter 101, a condenser 103, a main decompression apparatus 104, and an evaporator 105 are connected in order by refrigerant piping.
 冷凍サイクル装置100は、更に凝縮器103と主減圧装置104との間から分岐し、スクリュー圧縮機102に接続されたインジェクション用配管107と、インジェクション用配管107に設けられ、インジェクション用配管107を通過する冷媒を減圧するインジェクション用減圧装置106とを有している。 The refrigeration cycle apparatus 100 further branches from between the condenser 103 and the main decompression apparatus 104 and is provided in an injection pipe 107 connected to the screw compressor 102 and an injection pipe 107 and passes through the injection pipe 107. And an injection decompression device 106 for decompressing the refrigerant.
 スクリュー圧縮機102は、冷媒を吸入し、その冷媒を圧縮して高温且つ高圧の状態にするものである。スクリュー圧縮機102は、電力供給源(図示せず)からインバータ101を介してモータ7へ電力供給されることにより駆動される。なお、スクリュー圧縮機102はインバータ101にて回転数可変に駆動されるものに限定するものではなく、一定速のものでもよい。 The screw compressor 102 sucks the refrigerant and compresses the refrigerant to a high temperature and high pressure state. The screw compressor 102 is driven by supplying electric power from a power supply source (not shown) to the motor 7 via the inverter 101. The screw compressor 102 is not limited to the one driven by the inverter 101 so that the number of rotations can be varied, and may be a constant speed.
 凝縮器103はスクリュー圧縮機102からの吐出ガスを冷却、凝縮させる。 The condenser 103 cools and condenses the gas discharged from the screw compressor 102.
 主減圧装置104は、凝縮器103を流出した主流冷媒を減圧して膨張させるものである。主減圧装置104は、ここでは 感温式膨張弁で構成されており、感温筒104aにて検出されるスクリュー圧縮機102のケーシング4のモータ7収納側の外壁温度に応じて開度が調整されるいわゆる温度自動膨張弁である。詳しくは、前記外壁温度が上昇すると、感温式膨張弁は開く方向に調整され、前記外壁温度が低下すると感温式膨張弁は閉じる方向に調整される。ここでは、前記外壁温度に基づいて主減圧装置104を制御するとしたが、蒸発器105の出口温度に基づいて主減圧装置104を制御してもよい。 The main decompression device 104 decompresses and expands the mainstream refrigerant that has flowed out of the condenser 103. Here, the main pressure reducing device 104 is constituted by a temperature-sensitive expansion valve, and the opening degree is adjusted according to the outer wall temperature on the motor 7 housing side of the casing 4 of the screw compressor 102 detected by the temperature-sensitive cylinder 104a. So-called temperature automatic expansion valve. Specifically, when the outer wall temperature rises, the temperature-sensitive expansion valve is adjusted in the opening direction, and when the outer wall temperature decreases, the temperature-sensitive expansion valve is adjusted in the closing direction. Here, the main decompression device 104 is controlled based on the outer wall temperature, but the main decompression device 104 may be controlled based on the outlet temperature of the evaporator 105.
 なお、主減圧装置104は、感温式膨張弁に限られず、ステッピングモータ(図示せず)により絞りの開度を可変に調整することが可能な電子膨張弁で構成してもよい。なお、電子膨張弁以外にも、受圧部にダイアフラムを採用した機械式膨張弁、キャピラリーチューブ等、同様な役割を成すものであれば、他の形式のものを用いてもよい。 The main pressure reducing device 104 is not limited to a temperature-sensitive expansion valve, and may be an electronic expansion valve that can variably adjust the opening of a throttle by a stepping motor (not shown). In addition to the electronic expansion valve, other types may be used as long as they have a similar role, such as a mechanical expansion valve adopting a diaphragm in the pressure receiving portion, a capillary tube, or the like.
 蒸発器105は主減圧装置104を流出した主流冷媒を蒸発させる。 The evaporator 105 evaporates the mainstream refrigerant that has flowed out of the main decompression device 104.
 インジェクション用減圧装置106は、凝縮器103を流出してインジェクション用配管107を通過して主減圧装置104に向かう冷媒の一部を減圧して膨張させるものである。インジェクション用減圧装置106は、ここでは感温式膨張弁で構成されており、感温筒106aにて検出される吐出温度に応じて開度が調整されるいわゆる温度自動膨張弁である。詳しくは、吐出温度が上昇すると、感温式膨張弁は開く方向に調整され、吐出温度が低下すると感温式膨張弁は閉じる方向に調整される。具体的には、インジェクション用減圧装置106は、吐出温度が運転制御上限を超えると開かれ、そして、吐出温度が運転制御上限近傍となるように調整される。なお、インジェクション用減圧装置106は、感温式膨張弁に限られず、主減圧装置104と同様に他の形式のものを用いてもよい。 The injection decompression device 106 decompresses and expands part of the refrigerant that flows out of the condenser 103 and passes through the injection pipe 107 toward the main decompression device 104. The injection decompression device 106 is here constituted by a temperature-sensitive expansion valve, and is a so-called temperature automatic expansion valve whose opening degree is adjusted according to the discharge temperature detected by the temperature-sensitive cylinder 106a. Specifically, when the discharge temperature rises, the temperature-sensitive expansion valve is adjusted in the opening direction, and when the discharge temperature decreases, the temperature-sensitive expansion valve is adjusted in the closing direction. Specifically, the injection decompression device 106 is opened when the discharge temperature exceeds the operation control upper limit, and is adjusted so that the discharge temperature is close to the operation control upper limit. The injection decompression device 106 is not limited to the temperature-sensitive expansion valve, and other types of devices may be used in the same manner as the main decompression device 104.
 冷凍サイクル装置100には更に制御装置108を備えている。制御装置108は、インバータ101、主減圧装置104、インジェクション用減圧装置106の制御、スクリュー圧縮機102の容量制御などの制御を行う。 The refrigeration cycle apparatus 100 further includes a control device 108. The control device 108 performs control such as control of the inverter 101, the main decompression device 104, the injection decompression device 106, and the capacity control of the screw compressor 102.
 この実施の形態の例の冷凍サイクル装置100に適用される冷媒は、液相と気相との相変化を伴う冷媒であればよく、特定の冷媒に限定されるものではないが、例えば、環境への影響等を考慮して、GWPが低いものが選択されるとよい。GWPが低い冷媒は、例えば、R32、HFO-1123、HFO-1234yf、又は、これらのうちの少なくとも1つを含む混合冷媒である。なお、冷凍サイクル装置100に適用される冷媒は、二酸化炭素等の自然冷媒であってもよい。 The refrigerant applied to the refrigeration cycle apparatus 100 of the example of this embodiment is not limited to a specific refrigerant as long as it is a refrigerant that involves a phase change between a liquid phase and a gas phase. In consideration of the influence on the environment, it is preferable to select one having a low GWP. The refrigerant having a low GWP is, for example, R32, HFO-1123, HFO-1234yf, or a mixed refrigerant including at least one of them. Note that the refrigerant applied to the refrigeration cycle apparatus 100 may be a natural refrigerant such as carbon dioxide.
(冷凍サイクル装置の動作)
 次に、実施の形態1の冷凍サイクル装置100の動作について説明する。
(Operation of refrigeration cycle equipment)
Next, operation | movement of the refrigerating-cycle apparatus 100 of Embodiment 1 is demonstrated.
 スクリュー圧縮機102から吐出された吐出ガスは、凝縮器103で冷却される。凝縮器103で冷却された冷媒は、凝縮器103を通過後に分岐され、そのうちの主流冷媒は、主減圧装置104で減圧されて膨張する。そして、主減圧装置104から流出した冷媒は、蒸発器105で加熱され、冷媒ガスとなる。蒸発器105から流出した冷媒ガスはスクリュー圧縮機102に吸い込まれる。 The discharge gas discharged from the screw compressor 102 is cooled by the condenser 103. The refrigerant cooled by the condenser 103 is branched after passing through the condenser 103, and the mainstream refrigerant is decompressed by the main decompression device 104 and expanded. And the refrigerant | coolant which flowed out from the main pressure reduction apparatus 104 is heated with the evaporator 105, and becomes refrigerant gas. The refrigerant gas flowing out of the evaporator 105 is sucked into the screw compressor 102.
 一方、凝縮器103を通過後の液冷媒のうち、主流冷媒を除いた残りの冷媒は、インジェクション用配管107に流入し、インジェクション用減圧装置106で減圧された後、ケーシング4に設けた後述のインジェクション用流路を介して圧縮室にインジェクションされる。インジェクションされた液冷媒は、圧縮途中の冷媒ガスと混合し、スクリュー圧縮機102から吐出される。このように、液冷媒が圧縮室にインジェクションされることで、吐出温度を下げることができる。 On the other hand, of the liquid refrigerant after passing through the condenser 103, the remaining refrigerant excluding the mainstream refrigerant flows into the injection pipe 107 and is decompressed by the injection decompression device 106, which will be described later provided in the casing 4. It is injected into the compression chamber through the injection flow path. The injected liquid refrigerant is mixed with the refrigerant gas being compressed and discharged from the screw compressor 102. Thus, the discharge temperature can be lowered by injecting the liquid refrigerant into the compression chamber.
(スクリュー圧縮機)
 以下、本発明の実施の形態1に係るスクリュー圧縮機102について図2を用いて説明する。
(Screw compressor)
Hereinafter, the screw compressor 102 according to Embodiment 1 of the present invention will be described with reference to FIG.
 図2は、本発明の実施の形態1に係るスクリュー圧縮機102の概略断面図である。図3は、図2のX―X線における水平概略断面図である。図3の矢印は、冷媒圧力の方向を示している。図4は、図3のスクリューロータ周辺の拡大斜視図である。
 このスクリュー圧縮機102は、スクリューロータ1を1つ備えたシングルスクリュー圧縮機であって、1枚のゲートロータ2を有するモノゲートロータ構造を有する。そして、スクリュー圧縮機102は、1つのスクリューロータ1と、このスクリューロータ1に係合する1枚のゲートロータ2と、モータ7と、これらを収納するケーシング4とを備えている。
FIG. 2 is a schematic cross-sectional view of the screw compressor 102 according to Embodiment 1 of the present invention. FIG. 3 is a horizontal schematic sectional view taken along line XX in FIG. The arrows in FIG. 3 indicate the direction of the refrigerant pressure. FIG. 4 is an enlarged perspective view of the periphery of the screw rotor of FIG.
The screw compressor 102 is a single screw compressor having one screw rotor 1 and has a monogate rotor structure having one gate rotor 2. The screw compressor 102 includes a single screw rotor 1, a single gate rotor 2 that engages with the screw rotor 1, a motor 7, and a casing 4 that houses these.
 スクリューロータ1は、略円柱形状に形成され、外周部に複数のスクリュー溝11が螺旋状に形成されたものであり、スクリューロータ軸6に結合されている。スクリューロータ軸6は、軸受5a、5bによって回転自在に支持されており、スクリューロータ1は、スクリューロータ軸6に結合されたモータ7によって回転駆動される。スクリューロータ1は、一端が冷媒の吸入側(図2の右側)となり、他端が吐出側(図2の左側)となる。 The screw rotor 1 is formed in a substantially cylindrical shape, and a plurality of screw grooves 11 are formed in a spiral shape on the outer peripheral portion, and is coupled to the screw rotor shaft 6. The screw rotor shaft 6 is rotatably supported by bearings 5 a and 5 b, and the screw rotor 1 is rotationally driven by a motor 7 coupled to the screw rotor shaft 6. One end of the screw rotor 1 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2).
 モータ7は、固定子7aと回転子7bとを有し、固定子7aはケーシング4の内面に固定されており、回転子7bがスクリューロータ軸6の一端に結合されている。 The motor 7 has a stator 7 a and a rotor 7 b, the stator 7 a is fixed to the inner surface of the casing 4, and the rotor 7 b is coupled to one end of the screw rotor shaft 6.
 ゲートロータ2は、スクリューロータ1のスクリュー溝11に係合する複数の歯21を歯車上に形成したものであり、ゲートロータ軸22に取付けられている。ゲートロータ軸22は、ゲートロータ軸受23a、23bにて回転自在に支持されている。ゲートロータ2は、複数の歯21がスクリュー溝11に係合し、スクリューロータ1の回転に伴って回転する。 The gate rotor 2 has a plurality of teeth 21 that engage with the screw grooves 11 of the screw rotor 1 formed on a gear, and is attached to the gate rotor shaft 22. The gate rotor shaft 22 is rotatably supported by gate rotor bearings 23a and 23b. In the gate rotor 2, the plurality of teeth 21 are engaged with the screw grooves 11, and rotates as the screw rotor 1 rotates.
 ケーシング4は、筒形状の空間3a(図4参照)を内部に形成するスクリュー収容部3を構成要素として備えており、このスクリュー収容部3内にスクリューロータ1が回転自在に収容されている。そして、ケーシング4の一部であるスクリュー収容部3は、後述の図5及び図6の点線で示したように、スクリューロータ1の外周面の一部を覆っており、スクリュー収容部3とスクリュー収容部3で覆われたスクリューロータ1のスクリュー溝11とゲートロータ2とによって囲まれた空間で圧縮室10が形成されている。すなわち、圧縮室10は、スクリューロータ1の外周部を覆うスクリュー収容部3と、スクリューロータ1のスクリュー溝11と、このスクリュー溝11に係合するゲートロータ2の歯21と、で区画形成される。 The casing 4 includes a screw accommodating portion 3 that forms a cylindrical space 3a (see FIG. 4) as a constituent element, and the screw rotor 1 is rotatably accommodated in the screw accommodating portion 3. And the screw accommodating part 3 which is a part of casing 4 has covered a part of outer peripheral surface of the screw rotor 1, as shown by the dotted line of below-mentioned FIG.5 and FIG.6, and the screw accommodating part 3 and screw A compression chamber 10 is formed in a space surrounded by the screw groove 11 of the screw rotor 1 and the gate rotor 2 covered with the accommodating portion 3. That is, the compression chamber 10 is partitioned and formed by the screw accommodating portion 3 that covers the outer peripheral portion of the screw rotor 1, the screw groove 11 of the screw rotor 1, and the teeth 21 of the gate rotor 2 that engage with the screw groove 11. The
 また、ケーシング4は、スクリュー収容部3の他、ゲートロータ2を内蔵するゲートロータサポート室22aが形成された筐体部分を有する。また、ケーシング4のスクリュー収容部3には、外部からの冷媒、具体的には冷媒回路からの冷媒を圧縮室10に導くインジェクション用流路8が形成されている。インジェクション用流路8のケーシング4の外部側の開口は、インジェクション用配管107が接続される流入口8aとなっており、インジェクション用配管107が接続される。インジェクション用流路8の反対側の開口は、図3には示されていないがスクリュー収容部3の内周面に開口しており、圧縮室10に冷媒をインジェクションするインジェクションポート8b(後述の図6参照)となっている。 Moreover, the casing 4 has a housing portion in which a gate rotor support chamber 22a in which the gate rotor 2 is housed is formed in addition to the screw accommodating portion 3. Further, the screw accommodating portion 3 of the casing 4 is formed with an injection flow path 8 that guides refrigerant from the outside, specifically, refrigerant from the refrigerant circuit to the compression chamber 10. The opening on the outside of the casing 4 of the injection flow path 8 serves as an inlet 8a to which the injection pipe 107 is connected, and the injection pipe 107 is connected thereto. Although not shown in FIG. 3, the opening on the opposite side of the injection flow path 8 is opened on the inner peripheral surface of the screw accommodating portion 3, and an injection port 8 b for injecting a refrigerant into the compression chamber 10 (see below). 6).
 インジェクション用流路8は本実施の形態1の特徴部分であり、以下で改めて詳述する。ケーシング4には更に、更に図示しない作動流体の吸入口と吐出口9(後述の図5参照)とが設けられている。 The injection flow path 8 is a characteristic part of the first embodiment and will be described in detail later. The casing 4 is further provided with a working fluid suction port (not shown) and a discharge port 9 (see FIG. 5 described later).
 図5は、本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。また、図6は、本発明の実施の形態1に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。 FIG. 5 is a diagram illustrating a compression principle of the screw compressor 102 according to the first embodiment of the present invention. FIG. 6 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to Embodiment 1 of the present invention.
 図5に示すように、スクリューロータ1がモータ7によりスクリューロータ軸6を介して回転させられることで、ゲートロータ2の歯21がスクリュー溝11内を相対的に移動する。これにより、スクリュー溝11内では、吸入行程、圧縮行程及び吐出行程を一サイクルとして、このサイクルを繰り返すようになっている。図5において点線で囲った部分はケーシング4のスクリュー収容部3を示しており、このスクリュー収容部3によって囲まれたスクリュー溝11が、圧縮室10を構成している。ここでは、図5においてドットのハッチングで示した圧縮室10に着目して各行程について説明する。 As shown in FIG. 5, when the screw rotor 1 is rotated by the motor 7 via the screw rotor shaft 6, the teeth 21 of the gate rotor 2 relatively move in the screw groove 11. As a result, in the screw groove 11, the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated. In FIG. 5, a portion surrounded by a dotted line indicates the screw accommodating portion 3 of the casing 4, and the screw groove 11 surrounded by the screw accommodating portion 3 constitutes the compression chamber 10. Here, focusing on the compression chamber 10 indicated by hatching of dots in FIG.
 ケーシング4の吸入口(図示せず)から吸入された冷媒は、モータ7(図2参照)を冷却した後、吸入行程におけるスクリュー溝11に流入する。図5(a)は、吸入行程完了直後、言い換えれば圧縮開始の圧縮室10の状態を示している。そして、スクリューロータ1がモータ7により駆動して、実線矢印の方向に回転すると、図5(b)に示すように圧縮室10の容積が縮小していく。 The refrigerant sucked from the suction port (not shown) of the casing 4 cools the motor 7 (see FIG. 2) and then flows into the screw groove 11 in the suction stroke. FIG. 5A shows the state of the compression chamber 10 immediately after the completion of the suction stroke, in other words, the compression start of the compression start. When the screw rotor 1 is driven by the motor 7 and rotated in the direction of the solid line arrow, the volume of the compression chamber 10 is reduced as shown in FIG.
 引き続き、スクリューロータ1が回転すると、図5(c)に示すように、圧縮室10が吐出口9を介して、外部と連通する。これにより、圧縮室10内で圧縮された高圧の冷媒ガスが、吐出口9から外部へ吐出される。 When the screw rotor 1 continues to rotate, the compression chamber 10 communicates with the outside through the discharge port 9 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 10 is discharged from the discharge port 9 to the outside.
 また、冷媒回路のインジェクション用減圧装置106で減圧された液冷媒は、インジェクション用配管107、スクリュー収容部3に設けられたインジェクション用流路8を通過した後、冷却材としてインジェクションポート8bから圧縮室10に導かれる。このように液冷媒を圧縮室10にインジェクションすることで吐出温度が低下する。上記のように、この実施の形態1のスクリュー圧縮機102は、吐出温度を低下させることができるため、R32等の高温となりやすい冷媒を使用する冷凍サイクル装置100に適用されたときに、効果が特に顕著となる。 Further, the liquid refrigerant decompressed by the injection decompression device 106 of the refrigerant circuit passes through the injection pipe 107 and the injection flow path 8 provided in the screw accommodating portion 3, and then serves as a coolant from the injection port 8b to the compression chamber. 10 leads. Thus, the discharge temperature is lowered by injecting the liquid refrigerant into the compression chamber 10. As described above, since the screw compressor 102 according to the first embodiment can lower the discharge temperature, it is effective when applied to the refrigeration cycle apparatus 100 that uses a refrigerant that tends to be a high temperature such as R32. Especially noticeable.
 ここで、スクリューロータ軸6の軸径を、モノゲートロータ構造とツインゲートロータ構造とでほぼ同一とした際、モノゲートロータ構造では、上述したように圧縮による半径方向の荷重が相殺されないため、スクリューロータ軸6は撓み易く、非圧縮部側に撓む。また、スクリュー収容部3は半径方向に熱膨張する。このため、従来のモノゲートロータ構造では、スクリューロータ軸6の撓み分とスクリュー収容部3の熱膨張の分、圧縮部にあたるスクリューロータ部分とスクリュー収容部3との隙間12(以下、スクリュー隙間12という)(図3参照)は拡がる。 Here, when the shaft diameter of the screw rotor shaft 6 is substantially the same in the monogate rotor structure and the twin gate rotor structure, in the monogate rotor structure, the radial load due to compression is not offset as described above. The screw rotor shaft 6 is easily bent and bends toward the non-compressed portion. Further, the screw accommodating portion 3 is thermally expanded in the radial direction. For this reason, in the conventional monogate rotor structure, the clearance 12 between the screw rotor portion corresponding to the compression portion and the screw accommodation portion 3 (hereinafter referred to as the screw clearance 12), corresponding to the deflection of the screw rotor shaft 6 and the thermal expansion of the screw accommodation portion 3. (See Figure 3) expands.
 そこで、本実施の形態1では、インジェクション用流路8を通過する液冷媒を用いてスクリュー収容部3を冷却する。スクリュー収容部3を冷却するための具体的な構成として、インジェクション用流路8は、流路途中が拡大されて、その拡大流路部分に液冷媒が満たされることでスクリュー収容部3を冷却する冷却部8cを有している。インジェクション用流路8は、本発明の冷却流路を構成している。 Therefore, in the first embodiment, the screw accommodating portion 3 is cooled using the liquid refrigerant passing through the injection flow path 8. As a specific configuration for cooling the screw housing portion 3, the injection flow path 8 is enlarged in the middle of the flow path, and the expanded flow path portion is filled with liquid refrigerant to cool the screw housing section 3. A cooling unit 8c is provided. The injection flow path 8 constitutes the cooling flow path of the present invention.
 この構成とすることで、インジェクション用配管107からインジェクション用流路8に導かれた液冷媒が冷却部8cに満たされることで、冷却部8cがスクリュー収容部3を冷却する冷却源となり、スクリュー収容部3の熱膨張を抑制できる。具体的には、図3において点線13で囲った部分の熱膨張を抑制できる。そして、冷却部8cから流出した冷媒はインジェクションポート8bから圧縮室10にインジェクションされる。 With this configuration, when the liquid refrigerant guided from the injection pipe 107 to the injection flow path 8 is filled in the cooling unit 8c, the cooling unit 8c serves as a cooling source for cooling the screw storage unit 3, and the screw storage The thermal expansion of the part 3 can be suppressed. Specifically, the thermal expansion of the part surrounded by the dotted line 13 in FIG. 3 can be suppressed. The refrigerant flowing out of the cooling unit 8c is injected into the compression chamber 10 from the injection port 8b.
 以上説明したように、本実施の形態1では、スクリューロータ軸6の撓みとスクリュー収容部3の熱膨張とによりスクリュー隙間12が広くなる部分、つまりスクリュー収容部3にインジェクション用流路8を設け、インジェクション用流路8の流路途中に冷却部8cを設けた。これにより、インジェクション用流路8全体を、流入口8aやインジェクションポート8bと同じ流路断面積で構成する場合に比べて、スクリュー収容部3を集中的に冷却することができ、高い冷却効果を得ることができる。よって、スクリュー収容部3の熱膨張を抑制でき、スクリュー収容部3の内径を局所的に小さくできる。このことにより、スクリューロータ1の撓みがあっても、従来のモノゲートロータ構造よりも運転中のスクリュー隙間12を狭くでき、これにより圧縮ガスの漏れを抑制でき、結果として性能の向上を図ることができる。 As described above, in the first embodiment, the injection flow path 8 is provided in the portion where the screw gap 12 is widened by the deflection of the screw rotor shaft 6 and the thermal expansion of the screw housing portion 3, that is, the screw housing portion 3. The cooling part 8c is provided in the middle of the flow path of the injection flow path 8. Thereby, compared with the case where the whole flow path 8 for injection is comprised with the same flow-path cross-sectional area as the inflow port 8a and the injection port 8b, the screw accommodating part 3 can be cooled intensively, and a high cooling effect is obtained. Obtainable. Therefore, the thermal expansion of the screw housing part 3 can be suppressed, and the inner diameter of the screw housing part 3 can be locally reduced. As a result, even if the screw rotor 1 is bent, the screw gap 12 during operation can be made narrower than that of the conventional monogate rotor structure, whereby leakage of compressed gas can be suppressed, and as a result, performance can be improved. Can do.
 インジェクション用流路8を通過した後の液冷媒は、圧縮開始後の圧縮室10に流入する。このため、上記特許文献3の技術をスクリュー圧縮機102に適用した場合の吸込みガス風量の阻害は生じない。よって、結果として、圧縮効率の向上が図れる。また、インジェクション用流路8を通過した後の液冷媒は、圧縮開始後の圧縮室10に流入し、圧縮室10内の冷媒と合流して蒸発するため、液圧縮が生じることはない。 The liquid refrigerant after passing through the injection flow path 8 flows into the compression chamber 10 after the start of compression. For this reason, when the technique of the said patent document 3 is applied to the screw compressor 102, obstruction | occlusion of the suction | inhalation gas air volume does not arise. As a result, the compression efficiency can be improved. Further, the liquid refrigerant after passing through the injection flow path 8 flows into the compression chamber 10 after the start of compression, merges with the refrigerant in the compression chamber 10 and evaporates, and thus liquid compression does not occur.
 なお、高圧が低い運転条件では圧縮荷重は小さくなるため、スクリューロータ軸6の撓みは小さくなり、この場合、スクリュー収容部3の冷却は必ずしも必要ではない。このため、運転中、常にインジェクション用流路8に液冷媒に流すようにしなくてもよく、高圧が高い運転条件の場合のみ、液冷媒をインジェクション用流路8から圧縮室10にインジェクションするようにしても良い。具体的には例えば、インジェクション用配管107に開閉弁を設け、例えば吐出温度が設定温度よりも高い場合に開、吐出温度が設定温度以下の場合に閉に制御するようにすればよい。 It should be noted that since the compression load is small under operating conditions where the high pressure is low, the bending of the screw rotor shaft 6 is small, and in this case, cooling of the screw accommodating portion 3 is not necessarily required. For this reason, it is not always necessary to flow the liquid refrigerant through the injection flow path 8 during operation, and liquid refrigerant is injected from the injection flow path 8 into the compression chamber 10 only under high-pressure operating conditions. May be. Specifically, for example, an on-off valve may be provided in the injection pipe 107, and for example, it may be controlled to open when the discharge temperature is higher than the set temperature and closed when the discharge temperature is lower than the set temperature.
実施の形態2.
 図7は、本発明の実施の形態2に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。ここでは、実施の形態1の冷凍サイクル装置100と異なる部分について説明する。実施の形態2の冷凍サイクル装置100は、凝縮器103を通過後から主減圧装置104までの冷媒回路が、実施の形態1の冷凍サイクル装置100と異なる。
Embodiment 2. FIG.
FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 2 of the present invention. Here, a different part from the refrigerating-cycle apparatus 100 of Embodiment 1 is demonstrated. The refrigeration cycle apparatus 100 of the second embodiment is different from the refrigeration cycle apparatus 100 of the first embodiment in the refrigerant circuit from after passing through the condenser 103 to the main decompression device 104.
 図7に示すように、実施の形態2の冷凍サイクル装置100は、凝縮器103と主減圧装置104との間に中間冷却器109を有する。そして、冷凍サイクル装置100は、スクリュー圧縮機102、凝縮器103、中間冷却器109の高圧側流路、主減圧装置104及び蒸発器105を順に冷媒配管で接続し、冷媒が循環する冷媒回路を構成している。冷凍サイクル装置100は更に、中間冷却器109と主減圧装置104との間から分岐し、中間冷却器109の低圧側流路を介してスクリュー圧縮機102に接続されたエコノマイザ配管111と、エコノマイザ配管111において中間冷却器109の低圧側流路の上流側に設けられ、エコノマイザ配管111を通過する冷媒を減圧する中間冷却器用減圧装置110とを有する。 As shown in FIG. 7, the refrigeration cycle apparatus 100 of the second embodiment includes an intermediate cooler 109 between the condenser 103 and the main decompression device 104. The refrigeration cycle apparatus 100 includes a refrigerant circuit in which the refrigerant circulates by connecting the screw compressor 102, the condenser 103, the high-pressure side flow path of the intercooler 109, the main decompression apparatus 104, and the evaporator 105 in order through refrigerant piping. It is composed. The refrigeration cycle apparatus 100 further branches from between the intermediate cooler 109 and the main decompressor 104 and is connected to the screw compressor 102 via the low pressure side passage of the intermediate cooler 109, and an economizer pipe. 111, an intermediate cooler decompression device 110 that is provided upstream of the low-pressure side flow path of the intermediate cooler 109 and decompresses the refrigerant that passes through the economizer pipe 111.
 中間冷却器109は、凝縮器103を流出して中間冷却器109の高圧側流路に流入した冷媒と、中間冷却器109の低圧側流路に流入した冷媒とを熱交換する。中間冷却器109の低圧側流路に流入する冷媒は、中間冷却器109を通過後の冷媒の一部を中間冷却器用減圧装置110で減圧した冷媒である。中間冷却器109の低圧側に流入した冷媒は、高圧側流路に流入した冷媒と熱交換した後、スクリュー圧縮機102にインジェクションされる。一方、中間冷却器109の高圧側流路に流入した冷媒は、低圧側流路に流入した冷媒との熱交換により冷却される。すなわち、凝縮器103を出て直接、中間冷却器109の高圧側流路に流入した高圧側冷媒は、低圧側流路に流入した冷媒との熱交換により、過冷却される。この過冷却の増加によって、蒸発器105の冷凍効果は増えることになる。 The intermediate cooler 109 exchanges heat between the refrigerant that flows out of the condenser 103 and flows into the high-pressure side flow path of the intermediate cooler 109, and the refrigerant that flows into the low-pressure side flow path of the intermediate cooler 109. The refrigerant flowing into the low-pressure side flow path of the intermediate cooler 109 is a refrigerant obtained by decompressing a part of the refrigerant after passing through the intermediate cooler 109 by the intermediate cooler decompression device 110. The refrigerant that has flowed into the low-pressure side of the intercooler 109 exchanges heat with the refrigerant that has flowed into the high-pressure channel, and is then injected into the screw compressor 102. On the other hand, the refrigerant that has flowed into the high-pressure channel of the intermediate cooler 109 is cooled by heat exchange with the refrigerant that has flowed into the low-pressure channel. That is, the high-pressure side refrigerant that has flowed out of the condenser 103 directly into the high-pressure side passage of the intermediate cooler 109 is supercooled by heat exchange with the refrigerant that has flowed into the low-pressure side passage. With this increase in supercooling, the refrigeration effect of the evaporator 105 increases.
 ここで、中間冷却器用減圧装置110は中間圧過熱度、アプローチ、吐出温度などに基づき制御される。中間冷却器用減圧装置110は、ステッピングモータ(図示せず)により絞りの開度を可変に調整することが可能な電子膨張弁で構成される。中間圧過熱度とは、中間冷却器109の低圧側流路出口の過熱度である。アプローチとは、次の図8のaに相当する。 Here, the intermediate cooler decompression device 110 is controlled based on the intermediate pressure superheat, approach, discharge temperature, and the like. The intercooler decompression device 110 is composed of an electronic expansion valve capable of variably adjusting the opening of the throttle by a stepping motor (not shown). The intermediate pressure superheat degree is the degree of superheat at the low pressure side channel outlet of the intermediate cooler 109. The approach corresponds to a in FIG.
 図8は、アプローチを説明するP-h線図である。
 アプローチは、図8に示すように、中間冷却器用減圧装置110の出口の中間圧力MPの冷媒の温度と、中間冷却器用減圧装置110の出口の中間圧力MPの飽和換算温度との差である。
FIG. 8 is a Ph diagram illustrating the approach.
As shown in FIG. 8, the approach is the difference between the refrigerant temperature at the intermediate pressure MP at the outlet of the intermediate cooler decompression device 110 and the saturation conversion temperature of the intermediate pressure MP at the outlet of the intermediate cooler decompression device 110.
(スクリュー圧縮機)
 上記実施の形態1では、インジェクション用配管107に流入してインジェクション用減圧装置106で減圧された液冷媒がインジェクション用流路8を通過する。これに対し、実施の形態2ではエコノマイザ配管111において中間冷却器109の低圧側流路から流出したガス冷媒がインジェクション用流路8を通過する。
(Screw compressor)
In the first embodiment, the liquid refrigerant flowing into the injection pipe 107 and decompressed by the injection decompression device 106 passes through the injection flow path 8. On the other hand, in the second embodiment, the gas refrigerant flowing out from the low-pressure side flow path of the intermediate cooler 109 in the economizer pipe 111 passes through the injection flow path 8.
 エコノマイザ配管111からスクリュー圧縮機102に流入するガス冷媒の温度は、スクリュー圧縮機102の吐出冷媒の温度よりも低く、スクリュー収容部3の冷却源として使用できる。 The temperature of the gas refrigerant flowing into the screw compressor 102 from the economizer pipe 111 is lower than the temperature of the refrigerant discharged from the screw compressor 102 and can be used as a cooling source for the screw accommodating portion 3.
 このため、実施の形態2は、実施の形態1と同様にスクリュー収容部3の熱膨張を抑制でき、スクリュー収容部3の内径を局所的に小さくでき、圧縮ガスの漏れを抑制できる。また、中間冷却器109を有することで冷凍効果は増えるため、実施の形態1よりも性能の向上が図れる。 For this reason, the second embodiment can suppress the thermal expansion of the screw housing portion 3 as in the first embodiment, can locally reduce the inner diameter of the screw housing portion 3, and can suppress the leakage of the compressed gas. In addition, since the refrigeration effect is increased by having the intercooler 109, the performance can be improved as compared with the first embodiment.
実施の形態3.
 図9は、本発明の実施の形態3に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。実施の形態3の冷凍サイクル装置100は、いわば、実施の形態1と実施の形態2とを組み合わせた構成に相当する。以下、実施の形態3が、実施の形態1の冷凍サイクル装置100と異なる部分について説明する。
Embodiment 3 FIG.
FIG. 9 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 3 of the present invention. In other words, the refrigeration cycle apparatus 100 according to the third embodiment corresponds to a configuration in which the first embodiment and the second embodiment are combined. Hereinafter, the parts of the third embodiment different from the refrigeration cycle apparatus 100 of the first embodiment will be described.
 図9に示すように、実施の形態3の冷凍サイクル装置100は、図1に示した実施の形態1の冷凍サイクル装置100に更に、図7に示した実施の形態2の中間冷却器109、中間冷却器用減圧装置110及びエコノマイザ配管111を有している。 As shown in FIG. 9, the refrigeration cycle apparatus 100 of the third embodiment further includes the intercooler 109 of the second embodiment shown in FIG. 7 in addition to the refrigeration cycle apparatus 100 of the first embodiment shown in FIG. An intermediate cooler decompression device 110 and an economizer pipe 111 are provided.
 インジェクション用減圧装置106は、上述したように吐出温度に基づき調整され、中間冷却器用減圧装置110は、中間圧過熱度又はアプローチに基づき制御される。 The injection decompression device 106 is adjusted based on the discharge temperature as described above, and the intermediate cooler decompression device 110 is controlled based on the intermediate pressure superheat or approach.
(スクリュー圧縮機)
 上記実施の形態1、2では、インジェクション用配管107からの液冷媒又はエコノマイザ配管111からのガス冷媒のどちらかがインジェクション用流路8に流入する。これに対し、実施の形態3では、インジェクション用配管107からの液冷媒とエコノマイザ配管111からのガス冷媒とが合流してインジェクション用流路8に流入する。その後、インジェクション用流路8内の冷媒は、インジェクションポート8bから圧縮室10(圧縮行程にあるスクリュー溝11)に導かれる。
(Screw compressor)
In the first and second embodiments, either the liquid refrigerant from the injection pipe 107 or the gas refrigerant from the economizer pipe 111 flows into the injection flow path 8. On the other hand, in the third embodiment, the liquid refrigerant from the injection pipe 107 and the gas refrigerant from the economizer pipe 111 join and flow into the injection flow path 8. Thereafter, the refrigerant in the injection flow path 8 is guided from the injection port 8b to the compression chamber 10 (screw groove 11 in the compression stroke).
 図10は、本発明の実施の形態3に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。
 上述したように、インジェクション用流路8にはインジェクション用配管107からの液冷媒とエコノマイザ配管111からのガス冷媒とが合流した冷媒が通過する。合流後の冷媒の流れやすさを確保するため、実施の形態3のインジェクションポート8bは、実施の形態1のインジェクションポート8bに比べて流路断面積が大きく構成されている。
FIG. 10 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to the third embodiment of the present invention.
As described above, the refrigerant obtained by joining the liquid refrigerant from the injection pipe 107 and the gas refrigerant from the economizer pipe 111 passes through the injection flow path 8. In order to ensure the ease of flow of the refrigerant after merging, the injection port 8b of the third embodiment is configured to have a larger flow path cross-sectional area than the injection port 8b of the first embodiment.
 本実施の形態3によれば、実施の形態1及び実施の形態2と同様の効果を得ることができる。 According to the third embodiment, the same effects as those of the first and second embodiments can be obtained.
実施の形態4.
 図11は、本発明の実施の形態4に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の冷媒回路図である。図12は、本発明の実施の形態4に係るスクリュー圧縮機102の図2のX-X線における水平概略断面図である。また、図13は、本発明の実施の形態4に係るスクリュー圧縮機102における、スクリュー収容部3の内周面及びスクリューロータ1を展開した図である。
Embodiment 4 FIG.
FIG. 11 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 including the screw compressor 102 according to Embodiment 4 of the present invention. FIG. 12 is a horizontal schematic cross-sectional view of the screw compressor 102 according to the fourth embodiment of the present invention taken along line XX in FIG. FIG. 13 is a developed view of the inner peripheral surface of the screw accommodating portion 3 and the screw rotor 1 in the screw compressor 102 according to Embodiment 4 of the present invention.
 ここで、図11における冷凍サイクル装置100の冷媒回路及び各減圧装置106、110の制御は実施の形態3と同一である。 Here, the control of the refrigerant circuit of the refrigeration cycle apparatus 100 and the decompression apparatuses 106 and 110 in FIG. 11 is the same as in the third embodiment.
(スクリュー圧縮機)
 上記実施の形態3では、インジェクション用流路8に、液冷媒とガス冷媒とが合流して通過する構成であった。これに対し、実施の形態4のインジェクション用流路8は、液冷媒が通過する液冷媒用流路81とガス冷媒が通過するガス冷媒用流路82とに分けられ、液冷媒とガス冷媒とが別々に通過する構成としている。
(Screw compressor)
In the third embodiment, the liquid refrigerant and the gas refrigerant are combined and passed through the injection flow path 8. In contrast, the injection flow path 8 of the fourth embodiment is divided into a liquid refrigerant flow path 81 through which liquid refrigerant passes and a gas refrigerant flow path 82 through which gas refrigerant passes. Are configured to pass separately.
 液冷媒用流路81の外部側の開口である流入口81aにはインジェクション用配管107が接続される。これにより、液冷媒用流路81には、インジェクション用配管107からの液冷媒が通過する。また、ガス冷媒用流路82の外部側の開口である流入口82aにはエコノマイザ配管111が接続される。これにより、ガス冷媒用流路82には、エコノマイザ配管111からのガス冷媒が通過する。 An injection pipe 107 is connected to an inlet 81a which is an opening on the outside of the liquid refrigerant flow path 81. Thereby, the liquid refrigerant from the injection pipe 107 passes through the liquid refrigerant flow path 81. Further, an economizer pipe 111 is connected to an inflow port 82a which is an opening on the outside of the gas refrigerant channel 82. As a result, the gas refrigerant from the economizer pipe 111 passes through the gas refrigerant passage 82.
 そして、液冷媒用流路81とガス冷媒用流路82のそれぞれには、冷却部81c、82cが設けられている。冷却部81c、82cは実施の形態1の冷却部8cと同様、流路の途中が拡大されて、その拡大流路部分に液冷媒が満たされることでスクリュー収容部3を冷却するものである。 The liquid refrigerant flow path 81 and the gas refrigerant flow path 82 are provided with cooling portions 81c and 82c, respectively. Like the cooling unit 8c of the first embodiment, the cooling units 81c and 82c are configured to cool the screw accommodating unit 3 by enlarging the middle of the flow path and filling the expanded flow path portion with the liquid refrigerant.
 冷却部81cと冷却部82cとでは、図12に示したように冷却部82cの方が大きく形成されている。また、図13に示したように、液冷媒用流路81のスクリューロータ1側の開口であるインジェクションポート81bと、ガス冷媒用流路82のスクリューロータ1側の開口であるインジェクションポート82bとでは、インジェクションポート82bの方が流路断面積が大きく構成されている。このようにガス冷媒が通過する側を、液冷媒が通過する側よりも流路断面積を大きくしているのは、ガス冷媒は、流路が狭いと流れ難いことによるものである。しかし、液冷媒が通過する側を拡大してガス冷媒が通過する側と同じ大きさにしてももちろんよい。 In the cooling part 81c and the cooling part 82c, the cooling part 82c is formed larger as shown in FIG. In addition, as shown in FIG. 13, the injection port 81b, which is the opening on the screw rotor 1 side of the liquid refrigerant flow path 81, and the injection port 82b, which is the opening on the screw rotor 1 side of the gas refrigerant flow path 82, The injection port 82b has a larger channel cross-sectional area. The reason why the cross-sectional area of the flow path is larger on the side through which the gas refrigerant passes than on the side through which the liquid refrigerant passes is that the gas refrigerant hardly flows when the flow path is narrow. However, the side through which the liquid refrigerant passes may be enlarged to have the same size as the side through which the gas refrigerant passes.
 このように、インジェクション用流路8を液冷媒用流路81とガス冷媒用流路82とに分けて形成したことで、図13に示すように、インジェクションポート81bとインジェクションポート82bのそれぞれの流路断面積を、実施の形態3のインジェクションポート8bの流路断面積よりも小さくできる。 As described above, the injection flow path 8 is divided into the liquid refrigerant flow path 81 and the gas refrigerant flow path 82, so that the flow of each of the injection port 81b and the injection port 82b is as shown in FIG. The path cross-sectional area can be made smaller than the flow path cross-sectional area of the injection port 8b of the third embodiment.
 実施の形態4によれば、実施の形態1~3と同様の効果が得られると共に、インジェクション用流路8を液冷媒用流路81とガス冷媒用流路82とに分けた構成としたので、以下の効果が得られる。すなわち、上述したように、インジェクションポート81bとインジェクションポート82bのそれぞれの流路断面積を、図10に示した実施の形態3のインジェクションポート8bの流路断面積よりも小さくできる。 According to the fourth embodiment, the same effects as in the first to third embodiments can be obtained, and the injection flow path 8 is divided into the liquid refrigerant flow path 81 and the gas refrigerant flow path 82. The following effects can be obtained. That is, as described above, the flow path cross-sectional areas of the injection port 81b and the injection port 82b can be made smaller than the flow path cross-sectional area of the injection port 8b of the third embodiment shown in FIG.
 流路断面積を小さくできることで、インジェクションポート81b及びインジェクションポート82bのそれぞれが、隣接する圧縮室10を跨がない大きさにすることができ、また、圧縮室10の傾斜に沿った配置にできる。このため、一つの圧縮室10を狙ってインジェクションすることができるため、インジェクションに用いられる冷媒の圧力と圧縮室内の圧力との差圧を確保でき、インジェクションを良好に行える。 Since the cross-sectional area of the flow path can be reduced, each of the injection port 81b and the injection port 82b can be sized so as not to straddle the adjacent compression chamber 10, and can be arranged along the inclination of the compression chamber 10. . For this reason, since it can aim at the one compression chamber 10, it can ensure the differential pressure | voltage between the pressure of the refrigerant | coolant used for injection, and the pressure in a compression chamber, and can perform injection favorably.
 1 スクリューロータ、2 ゲートロータ、3 スクリュー収容部、3a 空間、4 ケーシング、5a 軸受、5b 軸受、6 スクリューロータ軸、7 モータ、7a 固定子、7b 回転子、8 インジェクション用流路、8a 流入口、8b インジェクションポート、8c 冷却部、9 吐出口、10 圧縮室、11 スクリュー溝、12 スクリュー隙間、21 歯、22 ゲートロータ軸、22a ゲートロータサポート室、23a ゲートロータ軸受、23b ゲートロータ軸受、81 液冷媒用流路、81a 流入口、81b インジェクションポート、81c 冷却部、82 ガス冷媒用流路、82a 流入口、82b インジェクションポート、82c 冷却部、100 冷凍サイクル装置、101 インバータ、102 スクリュー圧縮機、103 凝縮器、104 主減圧装置、104a 感温筒、105 蒸発器、106 インジェクション用減圧装置、106a 感温筒、107 インジェクション用配管、108 制御装置、109 中間冷却器、110 中間冷却器用減圧装置、111 エコノマイザ配管。 1 screw rotor, 2 gate rotor, 3 screw housing, 3a space, 4 casing, 5a bearing, 5b bearing, 6 screw rotor shaft, 7 motor, 7a stator, 7b rotor, 8 injection flow path, 8a inlet , 8b Injection port, 8c Cooling section, 9 Discharge port, 10 Compression chamber, 11 Screw groove, 12 Screw gap, 21 Teeth, 22 Gate rotor shaft, 22a Gate rotor support chamber, 23a Gate rotor bearing, 23b Gate rotor bearing, 81 Liquid refrigerant flow path, 81a inlet, 81b injection port, 81c cooling section, 82 gas refrigerant flow path, 82a inlet, 82b injection port, 82c cooling section, 100 refrigeration cycle apparatus, 101 inverter, 02 Screw compressor, 103 condenser, 104 main decompression device, 104a temperature sensitive cylinder, 105 evaporator, 106 injection decompression device, 106a temperature sensitive cylinder, 107 injection piping, 108 control device, 109 intermediate cooler, 110 intermediate Pressure reducer for cooler, 111 economizer piping.

Claims (7)

  1.  ケーシングと、
     前記ケーシング内で回転し、複数のスクリュー溝を外周面に有するスクリューロータと、
     前記スクリューロータの前記スクリュー溝に係合する歯を有し、前記スクリューロータの回転に伴って回転する1枚のゲートロータとを備え、
     前記ケーシングの一部、前記スクリュー溝及び前記ゲートロータで囲まれた空間で圧縮室を構成しており、
     前記ケーシングの前記一部は、外部からの冷媒を前記圧縮室に導く冷却流路を有し、前記冷却流路は、流路途中が拡大されて、その拡大流路部分に前記冷媒が満たされる冷却部を構成しているスクリュー圧縮機。
    A casing,
    A screw rotor that rotates within the casing and has a plurality of screw grooves on the outer peripheral surface;
    Having a tooth that engages with the screw groove of the screw rotor, and a single gate rotor that rotates as the screw rotor rotates,
    A compression chamber is constituted by a space surrounded by a part of the casing, the screw groove and the gate rotor,
    The part of the casing has a cooling channel that guides an external refrigerant to the compression chamber. The cooling channel is enlarged in the middle of the channel, and the enlarged channel portion is filled with the refrigerant. Screw compressor constituting the cooling section.
  2.  前記ケーシングの前記一部は、前記スクリューロータを収容する筒形状の空間を備えたスクリュー収容部である請求項1記載のスクリュー圧縮機。 The screw compressor according to claim 1, wherein the part of the casing is a screw accommodating portion having a cylindrical space for accommodating the screw rotor.
  3.  前記冷媒は、液相と気相との相変化を伴う冷媒であり、
     前記冷却流路は、液冷媒が通過する液冷媒用流路とガス冷媒が通過するガス冷媒用流路とに分けられ、前記液冷媒用流路と前記ガス冷媒用流路とのそれぞれが前記冷却部を有している請求項1又は請求項2記載のスクリュー圧縮機。
    The refrigerant is a refrigerant accompanying a phase change between a liquid phase and a gas phase,
    The cooling flow path is divided into a liquid refrigerant flow path through which liquid refrigerant passes and a gas refrigerant flow path through which gas refrigerant passes, and each of the liquid refrigerant flow path and the gas refrigerant flow path is The screw compressor according to claim 1 or 2, further comprising a cooling unit.
  4.  請求項1又は請求項2記載のスクリュー圧縮機、凝縮器、主減圧装置及び蒸発器を備え、冷媒が循環する冷媒回路と、
     前記凝縮器と前記主減圧装置との間の配管から分岐し、インジェクション用減圧装置を介して前記スクリュー圧縮機の前記冷却流路に接続されるインジェクション用配管と、
     前記インジェクション用配管に設けられ、前記インジェクション用配管を通過する冷媒を減圧するインジェクション用減圧装置とを備えた冷凍サイクル装置。
    A refrigerant circuit comprising the screw compressor, the condenser, the main decompression device and the evaporator according to claim 1 or 2, wherein the refrigerant circulates,
    A pipe for injection branched from a pipe between the condenser and the main pressure reducing device and connected to the cooling flow path of the screw compressor via a pressure reducing device for injection;
    A refrigeration cycle apparatus comprising: an injection decompression device that decompresses a refrigerant that is provided in the injection piping and passes through the injection piping.
  5.  請求項1又は請求項2記載のスクリュー圧縮機、凝縮器、中間冷却器の高圧側流路、主減圧装置及び蒸発器を備え、冷媒が循環する冷媒回路と、
     前記中間冷却器の高圧側流路と前記主減圧装置との間の配管から分岐し、前記中間冷却器の低圧側流路を介して前記スクリュー圧縮機の前記冷却流路に接続されるエコノマイザ配管と、
     前記エコノマイザ配管において前記中間冷却器の低圧側流路の上流に設けられ、前記エコノマイザ配管を通過する冷媒を減圧する中間冷却器用減圧装置とを備えた冷凍サイクル装置。
    A refrigerant circuit comprising the screw compressor according to claim 1 or claim 2, a condenser, a high-pressure side flow path of an intercooler, a main decompression device, and an evaporator, wherein a refrigerant circulates;
    An economizer pipe branched from a pipe between the high-pressure side passage of the intermediate cooler and the main pressure reducing device and connected to the cooling passage of the screw compressor via the low-pressure side passage of the intermediate cooler When,
    A refrigeration cycle apparatus comprising: a pressure reducing device for an intermediate cooler that is provided upstream of a low pressure side flow path of the intermediate cooler in the economizer pipe and depressurizes a refrigerant that passes through the economizer pipe.
  6.  請求項3記載のスクリュー圧縮機、凝縮器、中間冷却器の高圧側流路、主減圧装置及び蒸発器を順に冷媒配管で接続し、冷媒が循環する冷媒回路と、
     前記凝縮器と前記主減圧装置との間の配管から分岐し、インジェクション用減圧装置を介して前記スクリュー圧縮機の前記液冷媒用流路に接続されるインジェクション用配管と、
     前記インジェクション用配管に設けられ、前記インジェクション用配管を通過する冷媒を減圧するインジェクション用減圧装置と、
     前記中間冷却器の高圧側流路と前記主減圧装置との間の配管から分岐し、前記中間冷却器の低圧側流路を介して前記スクリュー圧縮機の前記ガス冷媒用流路に接続されるエコノマイザ配管と、
     前記エコノマイザ配管において前記中間冷却器の低圧側流路の上流に設けられ、前記エコノマイザ配管を通過する冷媒を減圧する中間冷却器用減圧装置とを備えた冷凍サイクル装置。
    A refrigerant circuit in which the screw compressor, the condenser, the high-pressure side flow path of the intercooler, the main decompression device, and the evaporator are connected in order by refrigerant piping, and the refrigerant circulates.
    An injection pipe branched from a pipe between the condenser and the main decompressor, and connected to the liquid refrigerant flow path of the screw compressor via an injection decompressor;
    A pressure reducing device for injection, which is provided in the pipe for injection and depressurizes a refrigerant passing through the pipe for injection;
    Branches from a pipe between the high pressure side flow path of the intermediate cooler and the main pressure reducing device, and is connected to the gas refrigerant flow path of the screw compressor via the low pressure side flow path of the intermediate cooler. Economizer piping,
    A refrigeration cycle apparatus comprising: a pressure reducing device for an intermediate cooler that is provided upstream of a low pressure side flow path of the intermediate cooler in the economizer pipe and depressurizes a refrigerant that passes through the economizer pipe.
  7.  前記冷媒は、R32を含んでいる請求項4~請求項6の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 4 to 6, wherein the refrigerant includes R32.
PCT/JP2016/065499 2016-05-25 2016-05-25 Screw compressor and refrigeration cycle device WO2017203642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065499 WO2017203642A1 (en) 2016-05-25 2016-05-25 Screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065499 WO2017203642A1 (en) 2016-05-25 2016-05-25 Screw compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017203642A1 true WO2017203642A1 (en) 2017-11-30

Family

ID=60411207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065499 WO2017203642A1 (en) 2016-05-25 2016-05-25 Screw compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2017203642A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202466A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Heat source-side unit and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083609A (en) * 2003-09-05 2005-03-31 Daikin Ind Ltd Refrigeration unit
JP2009002257A (en) * 2007-06-22 2009-01-08 Daikin Ind Ltd Single screw compressor and its assembling method
JP2010249047A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2012197746A (en) * 2011-03-22 2012-10-18 Daikin Industries Ltd Screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083609A (en) * 2003-09-05 2005-03-31 Daikin Ind Ltd Refrigeration unit
JP2009002257A (en) * 2007-06-22 2009-01-08 Daikin Ind Ltd Single screw compressor and its assembling method
JP2010249047A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2012197746A (en) * 2011-03-22 2012-10-18 Daikin Industries Ltd Screw compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202466A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Heat source-side unit and refrigeration cycle device
JPWO2020202466A1 (en) * 2019-04-02 2021-11-25 三菱電機株式会社 Heat source side unit and refrigeration cycle device
JP7094443B2 (en) 2019-04-02 2022-07-01 三菱電機株式会社 Heat source side unit and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6685379B2 (en) Screw compressor and refrigeration cycle equipment
JP4973976B2 (en) Sealed turbo compression refrigerator
JP6177449B2 (en) Screw compressor and refrigeration cycle equipment
JP6058133B2 (en) Screw compressor and refrigeration cycle apparatus
JP4949817B2 (en) Multistage compressor and refrigeration cycle using the same
CN109154455B (en) Refrigeration cycle device
US11732710B2 (en) Screw compressor, and refrigeration device
JP5228905B2 (en) Refrigeration equipment
WO2017203642A1 (en) Screw compressor and refrigeration cycle device
JP5338314B2 (en) Compressor and refrigeration equipment
JP2012127565A (en) Refrigeration cycle device
TWI568982B (en) Freezer
WO2020245932A1 (en) Screw compressor, and refrigeration cycle device
JP2010156245A (en) Refrigeration device
WO2022044149A1 (en) Refrigeration cycle device
CN109642579B (en) Screw compressor and refrigeration cycle device
JP7292428B2 (en) refrigeration cycle equipment
JP2018127903A (en) Compressor
WO2021171489A1 (en) Screw compressor and freezer
WO2018131089A1 (en) Refrigeration cycle device
JP2014095510A (en) Refrigeration cycle device
JP5321055B2 (en) Refrigeration equipment
WO2017175298A1 (en) Screw compressor and refrigeration cycle device
WO2016088207A1 (en) Refrigeration cycle circuit
WO2015129169A1 (en) Compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903124

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP