WO2017175298A1 - Screw compressor and refrigeration cycle device - Google Patents

Screw compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2017175298A1
WO2017175298A1 PCT/JP2016/061090 JP2016061090W WO2017175298A1 WO 2017175298 A1 WO2017175298 A1 WO 2017175298A1 JP 2016061090 W JP2016061090 W JP 2016061090W WO 2017175298 A1 WO2017175298 A1 WO 2017175298A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw compressor
screw
compressed
slide valve
side operation
Prior art date
Application number
PCT/JP2016/061090
Other languages
French (fr)
Japanese (ja)
Inventor
克也 前田
雅章 上川
下地 美保子
英彰 永田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/061090 priority Critical patent/WO2017175298A1/en
Publication of WO2017175298A1 publication Critical patent/WO2017175298A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves

Definitions

  • the present invention relates to a screw compressor or the like.
  • it relates to securing a discharge path for fluid discharged from a compression chamber of a screw compressor.
  • screw compressor there is generally a single screw compressor having one screw rotor and two gate rotors.
  • the screw rotor and the gate rotor are accommodated in the casing body.
  • a plurality of spiral screw grooves are formed in the screw rotor.
  • a compression chamber in which the refrigerant is compressed is formed between the screw groove, the gate rotor, and the casing body.
  • each gate rotor is fixed to a gate rotor support. Both ends of the shaft of the gate rotor support are supported by the bearing support via bearings.
  • a low pressure chamber serving as a low pressure space and a discharge chamber serving as a high pressure space are formed.
  • the low-pressure chamber becomes a suction pressure atmosphere
  • the discharge chamber becomes a high-pressure space that becomes a discharge pressure atmosphere.
  • the screw rotor is fixed to the screw shaft.
  • One end side of the screw shaft is supported by a bearing support via a bearing disposed on the discharge side of the screw rotor, and the suction side which is the other end side is connected to the motor rotor.
  • the discharge flow path side where the screw groove of the screw rotor is opened is the discharge pressure atmosphere.
  • the bearing side arranged facing the discharge side of the screw shaft becomes a suction pressure atmosphere.
  • the discharge chamber and the low-pressure chamber are located in the vicinity, if a differential pressure occurs between the discharge chamber and the low-pressure chamber, the high pressure from the clearance between the screw rotor and the bearing support to the bearing side. Fluid leakage occurs.
  • a clearance is required between the outer peripheral surface of the screw rotor and the casing so that the screw rotor can be rotationally driven. Leakage of high-pressure fluid also occurs from this clearance.
  • the motor may have a relatively low rotational speed when the operation load is small.
  • the ratio of the leakage amount of the high-pressure fluid to the discharge amount of the screw compressor increases. For this reason, the greater the leakage of high-pressure fluid, the lower the operating efficiency of the compressor.
  • a switching valve that can switch the compression chamber to a compression state or a non-compression state is provided.
  • screw compressors that can perform the following operations (see, for example, Patent Document 1 and Patent Document 2).
  • the switching valve is switched so that one of the two compression chambers is in an uncompressed state.
  • the discharge amount of the compressed fluid is reduced, but the motor is operated with an increased number of revolutions.
  • the number of rotations of the electric motor By increasing the number of rotations of the electric motor, the amount of high-pressure fluid leakage with respect to the discharge amount is reduced.
  • the operation is a double-sided operation mode (both-side operation) in which fluid is compressed in all the compression chambers.
  • Patent Document 1 it is possible to achieve suppression of refrigerant leakage loss by preventing the motor speed from being lowered by properly using both-side operation and one-side operation.
  • the rotational speed increases, there is a concern that the effect of pressure loss in the discharge path will increase.
  • patent document 2 in order to reduce the pressure loss in discharge, the area of the discharge port is expanded.
  • the following problem arises when switching between one-side operation and both-side operation using the slide valve of Patent Document 2.
  • the high / low pressure partition wall becomes a factor of narrowing the discharge area when performing both-side operation. As a result, there is a possibility that performance will be degraded.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a screw compressor having a one-side operation function capable of ensuring a flow passage area in a discharge path. .
  • a screw compressor according to the present invention includes a casing body having a cylindrical inner cylinder surface, a screw rotor housed in the inner cylinder surface and having a plurality of screw grooves on an outer peripheral surface, and symmetrical with respect to the rotation axis of the screw rotor.
  • a plurality of gate rotors that are arranged on both sides of the screw rotor and have a plurality of teeth meshing with the screw grooves on the outer periphery, and a slide that is movable between the casing body and the screw rotor and that can move in the direction of the rotation axis
  • a fixed high-pressure partition wall and a high-low pressure partition wall that separates a high-pressure space serving as a discharge pressure atmosphere and a low-pressure space serving as a suction pressure atmosphere in the casing body, and is a part of a discharge port for compressed fluid
  • the back surface of the mouth has a seal surface that suppresses fluid leakage with the back surface of the slide valve.
  • the refrigeration cycle apparatus constitutes a refrigerant circuit in which the screw compressor, the condenser, the decompression device, and the evaporator described above are connected in order by refrigerant piping to circulate the refrigerant that is a fluid.
  • the high and low pressure partition wall has a sealing surface that can seal the back surface of the slide valve on the back surface side of the fixed port. For example, even if the compression chamber is in an uncompressed state, the fixed port Thus, the backflow of fluid from the discharge chamber side can be eliminated. For this reason, it is possible to provide a screw compressor capable of performing one-side operation while securing a flow passage area in the discharge path.
  • FIG. (1) which shows the positional relationship of the slide valve 14 in each driving
  • FIG. (2) which shows the positional relationship of the slide valve 14 in each driving
  • FIG. (The 3) which shows the positional relationship of the slide valve 14 in each driving
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention.
  • the screw compressor 102 is described as being a device constituting a refrigerant circuit. For this reason, description will be made assuming that the fluid sucked, compressed and discharged by the screw compressor 102 of the first embodiment is a refrigerant.
  • the refrigeration cycle apparatus 100 includes a screw compressor 102, a condenser 104, an expansion valve 105, and an evaporator 106 connected in order by refrigerant piping, and has a refrigerant circuit that circulates refrigerant. is doing.
  • the inverter device 101 controls the drive frequency of the screw compressor 102 by controlling the power supply to the screw compressor 102 based on the instructed frequency.
  • the screw compressor 102 is driven by electric power supplied via an inverter device 101 from a power supply source (not shown). The configuration of the screw compressor 102 will be described later.
  • the condenser 104 cools and condenses the gas refrigerant that is a gaseous refrigerant discharged from the screw compressor 102.
  • the expansion valve 105 serving as a decompression device decompresses and expands the liquid refrigerant that is a liquid refrigerant that has flowed out of the condenser 104.
  • the evaporator 106 evaporates the refrigerant that has passed through the expansion valve 105.
  • the refrigeration cycle apparatus 100 further includes a control device 110.
  • the control device 110 controls the frequency of the inverter device 101, the opening degree of the expansion valve 105, and the like, and sends an instruction to each device.
  • the control device 110 has a slide valve control device 111.
  • the slide valve control device 111 performs position control of the two slide valves 14 included in the screw compressor 102 and the like.
  • FIG. 2 is a schematic diagram illustrating the internal configuration of the screw compressor 102 according to Embodiment 1 of the present invention.
  • FIG. 2 it is a figure which shows the structure of the part located in the upper side of the screw shaft 10 used as a rotating shaft.
  • the structure of the lower part of the screw shaft 10 is the same as that of the upper part.
  • the screw compressor 102 when the part located on the upper side of the screw shaft 10 and the part located on the lower side are the same part, the part located on the upper side is given a subscript a, and the part located on the lower side is added. Is described with a subscript b.
  • the screw compressor 102 includes a casing body 8, a screw rotor 9, a gate rotor 6, a motor 3 that rotationally drives the screw rotor 9, a slide valve 14, and the like.
  • the cylindrical casing body 8 accommodates the screw rotor 9, the gate rotor 6, the motor 3, the slide valve 14 and the like on the inner cylindrical surface that is the inner side of the cylinder.
  • the motor 3 includes a stator 31 that is inscribed and fixed to the casing body 8 and a motor rotor 32 that is disposed inside the stator 31.
  • the motor 3 serving as an electric motor rotates at a rotational speed based on the electric power supplied from the inverter device 101, rotates the screw shaft 10, and drives the screw compressor 102 at a driving frequency.
  • a screw rotor 9 is disposed in the casing body 8.
  • the screw rotor 9 and the motor rotor 32 are disposed on and fixed to the screw shaft 10 serving as a rotation shaft.
  • the screw rotor 9 has a plurality of helical screw grooves 91 formed on the outer peripheral surface. The screw rotor 9 is rotated with the rotation of the motor rotor 32 fixed to the screw shaft 10.
  • the screw compressor 102 has two gate rotors 6.
  • the two gate rotors 6 are disposed on both sides of the screw rotor 9 so as to be symmetric (point-symmetric) with respect to the screw shaft 10.
  • one is a first gate rotor 6a and the other is a second gate rotor 6b.
  • Each gate rotor 6 has a disk shape.
  • a plurality of teeth 61 are provided on the outer periphery of the gate rotor 6 along the circumferential direction.
  • the teeth 61 of the gate rotor 6 are engaged with the screw grooves 91 of the screw rotor 9.
  • a space surrounded by the teeth 61 of the gate rotor 6, the screw groove 91, and the inner cylindrical surface of the casing body 8 becomes the compression chamber 11.
  • the compression chamber 11 surrounded by the teeth 61 of the first gate rotor 6a, the screw groove 91, and the inner cylindrical surface of the casing body 8 is defined as a first compression chamber 11a.
  • the compression chamber 11 surrounded by the teeth 61 of the second gate rotor 6b, the screw groove 91, and the inner cylindrical surface of the casing body 8 is defined as a second compression chamber 11b.
  • the casing body 8 has a high and low pressure partition wall 17 that divides the inside of the casing body 8 into a discharge pressure side and a suction pressure side.
  • the high / low pressure partition wall 17 is formed in the casing body 8 so as to face the casing body 8 side of the slide valve 14 described later.
  • a discharge chamber 12 in a high-pressure space serving as a discharge pressure atmosphere is formed on the discharge pressure side of the casing body 8.
  • the discharge port 13 is an opening portion that allows the compression chamber 11 and the discharge chamber 12 to communicate with each other.
  • An opening portion of the slide valve 14 to be described later and a fixed port 19 are also part of the discharge port 13. As shown in FIG. 10 to be described later, the fixed port 19 is an opening portion to a compression chamber 11 in a space provided to prevent the refrigerant liquid and the like from being compressed.
  • a slide valve 14 is provided in the casing body 8.
  • the slide valve 14 is connected to a drive device 16 via a rod 15 that is a connecting rod.
  • the drive device 16 such as a piston moves and positions the slide valve 14 in the direction of the rotation axis around which the screw rotor 9 rotates based on an instruction from the slide valve control device 111.
  • the slide valve 14 is located inside the casing body 8 and faces the screw rotor 9. Therefore, the slide valve 14 becomes a part of the wall surface surrounding the compression chamber 11.
  • the slide valve 14 is partially open, and the opening becomes a part of the discharge port 13 described above.
  • the surface facing the casing 8 main body side in the slide valve 14 is referred to as a “back surface”, and the surface facing the screw rotor 9 side is described as an “inner peripheral surface”.
  • the upper slide valve 14 shown in FIG. 2 will be described as a first slide valve 14a, and the lower slide valve 14 (not shown) will be described as a second slide valve 14b.
  • the compression chamber 11 when the slide valve 14 is positioned on the suction side in the direction of the rotation axis in which the screw rotor 9 rotates, the compression chamber 11 includes the casing body 8 including the screw groove 91, the teeth 61 of the gate rotor 6, and the slide valve 14. Sandwiched between. For this reason, the compression chamber 11 will be in the compression state which raises the pressure of the refrigerant
  • the compression chamber 11 communicates with a low pressure chamber that is a low pressure space of the suction pressure atmosphere.
  • the slide valve control device 111 sends an instruction to the drive device 16 to move the first slide valve 14a to perform switching control for switching the first compression chamber 11a between the compressed state and the non-compressed state.
  • An operation in which all the compression chambers 11 (the first compression chamber 11a and the second compression chamber 11b) among the plurality of compression chambers 11 that can be made into the screw compressor 102 are compressed is referred to as a double-side operation.
  • an operation that is performed with some of the compression chambers 11 (first compression chambers 11a) in an uncompressed state is referred to as a one-side operation.
  • the motor 3 is operated by increasing the number of revolutions of the motor 3.
  • the non-compressed state in which the fluid in the compression chamber 11 is held at a constant pressure is not only a state in which the fluid is not compressed at all, but even if the pressure in the compression chamber 11 fluctuates, the degree of variation is compared with the compressed state. In some cases, the compression is very small.
  • the driving device 16 such as a piston for driving the slide valve 14 is not limited in terms of driving means such as one driven by gas pressure, one driven by hydraulic pressure, one driven by a motor or the like separately from the piston. To do.
  • FIG. 3 is a diagram illustrating a compression principle of the screw compressor 102 according to the first embodiment of the present invention.
  • the operation of the screw compressor 102 according to Embodiment 1 will be described.
  • the screw rotor 9 is rotated by the motor 3 shown in FIG. 2 via the screw shaft 10 shown in FIG. 2, the teeth 61 of the gate rotor 6 are compressed into the compression chamber 11 (screw groove) as shown in FIG. 91) Move relatively within.
  • a suction stroke, a compression stroke, and a discharge stroke are sequentially performed.
  • the cycle is repeated with the suction stroke, the compression stroke, and the discharge stroke as one cycle.
  • each stroke will be described.
  • FIG. 3A shows the state of the compression chamber 11 in the suction stroke.
  • the screw rotor 9 is driven by the motor 3 and rotates in the direction of the solid arrow.
  • the volume of the compression chamber 11 decreases as shown in FIG.
  • the compression chamber 11 communicates with the discharge chamber 12 through the discharge port 13 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 11 is discharged from the discharge port 13 to the discharge chamber 12. Then, the same compression is performed again on the back surface of the screw rotor 9.
  • FIG. 4 is a diagram for explaining the both-side operation of the screw compressor 102 according to the first embodiment of the present invention.
  • the slide valve control device 111 of the control device 110 sends an instruction to the drive device 16 to position, for example, the first slide valve 14a on the suction side as shown in FIG. Here, it is located on the most suction side.
  • FIG. 5 is a diagram showing a refrigerant flow in the first compression chamber 11a in the both-side operation of the screw compressor 102 according to Embodiment 1 of the present invention.
  • FIG. 6 is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the both-sides operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. Since the first slide valve 14a is positioned on the suction side, the first compression chamber 11a is spatially separated from the low pressure chamber that is the suction pressure atmosphere after the suction stroke. For this reason, the compression stroke is possible in the first compression chamber 11a. As shown in FIG. 6, the opening portion of the first slide valve 14a also functions as the first discharge port 13a. The first compression chamber 11a and the discharge chamber 12 communicate with each other and are compressed in the first compression chamber 11a. The refrigerant is discharged into the discharge chamber 12. The first fixed port 19a also becomes the first discharge port 13a.
  • the slide valve control device 111 sends an instruction to the drive device 16 to move the second slide valve 14b in the direction of the screw shaft 10 to move it to an arbitrary position where the refrigerant can be compressed. Also in the second compression chamber 11b, a compression stroke is possible.
  • the refrigerant can be compressed in the first compression chamber 11a and the second compression chamber 11b. Then, the high-pressure refrigerant gas compressed in the compression chamber 11 is discharged from the discharge port 13 to the discharge chamber 12.
  • FIG. 7 is a diagram for explaining the one-side operation of the screw compressor 102 according to the first embodiment of the present invention.
  • the slide valve control device 111 of the control device 110 sends an instruction to the drive device 16 to position the first slide valve 14a closest to the discharge side as shown in FIG.
  • FIG. 8 is a diagram showing a refrigerant flow in the first compression chamber 11a in the one-side operation of the screw compressor 102 according to Embodiment 1 of the present invention.
  • FIG. 9 is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the one-side driving
  • the first slide valve 14a since the first slide valve 14a is located on the most discharge side, the first compression chamber 11a communicates with the low pressure chamber in the suction pressure atmosphere. For this reason, the first compression chamber 11a is not compressed and is in an uncompressed state. Further, as shown in FIGS.
  • the opening portion of the first slide valve 14a does not function as the first discharge port 13a, and the first slide valve 14a is connected to the first fixed port 19a of the first discharge port 13a. Block the parts other than the part. Therefore, the first compression chamber 11a and the discharge chamber 12 do not communicate with each other, and the refrigerant does not flow from the first compression chamber 11a side to the discharge chamber 12.
  • the slide valve control device 111 sends an instruction to the drive device 16 to move the second slide valve 14b in the direction of the screw shaft 10 and to an arbitrary position where the refrigerant can be compressed.
  • the compression stroke can be performed as in the case of the double-side operation.
  • the high-pressure refrigerant gas compressed in the second compression chamber 11b is discharged from the discharge port 13 to the discharge chamber 12.
  • the compressed refrigerant gas is not discharged from the first compression chamber 11a. Therefore, in the first embodiment, the component with the subscript “a” is compressed in the refrigerant during the both-side operation, but does not contribute to the compression of the refrigerant in the one-side operation.
  • the component with the suffix “b” contributes to the compression of the refrigerant in the one-side operation and the both-side operation.
  • FIG. 10 is a diagram for explaining the relationship between the first fixed port 19a and the back side of the first slide valve 14a according to Embodiment 1 of the present invention.
  • the first slide valve 14 a is a part of the wall surface surrounding the compression chamber 11. Therefore, even if the first slide valve 14a moves, it is necessary to seal between the first slide valve 14a and a member facing the first slide valve 14a so that the refrigerant does not leak from the discharge chamber 12a side to the low pressure chamber side.
  • At least a fixed port that separates the discharge chamber 12a side from the first fixed port 19a by a seal with the back surface of the first slide valve 14a on the back side of the first fixed port 19a on the first compression chamber 11a side that is in an uncompressed state. It has a back seal surface 20a.
  • the fixed port rear seal surface 20a fills the gap between the first slide valve 14a and the first fixed port 19a so as to partially bury the casing, thereby forming the fixed port rear seal surface 20a.
  • the high and low pressure partition wall 17 has a thickness that separates the discharge chamber 12 from the low pressure chamber so that the refrigerant does not leak from the discharge chamber 12 side to the low pressure chamber side by sealing with the back surface of the slide valve 14.
  • the first slide valve 14a is located on the most discharge side in the case of one-side operation, so that the movement range during both-side operation and one-side operation is widened.
  • the movement range of the second slide valve 14b is narrower than that of the first slide valve 14a. Therefore, the thickness of the second high / low pressure partition wall 17b is arbitrarily less than the thickness of the first high / low pressure partition wall 17a shown in FIG.
  • FIG. 11 is a diagram for explaining the opening area of the first fixed port 19a according to Embodiment 1 of the present invention.
  • the first fixing port 19a is configured such that the axial width is narrower than the second fixing port 19b and the opening area is smaller than that of the second fixing port 19b within a range that does not affect liquid compression prevention. May be.
  • the position of the discharge-side end of the first fixed port 19a is set to the same position as the second fixed port 19b.
  • the position of the end (suction side wall surface) on the suction side in the axial direction of the first fixed port 19a is set to a position closer to the discharge side than the vicinity of the position of the end of the slide valve 14 during one-side operation.
  • the dead volume can be reduced by reducing the distance in the depth direction of the first fixed port 19a. Therefore, the dead volume loss in the one-side operation can be reduced.
  • the volume of the first fixed port 19a may be smaller than the volume of the second fixed port 19b, for example, by reducing the axial width of the first fixed port 19a.
  • the dead volume is a volume in which compressed high-pressure fluid is not discharged but re-expands in communication with a low-pressure compression chamber or the like to generate useless compression power.
  • the screw compressor 102 of the first embodiment since the fixed port back surface seal surface 20a that can seal the back surface of the first slide valve 14a is provided, in the one-side operation, the first fixed port 19a. Thus, the refrigerant can be prevented from leaking from the discharge chamber 12 side to the low pressure chamber side. Therefore, it is possible to provide the screw compressor 102 that can perform the one-side operation while ensuring the flow passage area in the discharge path. By performing the one-side operation, the highly efficient screw compressor 102 can be obtained including both-side operation.
  • the axial width of the first fixed port 19a is narrower than that of the second fixed port 19b, and the opening is larger than that of the second fixed port 19b. Since the area is reduced, the volume of the first fixed port 19a is reduced, and the dead volume loss in the one-side operation can be reduced. Even if the volume of the first fixing port 19a is reduced by reducing the length in the depth direction, the same effect can be obtained. Furthermore, according to the screw compressor 102 of the first embodiment, the second high / low pressure partition wall 17b is thinner than the first high / low pressure partition wall 17a. A reduction in discharge pressure loss to the partition wall 17b can be expected. The thickness of the high and low pressure partition wall 17 such as the volume of the fixed port 19 can be set according to the load state in each compression chamber 11.
  • FIG. 12 to 14 are views showing the positional relationship of the slide valve 14 in each operation according to Embodiment 2 of the present invention.
  • the slide valve 14 of the screw compressor 102 is not particularly mentioned.
  • one of the plurality of slide valves 14 included in the screw compressor 102 is a slide valve 14 that can change the internal volume ratio.
  • the slide valve 14 capable of changing the internal volume ratio is assumed to be the second slide valve 14b.
  • the internal volume ratio is a ratio of the volume of the compression chamber 11 at the time of completion of suction (start of compression) and the volume of the compression chamber 11 just before the discharge.
  • the internal volume ratio is changed by adjusting the timing at which the refrigerant is discharged from the discharge port 13. For example, when the operation load is small, as shown in FIG. 13, the second slide valve 14b is moved to the suction side, thereby shortening the discharge timing and achieving performance improvement by suppressing overcompression. Further, when the operation load is large, as shown in FIG. 14, by moving the second slide valve 14b to the discharge side, the discharge timing can be delayed and the performance improvement due to insufficient compression suppression can be expected.
  • the screw compressor 102 not only the two-side operation and the one-side operation are switched as in the first embodiment, but also the operation can be performed while controlling the internal volume ratio of the compression chamber 11 in the one-side operation. it can.
  • the slide valve control device 111 determines that the compression is overcompressed, as shown in FIG. 13, the slide valve control device 111 moves the second slide valve 14b to a position where the internal volume ratio becomes small. If it is determined that the compression is insufficient, the second slide valve 14b is moved to a position where the internal volume ratio increases as shown in FIG. As described above, by making the internal volume ratio in the second compression chamber 11b changeable, power loss due to over-compression or under-compression can be suppressed. Therefore, the highly efficient screw compressor 102 can be provided.
  • Embodiment 3 FIG.
  • the 2nd slide valve 14b shall be the slide valve 14 which can change an internal volume ratio.
  • the first slide valve 14a is also a slide valve 14 capable of changing the internal volume ratio.
  • Other configurations are the same as those in the first and second embodiments.
  • the screw compressor 102 according to the third embodiment can be operated while controlling the internal volume ratio of the compression chamber 11 during both-side operation and one-side operation.
  • the control device 110 moves the first slide valve 14a and the second slide valve 14b to positions where the internal volume ratio is optimal depending on the differential pressure condition or the like during both-side operation.
  • the controller 110 determines that the target refrigeration capacity has been exceeded even when the screw compressor 102 is driven at the lower limit frequency during both-side operation, the screw compressor 102 is switched to one-side operation.
  • the second slide valve 14b on the side that compresses the refrigerant is moved to a position where the internal volume ratio is changed.
  • the highly efficient screw compressor 102 can be provided.
  • Embodiment 4 FIG. In Embodiments 1 to 3 described above, the number is not limited as long as the number of slide valves is two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A screw compressor according to the invention includes: a casing body having a cylindrical inner cylinder surface part; a screw rotor stored in the inner cylinder surface part and having a plurality of screw grooves on the outer circumferential surface thereof; a plurality of gate rotors provided on both sides of the screw rotor so as to be symmetric about the rotation axis of the screw rotor, and each having, on the outer circumference thereof, a plurality of teeth engaged with the screw grooves; a slide valve provided between the casing body and the screw rotor, and movable in the direction of the rotation axis; and a high-low pressure partition that separates a high pressure space to have a discharge pressure atmosphere from a low pressure space to have a suction pressure atmosphere in the casing body, wherein the high-low pressure partition and the back surface of a fixed outlet that forms a part of a discharge outlet for compressed fluid have a seal surface for suppressing fluid leakage together with the back surface of the slide valve.

Description

スクリュー圧縮機および冷凍サイクル装置Screw compressor and refrigeration cycle equipment
 本発明は、スクリュー圧縮機などに係るものである。特に、スクリュー圧縮機の圧縮室から吐出する流体の吐出経路の確保に関するものである。 The present invention relates to a screw compressor or the like. In particular, it relates to securing a discharge path for fluid discharged from a compression chamber of a screw compressor.
 スクリュー圧縮機には、一般に、1つのスクリューロータと2つのゲートロータとを備えたシングルスクリュー圧縮機がある。 As the screw compressor, there is generally a single screw compressor having one screw rotor and two gate rotors.
 シングルスクリュー圧縮機では、スクリューロータとゲートロータとがケーシング本体内に収容されている。スクリューロータには、複数の螺旋状のスクリュー溝が形成されている。スクリュー溝には、スクリューロータの径方向に配置された一対のゲートロータが噛み合い係合する。そして、スクリュー溝、ゲートロータおよびケーシング本体との間で、冷媒が圧縮される圧縮室が形成される。ここで、各ゲートロータは、ゲートロータサポートに固定されている。そして、ゲートロータサポートの軸の両端は、軸受を介してそれぞれ軸受サポートに支持されている。また、スクリュー圧縮機内には、低圧空間となる低圧室と高圧空間となる吐出室とが形成される。低圧室は吸込圧力雰囲気となり、吐出室は吐出圧力雰囲気となる高圧空間になる。 In the single screw compressor, the screw rotor and the gate rotor are accommodated in the casing body. A plurality of spiral screw grooves are formed in the screw rotor. A pair of gate rotors arranged in the radial direction of the screw rotor mesh with and engage with the screw grooves. A compression chamber in which the refrigerant is compressed is formed between the screw groove, the gate rotor, and the casing body. Here, each gate rotor is fixed to a gate rotor support. Both ends of the shaft of the gate rotor support are supported by the bearing support via bearings. In the screw compressor, a low pressure chamber serving as a low pressure space and a discharge chamber serving as a high pressure space are formed. The low-pressure chamber becomes a suction pressure atmosphere, and the discharge chamber becomes a high-pressure space that becomes a discharge pressure atmosphere.
 スクリューロータはスクリュー軸に固定されている。スクリュー軸の一端側は、スクリューロータの吐出側に配置している軸受を介して軸受サポートに支持されているとともに、他端側となる吸込側はモータロータに連結されている。そして、スクリューロータがモーターにより回転駆動されると、低圧室内の流体が圧縮室へ吸入されて圧縮され、圧縮室内で圧縮された流体が吐出室へ吐出される。 The screw rotor is fixed to the screw shaft. One end side of the screw shaft is supported by a bearing support via a bearing disposed on the discharge side of the screw rotor, and the suction side which is the other end side is connected to the motor rotor. When the screw rotor is rotationally driven by the motor, the fluid in the low-pressure chamber is sucked into the compression chamber and compressed, and the fluid compressed in the compression chamber is discharged into the discharge chamber.
 上述のような従来のスクリュー圧縮機においては、運転時において、スクリューロータのスクリュー溝が開口される吐出流路側が吐出圧力雰囲気となる。また、スクリュー軸の吐出側に対向して配置している軸受側は吸込圧力雰囲気となる。ここで、スクリュー圧縮機内において、吐出室と低圧室とが近傍に位置するため、吐出室と低圧室との間に差圧が発生すると、スクリューロータと軸受サポートとの隙間から、軸受側へ高圧流体の漏れが生じる。また、スクリューロータの外周面とケーシングにはスクリューロータが回転駆動できるための隙間が必要となるが、この隙間からも高圧流体の漏れが生じる。 In the conventional screw compressor as described above, at the time of operation, the discharge flow path side where the screw groove of the screw rotor is opened is the discharge pressure atmosphere. Moreover, the bearing side arranged facing the discharge side of the screw shaft becomes a suction pressure atmosphere. Here, in the screw compressor, since the discharge chamber and the low-pressure chamber are located in the vicinity, if a differential pressure occurs between the discharge chamber and the low-pressure chamber, the high pressure from the clearance between the screw rotor and the bearing support to the bearing side. Fluid leakage occurs. In addition, a clearance is required between the outer peripheral surface of the screw rotor and the casing so that the screw rotor can be rotationally driven. Leakage of high-pressure fluid also occurs from this clearance.
 また、インバータ制御が行われるスクリュー圧縮機では、運転負荷の小さい場合などに電動機が比較的低い回転数となることがある。回転数が低いと、スクリュー圧縮機の吐出量に対する高圧流体の漏れ量の比率が増加する。このため、高圧流体の漏れが大きいほど、圧縮機の運転効率は低下する。 Also, in a screw compressor in which inverter control is performed, the motor may have a relatively low rotational speed when the operation load is small. When the rotational speed is low, the ratio of the leakage amount of the high-pressure fluid to the discharge amount of the screw compressor increases. For this reason, the greater the leakage of high-pressure fluid, the lower the operating efficiency of the compressor.
 そこで、電動機が比較的少ない回転数の運転状態のときに、スクリュー圧縮機の運転効率を向上させるために、圧縮室を圧縮状態または無圧縮状態へ切替可能な切替弁を備え、片側運転モードでの運転を行うことができるスクリュー圧縮機がある(たとえば、特許文献1、特許文献2参照)。 Therefore, in order to improve the operation efficiency of the screw compressor when the motor is in an operation state with a relatively low number of revolutions, a switching valve that can switch the compression chamber to a compression state or a non-compression state is provided. There are screw compressors that can perform the following operations (see, for example, Patent Document 1 and Patent Document 2).
 片側運転モードでの運転(片側運転)では、たとえば、2つある圧縮室のうちの1つの圧縮室を無圧縮状態にするように、切替弁を切り替える。流体を圧縮可能な圧縮室が減ることで、圧縮された流体の吐出量は減るが、電動機の回転数を多くして運転する。電動機の回転数が多くなることで、吐出量に対する高圧流体の漏れ量が低減する。通常運転のときは、たとえば、すべての圧縮室で流体の圧縮を行う両側運転モードでの運転(両側運転)となる。 In the operation in the one-side operation mode (one-side operation), for example, the switching valve is switched so that one of the two compression chambers is in an uncompressed state. By reducing the number of compression chambers capable of compressing fluid, the discharge amount of the compressed fluid is reduced, but the motor is operated with an increased number of revolutions. By increasing the number of rotations of the electric motor, the amount of high-pressure fluid leakage with respect to the discharge amount is reduced. In the normal operation, for example, the operation is a double-sided operation mode (both-side operation) in which fluid is compressed in all the compression chambers.
特許第5445118号公報Japanese Patent No. 5445118 特許第3214100号公報Japanese Patent No. 3214100
 特許文献1などでは、両側運転と片側運転とを使い分けることにより、電動機の回転数が低くならないようにすることで、冷媒漏れ損失の抑制を達成することができる。しかし、回転数の上昇にともなって、吐出経路における圧力損失による影響が大きくなることが懸念される。ここで、特許文献2では、吐出における圧力損失を低減するため、吐出口の面積の拡大をはかっている。ただし、特許文献2のスライドバルブを用いて、片側運転と両側運転とを切り替えを実施する場合は次の問題が生じる。 In Patent Document 1, etc., it is possible to achieve suppression of refrigerant leakage loss by preventing the motor speed from being lowered by properly using both-side operation and one-side operation. However, as the rotational speed increases, there is a concern that the effect of pressure loss in the discharge path will increase. Here, in patent document 2, in order to reduce the pressure loss in discharge, the area of the discharge port is expanded. However, the following problem arises when switching between one-side operation and both-side operation using the slide valve of Patent Document 2.
 たとえば、片側運転の際には、最も吐出側へスライドバルブを移動させるために吸込圧力と吐出圧力を隔てる高低圧隔壁の厚みを吐出側へ大きくとる必要がある。そのため、両側運転を行う際において、高低圧隔壁が吐出面積を狭くする要因となる。したがって、結果として性能低下を招く可能性がある。 For example, in one-side operation, in order to move the slide valve to the discharge side most, it is necessary to increase the thickness of the high and low pressure partition walls separating the suction pressure and the discharge pressure toward the discharge side. Therefore, the high / low pressure partition wall becomes a factor of narrowing the discharge area when performing both-side operation. As a result, there is a possibility that performance will be degraded.
 本発明は、上記のような課題を解決するためになされたものであり、吐出経路における流路面積を確保することができる片側運転機能を備えたスクリュー圧縮機などを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a screw compressor having a one-side operation function capable of ensuring a flow passage area in a discharge path. .
 本発明に係るスクリュー圧縮機は、円筒状の内筒面を有するケーシング本体と、内筒面に収容され、複数のスクリュー溝を外周面に有するスクリューロータと、スクリューロータの回転軸に対して対称に、スクリューロータの両側にそれぞれ配置され、スクリュー溝に噛み合わされる複数の歯を外周部に有する複数のゲートロータと、ケーシング本体とスクリューロータとの間にあって、回転軸の方向に移動可能なスライドバルブと、ケーシング本体内において、吐出圧力雰囲気となる高圧空間と吸込圧力雰囲気となる低圧空間とを隔てる高低圧隔壁とを備え、高低圧隔壁および圧縮された流体の吐出口の一部となる固定口の背面は、スライドバルブの背面とで流体の漏れを抑えるシール面を有するものである。 A screw compressor according to the present invention includes a casing body having a cylindrical inner cylinder surface, a screw rotor housed in the inner cylinder surface and having a plurality of screw grooves on an outer peripheral surface, and symmetrical with respect to the rotation axis of the screw rotor. In addition, a plurality of gate rotors that are arranged on both sides of the screw rotor and have a plurality of teeth meshing with the screw grooves on the outer periphery, and a slide that is movable between the casing body and the screw rotor and that can move in the direction of the rotation axis A fixed high-pressure partition wall and a high-low pressure partition wall that separates a high-pressure space serving as a discharge pressure atmosphere and a low-pressure space serving as a suction pressure atmosphere in the casing body, and is a part of a discharge port for compressed fluid The back surface of the mouth has a seal surface that suppresses fluid leakage with the back surface of the slide valve.
 また、本発明に係る冷凍サイクル装置は、前述したスクリュー圧縮機、凝縮器、減圧装置および蒸発器を順に冷媒配管で接続し、流体である冷媒を循環させる冷媒回路を構成するものである。 Further, the refrigeration cycle apparatus according to the present invention constitutes a refrigerant circuit in which the screw compressor, the condenser, the decompression device, and the evaporator described above are connected in order by refrigerant piping to circulate the refrigerant that is a fluid.
 本発明によれば、高低圧隔壁は、固定口の背面側において、スライドバルブの背面とシールすることができるシール面を有するようにしたので、たとえば、圧縮室を無圧縮状態としても、固定口を介して吐出室側からの流体の逆流をなくすことができる。このため、吐出経路における流路面積を確保しつつ、片側運転を行うことができるスクリュー圧縮機を提供することができる。 According to the present invention, the high and low pressure partition wall has a sealing surface that can seal the back surface of the slide valve on the back surface side of the fixed port. For example, even if the compression chamber is in an uncompressed state, the fixed port Thus, the backflow of fluid from the discharge chamber side can be eliminated. For this reason, it is possible to provide a screw compressor capable of performing one-side operation while securing a flow passage area in the discharge path.
本発明の実施の形態1に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus 100 provided with the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102における内部構成を説明する概略図である。It is the schematic explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。It is a figure which shows the compression principle of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の両側運転について説明する図である。It is a figure explaining the both-sides operation of screw compressor 102 concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリュー圧縮機102の両側運転における第1圧縮室11aにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the 1st compression chamber 11a in the both-sides driving | operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の両側運転におけるスクリューロータ9と第1スライドバルブ14aとの関係を表す図である。It is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the both-sides operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の片側運転について説明する図である。It is a figure explaining the one-side driving | operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の片側運転における第1圧縮室11aにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the 1st compression chamber 11a in the one-side driving | operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機102の片側運転におけるスクリューロータ9と第1スライドバルブ14aとの関係を表す図である。It is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the one-side driving | operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1固定口19aと第1スライドバルブ14aの背面側との関係について説明する図である。It is a figure explaining the relationship between the 1st fixed port 19a which concerns on Embodiment 1 of this invention, and the back side of the 1st slide valve 14a. 本発明の実施の形態1に係る第1固定口19aの開口面積について説明する図である。It is a figure explaining the opening area of the 1st fixing port 19a which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る各運転におけるスライドバルブ14の位置関係を示す図(その1)である。It is FIG. (1) which shows the positional relationship of the slide valve 14 in each driving | operation which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る各運転におけるスライドバルブ14の位置関係を示す図(その2)である。It is FIG. (2) which shows the positional relationship of the slide valve 14 in each driving | operation which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る各運転におけるスライドバルブ14の位置関係を示す図(その3)である。It is FIG. (The 3) which shows the positional relationship of the slide valve 14 in each driving | operation which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。そして、圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds, and shall be common in the whole sentence of embodiment described below. Moreover, the form of the component shown by the whole specification is an illustration to the last, and is not limited to these description. In particular, the combination of the constituent elements is not limited to the combination in each embodiment, and the constituent elements described in the other embodiments can be applied to other embodiments as appropriate. The pressure level is not particularly determined in relation to the absolute value, but is relatively determined in terms of the state and operation of the system and apparatus. In addition, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクリュー圧縮機102を備えた冷凍サイクル装置100の構成を示す図である。以下において、スクリュー圧縮機102は、冷媒回路を構成する機器であるものとして説明する。このため、実施の形態1などのスクリュー圧縮機102が吸入、圧縮および吐出する流体は、冷媒であるものとして説明する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention. In the following description, the screw compressor 102 is described as being a device constituting a refrigerant circuit. For this reason, description will be made assuming that the fluid sucked, compressed and discharged by the screw compressor 102 of the first embodiment is a refrigerant.
 実施の形態1における冷凍サイクル装置100は、スクリュー圧縮機102と、凝縮器104と、膨張弁105と、蒸発器106とを順に冷媒配管で接続して構成し、冷媒を循環する冷媒回路を有している。 The refrigeration cycle apparatus 100 according to Embodiment 1 includes a screw compressor 102, a condenser 104, an expansion valve 105, and an evaporator 106 connected in order by refrigerant piping, and has a refrigerant circuit that circulates refrigerant. is doing.
 インバータ装置101は、指示された周波数に基づいてスクリュー圧縮機102への電力供給を制御して、スクリュー圧縮機102の駆動周波数を制御する。スクリュー圧縮機102は、電力供給源(図示せず)から、インバータ装置101を介して供給された電力で駆動する。スクリュー圧縮機102の構成などについては後述する。凝縮器104は、スクリュー圧縮機102が吐出した気体状の冷媒であるガス冷媒を冷却し、凝縮させる。また、減圧装置となる膨張弁105は凝縮器104から流出した液状の冷媒である液冷媒を減圧させ、膨張させる。蒸発器106は、膨張弁105を通過した冷媒を蒸発させる。 The inverter device 101 controls the drive frequency of the screw compressor 102 by controlling the power supply to the screw compressor 102 based on the instructed frequency. The screw compressor 102 is driven by electric power supplied via an inverter device 101 from a power supply source (not shown). The configuration of the screw compressor 102 will be described later. The condenser 104 cools and condenses the gas refrigerant that is a gaseous refrigerant discharged from the screw compressor 102. The expansion valve 105 serving as a decompression device decompresses and expands the liquid refrigerant that is a liquid refrigerant that has flowed out of the condenser 104. The evaporator 106 evaporates the refrigerant that has passed through the expansion valve 105.
 冷凍サイクル装置100は、さらに制御装置110を備えている。制御装置110は、インバータ装置101の周波数、膨張弁105の開度などを制御し、各機器に指示を送る。特に、実施の形態1では、制御装置110は、スライドバルブ制御装置111を有している。スライドバルブ制御装置111は、後述するように、スクリュー圧縮機102が有する2つのスライドバルブ14の位置制御などを行う。 The refrigeration cycle apparatus 100 further includes a control device 110. The control device 110 controls the frequency of the inverter device 101, the opening degree of the expansion valve 105, and the like, and sends an instruction to each device. In particular, in the first embodiment, the control device 110 has a slide valve control device 111. As will be described later, the slide valve control device 111 performs position control of the two slide valves 14 included in the screw compressor 102 and the like.
(スクリュー圧縮機)
 図2は、本発明の実施の形態1に係るスクリュー圧縮機102における内部構成を説明する概略図である。ここで、図2では、回転軸となるスクリュー軸10の上側に位置する部分の構成を示す図となっている。スクリュー軸10の下側における部分の構成も、上側における部分と同様の構成である。スクリュー圧縮機102において、スクリュー軸10の上側に位置する部品と下側に位置する部品とが同じ部品である場合、上側に位置する部品には添字aを付し、下側に位置する部品には添字bを付して説明する。
(Screw compressor)
FIG. 2 is a schematic diagram illustrating the internal configuration of the screw compressor 102 according to Embodiment 1 of the present invention. Here, in FIG. 2, it is a figure which shows the structure of the part located in the upper side of the screw shaft 10 used as a rotating shaft. The structure of the lower part of the screw shaft 10 is the same as that of the upper part. In the screw compressor 102, when the part located on the upper side of the screw shaft 10 and the part located on the lower side are the same part, the part located on the upper side is given a subscript a, and the part located on the lower side is added. Is described with a subscript b.
 図2に示すように、実施の形態1のスクリュー圧縮機102は、ケーシング本体8、スクリューロータ9、ゲートロータ6、スクリューロータ9を回転駆動させるモーター3、スライドバルブ14などを備えている。 As shown in FIG. 2, the screw compressor 102 according to the first embodiment includes a casing body 8, a screw rotor 9, a gate rotor 6, a motor 3 that rotationally drives the screw rotor 9, a slide valve 14, and the like.
 円筒状のケーシング本体8は、スクリューロータ9、ゲートロータ6、モーター3、スライドバルブ14などを筒の内側となる内筒面に収容する。モーター3は、ケーシング本体8に内接固定されたステータ31とステータ31の内側に配置されたモータロータ32とを備えている。電動機となるモーター3は、インバータ装置101から供給された電力に基づく回転数で回転し、スクリュー軸10を回転させ、スクリュー圧縮機102を駆動周波数で駆動させる。 The cylindrical casing body 8 accommodates the screw rotor 9, the gate rotor 6, the motor 3, the slide valve 14 and the like on the inner cylindrical surface that is the inner side of the cylinder. The motor 3 includes a stator 31 that is inscribed and fixed to the casing body 8 and a motor rotor 32 that is disposed inside the stator 31. The motor 3 serving as an electric motor rotates at a rotational speed based on the electric power supplied from the inverter device 101, rotates the screw shaft 10, and drives the screw compressor 102 at a driving frequency.
 また、ケーシング本体8内には、スクリューロータ9が配置されている。スクリューロータ9とモータロータ32とは、互いに、回転軸となるスクリュー軸10に配置され、固定されている。スクリューロータ9は、外周面に複数の螺旋状のスクリュー溝91が形成されている。スクリューロータ9は、スクリュー軸10に固定されたモータロータ32の回転に伴って回転される。 Further, a screw rotor 9 is disposed in the casing body 8. The screw rotor 9 and the motor rotor 32 are disposed on and fixed to the screw shaft 10 serving as a rotation shaft. The screw rotor 9 has a plurality of helical screw grooves 91 formed on the outer peripheral surface. The screw rotor 9 is rotated with the rotation of the motor rotor 32 fixed to the screw shaft 10.
 そして、実施の形態1のスクリュー圧縮機102は、2つのゲートロータ6を有している。2つのゲートロータ6は、スクリュー軸10に対して対称(点対称)に、スクリューロータ9の両側にそれぞれ配置されている。ここで、一方を第1ゲートロータ6aとし、他方を第2ゲートロータ6bとする。各ゲートロータ6は円板状を有している。ゲートロータ6の外周部には、周方向に沿って複数の歯61が設けられている。ゲートロータ6の歯61は、スクリューロータ9のスクリュー溝91に噛み合わされる。そして、ゲートロータ6の歯61、スクリュー溝91およびケーシング本体8の内筒面で囲まれた空間が圧縮室11となる。第1ゲートロータ6aの歯61、スクリュー溝91およびケーシング本体8の内筒面で囲まれた圧縮室11を第1圧縮室11aとする。また、第2ゲートロータ6bの歯61、スクリュー溝91およびケーシング本体8の内筒面で囲まれた圧縮室11を第2圧縮室11bとする。 The screw compressor 102 according to the first embodiment has two gate rotors 6. The two gate rotors 6 are disposed on both sides of the screw rotor 9 so as to be symmetric (point-symmetric) with respect to the screw shaft 10. Here, one is a first gate rotor 6a and the other is a second gate rotor 6b. Each gate rotor 6 has a disk shape. A plurality of teeth 61 are provided on the outer periphery of the gate rotor 6 along the circumferential direction. The teeth 61 of the gate rotor 6 are engaged with the screw grooves 91 of the screw rotor 9. A space surrounded by the teeth 61 of the gate rotor 6, the screw groove 91, and the inner cylindrical surface of the casing body 8 becomes the compression chamber 11. The compression chamber 11 surrounded by the teeth 61 of the first gate rotor 6a, the screw groove 91, and the inner cylindrical surface of the casing body 8 is defined as a first compression chamber 11a. The compression chamber 11 surrounded by the teeth 61 of the second gate rotor 6b, the screw groove 91, and the inner cylindrical surface of the casing body 8 is defined as a second compression chamber 11b.
 また、ケーシング本体8は、ケーシング本体8内を、吐出圧力側と吸込圧力側とに隔てる高低圧隔壁17を有している。高低圧隔壁17は、後述するスライドバルブ14のケーシング本体8側と対向して、ケーシング本体8に形成されている。そして、ケーシング本体8の吐出圧力側には、吐出圧力雰囲気となる高圧空間の吐出室12が形成される。また、吐出口13は、圧縮室11と吐出室12とを連通させる開口部分である。また、後述するスライドバルブ14の開口部分、固定口19も吐出口13の一部となる。固定口19は、後述する図10に示すように、冷媒液などが液圧縮することを防ぐために設けられた空間の圧縮室11への開口部分である。 The casing body 8 has a high and low pressure partition wall 17 that divides the inside of the casing body 8 into a discharge pressure side and a suction pressure side. The high / low pressure partition wall 17 is formed in the casing body 8 so as to face the casing body 8 side of the slide valve 14 described later. A discharge chamber 12 in a high-pressure space serving as a discharge pressure atmosphere is formed on the discharge pressure side of the casing body 8. Further, the discharge port 13 is an opening portion that allows the compression chamber 11 and the discharge chamber 12 to communicate with each other. An opening portion of the slide valve 14 to be described later and a fixed port 19 are also part of the discharge port 13. As shown in FIG. 10 to be described later, the fixed port 19 is an opening portion to a compression chamber 11 in a space provided to prevent the refrigerant liquid and the like from being compressed.
 さらに、ケーシング本体8内には、スライドバルブ14が設けられている。スライドバルブ14は、連結棒となるロッド15を介して駆動装置16に連結されている。ピストンなどの駆動装置16は、スライドバルブ制御装置111からの指示に基づいて、スクリューロータ9が回転する回転軸方向に、スライドバルブ14を移動させ、位置させる。ここで、スライドバルブ14は、ケーシング本体8の内側にあって、スクリューロータ9と対向している。したがって、スライドバルブ14は、圧縮室11を囲む壁面の一部となる。また、スライドバルブ14は、一部が開口しており、開口部分は、前述した吐出口13の一部となる。以下の説明では、スライドバルブ14において、ケーシング8本体側に対向する面を「背面」とし、スクリューロータ9側に対向する面を「内周面」として説明する。また、以下の説明では、図2に示している、上側のスライドバルブ14を第1スライドバルブ14aとし、図示していない下側のスライドバルブ14を第2スライドバルブ14bとして説明する。 Furthermore, a slide valve 14 is provided in the casing body 8. The slide valve 14 is connected to a drive device 16 via a rod 15 that is a connecting rod. The drive device 16 such as a piston moves and positions the slide valve 14 in the direction of the rotation axis around which the screw rotor 9 rotates based on an instruction from the slide valve control device 111. Here, the slide valve 14 is located inside the casing body 8 and faces the screw rotor 9. Therefore, the slide valve 14 becomes a part of the wall surface surrounding the compression chamber 11. The slide valve 14 is partially open, and the opening becomes a part of the discharge port 13 described above. In the following description, the surface facing the casing 8 main body side in the slide valve 14 is referred to as a “back surface”, and the surface facing the screw rotor 9 side is described as an “inner peripheral surface”. In the following description, the upper slide valve 14 shown in FIG. 2 will be described as a first slide valve 14a, and the lower slide valve 14 (not shown) will be described as a second slide valve 14b.
 たとえば、スクリューロータ9が回転する回転軸方向において、スライドバルブ14が吸入側に位置しているときには、圧縮室11は、スクリュー溝91、ゲートロータ6の歯61およびスライドバルブ14を含むケーシング本体8に挟まれる。このため、圧縮室11は、圧縮により圧縮室11内の冷媒を圧力上昇させる圧縮状態になる。一方、スライドバルブ14が最も吐出側に位置しているときは、圧縮室11は、吸込圧力雰囲気の低圧空間である低圧室と連通する。このため、圧縮室11では冷媒が圧縮されず、圧縮室11の冷媒が吸込圧力に近い一定圧力で保持される無圧縮状態になる。 For example, when the slide valve 14 is positioned on the suction side in the direction of the rotation axis in which the screw rotor 9 rotates, the compression chamber 11 includes the casing body 8 including the screw groove 91, the teeth 61 of the gate rotor 6, and the slide valve 14. Sandwiched between. For this reason, the compression chamber 11 will be in the compression state which raises the pressure of the refrigerant | coolant in the compression chamber 11 by compression. On the other hand, when the slide valve 14 is located on the most discharge side, the compression chamber 11 communicates with a low pressure chamber that is a low pressure space of the suction pressure atmosphere. For this reason, a refrigerant | coolant is not compressed in the compression chamber 11, but it will be in the non-compression state by which the refrigerant | coolant of the compression chamber 11 is hold | maintained with the constant pressure close | similar to a suction pressure.
 実施の形態1では、スライドバルブ制御装置111は、駆動装置16に指示を送り、第1スライドバルブ14aを移動させて、第1圧縮室11aを圧縮状態と無圧縮状態とに切り替える切替制御を行うことができる。スクリュー圧縮機102にできる複数の圧縮室11のうち、全部の圧縮室11(第1圧縮室11aおよび第2圧縮室11b)を圧縮状態にして行う運転を両側運転とする。また、一部の圧縮室11(第1圧縮室11a)を無圧縮状態にして行う運転を片側運転とする。スクリュー圧縮機102が片側運転を行う場合には、モーター3の回転数を上げて運転する。ここで、圧縮室11の流体が一定圧力で保持される無圧縮状態とは、まったく圧縮されない状態だけでなく、圧縮室11内の圧力が変動したとしても、その変動の度合いが圧縮状態と比較して非常に小さい圧縮となる場合も含んでいる。また、スライドバルブ14を駆動するピストンなどの駆動装置16は、ガス圧で駆動するもの、油圧で駆動するもの、ピストンとは別にモーターなどにより駆動するものなど、駆動させる手段については限定しないものとする。 In the first embodiment, the slide valve control device 111 sends an instruction to the drive device 16 to move the first slide valve 14a to perform switching control for switching the first compression chamber 11a between the compressed state and the non-compressed state. be able to. An operation in which all the compression chambers 11 (the first compression chamber 11a and the second compression chamber 11b) among the plurality of compression chambers 11 that can be made into the screw compressor 102 are compressed is referred to as a double-side operation. In addition, an operation that is performed with some of the compression chambers 11 (first compression chambers 11a) in an uncompressed state is referred to as a one-side operation. When the screw compressor 102 performs one-side operation, the motor 3 is operated by increasing the number of revolutions of the motor 3. Here, the non-compressed state in which the fluid in the compression chamber 11 is held at a constant pressure is not only a state in which the fluid is not compressed at all, but even if the pressure in the compression chamber 11 fluctuates, the degree of variation is compared with the compressed state. In some cases, the compression is very small. Further, the driving device 16 such as a piston for driving the slide valve 14 is not limited in terms of driving means such as one driven by gas pressure, one driven by hydraulic pressure, one driven by a motor or the like separately from the piston. To do.
(スクリュー圧縮機102の動作説明)
 図3は、本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。次に、実施の形態1に係るスクリュー圧縮機102の動作について説明する。たとえば、スクリューロータ9が、図2に示すモーター3により、図2に示すスクリュー軸10を介して回転させられると、図3に示すように、ゲートロータ6の歯61が圧縮室11(スクリュー溝91)内を相対的に移動する。このとき、圧縮室11内では、吸入行程、圧縮行程および吐出行程が順次行われる。吸入行程、圧縮行程および吐出行程を1つのサイクルとして、サイクルが繰り返される。ここでは、図3においてドット状のハッチングで示した圧縮室11に着目して、各行程について説明する。
(Description of operation of screw compressor 102)
FIG. 3 is a diagram illustrating a compression principle of the screw compressor 102 according to the first embodiment of the present invention. Next, the operation of the screw compressor 102 according to Embodiment 1 will be described. For example, when the screw rotor 9 is rotated by the motor 3 shown in FIG. 2 via the screw shaft 10 shown in FIG. 2, the teeth 61 of the gate rotor 6 are compressed into the compression chamber 11 (screw groove) as shown in FIG. 91) Move relatively within. At this time, in the compression chamber 11, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. The cycle is repeated with the suction stroke, the compression stroke, and the discharge stroke as one cycle. Here, focusing on the compression chamber 11 indicated by dot-shaped hatching in FIG. 3, each stroke will be described.
 図3(a)は、吸入行程における圧縮室11の状態を示している。スクリューロータ9がモーター3により駆動して、実線矢印の方向に回転する。スクリューロータ9が回転すると、図3(b)に示すように圧縮室11の容積が縮小していく。 FIG. 3A shows the state of the compression chamber 11 in the suction stroke. The screw rotor 9 is driven by the motor 3 and rotates in the direction of the solid arrow. When the screw rotor 9 rotates, the volume of the compression chamber 11 decreases as shown in FIG.
 引き続き、スクリューロータ9が回転すると、図3(c)に示すように、圧縮室11が吐出口13を介して、吐出室12と連通する。これにより、圧縮室11内で圧縮された高圧の冷媒ガスが、吐出口13から吐出室12へ吐出される。そして、再び、スクリューロータ9の背面で同様の圧縮が行われる。 When the screw rotor 9 continues to rotate, the compression chamber 11 communicates with the discharge chamber 12 through the discharge port 13 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 11 is discharged from the discharge port 13 to the discharge chamber 12. Then, the same compression is performed again on the back surface of the screw rotor 9.
 図4は、本発明の実施の形態1に係るスクリュー圧縮機102の両側運転について説明する図である。たとえば、制御装置110のスライドバルブ制御装置111は、駆動装置16に指示を送り、図4に示すように、たとえば第1スライドバルブ14aを吸込側に位置させる。ここでは最も吸込側に位置させている。 FIG. 4 is a diagram for explaining the both-side operation of the screw compressor 102 according to the first embodiment of the present invention. For example, the slide valve control device 111 of the control device 110 sends an instruction to the drive device 16 to position, for example, the first slide valve 14a on the suction side as shown in FIG. Here, it is located on the most suction side.
 図5は、本発明の実施の形態1に係るスクリュー圧縮機102の両側運転における第1圧縮室11aにおける冷媒の流れを示す図である。また、図6は、本発明の実施の形態1に係るスクリュー圧縮機102の両側運転におけるスクリューロータ9と第1スライドバルブ14aとの関係を表す図である。第1スライドバルブ14aが吸込側に位置していることで、吸入行程後、第1圧縮室11aは、吸込圧力雰囲気である低圧室とは空間的に切り離される。このため、第1圧縮室11aにおいて、圧縮行程が可能となる。また、図6に示すように、第1スライドバルブ14aが有する開口部分も第1吐出口13aとして機能し、第1圧縮室11aと吐出室12とが連通し、第1圧縮室11aにおいて圧縮された冷媒が、吐出室12に吐出される。また、第1固定口19aも第1吐出口13aとなる。 FIG. 5 is a diagram showing a refrigerant flow in the first compression chamber 11a in the both-side operation of the screw compressor 102 according to Embodiment 1 of the present invention. Moreover, FIG. 6 is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the both-sides operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. Since the first slide valve 14a is positioned on the suction side, the first compression chamber 11a is spatially separated from the low pressure chamber that is the suction pressure atmosphere after the suction stroke. For this reason, the compression stroke is possible in the first compression chamber 11a. As shown in FIG. 6, the opening portion of the first slide valve 14a also functions as the first discharge port 13a. The first compression chamber 11a and the discharge chamber 12 communicate with each other and are compressed in the first compression chamber 11a. The refrigerant is discharged into the discharge chamber 12. The first fixed port 19a also becomes the first discharge port 13a.
 一方、スライドバルブ制御装置111は、駆動装置16に指示を送り、第2スライドバルブ14bをスクリュー軸10の方向に移動させて、冷媒を圧縮することができる任意の位置に移動させる。第2圧縮室11bにおいても、圧縮行程が可能となる。 On the other hand, the slide valve control device 111 sends an instruction to the drive device 16 to move the second slide valve 14b in the direction of the screw shaft 10 to move it to an arbitrary position where the refrigerant can be compressed. Also in the second compression chamber 11b, a compression stroke is possible.
 以上のように、両側運転では、第1圧縮室11aおよび第2圧縮室11bにおいて、冷媒を圧縮することができる。そして、圧縮室11において圧縮された高圧の冷媒ガスが、吐出口13から吐出室12へ吐出される。 As described above, in both-side operation, the refrigerant can be compressed in the first compression chamber 11a and the second compression chamber 11b. Then, the high-pressure refrigerant gas compressed in the compression chamber 11 is discharged from the discharge port 13 to the discharge chamber 12.
 図7は、本発明の実施の形態1に係るスクリュー圧縮機102の片側運転について説明する図である。たとえば、制御装置110のスライドバルブ制御装置111は、駆動装置16に指示を送り、図7に示すように、第1スライドバルブ14aを最も吐出側に位置させる。 FIG. 7 is a diagram for explaining the one-side operation of the screw compressor 102 according to the first embodiment of the present invention. For example, the slide valve control device 111 of the control device 110 sends an instruction to the drive device 16 to position the first slide valve 14a closest to the discharge side as shown in FIG.
 図8は、本発明の実施の形態1に係るスクリュー圧縮機102の片側運転における第1圧縮室11aにおける冷媒の流れを示す図である。また、図9は、本発明の実施の形態1に係るスクリュー圧縮機102の片側運転におけるスクリューロータ9と第1スライドバルブ14aとの関係を表す図である。前述したように、第1スライドバルブ14aが最も吐出側に位置していることで、第1圧縮室11aは、吸込圧力雰囲気の低圧室と連通する。このため、第1圧縮室11aは、圧縮行程が行われず、無圧縮状態となる。また、図8および図9に示すように、第1スライドバルブ14aの開口部分は第1吐出口13aとして機能せず、第1スライドバルブ14aは、第1吐出口13aの第1固定口19aの部分以外の部分を塞ぐ。したがって、第1圧縮室11aと吐出室12とが連通せず、第1圧縮室11a側から吐出室12に冷媒が流れない。 FIG. 8 is a diagram showing a refrigerant flow in the first compression chamber 11a in the one-side operation of the screw compressor 102 according to Embodiment 1 of the present invention. Moreover, FIG. 9 is a figure showing the relationship between the screw rotor 9 and the 1st slide valve 14a in the one-side driving | operation of the screw compressor 102 which concerns on Embodiment 1 of this invention. As described above, since the first slide valve 14a is located on the most discharge side, the first compression chamber 11a communicates with the low pressure chamber in the suction pressure atmosphere. For this reason, the first compression chamber 11a is not compressed and is in an uncompressed state. Further, as shown in FIGS. 8 and 9, the opening portion of the first slide valve 14a does not function as the first discharge port 13a, and the first slide valve 14a is connected to the first fixed port 19a of the first discharge port 13a. Block the parts other than the part. Therefore, the first compression chamber 11a and the discharge chamber 12 do not communicate with each other, and the refrigerant does not flow from the first compression chamber 11a side to the discharge chamber 12.
 一方、スライドバルブ制御装置111は、駆動装置16に指示を送り、第2スライドバルブ14bをスクリュー軸10の方向に移動させ、冷媒を圧縮することができる任意の位置に移動させる。第2圧縮室11bでは、両側運転の場合と同様に、圧縮行程を行うことができる。 On the other hand, the slide valve control device 111 sends an instruction to the drive device 16 to move the second slide valve 14b in the direction of the screw shaft 10 and to an arbitrary position where the refrigerant can be compressed. In the second compression chamber 11b, the compression stroke can be performed as in the case of the double-side operation.
 以上のように、片側運転では、第2圧縮室11bにおいて圧縮された高圧の冷媒ガスが、吐出口13から吐出室12へ吐出される。第1圧縮室11aからは圧縮された冷媒ガスが吐出されない。したがって、実施の形態1において、添字がaの部品は、両側運転のときには冷媒の圧縮が行われるが、片側運転のときには冷媒の圧縮に寄与しない。一方、添字がbの部品は、片側運転および両側運転において冷媒の圧縮に寄与することになる。 As described above, in the one-side operation, the high-pressure refrigerant gas compressed in the second compression chamber 11b is discharged from the discharge port 13 to the discharge chamber 12. The compressed refrigerant gas is not discharged from the first compression chamber 11a. Therefore, in the first embodiment, the component with the subscript “a” is compressed in the refrigerant during the both-side operation, but does not contribute to the compression of the refrigerant in the one-side operation. On the other hand, the component with the suffix “b” contributes to the compression of the refrigerant in the one-side operation and the both-side operation.
 図10は、本発明の実施の形態1に係る第1固定口19aと第1スライドバルブ14aの背面側との関係について説明する図である。第1スライドバルブ14aは、圧縮室11を囲む壁面の一部となる。したがって、第1スライドバルブ14aが移動しても、吐出室12a側から低圧室側に冷媒が漏れないように、第1スライドバルブ14aと対向する部材との間をシールする必要がある。 FIG. 10 is a diagram for explaining the relationship between the first fixed port 19a and the back side of the first slide valve 14a according to Embodiment 1 of the present invention. The first slide valve 14 a is a part of the wall surface surrounding the compression chamber 11. Therefore, even if the first slide valve 14a moves, it is necessary to seal between the first slide valve 14a and a member facing the first slide valve 14a so that the refrigerant does not leak from the discharge chamber 12a side to the low pressure chamber side.
 少なくとも、無圧縮状態となる第1圧縮室11a側の第1固定口19aの背面側において、第1スライドバルブ14aの背面とのシールにより、吐出室12a側と第1固定口19aを隔てる固定口背面シール面20aを有する。固定口背面シール面20aを有することで、第1固定口19aを介して吐出室12a側から低圧室側に冷媒が逆流しないようにすることができる。固定口背面シール面20aは、ケーシングの一部を肉盛りする形で第1スライドバルブ14aと第1固定口19aとの隙間を埋め、固定口背面シール面20aを形成する。 At least a fixed port that separates the discharge chamber 12a side from the first fixed port 19a by a seal with the back surface of the first slide valve 14a on the back side of the first fixed port 19a on the first compression chamber 11a side that is in an uncompressed state. It has a back seal surface 20a. By having the fixed port back seal surface 20a, it is possible to prevent the refrigerant from flowing backward from the discharge chamber 12a side to the low pressure chamber side via the first fixed port 19a. The fixed port rear seal surface 20a fills the gap between the first slide valve 14a and the first fixed port 19a so as to partially bury the casing, thereby forming the fixed port rear seal surface 20a.
 また、高低圧隔壁17は、スライドバルブ14の背面とのシールにより、吐出室12側から低圧室側に冷媒が漏れないようにして、吐出室12と低圧室とを隔てられる厚さにする。たとえば、第1スライドバルブ14aは、前述したように、片側運転の場合には最も吐出側に位置するため、両側運転時と片側運転時とにおける移動範囲が広くなる。一方、第2スライドバルブ14bは、移動範囲は第1スライドバルブ14aよりも狭くなる。したがって、第2高低圧隔壁17bの厚さを、図2に示す第1高低圧隔壁17aの厚さ以下(第2高低圧隔壁17bの厚さ≦第1高低圧隔壁17aの厚さ)で任意に構成することができる。第2高低圧隔壁17bを薄くすることで、たとえば、第2吐出口13bから第2高低圧隔壁17bへの吐出圧力損失の低減を見込むことができる。 Also, the high and low pressure partition wall 17 has a thickness that separates the discharge chamber 12 from the low pressure chamber so that the refrigerant does not leak from the discharge chamber 12 side to the low pressure chamber side by sealing with the back surface of the slide valve 14. For example, as described above, the first slide valve 14a is located on the most discharge side in the case of one-side operation, so that the movement range during both-side operation and one-side operation is widened. On the other hand, the movement range of the second slide valve 14b is narrower than that of the first slide valve 14a. Therefore, the thickness of the second high / low pressure partition wall 17b is arbitrarily less than the thickness of the first high / low pressure partition wall 17a shown in FIG. 2 (thickness of the second high / low pressure partition wall 17b ≦ thickness of the first high / low pressure partition wall 17a). Can be configured. By reducing the thickness of the second high / low pressure partition wall 17b, for example, a reduction in discharge pressure loss from the second discharge port 13b to the second high / low pressure partition wall 17b can be expected.
 図11は、本発明の実施の形態1に係る第1固定口19aの開口面積について説明する図である。第1固定口19aについては、液圧縮防止に影響しない範囲で、軸方向の幅を第2固定口19bの幅よりも狭くし、第2固定口19bよりも開口面積が小さくなるように構成してもよい。第1固定口19aの吐出側の端部の位置は、第2固定口19bと同じ位置にする。一方、第1固定口19aの軸方向における吸込側の端部(吸入側壁面)の位置は、片側運転時におけるスライドバルブ14の端部の位置の近傍よりも吐出側となる位置にする。その上で、吐出口拡大と液圧縮区間の低減の観点から任意の位置に設定することができる。軸方向吐出側に幅を狭くすることにより、第1スライドバルブ14aをより吐出側に移動させることができる。このため、圧縮開始をさらに遅らせることができ、無駄な圧縮(仕事)を抑制することができる。また、図10に示すように、第1固定口19aの奥行き方向の距離を小さくとることで、デッドボリュームを小さくすることができる。したがって、片側運転におけるデッドボリューム損失を少なくすることができる。第1固定口19aの軸方向の幅を狭くするなどして第1固定口19aの容積を第2固定口19bの容積よりも少なくしてもよい。ここで、デッドボリュームとは、圧縮された高圧状態の流体が吐出されずに低圧の圧縮室などに連通して再膨張し、無駄な圧縮動力を発生してしまう容積のことである。 FIG. 11 is a diagram for explaining the opening area of the first fixed port 19a according to Embodiment 1 of the present invention. The first fixing port 19a is configured such that the axial width is narrower than the second fixing port 19b and the opening area is smaller than that of the second fixing port 19b within a range that does not affect liquid compression prevention. May be. The position of the discharge-side end of the first fixed port 19a is set to the same position as the second fixed port 19b. On the other hand, the position of the end (suction side wall surface) on the suction side in the axial direction of the first fixed port 19a is set to a position closer to the discharge side than the vicinity of the position of the end of the slide valve 14 during one-side operation. In addition, it can be set at an arbitrary position from the viewpoint of expanding the discharge port and reducing the liquid compression section. By narrowing the width toward the discharge side in the axial direction, the first slide valve 14a can be moved more toward the discharge side. For this reason, the start of compression can be further delayed, and useless compression (work) can be suppressed. Moreover, as shown in FIG. 10, the dead volume can be reduced by reducing the distance in the depth direction of the first fixed port 19a. Therefore, the dead volume loss in the one-side operation can be reduced. The volume of the first fixed port 19a may be smaller than the volume of the second fixed port 19b, for example, by reducing the axial width of the first fixed port 19a. Here, the dead volume is a volume in which compressed high-pressure fluid is not discharged but re-expands in communication with a low-pressure compression chamber or the like to generate useless compression power.
 以上のように、実施の形態1のスクリュー圧縮機102によれば、第1スライドバルブ14aの背面とシールすることができる固定口背面シール面20aを有するので、片側運転において、第1固定口19aを介して吐出室12側から低圧室側に冷媒が漏れないようにすることができる。このため、吐出経路における流路面積を確保しつつ、片側運転を行うことができるスクリュー圧縮機102を提供することができる。片側運転を行うことで、両側運転のときも含め、高効率のスクリュー圧縮機102を得ることができる。 As described above, according to the screw compressor 102 of the first embodiment, since the fixed port back surface seal surface 20a that can seal the back surface of the first slide valve 14a is provided, in the one-side operation, the first fixed port 19a. Thus, the refrigerant can be prevented from leaking from the discharge chamber 12 side to the low pressure chamber side. Therefore, it is possible to provide the screw compressor 102 that can perform the one-side operation while ensuring the flow passage area in the discharge path. By performing the one-side operation, the highly efficient screw compressor 102 can be obtained including both-side operation.
 また、実施の形態1のスクリュー圧縮機102によれば、このとき、第1固定口19aについて、軸方向の幅を第2固定口19bの幅よりも狭くし、第2固定口19bよりも開口面積が小さくなるようにしたので、第1固定口19aの容積が少なくなり、片側運転におけるデッドボリューム損失を少なくすることができる。奥行き方向の長さを小さくするなどして第1固定口19aの容積を少なくしても同様の効果を得ることができる。さらに、実施の形態1のスクリュー圧縮機102によれば、第2高低圧隔壁17bの厚さが第1高低圧隔壁17aの厚さよりも薄いので、たとえば、第2吐出口13bから第2高低圧隔壁17bへの吐出圧力損失の低減を見込むことができる。固定口19の容積など、高低圧隔壁17の厚さなどは、各圧縮室11における負荷状態に応じて設定することができる。 Further, according to the screw compressor 102 of the first embodiment, the axial width of the first fixed port 19a is narrower than that of the second fixed port 19b, and the opening is larger than that of the second fixed port 19b. Since the area is reduced, the volume of the first fixed port 19a is reduced, and the dead volume loss in the one-side operation can be reduced. Even if the volume of the first fixing port 19a is reduced by reducing the length in the depth direction, the same effect can be obtained. Furthermore, according to the screw compressor 102 of the first embodiment, the second high / low pressure partition wall 17b is thinner than the first high / low pressure partition wall 17a. A reduction in discharge pressure loss to the partition wall 17b can be expected. The thickness of the high and low pressure partition wall 17 such as the volume of the fixed port 19 can be set according to the load state in each compression chamber 11.
実施の形態2.
 図12~図14は、本発明の実施の形態2に係る各運転におけるスライドバルブ14の位置関係を示す図である。実施の形態1においては、スクリュー圧縮機102のスライドバルブ14について、特に言及しなかった。実施の形態2においては、スクリュー圧縮機102が有する複数のスライドバルブ14のうち、1つを、内部容積比を変更することができるスライドバルブ14であるものとする。内部容積比を変更することができるスライドバルブ14は、第2スライドバルブ14bであるものとする。それ以外の構成は実施の形態1と同様である。ここで、内部容積比とは、吸込完了(圧縮開始)時の圧縮室11の容積と吐出寸前の圧縮室11の容積との比である。内部容積比の変更は、冷媒が吐出口13から吐出されるタイミングを調整することで行う。たとえば、運転負荷が小さいときは、図13に示すように第2スライドバルブ14bを吸込側へ移動させることで、吐出タイミングをはやくし、過圧縮抑制による性能向上を達成することができる。また、運転負荷が大きいときは、図14に示すように、第2スライドバルブ14bを吐出側へ移動させることで、吐出タイミングを遅くし、不足圧縮抑制による性能向上が見込める。
Embodiment 2. FIG.
12 to 14 are views showing the positional relationship of the slide valve 14 in each operation according to Embodiment 2 of the present invention. In the first embodiment, the slide valve 14 of the screw compressor 102 is not particularly mentioned. In the second embodiment, it is assumed that one of the plurality of slide valves 14 included in the screw compressor 102 is a slide valve 14 that can change the internal volume ratio. The slide valve 14 capable of changing the internal volume ratio is assumed to be the second slide valve 14b. Other configurations are the same as those in the first embodiment. Here, the internal volume ratio is a ratio of the volume of the compression chamber 11 at the time of completion of suction (start of compression) and the volume of the compression chamber 11 just before the discharge. The internal volume ratio is changed by adjusting the timing at which the refrigerant is discharged from the discharge port 13. For example, when the operation load is small, as shown in FIG. 13, the second slide valve 14b is moved to the suction side, thereby shortening the discharge timing and achieving performance improvement by suppressing overcompression. Further, when the operation load is large, as shown in FIG. 14, by moving the second slide valve 14b to the discharge side, the discharge timing can be delayed and the performance improvement due to insufficient compression suppression can be expected.
 実施の形態2のスクリュー圧縮機102では、実施の形態1のように両側運転と片側運転とを切り替えるだけでなく、片側運転において、圧縮室11の内部容積比を制御しながら運転を行うことができる。 In the screw compressor 102 according to the second embodiment, not only the two-side operation and the one-side operation are switched as in the first embodiment, but also the operation can be performed while controlling the internal volume ratio of the compression chamber 11 in the one-side operation. it can.
(動作説明)
 制御装置110のスライドバルブ制御装置111は、図12で示す両側運転時において、下限周波数でスクリュー圧縮機102を駆動させても、目標としている冷凍能力を超過していると判断すると、スクリュー圧縮機102を片側運転させるように切り替える指示を駆動装置16に送る。さらに、冷媒を圧縮する側となる第2スライドバルブ14bについては、内部容積比を変更させる位置に移動させる。
(Description of operation)
When the slide valve control device 111 of the control device 110 determines that the target refrigeration capacity is exceeded even if the screw compressor 102 is driven at the lower limit frequency during the both-side operation shown in FIG. 12, the screw compressor An instruction to switch 102 to operate on one side is sent to the drive device 16. Furthermore, about the 2nd slide valve 14b used as the side which compresses a refrigerant | coolant, it moves to the position which changes an internal volume ratio.
 このとき、スライドバルブ制御装置111は、過圧縮であると判断すると、図13に示すように、内部容積比が小さくなる位置に第2スライドバルブ14bを移動させるようにする。また、不足圧縮であると判断すると、図14に示すように、内部容積比が大きくなる位置に第2スライドバルブ14bを移動させるようにする。以上のように、第2圧縮室11bにおける内部容積比を変更可能にすることで、過圧縮または不足圧縮による動力損失を抑制することができる。したがって、高効率なスクリュー圧縮機102を提供することができる。 At this time, if the slide valve control device 111 determines that the compression is overcompressed, as shown in FIG. 13, the slide valve control device 111 moves the second slide valve 14b to a position where the internal volume ratio becomes small. If it is determined that the compression is insufficient, the second slide valve 14b is moved to a position where the internal volume ratio increases as shown in FIG. As described above, by making the internal volume ratio in the second compression chamber 11b changeable, power loss due to over-compression or under-compression can be suppressed. Therefore, the highly efficient screw compressor 102 can be provided.
実施の形態3.
 実施の形態2では、第2スライドバルブ14bが、内部容積比を変更することができるスライドバルブ14であるものとした。実施の形態3は、第1スライドバルブ14aについても、内部容積比を変更することができるスライドバルブ14であるものとするものである。それ以外の構成は実施の形態1および実施の形態2と同様である。
Embodiment 3 FIG.
In Embodiment 2, the 2nd slide valve 14b shall be the slide valve 14 which can change an internal volume ratio. In the third embodiment, the first slide valve 14a is also a slide valve 14 capable of changing the internal volume ratio. Other configurations are the same as those in the first and second embodiments.
 実施の形態3のスクリュー圧縮機102では、両側運転時および片側運転時において、圧縮室11の内部容積比を制御しながら運転を行うことができる。 The screw compressor 102 according to the third embodiment can be operated while controlling the internal volume ratio of the compression chamber 11 during both-side operation and one-side operation.
(動作説明)
 制御装置110は、両側運転時において、差圧条件などによって最適な内部容積比となる位置に、第1スライドバルブ14aおよび第2スライドバルブ14bをそれぞれ移動させる。また、制御装置110は、実施の形態2と同様に、両側運転時において、下限周波数でスクリュー圧縮機102を駆動させても、目標としている冷凍能力を超過していると判断すると、スクリュー圧縮機102を片側運転に切り替えさせるようにする。このとき、冷媒を圧縮する側の第2スライドバルブ14bについては、内部容積比を変更させる位置に移動させる。以上のように、両側運転においても、圧縮室における内部容積比を変更可能にすることで、過圧縮または不足圧縮による入力損失を抑制できる。したがって、高効率なスクリュー圧縮機102を提供することができる。
(Description of operation)
The control device 110 moves the first slide valve 14a and the second slide valve 14b to positions where the internal volume ratio is optimal depending on the differential pressure condition or the like during both-side operation. Similarly to the second embodiment, when the controller 110 determines that the target refrigeration capacity has been exceeded even when the screw compressor 102 is driven at the lower limit frequency during both-side operation, the screw compressor 102 is switched to one-side operation. At this time, the second slide valve 14b on the side that compresses the refrigerant is moved to a position where the internal volume ratio is changed. As described above, the input loss due to overcompression or undercompression can be suppressed by making it possible to change the internal volume ratio in the compression chamber even in both-side operation. Therefore, the highly efficient screw compressor 102 can be provided.
実施の形態4.
 上述した実施の形態1~実施の形態3においては、スライドバルブの数は2つ以上であれば、数を限定しない。
Embodiment 4 FIG.
In Embodiments 1 to 3 described above, the number is not limited as long as the number of slide valves is two or more.
 3 モーター、6 ゲートロータ、6a 第1ゲートロータ、6b 第2ゲートロータ、8 ケーシング本体、9 スクリューロータ、10 スクリュー軸、11 圧縮室、11a 第1圧縮室、11b 第2圧縮室、12 吐出室、13 吐出口、13a 第1吐出口、13b 第2吐出口、14 スライドバルブ、14a 第1スライドバルブ、14b 第2スライドバルブ、15 ロッド、16 駆動装置、17 高低圧隔壁、17a 第1高低圧隔壁、17b 第2高低圧隔壁、19 固定口、19a 第1固定口、19b 第2固定口、20 固定口背面シール面、31 ステータ、32 モータロータ、61 歯、91 スクリュー溝、100 冷凍サイクル装置、101 インバータ装置、102 スクリュー圧縮機、104 凝縮器、105 膨張弁、106 蒸発器、110 制御装置、111 スライドバルブ制御装置。 3 motor, 6 gate rotor, 6a 1st gate rotor, 6b 2nd gate rotor, 8 casing body, 9 screw rotor, 10 screw shaft, 11 compression chamber, 11a 1st compression chamber, 11b 2nd compression chamber, 12 discharge chamber , 13 discharge port, 13a 1st discharge port, 13b 2nd discharge port, 14 slide valve, 14a 1st slide valve, 14b 2nd slide valve, 15 rod, 16 drive unit, 17 high / low pressure partition, 17a first high / low pressure Bulkhead, 17b Second high / low pressure bulkhead, 19 fixed port, 19a first fixed port, 19b second fixed port, 20 fixed port back seal surface, 31 stator, 32 motor rotor, 61 teeth, 91 screw groove, 100 refrigeration cycle device, 101 inverter device, 102 screw compressor, 10 Condenser, 105 an expansion valve, 106 an evaporator, 110 controller, 111 slide valve control device.

Claims (15)

  1.  円筒状の内筒面を有するケーシング本体と、
     前記内筒面に収容され、複数のスクリュー溝を外周面に有するスクリューロータと、
     該スクリューロータの回転軸に対して対称に、前記スクリューロータの両側にそれぞれ配置され、前記スクリュー溝に噛み合わされる複数の歯を外周部に有する複数のゲートロータと、
     前記ケーシング本体と前記スクリューロータとの間にあって、前記回転軸の方向に移動可能なスライドバルブと、
     該ケーシング本体内において、吐出圧力雰囲気となる高圧空間と吸込圧力雰囲気となる低圧空間とを隔てる高低圧隔壁とを備え、
     該高低圧隔壁および圧縮された流体の吐出口の一部となる固定口の背面は、前記スライドバルブの背面とで流体の漏れを抑えるシール面を有するスクリュー圧縮機。
    A casing body having a cylindrical inner cylindrical surface;
    A screw rotor housed in the inner cylindrical surface and having a plurality of screw grooves on the outer peripheral surface;
    A plurality of gate rotors arranged on both sides of the screw rotor symmetrically with respect to the rotation axis of the screw rotor, and having a plurality of teeth meshing with the screw grooves on the outer periphery;
    A slide valve located between the casing body and the screw rotor and movable in the direction of the rotating shaft;
    In the casing main body, a high-low pressure partition that separates a high-pressure space that becomes a discharge pressure atmosphere and a low-pressure space that becomes a suction pressure atmosphere,
    A screw compressor having a back surface of the high and low pressure partition walls and a fixed port that is a part of a discharge port of the compressed fluid has a seal surface that suppresses fluid leakage with the back surface of the slide valve.
  2.  各ゲートロータ、前記スクリュー溝および前記ケーシング本体で囲まれ、前記吐出口が設けられた複数の圧縮室を有し、
     少なくとも1つの前記固定口は、他の前記固定口よりも前記回転軸の方向における前記固定口を形成する吸入側壁面の位置が吐出側にある請求項1に記載のスクリュー圧縮機。
    Surrounded by each gate rotor, the screw groove and the casing body, and having a plurality of compression chambers provided with the discharge port,
    2. The screw compressor according to claim 1, wherein at least one of the fixed ports is located on a discharge side at a position of a suction side wall surface that forms the fixed port in the direction of the rotation axis with respect to the other fixed ports.
  3.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記固定口は、片側運転により圧縮する側の前記固定口よりも前記回転軸の方向における前記固定口を形成する吸入側壁面の位置が吐出側にある請求項2に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, wherein the fixed port on the side not compressed by one-side operation is on the side compressed by one-side operation. The screw compressor according to claim 2, wherein a position of a suction side wall surface that forms the fixed port in a direction of the rotation shaft with respect to the fixed port is on a discharge side.
  4.  各ゲートロータ、前記スクリュー溝および前記ケーシング本体で囲まれ、前記吐出口が設けられた複数の圧縮室を有し、
     少なくとも1つの前記固定口における奥行き方向の長さは、他の前記固定口の奥行き方向の長さよりも小さい請求項1~請求項3のいずれか一項に記載のスクリュー圧縮機。
    Surrounded by each gate rotor, the screw groove and the casing body, and having a plurality of compression chambers provided with the discharge port,
    The screw compressor according to any one of claims 1 to 3, wherein a length of at least one of the fixed ports in the depth direction is smaller than a length of the other fixed ports in the depth direction.
  5.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記固定口における奥行き方向の長さは、片側運転により圧縮機する側の前記固定口の奥行き方向の長さよりも小さい請求項4に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, and the length in the depth direction of the fixed port on the side not compressed by one-side operation is one side The screw compressor according to claim 4, wherein the screw compressor is smaller than a length in a depth direction of the fixed port on a side to be compressed by operation.
  6.  各ゲートロータ、前記スクリュー溝および前記ケーシング本体で囲まれ、前記吐出口が設けられた複数の圧縮室を有し、
     少なくとも1つの前記固定口の容積が、他の前記固定口の容積よりも少ない請求項1~請求項3のいずれか一項に記載のスクリュー圧縮機。
    Surrounded by each gate rotor, the screw groove and the casing body, and having a plurality of compression chambers provided with the discharge port,
    The screw compressor according to any one of claims 1 to 3, wherein a volume of at least one of the fixed ports is smaller than a volume of the other fixed ports.
  7.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記固定口の容積が、片側運転により圧縮する側の前記固定口の容積よりも小さい請求項6に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, wherein the volume of the fixed port that is not compressed by one-side operation is compressed by one-side operation. The screw compressor according to claim 6, wherein the screw compressor is smaller in volume than the fixed port on the side.
  8.  少なくとも1つの前記固定口と他の前記固定口との大きさが、前記圧縮室の負荷状態に応じて異なる請求項2、請求項4または請求項6に記載のスクリュー圧縮機。 The screw compressor according to claim 2, 4 or 6, wherein the size of at least one of the fixed ports and the other fixed port differs depending on the load state of the compression chamber.
  9.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記固定口と、片側運転により圧縮する側の前記固定口との大きさとが、前記圧縮室の負荷状態に応じて異なる請求項3、請求項5または請求項7に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, the fixed port on the side not compressed by one-side operation, and the side compressed by one-side operation The screw compressor according to claim 3, 5 or 7, wherein a size of the fixing port is different depending on a load state of the compression chamber.
  10.  各ゲートロータ、前記スクリュー溝および前記ケーシング本体で囲まれた複数の圧縮室を有し、
     少なくとも1つの前記高低圧隔壁の厚みが、他の前記高低圧隔壁より薄い請求項1~請求項9のいずれか一項に記載のスクリュー圧縮機。
    A plurality of compression chambers surrounded by each gate rotor, the screw groove and the casing body;
    The screw compressor according to any one of claims 1 to 9, wherein a thickness of at least one of the high and low pressure partition walls is thinner than that of the other high and low pressure partition walls.
  11.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記高低圧隔壁が、片側運転により圧縮する側の前記高低圧隔壁の厚みより薄い請求項10に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, wherein the high-low pressure partition that is not compressed by one-side operation is compressed by one-side operation. The screw compressor according to claim 10, wherein the screw compressor is thinner than the thickness of the high and low pressure partition walls.
  12.  少なくとも1つの前記スライドバルブを移動させることにより、流体が圧縮されない状態となる片側運転が可能なスクリュー圧縮機であって、片側運転により圧縮しない側の前記高低圧隔壁と片側運転により圧縮する側の前記高低圧隔壁の厚みとが前記圧縮室の負荷状態に応じて異なる請求項11に記載のスクリュー圧縮機。 A screw compressor capable of one-side operation in which fluid is not compressed by moving at least one slide valve, the high-low pressure partition wall on the side not compressed by one-side operation and the side compressed by one-side operation The screw compressor according to claim 11, wherein a thickness of the high-low pressure partition differs depending on a load state of the compression chamber.
  13.  各ゲートロータ、前記スクリュー溝および前記ケーシング本体で囲まれた複数の圧縮室を有し、
     少なくとも1つの前記圧縮室の内部容積比を、前記圧縮室に対応する前記スライドバルブの位置により変更する請求項1~請求項12のいずれか一項に記載のスクリュー圧縮機。
    A plurality of compression chambers surrounded by each gate rotor, the screw groove and the casing body;
    The screw compressor according to any one of claims 1 to 12, wherein an internal volume ratio of at least one of the compression chambers is changed according to a position of the slide valve corresponding to the compression chamber.
  14.  請求項1~請求項13のいずれか一項に記載のスクリュー圧縮機、凝縮器、減圧装置および蒸発器を順に冷媒配管で接続し、流体である冷媒を循環させる冷媒回路を構成する冷凍サイクル装置。 14. A refrigeration cycle device comprising a refrigerant circuit in which the screw compressor, the condenser, the decompression device, and the evaporator according to any one of claims 1 to 13 are connected in order through a refrigerant pipe to circulate a refrigerant that is a fluid. .
  15.  前記スクリュー圧縮機の駆動周波数を制御するインバータ装置をさらに備える請求項14に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 14, further comprising an inverter device for controlling a drive frequency of the screw compressor.
PCT/JP2016/061090 2016-04-05 2016-04-05 Screw compressor and refrigeration cycle device WO2017175298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061090 WO2017175298A1 (en) 2016-04-05 2016-04-05 Screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061090 WO2017175298A1 (en) 2016-04-05 2016-04-05 Screw compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017175298A1 true WO2017175298A1 (en) 2017-10-12

Family

ID=60001041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061090 WO2017175298A1 (en) 2016-04-05 2016-04-05 Screw compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2017175298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683445A4 (en) * 2017-10-30 2020-12-09 Daikin Industries, Ltd. Screw compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358786A (en) * 1991-06-05 1992-12-11 Daikin Ind Ltd Single screw compressor
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor
JP2013213418A (en) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp Screw compressor
JP2014047708A (en) * 2012-08-31 2014-03-17 Mitsubishi Electric Corp Screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358786A (en) * 1991-06-05 1992-12-11 Daikin Ind Ltd Single screw compressor
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor
JP2013213418A (en) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp Screw compressor
JP2014047708A (en) * 2012-08-31 2014-03-17 Mitsubishi Electric Corp Screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683445A4 (en) * 2017-10-30 2020-12-09 Daikin Industries, Ltd. Screw compressor

Similar Documents

Publication Publication Date Title
WO2017149659A1 (en) Screw compressor and refrigeration cycle device
JP6342821B2 (en) Screw fluid machinery
TWI626380B (en) Screw compressor and refrigeration cycle device with screw compressor
WO2016046907A1 (en) Screw compressor and refrigeration cycle device
JP6661916B2 (en) Scroll compressor and heat cycle system
KR100619767B1 (en) Apparatus for changing capacity multi-stage rotary compressor
JP2010156488A (en) Refrigerating device
WO2020255198A1 (en) Freezing apparatus
JP6234611B2 (en) Screw compressor and refrigeration cycle equipment
WO2017175298A1 (en) Screw compressor and refrigeration cycle device
JP2004324601A (en) Single screw compressor
WO2020026333A1 (en) Screw compressor and refrigeration cycle device
GB2537996A (en) Screw compressor
EP3617513B1 (en) Compressor and refrigeration cycle device
JP2013238135A (en) Screw compressor
JP2019019671A (en) Screw compressor
EP3569950B1 (en) Refrigeration cycle device
JP7158603B2 (en) screw compressor
WO2023248450A1 (en) Screw compressor
JP2014145334A (en) Screw compressor
WO2016199292A1 (en) Screw compressor and refrigeration device
WO2016088207A1 (en) Refrigeration cycle circuit
WO2022249237A1 (en) Compressor and refrigeration cycle device
WO2023162744A1 (en) Screw compressor and refrigeration device
WO2023182457A1 (en) Screw compressor and freezer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897857

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP