WO2020026333A1 - Screw compressor and refrigeration cycle device - Google Patents

Screw compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2020026333A1
WO2020026333A1 PCT/JP2018/028609 JP2018028609W WO2020026333A1 WO 2020026333 A1 WO2020026333 A1 WO 2020026333A1 JP 2018028609 W JP2018028609 W JP 2018028609W WO 2020026333 A1 WO2020026333 A1 WO 2020026333A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
screw
pair
screw compressor
rotor
Prior art date
Application number
PCT/JP2018/028609
Other languages
French (fr)
Japanese (ja)
Inventor
直也 光成
優 木庭
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/028609 priority Critical patent/WO2020026333A1/en
Publication of WO2020026333A1 publication Critical patent/WO2020026333A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present invention relates to a screw compressor and a refrigeration cycle device including a screw rotor, a pair of gate rotors, and a pair of slide valves.
  • the single screw compressor includes a screw rotor having a plurality of spiral screw grooves formed on an outer peripheral surface. Further, the single screw compressor includes a gate rotor having a disk shape and having a plurality of teeth formed on an outer peripheral surface along a circumferential direction. The teeth of the gate rotor are meshed with the screw grooves. A space surrounded by the teeth of the gate rotor and the screw grooves is formed in the compression chamber.
  • a screw rotor and a gate rotor are housed in a casing.
  • a low-pressure space into which the low-pressure fluid before compression flows is formed.
  • the gate rotor rotates with the rotation of the screw rotor. Then, the teeth of the gate rotor relatively move from the start end of the suction side end of the spiral screw groove toward the end of the discharge side end.
  • a pair of compression chambers are formed at point-symmetric positions with respect to the radial center of the screw rotor. Therefore, there is a first compression chamber having one gate rotor as a component and a second compression chamber having the other gate rotor as a component.
  • a pair of discharge ports from which the compressed fluid is discharged are formed at point-symmetric positions in the same manner as described above, and each discharge port communicates with each compression chamber.
  • a slide valve is provided so as to form a part of a cylindrical wall of a casing or to serve as one end of a discharge port from which a refrigerant is discharged.
  • the slide valve is a separate component that is movable in the axial direction of the screw rotor, and constitutes an internal volume ratio variable mechanism that varies the internal volume ratio by adjusting the timing of discharge from the compression chamber. . That is, a part of the discharge port is formed by the slide valve.
  • the internal volume ratio indicates the ratio of the volume of the compression chamber at the time of completion of suction, which is the start of compression, to the volume of the compression chamber immediately before discharge.
  • the slide valve can also be used as a capacity control mechanism capable of bypassing a part of the refrigerant sucked into the compression chamber to the low pressure space during the compression stroke.
  • the compression chamber and the discharge port are formed at positions symmetrical with respect to the radial center of the screw rotor, and these are located at the same position in the screw axial direction. For this reason, the timing of discharging the fluid in each compression chamber coincides.
  • the pulsation of the fluid discharged from each discharge port in a predetermined cycle overlaps, and the peak of the pulsation increases. Become. That is, loud noise or vibration is generated.
  • Patent Document 1 discloses a screw compressor in which the number of spiral grooves is set to a value other than an integral multiple of the number of gate rotors, and the timing of discharging fluid from two discharge ports is shifted from each other.
  • the present invention has been made to solve the above problems, and provides a screw compressor and a refrigeration cycle device capable of reducing noise and vibration due to displacement of discharge pulsations and reducing leakage loss and pressure loss. Aim.
  • the screw compressor according to the present invention is a screw rotor that extends in the axial direction and has a screw groove on the outer peripheral surface, a pair of gate rotors that mesh with the screw groove of the screw rotor, and a radial center of the screw rotor. And a pair of slide valves arranged at point-symmetric positions, and the first compression chamber closed by one of the pair of gate rotors and one of the pair of slide valves. Is formed, and a second compression chamber closed by the other gate rotor of the pair of gate rotors and the other slide valve of the pair of slide valves is formed, and the pair of slide valves is The axial position of one end of the discharge port communicating with the chamber and the second compression chamber is shifted from each other. Is shall.
  • a refrigeration cycle apparatus includes the above screw compressor.
  • the pair of slide valves are provided such that the axial positions of one ends of the discharge ports communicating with the first compression chamber and the second compression chamber are shifted from each other. ing. Accordingly, the timings of discharging the fluid from the first compression chamber and the second compression chamber are shifted from each other. That is, the peak of the discharge pulsation of each compression chamber can be prevented from overlapping, and the noise and vibration can be reduced.
  • the number of screw grooves is not limited, and the number of screw grooves can be optimized. For this reason, the compression time of the fluid per one screw groove does not become long, and the leakage loss generated during compression can be reduced.
  • the angle between the screw groove and the axis of the screw rotor in the developed view of the screw groove does not become small. That is, the area of the discharge port is not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber and the second compression chamber can be reduced. Therefore, the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
  • FIG. 2 is a diagram illustrating a compression principle 3 of the screw compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a development view showing a first state of the screw rotor, the cylindrical wall, the gate rotor, and the slide valve according to Embodiment 1 of the present invention as viewed from the inside of the cylinder.
  • FIG. 3 is a development view showing a second state of the screw rotor, the cylindrical wall, the gate rotor, and the slide valve according to Embodiment 1 of the present invention, as viewed from the inside of the cylinder.
  • FIG. 4 is a schematic diagram showing a noise level generated by discharging a fluid from each of two discharge ports according to the conventional structure and the first embodiment of the present invention, and a superimposed noise level of the noise levels of the two discharge ports.
  • FIG. 8 is a refrigerant circuit diagram illustrating a refrigeration cycle device to which the screw compressor according to Embodiment 2 of the present invention is applied.
  • FIG. 1 is a cross-sectional view illustrating a screw compressor 100 according to Embodiment 1 of the present invention.
  • the screw compressor 100 includes a casing 1, a screw rotor 3, gate rotors 6a and 6b, an electric motor 2 for rotating the screw rotor 3, and slide valves 8a and 8b.
  • the cylindrical casing 1 having the cylindrical wall 1c accommodates the screw rotor 3, the gate rotors 6a and 6b, the electric motor 2, the slide valves 8a and 8b, and the like inside the cylinder.
  • the electric motor 2 includes a stator 2a internally fixed to the casing 1 and a motor rotor 2b disposed inside the stator 2a.
  • the electric motor 2 may be a constant speed machine having a constant drive frequency, or may be an inverter type that is driven so that its capacity can be adjusted by changing the drive frequency.
  • the screw rotor 3 and the motor rotor 2b are arranged around a screw shaft 4 serving as a rotating shaft, and are fixed to the screw shaft 4.
  • the screw rotor 3 extends in the axial direction of the screw shaft 4.
  • Six spiral screw grooves 12 are formed on the outer peripheral surface of the screw rotor 3.
  • the number of the screw grooves 12 can be appropriately changed depending on the configuration of the screw compressor 100 to be a product.
  • the screw rotor 3 rotates with the rotation of the motor rotor 2b fixed to the screw shaft 4.
  • the screw compressor 100 has a pair of gate rotors 6a and 6b.
  • the pair of gate rotors 6 a and 6 b are located in a point-symmetric positional relationship with respect to the screw shaft 4, and are disposed on both sides of the screw rotor 3, respectively.
  • the two gate rotors 6a and 6b have a disk shape, and a plurality of teeth 13 are provided on the outer peripheral surface along the circumferential direction.
  • the teeth 13 of the gate rotors 6a and 6b are engaged with the screw grooves 12.
  • a space surrounded by the teeth 13 of the gate rotors 6a and 6b, the screw groove 12, and the inner surface of the casing 1 is a first compression chamber 5a and a second compression chamber 5b.
  • slide grooves 1a and 1b extending in the axial direction of the screw shaft 4 of the screw rotor 3 are formed.
  • a slide valve 8a is accommodated in the slide groove 1a so as to be slidable in the axial direction along the slide groove 1a.
  • a slide valve 8b is accommodated in the slide groove 1b so as to be slidable in the axial direction along the slide groove 1b.
  • the slide valve 8a is integrated with the casing 1 to form a first compression chamber 5a together with the casing 1.
  • the slide valve 8b is integrated with the casing 1 to form a second compression chamber 5b together with the casing 1.
  • the first compression chamber 5a is formed in a space closed by one of the pair of gate rotors 6a and 6b and one of the pair of slide valves 8a and 8b.
  • the second compression chamber 5b is formed in a space closed by the other gate rotor 6b of the pair of gate rotors 6a and 6b and the other slide valve 8b of the pair of slide valves 8a and 8b.
  • the first compression chamber 5a and the second compression chamber 5b are formed at positions that are point-symmetric with respect to the radial center of the screw rotor 3.
  • the interior of the screw compressor 100 is partitioned into a low-pressure side, which is a refrigerant suction side, and a high-pressure side, which is a refrigerant discharge side, by a partition wall (not shown).
  • the space on the low pressure side is a low pressure chamber A1 serving as a suction pressure atmosphere.
  • the space on the high pressure side is a high pressure chamber A2 serving as a discharge pressure atmosphere.
  • the slide valve 8a is provided with a discharge port 7a for communicating the high-pressure chamber A2 with the first compression chamber 5a at a position on the high-pressure side of the first compression chamber 5a.
  • the slide valve 8b is provided with a discharge port 7b for communicating the high-pressure chamber A2 with the second compression chamber 5b at a position on the high-pressure side of the second compression chamber 5b.
  • the pair of slide valves 8a and 8b adjust the discharge timing from the first and second compression chambers 5a and 5b by moving the screw shaft 4 in the axial direction, and the internal volume ratio is variable so that the internal volume ratio can be changed.
  • the internal volume ratio refers to the ratio of the volumes of the first and second compression chambers 5a and 5b at the time of completion of suction at the start of compression to the volumes of the first and second compression chambers 5a and 5b immediately before discharge. It is shown.
  • the pair of slide valves 8a and 8b allow a part of the refrigerant sucked into the first and second compression chambers 5a and 5b to bypass the low pressure chamber A1 in the middle of the compression stroke. It can also be used as a capacity control mechanism.
  • the pair of slide valves 8a and 8b are connected to the slide valve driving devices 10a and 10b, such as pistons, via the connecting rod 9, respectively.
  • the slide valve driving devices 10a and 10b By driving the slide valve driving devices 10a and 10b, the slide valves 8a and 8b move in the slide groove 1a or 1b in the axial direction of the screw shaft 4 of the screw rotor 3, respectively.
  • the screw compressor 100 performs a control operation of controlling the positions of the pair of slide valves 8a and 8b to adjust the internal volume ratio.
  • This control operation is performed by sending an instruction to the slide valve driving devices 10a and 10b from a control device (not shown) as to where to place the pair of slide valves 8a and 8b so as to adjust the discharge amount of the refrigerant.
  • the slide control of the pair of slide valves 8a and 8b by the slide valve driving devices 10a and 10b is controlled at the same timing.
  • each of the slide valve driving devices 10a and 10b for driving the pair of slide valves 8a and 8b is driven by a gas pressure, by a hydraulic pressure, by a motor separately from the piston, or the like.
  • the power source is not limited.
  • FIG. 2 is an enlarged cross-sectional view illustrating part B of FIG. 1 of screw compressor 100 according to Embodiment 1 of the present invention.
  • a pair of slide valves 8a and 8b are provided with screw shafts 4 at end faces 11a and 11b which are one ends of discharge ports 7a and 7b communicating with the first compression chamber 5a and the second compression chamber 5b. Are shifted from each other by a length C.
  • the pair of slide valves 8a and 8b are the same except that the positions of the end faces 11a and 11b of the discharge ports 7a and 7b are different.
  • the positions of the end faces 11a and 11b are at the middle of the timing when one of the discharge ports 7a sequentially communicates with the first compression chamber 5a, and the position of the other discharge port 7b is the second.
  • the timing for communicating with the compression chamber 5b is set to start.
  • the timing at which the two discharge ports 7a and 7b communicate with the first compression chamber 5a or the second compression chamber 5b is not limited to being shifted by a half cycle.
  • FIG. 3 is a diagram illustrating a compression principle 1 of the screw compressor 100 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a compression principle 2 of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating a compression principle 3 of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 3 shows a state where the second compression chamber 5b formed in the screw groove 12 is confined by the casing 1, the screw rotor 3, and the gate rotors 6a and 6b.
  • the screw rotor 3 is driven by the electric motor 2 and rotates in the direction indicated by the solid arrow.
  • FIG. 4 shows a state in which the second compression chamber 5b confined in FIG. 3 is compressed by the rotation of the screw rotor 3, and the volume of the second compression chamber 5b is continuously reduced.
  • FIG. 5 shows a state where the fluid compressed in the state shown in FIG. 4 is discharged.
  • the second compression chamber 5b communicates with the outside via the discharge port 7b as shown in FIG.
  • the high-pressure refrigerant gas compressed in the second compression chamber 5b is discharged from the discharge port 7b to the outside.
  • the same compression is performed again in the next tooth space of the screw rotor 3.
  • the description has been given focusing on the second compression chamber 5b, but the operation principle of the first compression chamber 5a is the same.
  • FIG. 6 is a developed view showing a first state of the screw rotor 3, the cylindrical wall 1c, the gate rotors 6a and 6b, and the slide valves 8a and 8b according to Embodiment 1 of the present invention as viewed from the inside of the cylinder.
  • FIG. 7 is a developed view showing a second state of the screw rotor 3, the cylindrical wall 1c, the gate rotors 6a and 6b, and the slide valves 8a and 8b according to Embodiment 1 of the present invention as viewed from the inside of the cylinder.
  • end surfaces 11 a and 7 b forming a part of the discharge ports 7 a and 7 b are formed. 11b are different from each other in the axial direction of the screw shaft 4.
  • the six screw grooves 12 forming the screw rotor 3 are formed at 60 ° pitch positions on a plane perpendicular to the screw shaft 4.
  • the end faces 11a and 11b of the slide valves 8a and 8b are in a positional relationship such that any of the six screw grooves 12 and the other grooves do not simultaneously discharge fluid.
  • FIG. 6 shows a state in which the screw rotor 3 indicated by the dotted line rotates and the side surface 12a of the screw groove 12 overlaps the end surface 11a of one of the slide valves 8a. That is, FIG. 6 shows a state immediately before the fluid is discharged from the discharge port 7a.
  • FIG. 7 shows a state in which the screw rotor 3 further rotates from the state shown in FIG. 6, and the side surface 12b of the screw groove 12 overlaps the end surface 11b of the other slide valve 8b.
  • FIG. 8 is a diagram showing the superposition of the noise level generated by the fluid being discharged from each of the two discharge ports 7a and 7b and the noise level of the two discharge ports 7a and 7b according to the conventional structure and the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating a noise level that has been set.
  • the peak of the pulsation of the fluid discharged from the discharge ports 7a and 7b is shifted, and noise and vibration are reduced as compared with the conventional structure.
  • the pulsation cycle of the fluid discharged from each of the discharge ports 7a and 7b is the same.
  • the phase of the wave having the peak of the pulsation is shifted. Due to the shift in the timing at which the fluid is discharged from the discharge ports 7a and 7b, the pulsation peaks generated when the fluid is discharged from the respective discharge ports 7a and 7b do not overlap, and the noise and vibration are reduced as compared with the conventional structure. it can.
  • the above-described structure is different from the conventional structure only in that the shape of the positions of the end faces 11a and 11b of the slide valves 8a and 8b only needs to be changed, and the screw compressor which can reduce noise and vibration without increasing the number of parts or the assembly process. 100 can be realized.
  • the screw compressor 100 includes the screw rotor 3 extending in the axial direction and having the screw groove 12 on the outer peripheral surface.
  • the screw compressor 100 includes a pair of gate rotors 6a and 6b that mesh with the screw grooves 12 of the screw rotor 3.
  • the screw compressor 100 includes a pair of slide valves 8a and 8b arranged at positions symmetrical with respect to the center of the screw rotor 3 in the radial direction.
  • a first compression chamber 5a closed by one of the pair of gate rotors 6a and 6b and one of the pair of slide valves 8a and 8b is formed.
  • a second compression chamber 5b is formed which is closed by the other gate rotor 6b of the pair of gate rotors 6a and 6b and the other slide valve 8b of the pair of slide valves 8a and 8b.
  • the pair of slide valves 8a and 8b are provided such that axial positions of end faces 11a and 11b, which are one ends of discharge ports 7a and 7b communicating with the first compression chamber 5a and the second compression chamber 5b, are shifted from each other. I have.
  • the timings of discharging the fluid in the first compression chamber 5a and the second compression chamber 5b to the two discharge ports 7a and 7b are shifted from each other. That is, the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b can be prevented from overlapping, and noise and vibration can be reduced.
  • the number of screw grooves 12 there is no limitation on the number of screw grooves 12, and the number of screw grooves 12 can be optimized to be six here. For this reason, the compression time of the fluid per one screw groove 12 does not become long, and the leakage loss generated during compression can be reduced. Further, the angle formed between the screw groove 12 and the screw shaft 4 of the screw rotor 3 in the developed view of the screw groove 12 does not become small.
  • the areas of the discharge ports 7a and 7b are not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber 5a and the second compression chamber 5b can be reduced. Therefore, the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
  • the timing at which one of the two outlets 7a and 7b communicates with the first compression chamber 5a and the other of the two outlets 7a and 7b are at the second timing.
  • the timing of communication with the second compression chamber 5b is shifted.
  • the timings of discharging the fluid in the first compression chamber 5a and the second compression chamber 5b to the two discharge ports 7a and 7b are shifted from each other. That is, the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b can be prevented from overlapping, and the noise and vibration can be reduced.
  • the timing at which one of the two outlets 7a and 7b communicates with the first compression chamber 5a and the one of the two outlets 7a and 7b are set to the following timing.
  • the timing at which the other one of the two outlets 7a and 7b communicates with the second compression chamber 5b is started at an intermediate point of the timing at which it communicates with the first compression chamber 5a.
  • the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b is shifted by a half cycle, and the discharge pulsation from the two discharge ports 7a and 7b can be most flattened, thereby further reducing noise and vibration. it can.
  • the slide control of the pair of slide valves 8a and 8b is controlled at the same timing.
  • the slide control of the pair of slide valves 8a and 8b does not require special control, simple control can be performed at the same timing, control is easy, and cost reduction can be achieved.
  • the number of the screw grooves 12 is six.
  • the number of screw grooves 12 can be optimized. For this reason, the compression time of the fluid per one screw groove 12 does not become long, and the leakage loss generated during compression can be reduced. Further, the angle formed between the screw groove 12 and the screw shaft 4 of the screw rotor 3 in the developed view of the screw groove 12 does not become small. That is, the areas of the discharge ports 7a and 7b are not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber 5a and the second compression chamber 5b can be reduced.
  • the pair of slide valves 8a and 8b adjusts the timing of communication from the first compression chamber 5a or the second compression chamber 5b to each of the two discharge ports 7a and 7b, and changes the internal volume ratio.
  • This is a variable internal volume ratio mechanism.
  • the discharge timing from the first compression chamber 5a and the second compression chamber 5b can be adjusted, and the internal volume ratio can be changed.
  • the pair of slide valves 8a and 8b is a capacity control mechanism that bypasses a part of the refrigerant sucked into the first compression chamber 5a or the second compression chamber 5b to the low-pressure space during the compression stroke. is there.
  • part of the refrigerant sucked into the first compression chamber 5a or the second compression chamber 5b is bypassed to the low-pressure space during the compression stroke.
  • FIG. 9 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 101 to which the screw compressor 100 according to Embodiment 2 of the present invention is applied.
  • the refrigeration cycle apparatus 101 includes a screw compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104.
  • the screw compressor 100, the condenser 102, the expansion valve 103, and the evaporator 104 are connected by a refrigerant pipe to form a refrigeration cycle circuit.
  • the refrigerant flowing out of the evaporator 104 is drawn into the screw compressor 100 and becomes high temperature and high pressure.
  • the high-temperature and high-pressure refrigerant is condensed in the condenser 102 to become a liquid.
  • the liquid refrigerant is decompressed and expanded by the expansion valve 103 to become a low-temperature low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 104.
  • the screw compressor 100 according to the first embodiment can be applied to such a refrigeration cycle apparatus 101.
  • a refrigeration cycle apparatus 101 for example, an air conditioner, a refrigerating device, a water heater, or the like can be given.
  • a refrigeration cycle apparatus 101 includes the screw compressor 100 according to the first embodiment.
  • the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
  • 1 casing 1a, 1b slide groove, 1c cylindrical wall, 2 motor, 2a stator, 2b motor rotor, 3 screw rotor, 4 screw shaft, 5a first compression chamber, 5b second compression chamber, 6a, 6b gate rotor, 7a, 7b discharge port, 8a, 8b slide valve, 9 connection rod, 10a, 10b slide valve drive device, 11a, 11b end surface, 12 screw groove, 12a, 12b side surface, 13 tooth, 100 screw compressor, 101 refrigeration cycle device, 102 Condenser, 103 expansion valve, 104 evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This screw compressor is provided with: a screw rotor axially extending and including a screw groove in the outer peripheral surface; a pair of gate rotors which mesh with the screw groove of the screw rotor; and a pair of slide valves which are disposed at positions that are point-symmetric about the radial center of the screw rotor. A first compression chamber is formed which is closed by one of the pair of gate rotors and one of the pair of slide valves. A second compression chamber is formed which is closed by the other of the pair of gate rotors and the other of the pair of slide valves. The pair of slide valves are provided such that axial positions of ends of respective discharge ports connected to the first compression chamber and the second compression chamber are shifted from each other.

Description

スクリュー圧縮機及び冷凍サイクル装置Screw compressor and refrigeration cycle device
 本発明は、スクリューロータと一対のゲートロータと一対のスライドバルブとを備えるスクリュー圧縮機及び冷凍サイクル装置に関する。 The present invention relates to a screw compressor and a refrigeration cycle device including a screw rotor, a pair of gate rotors, and a pair of slide valves.
 従来、冷凍空調用などの圧縮機としてシングルスクリュー圧縮機が知られている。シングルスクリュー圧縮機は、外周面に複数の螺旋状のスクリュー溝が形成されたスクリューロータを備える。また、シングルスクリュー圧縮機は、円板状であって外周面には周方向に沿って複数の歯が形成されているゲートロータを備える。ゲートロータの歯は、スクリュー溝に噛合わされている。そして、ゲートロータの歯及びスクリュー溝などによって囲まれた空間が圧縮室に形成されている。 シ ン グ ル Single screw compressors are conventionally known as compressors for refrigeration and air conditioning. The single screw compressor includes a screw rotor having a plurality of spiral screw grooves formed on an outer peripheral surface. Further, the single screw compressor includes a gate rotor having a disk shape and having a plurality of teeth formed on an outer peripheral surface along a circumferential direction. The teeth of the gate rotor are meshed with the screw grooves. A space surrounded by the teeth of the gate rotor and the screw grooves is formed in the compression chamber.
 シングルスクリュー圧縮機では、スクリューロータとゲートロータとがケーシングに収容されている。また、ケーシング内には、圧縮前の低圧流体が流入する低圧空間が形成されている。スクリューロータを電動機などで回転駆動すると、スクリューロータの回転に伴ってゲートロータが回転する。そして、ゲートロータの歯が、螺旋状のスクリュー溝の吸込側の端部の始端から吐出側の端部の終端へ向かって相対的に移動する。 In a single screw compressor, a screw rotor and a gate rotor are housed in a casing. In the casing, a low-pressure space into which the low-pressure fluid before compression flows is formed. When the screw rotor is driven to rotate by an electric motor or the like, the gate rotor rotates with the rotation of the screw rotor. Then, the teeth of the gate rotor relatively move from the start end of the suction side end of the spiral screw groove toward the end of the discharge side end.
 スクリューロータの螺旋溝によって形成される圧縮室へ低圧流体が吸入される吸入行程では、スクリューロータの外周面側と端面側から圧縮室へ低圧流体が流入する。その後、圧縮室は、スクリューロータの外周面を覆うケーシングの仕切り壁部と、螺旋溝へ進入してきたゲートロータとによって、低圧空間から仕切られる。そして、圧縮室内の流体が圧縮される圧縮行程では、ゲートロータが螺旋溝の始端から終端へ向かって相対的に移動することによって圧縮室の容積が縮小し、圧縮室内の流体が圧縮される。 (4) In the suction stroke in which the low-pressure fluid is sucked into the compression chamber formed by the spiral groove of the screw rotor, the low-pressure fluid flows into the compression chamber from the outer peripheral surface and the end surface of the screw rotor. Thereafter, the compression chamber is partitioned from the low-pressure space by the partition wall of the casing that covers the outer peripheral surface of the screw rotor and the gate rotor that has entered the spiral groove. In the compression stroke in which the fluid in the compression chamber is compressed, the volume of the compression chamber is reduced by relatively moving the gate rotor from the beginning to the end of the spiral groove, and the fluid in the compression chamber is compressed.
 ここで、圧縮室は、スクリューロータの径方向中心に対して、点対称となる位置に一対形成されている。このため、一方のゲートロータを構成要素とする第1圧縮室と、他方のゲートロータを構成要素とする第2圧縮室とが存在する。また、圧縮された流体が吐出される吐出口も上記と同様に点対称となる位置に一対形成され、各々の吐出口が各々の圧縮室に連通する。 Here, a pair of compression chambers are formed at point-symmetric positions with respect to the radial center of the screw rotor. Therefore, there is a first compression chamber having one gate rotor as a component and a second compression chamber having the other gate rotor as a component. In addition, a pair of discharge ports from which the compressed fluid is discharged are formed at point-symmetric positions in the same manner as described above, and each discharge port communicates with each compression chamber.
 シングルスクリュー圧縮機において、スライドバルブがケーシングの円筒壁の一部分を構成するあるいは冷媒が吐出される吐出口の一端を担うように設けられたものがある。なお、このスライドバルブは別体の部品としてスクリューロータの軸方向に可動するものであり、圧縮室からの吐出のタイミングを調整して、内部容積比を可変とする内部容積比可変機構を構成する。すなわち、吐出口の一部はスライドバルブで形成されている。ここで、内部容積比とは、圧縮開始である吸込完了時の圧縮室の容積と吐出寸前の圧縮室の容積との比を示すものである。 が あ る In some single screw compressors, a slide valve is provided so as to form a part of a cylindrical wall of a casing or to serve as one end of a discharge port from which a refrigerant is discharged. The slide valve is a separate component that is movable in the axial direction of the screw rotor, and constitutes an internal volume ratio variable mechanism that varies the internal volume ratio by adjusting the timing of discharge from the compression chamber. . That is, a part of the discharge port is formed by the slide valve. Here, the internal volume ratio indicates the ratio of the volume of the compression chamber at the time of completion of suction, which is the start of compression, to the volume of the compression chamber immediately before discharge.
 また、内部容積比可変機構とは別に、スライドバルブは圧縮室に吸込んだ冷媒の一部を圧縮行程の途中で低圧空間にバイパスさせることのできる容量制御機構としても使用できる。 ス ラ イ ド In addition to the internal volume ratio variable mechanism, the slide valve can also be used as a capacity control mechanism capable of bypassing a part of the refrigerant sucked into the compression chamber to the low pressure space during the compression stroke.
 ここで、一般的にシングルスクリュー圧縮機の螺旋溝は6つ形成され、スクリュー軸と垂直な平面において60°ピッチの位置に形成されている。上述した通り、スクリューロータの径方向中心に対して点対称な位置に圧縮室及び吐出口が形成され、これらがスクリュー軸方向に対して同じ位置にある。このため、各圧縮室の流体を吐出するタイミングは一致している。 Here, generally, six spiral grooves of the single screw compressor are formed, and are formed at 60 ° pitch positions on a plane perpendicular to the screw axis. As described above, the compression chamber and the discharge port are formed at positions symmetrical with respect to the radial center of the screw rotor, and these are located at the same position in the screw axial direction. For this reason, the timing of discharging the fluid in each compression chamber coincides.
 上述したような、圧縮室内の流体が2つの吐出口から同時に吐出されるように構成したシングルスクリュー圧縮機では、各吐出口から所定周期で吐出される流体の脈動が重なり、脈動のピークが大きくなる。すなわち、大きな騒音あるいは振動が発生する。 In the single screw compressor configured so that the fluid in the compression chamber is simultaneously discharged from the two discharge ports as described above, the pulsation of the fluid discharged from each discharge port in a predetermined cycle overlaps, and the peak of the pulsation increases. Become. That is, loud noise or vibration is generated.
 そこで、特許文献1には、螺旋溝の個数をゲートロータの個数の整数倍以外とすることにより、2つの吐出口から流体を吐出するタイミングを互いにずらしたスクリュー圧縮機が開示されている。 Therefore, Patent Document 1 discloses a screw compressor in which the number of spiral grooves is set to a value other than an integral multiple of the number of gate rotors, and the timing of discharging fluid from two discharge ports is shifted from each other.
特許第5125524号公報Japanese Patent No. 5125524
 しかしながら、特許文献1の技術のスクリュー圧縮機では、たとえば、スクリューロータの螺旋溝の個数を6つから5つに減らした場合には、1つの螺旋溝当たりの流体の圧縮時間が長くなり、圧縮中に生じる漏れ損失が増大する。また、螺旋溝の個数を6つから7つに増やした場合には、スクリュー溝の展開図における螺旋溝とスクリューロータの軸とのなす角度が小さくなる。すなわち、吐出口の面積が小さくなり、圧縮室から吐出される際に生じる圧力損失が増大する。 However, in the screw compressor of the technology of Patent Literature 1, for example, when the number of spiral grooves of the screw rotor is reduced from six to five, the compression time of the fluid per one spiral groove becomes longer, and the compression time increases. The leakage losses occurring therein increase. When the number of spiral grooves is increased from six to seven, the angle between the spiral groove and the axis of the screw rotor in the developed view of the screw groove becomes smaller. In other words, the area of the discharge port is reduced, and the pressure loss generated when discharging from the compression chamber increases.
 本発明は、上記課題を解決するためのものであり、吐出脈動の重なりがずれて騒音及び振動が低減できるとともに、漏れ損失及び圧力損失が低減できるスクリュー圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a screw compressor and a refrigeration cycle device capable of reducing noise and vibration due to displacement of discharge pulsations and reducing leakage loss and pressure loss. Aim.
 本発明に係るスクリュー圧縮機は、軸方向に延びて外周面にスクリュー溝を有するスクリューロータと、前記スクリューロータの前記スクリュー溝と噛合う一対のゲートロータと、前記スクリューロータの径方向中心に対して点対称となる位置に配置された一対のスライドバルブと、を備え、前記一対のゲートロータのうち一方のゲートロータと前記一対のスライドバルブのうち一方のスライドバルブとによって閉じられる第1圧縮室が形成され、前記一対のゲートロータのうち他方のゲートロータと前記一対のスライドバルブのうち他方のスライドバルブとによって閉じられる第2圧縮室が形成され、前記一対のスライドバルブは、前記第1圧縮室と前記第2圧縮室とに対して連通する吐出口の一端の軸方向位置を互いにずらして設けられるものである。 The screw compressor according to the present invention is a screw rotor that extends in the axial direction and has a screw groove on the outer peripheral surface, a pair of gate rotors that mesh with the screw groove of the screw rotor, and a radial center of the screw rotor. And a pair of slide valves arranged at point-symmetric positions, and the first compression chamber closed by one of the pair of gate rotors and one of the pair of slide valves. Is formed, and a second compression chamber closed by the other gate rotor of the pair of gate rotors and the other slide valve of the pair of slide valves is formed, and the pair of slide valves is The axial position of one end of the discharge port communicating with the chamber and the second compression chamber is shifted from each other. Is shall.
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機を備えるものである。 冷凍 A refrigeration cycle apparatus according to the present invention includes the above screw compressor.
 本発明に係るスクリュー圧縮機及び冷凍サイクル装置によれば、一対のスライドバルブは、第1圧縮室と第2圧縮室とに対して連通する吐出口の一端の軸方向位置を互いにずらして設けられている。これにより、第1圧縮室と第2圧縮室との流体を吐出するタイミングが互いにずれる。すなわち、各圧縮室の吐出脈動のピークの重なり合いが防げ、騒音及び振動が低減できる。加えて、スクリュー溝の個数の制限が無く、スクリュー溝の個数の最適化が図れる。このため、1つのスクリュー溝当たりの流体の圧縮時間が長くならず、圧縮中に生じる漏れ損失が低減できる。また、スクリュー溝の展開図におけるスクリュー溝とスクリューロータの軸とのなす角度が小さくならない。すなわち、吐出口の面積が小さくならず、第1圧縮室及び第2圧縮室から吐出される際に生じる圧力損失が低減できる。したがって、吐出脈動の重なりがずれて騒音及び振動が低減できるとともに、漏れ損失及び圧力損失が低減できる。 According to the screw compressor and the refrigeration cycle apparatus according to the present invention, the pair of slide valves are provided such that the axial positions of one ends of the discharge ports communicating with the first compression chamber and the second compression chamber are shifted from each other. ing. Accordingly, the timings of discharging the fluid from the first compression chamber and the second compression chamber are shifted from each other. That is, the peak of the discharge pulsation of each compression chamber can be prevented from overlapping, and the noise and vibration can be reduced. In addition, the number of screw grooves is not limited, and the number of screw grooves can be optimized. For this reason, the compression time of the fluid per one screw groove does not become long, and the leakage loss generated during compression can be reduced. Further, the angle between the screw groove and the axis of the screw rotor in the developed view of the screw groove does not become small. That is, the area of the discharge port is not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber and the second compression chamber can be reduced. Therefore, the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
本発明の実施の形態1に係るスクリュー圧縮機を示す断面図である。It is a sectional view showing the screw compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリュー圧縮機の図1のB部を拡大して示す断面図である。It is sectional drawing which expands and shows the B section of FIG. 1 of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理1を示す図である。It is a figure which shows the compression principle 1 of the screw compressor concerning Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理2を示す図である。It is a figure which shows the compression principle 2 of the screw compressor concerning Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理3を示す図である。FIG. 2 is a diagram illustrating a compression principle 3 of the screw compressor according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリューロータ、円筒壁、ゲートロータ及びスライドバルブの第1状態を円筒内側から見て示す展開図である。FIG. 2 is a development view showing a first state of the screw rotor, the cylindrical wall, the gate rotor, and the slide valve according to Embodiment 1 of the present invention as viewed from the inside of the cylinder. 本発明の実施の形態1に係るスクリューロータ、円筒壁、ゲートロータ及びスライドバルブの第2状態を円筒内側から見て示す展開図である。FIG. 3 is a development view showing a second state of the screw rotor, the cylindrical wall, the gate rotor, and the slide valve according to Embodiment 1 of the present invention, as viewed from the inside of the cylinder. 従来の構造及び本発明の実施の形態1に係る2つの吐出口それぞれから流体が吐出されることにより生じる騒音レベル及び2つの吐出口の騒音レベルの重ね合せた騒音レベルを示す概略図である。FIG. 4 is a schematic diagram showing a noise level generated by discharging a fluid from each of two discharge ports according to the conventional structure and the first embodiment of the present invention, and a superimposed noise level of the noise levels of the two discharge ports. 本発明の実施の形態2に係るスクリュー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。FIG. 8 is a refrigerant circuit diagram illustrating a refrigeration cycle device to which the screw compressor according to Embodiment 2 of the present invention is applied.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。そして、圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals denote the same or corresponding components, which are common throughout the entire specification. In the drawings of the cross-sectional views, hatching is omitted as appropriate in view of visibility. Further, the forms of the components shown in the entire text of the specification are merely examples, and the present invention is not limited to these descriptions. The level of the pressure is not particularly determined in relation to an absolute value, but is relatively determined in a state or operation of a system, an apparatus, or the like.
実施の形態1.
<スクリュー圧縮機100の構成>
 図1は、本発明の実施の形態1に係るスクリュー圧縮機100を示す断面図である。図1に示すように、スクリュー圧縮機100は、ケーシング1、スクリューロータ3、ゲートロータ6a及び6b、スクリューロータ3を回転駆動させる電動機2及びスライドバルブ8a及び8bなどを備える。円筒壁1cを有する筒状のケーシング1は、スクリューロータ3、ゲートロータ6a及び6b、電動機2、スライドバルブ8a及び8bなどを筒状の内側に収容している。
Embodiment 1 FIG.
<Structure of screw compressor 100>
FIG. 1 is a cross-sectional view illustrating a screw compressor 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the screw compressor 100 includes a casing 1, a screw rotor 3, gate rotors 6a and 6b, an electric motor 2 for rotating the screw rotor 3, and slide valves 8a and 8b. The cylindrical casing 1 having the cylindrical wall 1c accommodates the screw rotor 3, the gate rotors 6a and 6b, the electric motor 2, the slide valves 8a and 8b, and the like inside the cylinder.
 電動機2は、ケーシング1に内接固定されたステータ2aと、ステータ2aの内側に配置されたモータロータ2bと、を備える。電動機2は、駆動周波数が一定な定速機でもよいし、駆動周波数の変更によりその容量を調整可能に駆動されるインバータ式のものでもよい。 The electric motor 2 includes a stator 2a internally fixed to the casing 1 and a motor rotor 2b disposed inside the stator 2a. The electric motor 2 may be a constant speed machine having a constant drive frequency, or may be an inverter type that is driven so that its capacity can be adjusted by changing the drive frequency.
 スクリューロータ3とモータロータ2bとは、互いに、回転軸となるスクリュー軸4の周りに配置され、スクリュー軸4に固定されている。スクリューロータ3は、スクリュー軸4の軸方向に延びている。スクリューロータ3には、外周面に6つの螺旋状のスクリュー溝12が形成されている。なお、スクリュー溝12の個数は、製品となるスクリュー圧縮機100の構成によって適宜変更可能である。スクリューロータ3は、スクリュー軸4に固定されたモータロータ2bの回転に伴って回転する。 The screw rotor 3 and the motor rotor 2b are arranged around a screw shaft 4 serving as a rotating shaft, and are fixed to the screw shaft 4. The screw rotor 3 extends in the axial direction of the screw shaft 4. Six spiral screw grooves 12 are formed on the outer peripheral surface of the screw rotor 3. In addition, the number of the screw grooves 12 can be appropriately changed depending on the configuration of the screw compressor 100 to be a product. The screw rotor 3 rotates with the rotation of the motor rotor 2b fixed to the screw shaft 4.
 スクリュー圧縮機100は、一対のゲートロータ6a及び6bを有する。一対のゲートロータ6a及び6bは、スクリュー軸4に対して点対称となる位置関係に位置し、スクリューロータ3の両側にそれぞれ配置されている。2つのゲートロータ6a及び6bは、円板状の形状であり、外周面には周方向に沿って複数の歯13が設けられている。ゲートロータ6a及び6bの歯13は、スクリュー溝12に噛合わされている。そして、ゲートロータ6a及び6bの歯13、スクリュー溝12及びケーシング1の筒内面側によって囲まれた空間が第1圧縮室5a及び第2圧縮室5bである。 The screw compressor 100 has a pair of gate rotors 6a and 6b. The pair of gate rotors 6 a and 6 b are located in a point-symmetric positional relationship with respect to the screw shaft 4, and are disposed on both sides of the screw rotor 3, respectively. The two gate rotors 6a and 6b have a disk shape, and a plurality of teeth 13 are provided on the outer peripheral surface along the circumferential direction. The teeth 13 of the gate rotors 6a and 6b are engaged with the screw grooves 12. A space surrounded by the teeth 13 of the gate rotors 6a and 6b, the screw groove 12, and the inner surface of the casing 1 is a first compression chamber 5a and a second compression chamber 5b.
 ケーシング1の内側には、スクリューロータ3のスクリュー軸4の軸方向に延びるスライド溝1a及び1bが形成されている。スライド溝1a内には、スライドバルブ8aがスライド溝1aに沿って軸方向にスライド移動自在に収容されている。スライド溝1b内には、スライドバルブ8bがスライド溝1bに沿って軸方向にスライド移動自在に収容されている。スライドバルブ8aは、ケーシング1と一体となって、ケーシング1とともに第1圧縮室5aを形成している。スライドバルブ8bは、ケーシング1と一体となって、ケーシング1とともに第2圧縮室5bを形成している。 ス ラ イ ド Inside the casing 1, slide grooves 1a and 1b extending in the axial direction of the screw shaft 4 of the screw rotor 3 are formed. A slide valve 8a is accommodated in the slide groove 1a so as to be slidable in the axial direction along the slide groove 1a. A slide valve 8b is accommodated in the slide groove 1b so as to be slidable in the axial direction along the slide groove 1b. The slide valve 8a is integrated with the casing 1 to form a first compression chamber 5a together with the casing 1. The slide valve 8b is integrated with the casing 1 to form a second compression chamber 5b together with the casing 1.
 第1圧縮室5aは、一対のゲートロータ6a及び6bのうち一方のゲートロータ6aと一対のスライドバルブ8a及び8bのうち一方のスライドバルブ8aとによって閉じられる空間に形成されている。第2圧縮室5bは、一対のゲートロータ6a及び6bのうち他方のゲートロータ6bと一対のスライドバルブ8a及び8bのうち他方のスライドバルブ8bとによって閉じられる空間に形成されている。第1圧縮室5a及び第2圧縮室5bは、スクリューロータ3の径方向中心に対して点対称となる位置に形成されている。 The first compression chamber 5a is formed in a space closed by one of the pair of gate rotors 6a and 6b and one of the pair of slide valves 8a and 8b. The second compression chamber 5b is formed in a space closed by the other gate rotor 6b of the pair of gate rotors 6a and 6b and the other slide valve 8b of the pair of slide valves 8a and 8b. The first compression chamber 5a and the second compression chamber 5b are formed at positions that are point-symmetric with respect to the radial center of the screw rotor 3.
 ここで、スクリュー圧縮機100内は、図示しない隔壁により冷媒の吸込側となる低圧側と冷媒の吐出側となる高圧側とに区画される。低圧側の空間は、吸込圧力雰囲気となる低圧室A1となる。また、高圧側の空間は、吐出圧力雰囲気となる高圧室A2となる。スライドバルブ8aには、第1圧縮室5aの高圧側となる位置に、高圧室A2と第1圧縮室5aとを連通させる吐出口7aが形成されている。スライドバルブ8bには、第2圧縮室5bの高圧側となる位置に、高圧室A2と第2圧縮室5bとを連通させる吐出口7bが形成されている。 Here, the interior of the screw compressor 100 is partitioned into a low-pressure side, which is a refrigerant suction side, and a high-pressure side, which is a refrigerant discharge side, by a partition wall (not shown). The space on the low pressure side is a low pressure chamber A1 serving as a suction pressure atmosphere. The space on the high pressure side is a high pressure chamber A2 serving as a discharge pressure atmosphere. The slide valve 8a is provided with a discharge port 7a for communicating the high-pressure chamber A2 with the first compression chamber 5a at a position on the high-pressure side of the first compression chamber 5a. The slide valve 8b is provided with a discharge port 7b for communicating the high-pressure chamber A2 with the second compression chamber 5b at a position on the high-pressure side of the second compression chamber 5b.
 一対のスライドバルブ8a及び8bは、スクリュー軸4の軸方向への移動によって第1及び第2圧縮室5a及び5bからの吐出のタイミングを調整し、内部容積比が変更自在である内部容積比可変機構である。ここで、内部容積比とは、圧縮開始時である吸込完了時の第1、第2圧縮室5a及び5bの容積と吐出寸前の第1及び第2圧縮室5a及び5bの容積との比を示すものである。 The pair of slide valves 8a and 8b adjust the discharge timing from the first and second compression chambers 5a and 5b by moving the screw shaft 4 in the axial direction, and the internal volume ratio is variable so that the internal volume ratio can be changed. Mechanism. Here, the internal volume ratio refers to the ratio of the volumes of the first and second compression chambers 5a and 5b at the time of completion of suction at the start of compression to the volumes of the first and second compression chambers 5a and 5b immediately before discharge. It is shown.
 なお、内部容積比可変機構とは別に、一対のスライドバルブ8a及び8bは、第1及び第2圧縮室5a及び5bにそれぞれ吸込んだ冷媒の一部を圧縮行程の途中で低圧室A1にバイパスさせることのできる容量制御機構としても使用できる。 Note that, apart from the internal volume ratio variable mechanism, the pair of slide valves 8a and 8b allow a part of the refrigerant sucked into the first and second compression chambers 5a and 5b to bypass the low pressure chamber A1 in the middle of the compression stroke. It can also be used as a capacity control mechanism.
 一対のスライドバルブ8a及び8bは、連結棒9を介して、たとえば、ピストンなどのスライドバルブ駆動装置10a及び10bにそれぞれ接続されている。スライドバルブ駆動装置10a及び10bを駆動させることにより、スライドバルブ8a及び8bは、スライド溝1a又は1b内を、スクリューロータ3のスクリュー軸4の軸方向にそれぞれ移動する。 The pair of slide valves 8a and 8b are connected to the slide valve driving devices 10a and 10b, such as pistons, via the connecting rod 9, respectively. By driving the slide valve driving devices 10a and 10b, the slide valves 8a and 8b move in the slide groove 1a or 1b in the axial direction of the screw shaft 4 of the screw rotor 3, respectively.
 スクリュー圧縮機100は、一対のスライドバルブ8a及び8bの位置を制御して内部容積比を調整する制御運転を行う。この制御運転は、図示しない制御装置からスライドバルブ駆動装置10a及び10bに、冷媒の吐出量を調整するように一対のスライドバルブ8a及び8bをそれぞれどこに位置させるかの指示を送ることによって行われる。スライドバルブ駆動装置10a及び10bによる一対のスライドバルブ8a及び8bのスライド制御は、同じタイミングで制御される。ここで、一対のスライドバルブ8a及び8bを駆動するスライドバルブ駆動装置10a及び10bそれぞれは、ガス圧で駆動するもの、油圧で駆動するもの、ピストンとは別にモータなどにより駆動するものなど、駆動の動力源を限定しない。 The screw compressor 100 performs a control operation of controlling the positions of the pair of slide valves 8a and 8b to adjust the internal volume ratio. This control operation is performed by sending an instruction to the slide valve driving devices 10a and 10b from a control device (not shown) as to where to place the pair of slide valves 8a and 8b so as to adjust the discharge amount of the refrigerant. The slide control of the pair of slide valves 8a and 8b by the slide valve driving devices 10a and 10b is controlled at the same timing. Here, each of the slide valve driving devices 10a and 10b for driving the pair of slide valves 8a and 8b is driven by a gas pressure, by a hydraulic pressure, by a motor separately from the piston, or the like. The power source is not limited.
<吐出口7a及び7bの構成>
 図2は、本発明の実施の形態1に係るスクリュー圧縮機100の図1のB部を拡大して示す断面図である。図2に示すように、一対のスライドバルブ8a及び8bは、第1圧縮室5aと第2圧縮室5bとに対して連通する吐出口7a及び7bの一端である端面11a及び11bのスクリュー軸4における軸方向位置を長さCだけ互いにずらして設けられている。一対のスライドバルブ8a及び8bは、吐出口7a及び7bの端面11a及び11bの位置が異なる以外は同じものである。
<Configuration of Discharge Ports 7a and 7b>
FIG. 2 is an enlarged cross-sectional view illustrating part B of FIG. 1 of screw compressor 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, a pair of slide valves 8a and 8b are provided with screw shafts 4 at end faces 11a and 11b which are one ends of discharge ports 7a and 7b communicating with the first compression chamber 5a and the second compression chamber 5b. Are shifted from each other by a length C. The pair of slide valves 8a and 8b are the same except that the positions of the end faces 11a and 11b of the discharge ports 7a and 7b are different.
 これにより、2つの吐出口7a及び7bのうち一方の吐出口7aが第1圧縮室5aに連通するタイミングと、2つの吐出口7a及び7bのうち他方の吐出口7bが第2圧縮室5bに連通するタイミングと、は、ずれる。 Accordingly, the timing at which one of the two outlets 7a and 7b communicates with the first compression chamber 5a and the other of the two outlets 7a and 7b are connected to the second compression chamber 5b. The timing of communication is shifted.
 具体的には、端面11a及び11bの位置は、後述する図8に示すように、一方の吐出口7aが第1圧縮室5aに順次連通するタイミングの中間で、他方の吐出口7bが第2圧縮室5bに連通するタイミングが開始されるように設定されている。なお、2つの吐出口7a及び7bが第1圧縮室5a又は第2圧縮室5bに連通するタイミングは、半周期ずれることに限られない。 Specifically, as shown in FIG. 8, which will be described later, the positions of the end faces 11a and 11b are at the middle of the timing when one of the discharge ports 7a sequentially communicates with the first compression chamber 5a, and the position of the other discharge port 7b is the second. The timing for communicating with the compression chamber 5b is set to start. The timing at which the two discharge ports 7a and 7b communicate with the first compression chamber 5a or the second compression chamber 5b is not limited to being shifted by a half cycle.
<圧縮原理>
 図3は、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理1を示す図である。図4は、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理2を示す図である。図5は、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理3を示す図である。
<Compression principle>
FIG. 3 is a diagram illustrating a compression principle 1 of the screw compressor 100 according to the first embodiment of the present invention. FIG. 4 is a diagram illustrating a compression principle 2 of the screw compressor 100 according to Embodiment 1 of the present invention. FIG. 5 is a diagram illustrating a compression principle 3 of the screw compressor 100 according to Embodiment 1 of the present invention.
 図3~図5に示すように、スクリューロータ3が電動機2によってスクリュー軸4を介して回転させられると、一対のゲートロータ6a及び6bの歯13が第1及び第2圧縮室5a及び5bのそれぞれを構成するスクリュー溝12内を相対的に移動する。このとき、第1及び第2圧縮室5a及び5b内では、吸込行程、圧縮行程及び吐出行程が順次行われる。吸込行程、圧縮行程及び吐出行程を1つのサイクルとして、サイクルが繰り返される。ここでは、図3~図5においてドット状のハッチングで示した第2圧縮室5bに着目して、各行程について説明する。 As shown in FIGS. 3 to 5, when the screw rotor 3 is rotated via the screw shaft 4 by the electric motor 2, the teeth 13 of the pair of gate rotors 6a and 6b are brought into contact with the first and second compression chambers 5a and 5b. It relatively moves within the screw groove 12 constituting each. At this time, in the first and second compression chambers 5a and 5b, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. The cycle is repeated with the suction stroke, the compression stroke, and the discharge stroke as one cycle. Here, each step will be described, focusing on the second compression chamber 5b indicated by dot-shaped hatching in FIGS.
 図3には、スクリュー溝12に形成される第2圧縮室5bがケーシング1とスクリューロータ3及びゲートロータ6a及び6bにより閉じ込められた状態が示されている。スクリューロータ3が電動機2によって駆動されて、実線矢印の方向に回転する。 FIG. 3 shows a state where the second compression chamber 5b formed in the screw groove 12 is confined by the casing 1, the screw rotor 3, and the gate rotors 6a and 6b. The screw rotor 3 is driven by the electric motor 2 and rotates in the direction indicated by the solid arrow.
 図4には、図3で閉じ込められた第2圧縮室5bがスクリューロータ3の回転によって圧縮された状態が示され、第2圧縮室5bの容積が連続的に縮小して行く。 FIG. 4 shows a state in which the second compression chamber 5b confined in FIG. 3 is compressed by the rotation of the screw rotor 3, and the volume of the second compression chamber 5b is continuously reduced.
 図5には、図4に示す状態で圧縮された流体が吐出された状態が示されている。図4に示す状態から引き続き、スクリューロータ3が回転すると、図5に示すように、第2圧縮室5bが吐出口7bを介して、外部と連通する。これにより、第2圧縮室5b内で圧縮された高圧の冷媒ガスが、吐出口7bから外部へ吐出される。そして、再び、スクリューロータ3の次の歯溝で同様の圧縮が行われる。なお、上記では、第2圧縮室5bに着目して説明したが、第1圧縮室5aの動作原理も同じである。 FIG. 5 shows a state where the fluid compressed in the state shown in FIG. 4 is discharged. When the screw rotor 3 continues to rotate from the state shown in FIG. 4, the second compression chamber 5b communicates with the outside via the discharge port 7b as shown in FIG. Thus, the high-pressure refrigerant gas compressed in the second compression chamber 5b is discharged from the discharge port 7b to the outside. Then, the same compression is performed again in the next tooth space of the screw rotor 3. In the above description, the description has been given focusing on the second compression chamber 5b, but the operation principle of the first compression chamber 5a is the same.
<スクリューロータ3の回転動作>
 図6は、本発明の実施の形態1に係るスクリューロータ3、円筒壁1c、ゲートロータ6a及び6b及びスライドバルブ8a及び8bの第1状態を円筒内側から見て示す展開図である。図7は、本発明の実施の形態1に係るスクリューロータ3、円筒壁1c、ゲートロータ6a及び6b及びスライドバルブ8a及び8bの第2状態を円筒内側から見て示す展開図である。
<Rotating operation of screw rotor 3>
FIG. 6 is a developed view showing a first state of the screw rotor 3, the cylindrical wall 1c, the gate rotors 6a and 6b, and the slide valves 8a and 8b according to Embodiment 1 of the present invention as viewed from the inside of the cylinder. FIG. 7 is a developed view showing a second state of the screw rotor 3, the cylindrical wall 1c, the gate rotors 6a and 6b, and the slide valves 8a and 8b according to Embodiment 1 of the present invention as viewed from the inside of the cylinder.
 図6、図7に示すように、スクリューロータ3の径方向中心に対して点対称な位置に存在する2つのスライドバルブ8a及び8bについて、吐出口7a及び7bの一部を形成する端面11a及び11bの位置がスクリュー軸4の軸方向に対して互いに異なる。スクリューロータ3を形成する6つのスクリュー溝12は、スクリュー軸4と垂直な平面において60°ピッチの位置に形成されている。ここで、スライドバルブ8a及び8bの端面11a及び11bは、6つのスクリュー溝12のうちの任意の溝とその他の溝とが同時に流体を吐出しない位置関係にある。 As shown in FIGS. 6 and 7, for two slide valves 8 a and 8 b located at point-symmetric positions with respect to the radial center of the screw rotor 3, end surfaces 11 a and 7 b forming a part of the discharge ports 7 a and 7 b are formed. 11b are different from each other in the axial direction of the screw shaft 4. The six screw grooves 12 forming the screw rotor 3 are formed at 60 ° pitch positions on a plane perpendicular to the screw shaft 4. Here, the end faces 11a and 11b of the slide valves 8a and 8b are in a positional relationship such that any of the six screw grooves 12 and the other grooves do not simultaneously discharge fluid.
 図6では、点線で示すスクリューロータ3が回転し、スクリュー溝12の側面12aが一方のスライドバルブ8aの端面11aと重なった状態が示されている。すなわち、図6には、吐出口7aから流体が吐出される直前の状態が示されている。図7では、図6に示す状態から更にスクリューロータ3が回転し、スクリュー溝12の側面12bが他方のスライドバルブ8bの端面11bと重なった状態が示されている。 FIG. 6 shows a state in which the screw rotor 3 indicated by the dotted line rotates and the side surface 12a of the screw groove 12 overlaps the end surface 11a of one of the slide valves 8a. That is, FIG. 6 shows a state immediately before the fluid is discharged from the discharge port 7a. FIG. 7 shows a state in which the screw rotor 3 further rotates from the state shown in FIG. 6, and the side surface 12b of the screw groove 12 overlaps the end surface 11b of the other slide valve 8b.
 図6では、吐出口7aから流体が吐出される直前であるのに対し、スクリュー溝12と連通している吐出口7bからは既に流体が吐出されている状態にある。また、図7では、吐出口7bから流体が吐出される直前であるのに対し、吐出口7aからは図6にて吐出直前であったスクリュー溝12から既に流体が吐出されている状態にある。スクリューロータ3の回転に伴い、上述した吐出が繰り返される。 In FIG. 6, while the fluid is just discharged from the discharge port 7a, the fluid is already discharged from the discharge port 7b communicating with the screw groove 12. Further, in FIG. 7, the fluid is just discharged from the discharge port 7b, whereas the fluid is already discharged from the screw groove 12 from the discharge port 7a immediately before the discharge in FIG. 6, from the discharge port 7a. . With the rotation of the screw rotor 3, the above-described discharge is repeated.
<スクリュー圧縮機100の作用>
 図8は、従来の構造及び本発明の実施の形態1に係る2つの吐出口7a及び7bそれぞれから流体が吐出されることにより生じる騒音レベル及び2つの吐出口7a及び7bの騒音レベルの重ね合せた騒音レベルを示す概略図である。
<Operation of screw compressor 100>
FIG. 8 is a diagram showing the superposition of the noise level generated by the fluid being discharged from each of the two discharge ports 7a and 7b and the noise level of the two discharge ports 7a and 7b according to the conventional structure and the first embodiment of the present invention. FIG. 4 is a schematic diagram illustrating a noise level that has been set.
 図8に示すように、本実施の形態では、従来構造と比較して、吐出口7a及び7bから吐出される流体の脈動のピークがずれ、騒音及び振動が低減される。この構造とすれば、それぞれの吐出口7a及び7bから流体が吐出される流体の脈動の周期は同じである。しかし、その脈動のピークを有する波の位相がずれる。吐出口7a及び7bからの流体が吐出されるタイミングがずれることにより、それぞれの吐出口7a及び7bから吐出される際に生じる脈動のピークが重ならず、従来構造と比べて騒音及び振動が低減できる。 As shown in FIG. 8, in the present embodiment, the peak of the pulsation of the fluid discharged from the discharge ports 7a and 7b is shifted, and noise and vibration are reduced as compared with the conventional structure. With this structure, the pulsation cycle of the fluid discharged from each of the discharge ports 7a and 7b is the same. However, the phase of the wave having the peak of the pulsation is shifted. Due to the shift in the timing at which the fluid is discharged from the discharge ports 7a and 7b, the pulsation peaks generated when the fluid is discharged from the respective discharge ports 7a and 7b do not overlap, and the noise and vibration are reduced as compared with the conventional structure. it can.
 また、上述した構造は従来構造と比べ、スライドバルブ8a及び8bの端面11a及び11bの位置の形状変更のみ実施すればよく、部品点数あるいは組立工程が増えずに騒音及び振動が低減できるスクリュー圧縮機100が実現できる。 Further, the above-described structure is different from the conventional structure only in that the shape of the positions of the end faces 11a and 11b of the slide valves 8a and 8b only needs to be changed, and the screw compressor which can reduce noise and vibration without increasing the number of parts or the assembly process. 100 can be realized.
<実施の形態1の効果>
 実施の形態1によれば、スクリュー圧縮機100は、軸方向に延びて外周面にスクリュー溝12を有するスクリューロータ3を備える。スクリュー圧縮機100は、スクリューロータ3のスクリュー溝12と噛合う一対のゲートロータ6a及び6bを備える。スクリュー圧縮機100は、スクリューロータ3の径方向中心に対して点対称となる位置に配置された一対のスライドバルブ8a及び8bを備える。一対のゲートロータ6a及び6bのうち一方のゲートロータ6aと一対のスライドバルブ8a及び8bのうち一方のスライドバルブ8aとによって閉じられる第1圧縮室5aが形成されている。一対のゲートロータ6a及び6bのうち他方のゲートロータ6bと一対のスライドバルブ8a及び8bのうち他方のスライドバルブ8bとによって閉じられる第2圧縮室5bが形成されている。一対のスライドバルブ8a及び8bは、第1圧縮室5aと第2圧縮室5bとに対して連通する吐出口7a及び7bの一端である端面11a及び11bの軸方向位置を互いにずらして設けられている。
<Effect of First Embodiment>
According to Embodiment 1, the screw compressor 100 includes the screw rotor 3 extending in the axial direction and having the screw groove 12 on the outer peripheral surface. The screw compressor 100 includes a pair of gate rotors 6a and 6b that mesh with the screw grooves 12 of the screw rotor 3. The screw compressor 100 includes a pair of slide valves 8a and 8b arranged at positions symmetrical with respect to the center of the screw rotor 3 in the radial direction. A first compression chamber 5a closed by one of the pair of gate rotors 6a and 6b and one of the pair of slide valves 8a and 8b is formed. A second compression chamber 5b is formed which is closed by the other gate rotor 6b of the pair of gate rotors 6a and 6b and the other slide valve 8b of the pair of slide valves 8a and 8b. The pair of slide valves 8a and 8b are provided such that axial positions of end faces 11a and 11b, which are one ends of discharge ports 7a and 7b communicating with the first compression chamber 5a and the second compression chamber 5b, are shifted from each other. I have.
 この構成によれば、第1圧縮室5aと第2圧縮室5bとの流体を2つの吐出口7a及び7bに吐出するタイミングが互いにずれる。すなわち、第1及び第2圧縮室5a及び5bのそれぞれの吐出脈動のピークの重なり合いが防げ、騒音及び振動が低減できる。加えて、スクリュー溝12の個数の制限がなく、スクリュー溝12の個数がここでは6つという最適化が図れる。このため、1つのスクリュー溝12当たりの流体の圧縮時間が長くならず、圧縮中に生じる漏れ損失が低減できる。また、スクリュー溝12の展開図におけるスクリュー溝12とスクリューロータ3のスクリュー軸4とのなす角度が小さくならない。すなわち、吐出口7a及び7bの面積が小さくならず、第1圧縮室5a及び第2圧縮室5bから吐出される際に生じる圧力損失が低減できる。したがって、吐出脈動の重なりがずれて騒音及び振動が低減できるとともに、漏れ損失及び圧力損失が低減できる。 According to this configuration, the timings of discharging the fluid in the first compression chamber 5a and the second compression chamber 5b to the two discharge ports 7a and 7b are shifted from each other. That is, the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b can be prevented from overlapping, and noise and vibration can be reduced. In addition, there is no limitation on the number of screw grooves 12, and the number of screw grooves 12 can be optimized to be six here. For this reason, the compression time of the fluid per one screw groove 12 does not become long, and the leakage loss generated during compression can be reduced. Further, the angle formed between the screw groove 12 and the screw shaft 4 of the screw rotor 3 in the developed view of the screw groove 12 does not become small. That is, the areas of the discharge ports 7a and 7b are not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber 5a and the second compression chamber 5b can be reduced. Therefore, the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
 実施の形態1によれば、2つの吐出口7a及び7bのうち一方の吐出口7aが第1圧縮室5aに連通するタイミングと、2つの吐出口7a及び7bのうち他方の吐出口7bが第2圧縮室5bに連通するタイミングと、は、ずれる。 According to the first embodiment, the timing at which one of the two outlets 7a and 7b communicates with the first compression chamber 5a and the other of the two outlets 7a and 7b are at the second timing. The timing of communication with the second compression chamber 5b is shifted.
 この構成によれば、第1圧縮室5aと第2圧縮室5bとの流体を2つの吐出口7a及び7bに吐出するタイミングが互いにずれる。すなわち、第1及び第2圧縮室5a及び5bそれぞれの吐出脈動のピークの重なり合いが防げ、騒音及び振動が低減できる。 According to this configuration, the timings of discharging the fluid in the first compression chamber 5a and the second compression chamber 5b to the two discharge ports 7a and 7b are shifted from each other. That is, the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b can be prevented from overlapping, and the noise and vibration can be reduced.
 実施の形態1によれば、2つの吐出口7a及び7bのうち一方の吐出口7aが第1圧縮室5aに連通するタイミングと2つの吐出口7a及び7bのうち一方の吐出口7aが次の第1圧縮室5aに連通するタイミングとの中間で、2つの吐出口7a及び7bのうち他方の吐出口7bが第2圧縮室5bに連通するタイミングが開始される。 According to the first embodiment, the timing at which one of the two outlets 7a and 7b communicates with the first compression chamber 5a and the one of the two outlets 7a and 7b are set to the following timing. The timing at which the other one of the two outlets 7a and 7b communicates with the second compression chamber 5b is started at an intermediate point of the timing at which it communicates with the first compression chamber 5a.
 この構成によれば、第1及び第2圧縮室5a及び5bそれぞれの吐出脈動のピークが半周期ずれ、2つの吐出口7a及び7bからの吐出脈動が最も平坦化でき、騒音及び振動がより低減できる。 According to this configuration, the peak of the discharge pulsation of each of the first and second compression chambers 5a and 5b is shifted by a half cycle, and the discharge pulsation from the two discharge ports 7a and 7b can be most flattened, thereby further reducing noise and vibration. it can.
 実施の形態1によれば、一対のスライドバルブ8a及び8bのスライド制御は、同じタイミングで制御される。 According to the first embodiment, the slide control of the pair of slide valves 8a and 8b is controlled at the same timing.
 この構成によれば、一対のスライドバルブ8a及び8bのスライド制御には、特殊な制御が必要なく、同じタイミングの簡単な制御が実施でき、制御が容易であり、低コスト化が図れる。 According to this configuration, the slide control of the pair of slide valves 8a and 8b does not require special control, simple control can be performed at the same timing, control is easy, and cost reduction can be achieved.
 実施の形態1によれば、スクリュー溝12は、6つである。 According to the first embodiment, the number of the screw grooves 12 is six.
 この構成によれば、スクリュー溝12の個数の最適化が図れる。このため、1つのスクリュー溝12当たりの流体の圧縮時間が長くならず、圧縮中に生じる漏れ損失が低減できる。また、スクリュー溝12の展開図におけるスクリュー溝12とスクリューロータ3のスクリュー軸4とのなす角度が小さくならない。すなわち、吐出口7a及び7bの面積が小さくならず、第1圧縮室5a及び第2圧縮室5bから吐出される際に生じる圧力損失が低減できる。 According to this configuration, the number of screw grooves 12 can be optimized. For this reason, the compression time of the fluid per one screw groove 12 does not become long, and the leakage loss generated during compression can be reduced. Further, the angle formed between the screw groove 12 and the screw shaft 4 of the screw rotor 3 in the developed view of the screw groove 12 does not become small. That is, the areas of the discharge ports 7a and 7b are not reduced, and the pressure loss generated when the discharge is performed from the first compression chamber 5a and the second compression chamber 5b can be reduced.
 実施の形態1によれば、一対のスライドバルブ8a及び8bは、第1圧縮室5a又は第2圧縮室5bから2つの吐出口7a及び7bそれぞれに連通するタイミングを調整し、内部容積比を変更自在とした内部容積比可変機構である。 According to the first embodiment, the pair of slide valves 8a and 8b adjusts the timing of communication from the first compression chamber 5a or the second compression chamber 5b to each of the two discharge ports 7a and 7b, and changes the internal volume ratio. This is a variable internal volume ratio mechanism.
 この構成によれば、第1圧縮室5a及び第2圧縮室5bからの吐出のタイミングが調整でき、内部容積比が可変できる。 According to this configuration, the discharge timing from the first compression chamber 5a and the second compression chamber 5b can be adjusted, and the internal volume ratio can be changed.
 実施の形態1によれば、一対のスライドバルブ8a及び8bは、第1圧縮室5a又は第2圧縮室5bに吸込んだ冷媒の一部を圧縮行程の途中で低圧空間にバイパスさせる容量制御機構である。 According to the first embodiment, the pair of slide valves 8a and 8b is a capacity control mechanism that bypasses a part of the refrigerant sucked into the first compression chamber 5a or the second compression chamber 5b to the low-pressure space during the compression stroke. is there.
 この構成によれば、第1圧縮室5a又は第2圧縮室5bに吸込んだ冷媒の一部が圧縮行程の途中で低圧空間にバイパスさせられる。 According to this configuration, part of the refrigerant sucked into the first compression chamber 5a or the second compression chamber 5b is bypassed to the low-pressure space during the compression stroke.
実施の形態2.
<冷凍サイクル装置101>
 図9は、本発明の実施の形態2に係るスクリュー圧縮機100を適用した冷凍サイクル装置101を示す冷媒回路図である。
Embodiment 2 FIG.
<Refrigeration cycle device 101>
FIG. 9 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 101 to which the screw compressor 100 according to Embodiment 2 of the present invention is applied.
 図9に示すように、冷凍サイクル装置101は、スクリュー圧縮機100、凝縮器102、膨張弁103及び蒸発器104を備える。これらスクリュー圧縮機100、凝縮器102、膨張弁103及び蒸発器104が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器104から流出した冷媒は、スクリュー圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器102において凝縮されて液体になる。液体となった冷媒は、膨張弁103で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器104において熱交換される。 As shown in FIG. 9, the refrigeration cycle apparatus 101 includes a screw compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104. The screw compressor 100, the condenser 102, the expansion valve 103, and the evaporator 104 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 104 is drawn into the screw compressor 100 and becomes high temperature and high pressure. The high-temperature and high-pressure refrigerant is condensed in the condenser 102 to become a liquid. The liquid refrigerant is decompressed and expanded by the expansion valve 103 to become a low-temperature low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 104.
 実施の形態1のスクリュー圧縮機100は、このような冷凍サイクル装置101に適用できる。なお、冷凍サイクル装置101としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。 The screw compressor 100 according to the first embodiment can be applied to such a refrigeration cycle apparatus 101. In addition, as the refrigerating cycle device 101, for example, an air conditioner, a refrigerating device, a water heater, or the like can be given.
<実施の形態2の効果>
 実施の形態2によれば、冷凍サイクル装置101は、実施の形態1に記載のスクリュー圧縮機100を備える。
<Effect of Embodiment 2>
According to the second embodiment, a refrigeration cycle apparatus 101 includes the screw compressor 100 according to the first embodiment.
 この構成によれば、冷凍サイクル装置101が備える実施の形態1に記載のスクリュー圧縮機100では、吐出脈動の重なりがずれて騒音及び振動が低減できるとともに、漏れ損失及び圧力損失が低減できる。 According to this configuration, in the screw compressor 100 according to the first embodiment provided in the refrigeration cycle apparatus 101, the overlap of the discharge pulsations is shifted, so that noise and vibration can be reduced, and leakage loss and pressure loss can be reduced.
 1 ケーシング、1a、1b スライド溝、1c 円筒壁、2 電動機、2a ステータ、2b モータロータ、3 スクリューロータ、4 スクリュー軸、5a 第1圧縮室、5b 第2圧縮室、6a、6b ゲートロータ、7a、7b 吐出口、8a、8b スライドバルブ、9 連結棒、10a、10b スライドバルブ駆動装置、11a、11b 端面、12 スクリュー溝、12a、12b 側面、13 歯、100 スクリュー圧縮機、101 冷凍サイクル装置、102 凝縮器、103 膨張弁、104 蒸発器。 1 casing, 1a, 1b slide groove, 1c cylindrical wall, 2 motor, 2a stator, 2b motor rotor, 3 screw rotor, 4 screw shaft, 5a first compression chamber, 5b second compression chamber, 6a, 6b gate rotor, 7a, 7b discharge port, 8a, 8b slide valve, 9 connection rod, 10a, 10b slide valve drive device, 11a, 11b end surface, 12 screw groove, 12a, 12b side surface, 13 tooth, 100 screw compressor, 101 refrigeration cycle device, 102 Condenser, 103 expansion valve, 104 evaporator.

Claims (8)

  1.  軸方向に延びて外周面にスクリュー溝を有するスクリューロータと、
     前記スクリューロータの前記スクリュー溝と噛合う一対のゲートロータと、
     前記スクリューロータの径方向中心に対して点対称となる位置に配置された一対のスライドバルブと、
     を備え、
     前記一対のゲートロータのうち一方のゲートロータと前記一対のスライドバルブのうち一方のスライドバルブとによって閉じられる第1圧縮室が形成され、
     前記一対のゲートロータのうち他方のゲートロータと前記一対のスライドバルブのうち他方のスライドバルブとによって閉じられる第2圧縮室が形成され、
     前記一対のスライドバルブは、前記第1圧縮室と前記第2圧縮室とに対して連通する吐出口の一端の軸方向位置を互いにずらして設けられるスクリュー圧縮機。
    A screw rotor extending in the axial direction and having a screw groove on the outer peripheral surface,
    A pair of gate rotors that mesh with the screw grooves of the screw rotor,
    A pair of slide valves arranged at a point symmetrical position with respect to the radial center of the screw rotor,
    With
    A first compression chamber closed by one of the pair of gate rotors and one of the pair of slide valves is formed,
    A second compression chamber closed by the other gate rotor of the pair of gate rotors and the other slide valve of the pair of slide valves is formed,
    A screw compressor in which the pair of slide valves are provided such that axial positions of one ends of discharge ports communicating with the first compression chamber and the second compression chamber are shifted from each other.
  2.  2つの前記吐出口のうち一方の前記吐出口が前記第1圧縮室に連通するタイミングと、2つの前記吐出口のうち他方の前記吐出口が前記第2圧縮室に連通するタイミングと、は、ずれる請求項1に記載のスクリュー圧縮機。 The timing at which one of the two discharge ports communicates with the first compression chamber, and the timing at which the other one of the two discharge ports communicates with the second compression chamber, The screw compressor according to claim 1, which is shifted.
  3.  2つの前記吐出口のうち一方の前記吐出口が前記第1圧縮室に連通するタイミングと2つの前記吐出口のうち一方の前記吐出口が次の前記第1圧縮室に連通するタイミングとの中間で、2つの前記吐出口のうち他方の前記吐出口が前記第2圧縮室に連通するタイミングが開始される請求項2に記載のスクリュー圧縮機。 An intermediate point between a timing at which one of the two discharge ports communicates with the first compression chamber and a timing at which one of the two discharge ports communicates with the next first compression chamber. 3. The screw compressor according to claim 2, wherein a timing at which the other one of the two discharge ports communicates with the second compression chamber is started.
  4.  前記一対のスライドバルブのスライド制御は、同じタイミングで制御される請求項1~3のいずれか1項に記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 3, wherein the slide control of the pair of slide valves is controlled at the same timing.
  5.  前記スクリュー溝は、6つである請求項1~4のいずれか1項に記載のスクリュー圧縮機。 ス ク リ ュ ー The screw compressor according to any one of claims 1 to 4, wherein the number of the screw grooves is six.
  6.  前記一対のスライドバルブは、前記第1圧縮室又は前記第2圧縮室から2つの前記吐出口それぞれに連通するタイミングを調整し、内部容積比を変更自在とした内部容積比可変機構である請求項1~5のいずれか1項に記載のスクリュー圧縮機。 The internal volume ratio variable mechanism, wherein the pair of slide valves adjusts the timing of communication from the first compression chamber or the second compression chamber to each of the two discharge ports, and allows the internal volume ratio to be changed. 6. The screw compressor according to any one of 1 to 5.
  7.  前記一対のスライドバルブは、前記第1圧縮室又は前記第2圧縮室に吸込んだ冷媒の一部を圧縮行程の途中で低圧空間にバイパスさせる容量制御機構である請求項1~5のいずれか1項に記載のスクリュー圧縮機。 The capacity control mechanism according to any one of claims 1 to 5, wherein the pair of slide valves is a capacity control mechanism that bypasses a part of the refrigerant sucked into the first compression chamber or the second compression chamber to a low-pressure space in the middle of a compression stroke. Item 7. The screw compressor according to item 1.
  8.  請求項1~7のいずれか1項に記載のスクリュー圧縮機を備える冷凍サイクル装置。 冷凍 A refrigeration cycle apparatus comprising the screw compressor according to any one of claims 1 to 7.
PCT/JP2018/028609 2018-07-31 2018-07-31 Screw compressor and refrigeration cycle device WO2020026333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028609 WO2020026333A1 (en) 2018-07-31 2018-07-31 Screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028609 WO2020026333A1 (en) 2018-07-31 2018-07-31 Screw compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020026333A1 true WO2020026333A1 (en) 2020-02-06

Family

ID=69230846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028609 WO2020026333A1 (en) 2018-07-31 2018-07-31 Screw compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2020026333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732710B2 (en) * 2020-03-31 2023-08-22 Daikin Industries, Ltd. Screw compressor, and refrigeration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932689A (en) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン Screw-pinion type positive-displacement machine
JP2009046983A (en) * 2007-08-13 2009-03-05 Daikin Ind Ltd Screw compressor
JP2009167846A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Screw compressor
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor
JP2012107613A (en) * 2010-10-29 2012-06-07 Daikin Industries Ltd Screw compressor
WO2016189648A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Screw compressor and refrigeration cycle device comprising screw compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932689A (en) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン Screw-pinion type positive-displacement machine
JP2009046983A (en) * 2007-08-13 2009-03-05 Daikin Ind Ltd Screw compressor
JP2009167846A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Screw compressor
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor
JP2012107613A (en) * 2010-10-29 2012-06-07 Daikin Industries Ltd Screw compressor
WO2016189648A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Screw compressor and refrigeration cycle device comprising screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732710B2 (en) * 2020-03-31 2023-08-22 Daikin Industries, Ltd. Screw compressor, and refrigeration device

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
EP1953338B1 (en) Expander and heat pump using the expander
JP5040907B2 (en) Refrigeration equipment
EP3425202B1 (en) Screw compressor and refrigeration cycle device
WO2015051019A1 (en) Rotary compressors with variable speed and volume control
EP2634432A1 (en) Screw compressor
US9234684B2 (en) Refrigerant passage change-over valve and air conditioner using the same
US11732710B2 (en) Screw compressor, and refrigeration device
TWI626380B (en) Screw compressor and refrigeration cycle device with screw compressor
JP6661916B2 (en) Scroll compressor and heat cycle system
WO2017145251A1 (en) Screw compressor and refrigeration cycle device
WO2020026333A1 (en) Screw compressor and refrigeration cycle device
JP5338314B2 (en) Compressor and refrigeration equipment
WO2020245932A1 (en) Screw compressor, and refrigeration cycle device
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP2619022B2 (en) Fluid machinery
JP2002062020A (en) Refrigerator
JPH11241693A (en) Compressor
JP5234168B2 (en) Refrigeration equipment
WO2019087785A1 (en) Screw compressor
WO2017175298A1 (en) Screw compressor and refrigeration cycle device
JP7372581B2 (en) Screw compressor and refrigeration equipment
JP6915398B2 (en) Compressor
JP7158603B2 (en) screw compressor
WO2020059608A1 (en) Multiple-stage compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP