JPH11241693A - Compressor - Google Patents

Compressor

Info

Publication number
JPH11241693A
JPH11241693A JP4238198A JP4238198A JPH11241693A JP H11241693 A JPH11241693 A JP H11241693A JP 4238198 A JP4238198 A JP 4238198A JP 4238198 A JP4238198 A JP 4238198A JP H11241693 A JPH11241693 A JP H11241693A
Authority
JP
Japan
Prior art keywords
cylinder
refrigerant
stage compression
partition plate
intermediate partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4238198A
Other languages
Japanese (ja)
Inventor
Masaya Tadano
昌也 只野
Toshiyuki Ebara
俊行 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4238198A priority Critical patent/JPH11241693A/en
Publication of JPH11241693A publication Critical patent/JPH11241693A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compressor reducing pressure loss by shortening a refrigerant path in a compressor performing multistage compression for refrigerant by using a plurality of compression parts. SOLUTION: An intermediate partition plate 8 is provided between a first cylinder 9 constituting a low stage side compression part 52 at the inside and a second cylinder 10 constituting a high stage side compression part 51 at the inside. The first cylinder 9 is provided with a discharge port 29. The second cylinder 10 is provided with a suction port 31. On the intermediate partition plate 8, a coolant path communicating the discharge port 29 of the first cylinder 9 and the suction port 31 of the second cylinder 10 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低段側圧縮部と高
段側圧縮部を用い、順次冷媒を多段圧縮する圧縮機に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor that uses a low-stage compression section and a high-stage compression section to sequentially compress refrigerant in multiple stages.

【0002】[0002]

【従来の技術】従来冷蔵庫や空気調和機などに用いられ
る冷凍装置には、例えば特公平7−30743号公報
(F04C23/00)に示される如く、それぞれロー
タリー用シリンダとその内部で回転するローラなどから
成る二つの圧縮部を同一の密閉容器内に収納したロータ
リー型の圧縮機が採用されている。そして、圧縮機の各
圧縮部を低段側圧縮部と高段側圧縮部として、低段側圧
縮部により一段圧縮した冷媒ガスを高段側圧縮部に吸い
込ませ、それによって冷媒を多段圧縮するよう構成され
ていた。
2. Description of the Related Art Conventionally, refrigeration systems used in refrigerators, air conditioners, and the like include rotary cylinders and rollers rotating inside the cylinders, respectively, as disclosed in Japanese Patent Publication No. 7-30743 (F04C23 / 00). The rotary type compressor which accommodated two compression parts consisting of the same in the same closed container is adopted. Then, each compression section of the compressor is made into a low-stage compression section and a high-stage compression section, and the refrigerant gas compressed in one stage by the low-stage compression section is sucked into the high-stage compression section, thereby compressing the refrigerant in multiple stages. It was configured as follows.

【0003】係る圧縮機を用いれば、一圧縮当たりのト
ルク変動を抑制しながら、高圧縮比を得ることができる
利点がある。
[0003] The use of such a compressor has the advantage that a high compression ratio can be obtained while suppressing the torque fluctuation per compression.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
如き圧縮機にて冷媒を多段圧縮する場合、低段側圧縮部
にて圧縮された冷媒は、密閉容器外に取り付けられた配
管を通して高段側圧縮部の吸込ポートに案内させてい
た。このため、冷媒通路が長くなり圧力損失が増大して
しまう問題があった。
However, when the refrigerant is multi-stage compressed by the above-described compressor, the refrigerant compressed by the low-stage compression section passes through the pipe mounted outside the closed vessel to the high-stage side. It was guided to the suction port of the compression section. For this reason, there has been a problem that the refrigerant passage becomes long and the pressure loss increases.

【0005】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、複数の圧縮部を用いて冷
媒を多段圧縮する圧縮機において、圧力損失の低減を図
ることを目的とする。
The present invention has been made to solve the above-mentioned conventional technical problem, and an object of the present invention is to reduce a pressure loss in a compressor that compresses a refrigerant in multiple stages by using a plurality of compression units. And

【0006】[0006]

【課題を解決するための手段】即ち、本発明の圧縮機
は、単一の密閉容器内に電動機と、この電動機にて駆動
される圧縮要素とを設け、この圧縮要素を、低段側圧縮
部と高段側圧縮部により構成して冷媒を順次多段圧縮す
るものであって、低段側圧縮部を内部に構成する第一の
シリンダと、高段側圧縮部を内部に構成する第二のシリ
ンダと、これら両シリンダ間に配設された中間仕切板
と、第一のシリンダに形成された吐出ポートと、第二の
シリンダに形成された吸込ポートと、中間仕切板に形成
され、第一のシリンダの吐出ポートと第二のシリンダの
吸込ポートとを連通する通路とを備えたものである。
That is, a compressor according to the present invention includes an electric motor and a compression element driven by the electric motor in a single hermetic container. And a multistage compression unit for sequentially compressing the refrigerant in multiple stages, wherein a first cylinder constituting the low stage compression unit inside and a second cylinder constituting the high stage compression unit inside Cylinder, an intermediate partition plate disposed between these two cylinders, a discharge port formed in the first cylinder, a suction port formed in the second cylinder, and a second partition formed in the intermediate partition plate. It is provided with a passage communicating the discharge port of one cylinder and the suction port of the second cylinder.

【0007】[0007]

【発明の実施の形態】以下、図面に基づき本発明の実施
形態を詳述する。図1は本発明に係るロータリー式の圧
縮機Cを適用した多段圧縮冷凍装置Rの冷媒回路図、図
2は本発明の圧縮機Cの縦断側面図、図3は本発明の圧
縮要素3の拡大図、図4は冷媒通路の説明図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a multistage compression refrigerating apparatus R to which a rotary compressor C according to the present invention is applied, FIG. 2 is a longitudinal sectional side view of the compressor C of the present invention, and FIG. FIG. 4 is an enlarged view of the refrigerant passage.

【0008】先ず図2において、1は密閉容器であり、
内部の上側に電動機(ブラシレスDCモータ)2、下側
にこの電動機2で回転駆動される圧縮要素3が収納され
ている。密閉容器1は予め2分割されたものに電動機
2、圧縮要素3を収納した後、高周波溶着などによって
密閉されたものである。
First, in FIG. 2, 1 is a closed container,
An electric motor (brushless DC motor) 2 is accommodated in the upper part of the inside, and a compression element 3 driven to rotate by the electric motor 2 is accommodated in the lower part. The airtight container 1 contains the electric motor 2 and the compression element 3 in a preliminarily divided into two parts and is sealed by high frequency welding or the like.

【0009】電動機2は、密閉容器1の内壁に固定され
た固定子4と、この固定子4の内側に回転軸6を中心に
して回転自在に支持された回転子5とから構成されてい
る。そして、固定子4は回転子5に回転磁界を与える固
定子巻線7を備えている。尚、W1、W2はそれぞれ回
転子5の上面と下面に取り付けられたバランスウエイト
である。
The electric motor 2 includes a stator 4 fixed to the inner wall of the closed casing 1 and a rotor 5 supported inside the stator 4 so as to be rotatable around a rotation shaft 6. . The stator 4 includes a stator winding 7 that applies a rotating magnetic field to the rotor 5. W1 and W2 are balance weights attached to the upper and lower surfaces of the rotor 5, respectively.

【0010】圧縮要素3は後述する中間仕切板8で仕切
られた第1のロータリー用シリンダ9及び第2のロータ
リー用シリンダ10を備えている。各のシリンダ9、1
0には回転軸6で回転駆動される偏心部11、12が取
り付けられており、これら偏心部11、12は偏心位置
がお互いに位相を180度ずらして取り付けられてい
る。
The compression element 3 has a first rotary cylinder 9 and a second rotary cylinder 10 partitioned by an intermediate partition plate 8 described later. Each cylinder 9, 1
The eccentric portions 11 and 12 that are driven to rotate by the rotation shaft 6 are attached to the axis 0, and the eccentric portions 11 and 12 are attached with their eccentric positions shifted by 180 degrees from each other.

【0011】13、14はそれぞれシリンダ9、10内
を回転する第1のローラ、第2のローラであり、それぞ
れ偏心部11、12の回転でシリンダ内を回る。15、
16はそれぞれ第1の枠体、第2の枠体であり、第1の
枠体15は中間仕切板8との間にシリンダ9の閉じた圧
縮空間を形成させ、第2の枠体16は同様に中間仕切板
8との間にシリンダ10の閉じた圧縮空間を形成させて
いる。また、第1の枠体15、第2の枠体16はそれぞ
れ回転軸6の下部を回転自在に軸支する軸受部17、1
8を備えている。
Reference numerals 13 and 14 denote a first roller and a second roller which rotate in the cylinders 9 and 10, respectively, and rotate in the cylinder by rotation of the eccentric portions 11 and 12, respectively. 15,
Reference numeral 16 denotes a first frame and a second frame, respectively. The first frame 15 forms a closed compression space of the cylinder 9 between the first frame 15 and the intermediate partition plate 8, and the second frame 16 is Similarly, a closed compression space of the cylinder 10 is formed between the cylinder 10 and the intermediate partition plate 8. The first frame 15 and the second frame 16 are respectively provided with bearing portions 17, 1 that rotatably support the lower portion of the rotary shaft 6.
8 is provided.

【0012】上記上側のシリンダ9、偏心部11、ロー
ラ13と、シリンダ9内を高圧室及び低圧室に区画する
ベーン(図示せず)などによって高段側圧縮部51が構
成され、下側のシリンダ10、偏心部12、ローラ14
と、シリンダ10内を高圧室及び低圧室に区画するベー
ン(図示せず)などによって低段側圧縮部52が構成さ
れる。
The upper cylinder 9, the eccentric portion 11, the roller 13, the vanes (not shown) for dividing the inside of the cylinder 9 into a high-pressure chamber and a low-pressure chamber, and the like constitute a high-stage compression section 51. Cylinder 10, eccentric part 12, roller 14
And a vane (not shown) that partitions the inside of the cylinder 10 into a high-pressure chamber and a low-pressure chamber, and the like, and the low-stage compression section 52 is configured.

【0013】前記中間仕切板8は、上中間仕切板8Aと
下中間仕切板8Bとから構成されており、上中間仕切板
8Aは高段側圧縮部51側に設けられると共に、下中間
仕切板8Bは低段側圧縮部52側に設けられている。そ
して、上中間仕切板8Aは板厚を薄く構成され、外周近
傍には厚さ方向に貫通して所定寸法の貫通孔8AAが設
けられている(図7、図8)。
The intermediate partition plate 8 is composed of an upper intermediate partition plate 8A and a lower intermediate partition plate 8B. The upper intermediate partition plate 8A is provided on the high-stage side compression section 51 side, and the lower intermediate partition plate 8A. 8B is provided on the low-stage compression section 52 side. The upper intermediate partition plate 8A is configured to have a small thickness, and a through hole 8AA having a predetermined size is provided in the vicinity of the outer periphery so as to penetrate in the thickness direction (FIGS. 7 and 8).

【0014】また、下中間仕切板8Bは上中間仕切板8
Aより板厚を厚く構成され、外周近傍には厚さ方向に貫
通した冷媒通路8BBが設けられている。この冷媒通路
8BBは円周方向に所定距離延在して設けられると共
に、上中間仕切板8Aに設けられた貫通孔8AAに対応
した位置に設けられている(図9、図10)。
The lower intermediate partition plate 8B is connected to the upper intermediate partition plate 8B.
A is configured to be thicker than A, and a refrigerant passage 8BB penetrating in the thickness direction is provided near the outer periphery. The coolant passage 8BB is provided to extend a predetermined distance in the circumferential direction, and is provided at a position corresponding to the through hole 8AA provided in the upper intermediate partition plate 8A (FIGS. 9 and 10).

【0015】また、上側のシリンダ9の下側となる上中
間仕切板8A側には吸込ポート31が設けられており、
この吸込ポート31は前記上中間仕切板8Aに設けられ
た貫通孔8AAに対応して形成されている。そして、上
側のシリンダ9内は吸込ポート31によって前記貫通孔
8AAと連通されている(図5、図6)。
Further, a suction port 31 is provided on the upper intermediate partition plate 8A side below the upper cylinder 9;
The suction port 31 is formed corresponding to the through hole 8AA provided in the upper intermediate partition plate 8A. The inside of the upper cylinder 9 is communicated with the through hole 8AA by a suction port 31 (FIGS. 5 and 6).

【0016】また、下側のシリンダ10の上側となる下
中間仕切板8B側には吐出ポート29が設けられてお
り、この吐出ポート29は前記下中間仕切板8Bに設け
られた冷媒通路8BBに対応して形成されている。そし
て、下側のシリンダ10内は吐出ポート29によって貫
通孔8AAと連通されている。また、シリンダ10の下
中間仕切板8B側にはバルブ29Aが設けられており、
このバルブ29Aはシリンダ10内の冷媒を冷媒通路8
BBに流通すると共に、冷媒通路8BB内の冷媒がシリ
ンダ10内に流入しないように構成されている。尚、2
9Bはバルブ29Aを固定するためのネジである。
A discharge port 29 is provided on the lower intermediate partition plate 8B side above the lower cylinder 10, and this discharge port 29 is connected to a refrigerant passage 8BB provided in the lower intermediate partition plate 8B. It is formed correspondingly. The inside of the lower cylinder 10 is communicated with the through hole 8AA by the discharge port 29. A valve 29A is provided on the lower intermediate partition plate 8B side of the cylinder 10.
This valve 29A allows the refrigerant in the cylinder 10 to pass through the refrigerant passage 8
It is configured such that the refrigerant in the refrigerant passage 8BB does not flow into the cylinder 10 while flowing through the BB. 2
9B is a screw for fixing the valve 29A.

【0017】即ち、下側のシリンダ10(低段側圧縮部
52)の吐出側と上側のシリンダ9(高段側圧縮部5
1)の吸込側は、図4に示す如き下側のシリンダ10に
設けられた吐出ポート29、バルブ29A、冷媒通路8
BB、貫通孔8AA、吸込ポート31を経て連通されて
いる。
That is, the discharge side of the lower cylinder 10 (low-stage compression section 52) and the upper cylinder 9 (high-stage compression section 5).
The suction side 1) includes a discharge port 29, a valve 29A, and a refrigerant passage 8 provided in the lower cylinder 10 as shown in FIG.
BB, the through hole 8AA, and the suction port 31 communicate with each other.

【0018】一方、低段側圧縮部52の排除容積をD
1、高段側圧縮部51の排除容積をD2とすると、これ
らの排除容積比D2/D1は、0.35±0.15の範
囲に設定されている。
On the other hand, the displacement volume of the low-stage compression section 52 is
1. Assuming that the excluded volume of the high-stage compression section 51 is D2, the excluded volume ratio D2 / D1 is set in the range of 0.35 ± 0.15.

【0019】19は吐出マフラーであり、第1の枠体1
5を覆うように取り付けられている。シリンダ9と吐出
マフラー19は第1の枠体15に設けられた図示しない
吐出孔にて連通されている。
Reference numeral 19 denotes a discharge muffler, and the first frame 1
5 is attached. The cylinder 9 and the discharge muffler 19 communicate with each other through a discharge hole (not shown) provided in the first frame 15.

【0020】また、第2の枠体16には凹所21が設け
られ、この凹所21は蓋体26にて閉塞されボルト27
にて第2の枠体16と一体にシリンダ10に固定されて
いる。係る、第2の枠体16は密閉容器1内の最下部に
位置しており、その周囲は潤滑油が貯留されるオイル溜
まり30とされている。これにより、第2の枠体16周
囲には潤滑油が満たされるかたちとなり、冷媒循環量の
減少による性能の低下を防止されている。
The second frame 16 has a recess 21 which is closed by a lid 26 and a bolt 27
Is fixed to the cylinder 10 integrally with the second frame 16. The second frame 16 is located at the lowermost part in the closed container 1, and its periphery is an oil reservoir 30 for storing lubricating oil. As a result, the periphery of the second frame 16 is filled with the lubricating oil, thereby preventing a decrease in performance due to a decrease in the amount of circulating refrigerant.

【0021】他方、22は密閉容器1の上に設けられた
吐出管であり、24はシリンダ10へつながる吸込管で
ある。また、25は密閉ターミナルであり、密閉容器1
の外部から固定子4の固定子巻線7へ電力を供給するも
のである(密閉ターミナル25と固定子巻線7とをつな
ぐリード線は図示せず)。
On the other hand, reference numeral 22 denotes a discharge pipe provided on the closed vessel 1, and reference numeral 24 denotes a suction pipe connected to the cylinder 10. Reference numeral 25 denotes a sealed terminal, which is a sealed container 1
To supply electric power to the stator winding 7 of the stator 4 from the outside (not shown are lead wires connecting the sealed terminal 25 and the stator winding 7).

【0022】次ぎに、図1の冷媒回路において、多段圧
縮冷凍装置Rを構成する前記圧縮機Cの吐出管22は、
配管36を経て凝縮器37の入口に接続され、この凝縮
器37の出口には一次膨張手段としてキャピラリチュー
ブ38が接続されている。このキャピラリチューブ38
の出口には気液分離器39の上部が連通接続されると共
に、この気液分離器39の下端には二次膨張手段として
キャピラリチューブ41が接続されている。
Next, in the refrigerant circuit of FIG. 1, the discharge pipe 22 of the compressor C constituting the multi-stage compression refrigeration system R
It is connected to the inlet of a condenser 37 via a pipe 36, and the outlet of the condenser 37 is connected to a capillary tube 38 as primary expansion means. This capillary tube 38
Is connected to an upper portion of a gas-liquid separator 39, and a capillary tube 41 is connected to a lower end of the gas-liquid separator 39 as secondary expansion means.

【0023】そして、キャピラリチューブ41の出口に
冷却器42が接続され、冷却器42の出口に接続された
配管43は前記圧縮機Cの吸込管24に連通されてい
る。更に、気液分離器39の上部には配管44が接続さ
れ、この配管44は吸入管23から高段側圧縮部51の
吸込側に連通されている。
A cooler 42 is connected to the outlet of the capillary tube 41, and a pipe 43 connected to the outlet of the cooler 42 is connected to the suction pipe 24 of the compressor C. Further, a pipe 44 is connected to an upper portion of the gas-liquid separator 39, and the pipe 44 communicates from the suction pipe 23 to the suction side of the high-stage compression section 51.

【0024】以上によって多段圧縮冷凍装置Rの冷凍サ
イクルが構成される。そして、係る多段圧縮冷凍装置R
の冷媒回路内には例えばR−134aなどのHFC冷媒
やHC冷媒が所定量封入され、潤滑油としてはエステル
油、鉱物油などが使用されるが、実施例ではR−134
aが冷媒として用いられ、また、潤滑油としてはエステ
ル油が使用されている。
The refrigeration cycle of the multi-stage compression refrigeration system R is configured as described above. And such a multi-stage compression refrigeration system R
A predetermined amount of HFC refrigerant or HC refrigerant such as R-134a is sealed in the refrigerant circuit, and ester oil, mineral oil, or the like is used as a lubricating oil.
a is used as a refrigerant, and ester oil is used as a lubricating oil.

【0025】以上の構成で次ぎに動作を説明する。電動
機2が駆動されると、低段側圧縮部52は吸込管24か
ら冷媒を吸引して圧縮(一段圧縮)し、吐出ポート29
からバルブ29Aを介して下中間仕切板8Bに設けた冷
媒通路8BBに吐出する。冷媒通路8BBに吐出された
一段圧縮ガス冷媒は、上中間仕切板8Aに設けられた貫
通孔8AAを経て吸込ポート31から高段側圧縮部51
に吸引される。そこで圧縮(二段圧縮)された二段圧縮
ガス冷媒は、吐出孔より前記吐出マフラー19に吐出さ
れ、吐出マフラー19から密閉容器1内に吐出される。
The operation of the above configuration will now be described. When the electric motor 2 is driven, the low-stage compression section 52 sucks the refrigerant from the suction pipe 24 and compresses it (one-stage compression).
From the refrigerant passage 8BB provided in the lower intermediate partition plate 8B via the valve 29A. The one-stage compressed gas refrigerant discharged into the refrigerant passage 8BB passes through the through-hole 8AA provided in the upper intermediate partition plate 8A, from the suction port 31 to the high-stage side compression part 51.
Is sucked. The compressed (two-stage compressed) two-stage compressed gas refrigerant is discharged from the discharge hole to the discharge muffler 19, and discharged from the discharge muffler 19 into the closed container 1.

【0026】密閉容器1内の吐出された二段圧縮ガス冷
媒は、吐出管22から配管36に吐出される。そして、
凝縮器37に流入し、そこで放熱して凝縮された後、キ
ャピラリチューブ38にて減圧される。そして、気液分
離器39に流入し、一部はそこで蒸発する。
The two-stage compressed gas refrigerant discharged from the closed container 1 is discharged from the discharge pipe 22 to the pipe 36. And
After flowing into the condenser 37, where the heat is released and condensed, the pressure is reduced by the capillary tube 38. Then, it flows into the gas-liquid separator 39, and a part thereof evaporates there.

【0027】これにより、気液分離器39内底部には液
冷媒が貯留され、気液分離器39内上部には一段膨張し
た飽和ガス冷媒が溜まることになる。尚、このときの飽
和ガス冷媒の温度、即ち、気液分離温度は−10℃〜+
25℃の範囲となるようにキャピラリチューブ38の絞
り量を選定する。
Thus, the liquid refrigerant is stored at the bottom of the gas-liquid separator 39, and the one-stage expanded saturated gas refrigerant is stored at the top of the gas-liquid separator 39. At this time, the temperature of the saturated gas refrigerant, that is, the gas-liquid separation temperature is −10 ° C. to + 10 ° C.
The throttle amount of the capillary tube 38 is selected so as to be in the range of 25 ° C.

【0028】そして、気液分離器39内からは液冷媒の
みがキャピラリチューブ41方向に流出し、そこで減圧
される。そして、冷却器42に流入して蒸発する。この
ときに周囲から熱を奪うことによって冷却器42は冷却
作用を発揮する。そして、冷却器42を出た低温ガス冷
媒は配管43を経て圧縮機Cに帰還し、吸込管24から
低段側圧縮部52に再び吸い込まれる。
Then, only the liquid refrigerant flows out of the gas-liquid separator 39 toward the capillary tube 41, where the pressure is reduced. Then, it flows into the cooler 42 and evaporates. At this time, the cooler 42 exerts a cooling action by removing heat from the surroundings. Then, the low-temperature gas refrigerant that has exited the cooler 42 returns to the compressor C via the pipe 43, and is sucked again from the suction pipe 24 into the low-stage compression section 52.

【0029】一方、気液分離器39内上部の飽和ガス冷
媒は、配管44に流出し、そこを通って吸入管23から
高段側圧縮部51に吸引され、再び圧縮されることにな
る。係る高段側圧縮部51は、吸入管23から吸引した
飽和ガス冷媒と、低段側圧縮部52から吐出され中間仕
切板8に設けた冷媒通路8BBからの一段圧縮ガス冷媒
と合流し再び圧縮されることになる。
On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 39 flows out to the pipe 44, passes therethrough, is sucked from the suction pipe 23 to the high-stage compression section 51, and is compressed again. The high-stage compression unit 51 merges with the saturated gas refrigerant sucked from the suction pipe 23 and the first-stage compressed gas refrigerant discharged from the low-stage compression unit 52 and from the refrigerant passage 8BB provided in the intermediate partition plate 8 and compressed again. Will be done.

【0030】このように、圧縮機Cの低段側圧縮部5
2、高段側圧縮部51、凝縮器37、キャピラリチュー
ブ38、気液分離器39、キャピラリチューブ41及び
冷却器42を順次環状に接続して冷凍サイクルを構成
し、低段側圧縮部52から吐出された冷媒を冷媒通路8
BBを介して高段側圧縮部51に吸い込ませると共に、
気液分離器39内の飽和ガス冷媒を高段側圧縮部51に
吸い込ませるようにしたので、冷媒通路8BBの短縮を
図ることができるようになる。これにより、一段圧縮の
冷凍装置に比較して、一圧縮当たりのトルク変動を抑制
しながら、高圧縮比を得ることができるようになる。
As described above, the low-stage compression section 5 of the compressor C
2. A refrigeration cycle is formed by sequentially connecting the high-stage compression section 51, the condenser 37, the capillary tube 38, the gas-liquid separator 39, the capillary tube 41, and the cooler 42 in a ring shape, and the low-stage compression section 52 The discharged refrigerant is transferred to the refrigerant passage 8.
While being sucked into the high-stage compression section 51 via BB,
Since the saturated gas refrigerant in the gas-liquid separator 39 is sucked into the high-stage compression section 51, the refrigerant passage 8BB can be shortened. This makes it possible to obtain a high compression ratio while suppressing torque fluctuation per compression as compared with a single-stage compression refrigeration system.

【0031】また、高段側圧縮部51が吸い込むガス冷
媒の温度を低下させることができるようになり、入力の
低減を図ることが可能となる。また、高段側圧縮部51
の吐出ガス冷媒の温度も低くなるため、潤滑油としてエ
ステル油を用いた場合にも、POE問題の発生や潤滑特
性の劣化を抑制することができるようになる。
Further, the temperature of the gas refrigerant sucked by the high-stage compression section 51 can be reduced, and the input can be reduced. Also, the high-stage compression unit 51
Since the temperature of the discharged gas refrigerant becomes low, even when ester oil is used as the lubricating oil, it is possible to suppress the occurrence of the POE problem and the deterioration of the lubricating characteristics.

【0032】そして、気液分離器39内の液冷媒をキャ
ピラリチューブ41に流して冷却器42にて蒸発させる
ようにしているので、冷媒循環量に対する冷凍効果を増
大させ、効率の向上を図ることが可能となる(図13の
モリエル線図参照)。
Since the liquid refrigerant in the gas-liquid separator 39 flows through the capillary tube 41 and evaporates in the cooler 42, the refrigerating effect on the refrigerant circulation amount is increased, and the efficiency is improved. (See the Mollier diagram in FIG. 13).

【0033】ここで、低段側圧縮部52の排除容積D1
と高段側圧縮部51の排除容積D2の比D2/D1と成
績係数の関係は図14に示されており、この図からも明
らかな如く、成績係数は排除容積比D2/D1の30%
(0.3)付近をピークとした山なりの特性となってい
る。
Here, the excluded volume D1 of the low-stage compression section 52
The relationship between the coefficient of performance and the ratio D2 / D1 of the excluded volume D2 of the high-stage side compression section 51 and the coefficient of performance is shown in FIG.
The peak characteristic is in the vicinity of (0.3).

【0034】次ぎに、キャピラリチューブ38の絞り量
を変更して気液分離器39における気液分離温度を変更
し、各気液分離温度における図14の曲線のピーク値を
図16に示す如く結んで行くと、図15或いは図16に
示す如き山なりの特性が得られる。
Next, the gas-liquid separation temperature in the gas-liquid separator 39 is changed by changing the throttle amount of the capillary tube 38, and the peak values of the curves in FIG. 14 at each gas-liquid separation temperature are connected as shown in FIG. Then, a mountain-like characteristic as shown in FIG. 15 or FIG. 16 is obtained.

【0035】即ち、図15或いは図16に示される気液
分離器39における気液分離温度と成績係数の関係を基
にして、本発明では前述の如く気液分離器39内の気液
分離温度を−10℃〜+25℃の範囲に設定しているの
で、図16の最下部に示す一段圧縮の冷凍装置の場合に
比して成績係数を著しく改善することができるようにな
る。
That is, based on the relationship between the gas-liquid separation temperature and the coefficient of performance in the gas-liquid separator 39 shown in FIG. 15 or FIG. Is set in the range of −10 ° C. to + 25 ° C., so that the coefficient of performance can be significantly improved as compared with the case of the single-stage compression refrigeration apparatus shown at the bottom of FIG.

【0036】また、前記図14からも明らかであるが、
成績係数は低段側圧縮部52と高段側圧縮部51の排除
容積比D2/D1の30%付近をピークとした山なりの
特性となる。そして、本発明では係る排除容積比D2/
D1を、0.35±0.15の範囲に設定しているの
で、一段圧縮の冷凍装置に比して成績係数を一層改善
し、効率の向上を図ることができるようになる。
As is apparent from FIG.
The coefficient of performance has a peak-like characteristic with a peak around 30% of the excluded volume ratio D2 / D1 of the low-stage compression section 52 and the high-stage compression section 51. In the present invention, the excluded volume ratio D2 /
Since D1 is set in the range of 0.35 ± 0.15, the coefficient of performance can be further improved and efficiency can be improved as compared with a single-stage compression refrigeration system.

【0037】また、低段側圧縮部52と高段側圧縮部5
1とを中間仕切板8に設けた冷媒通路8BBにて連通し
ているので、両圧縮部52と51間の冷媒通路の短縮を
図ることができ、大幅に圧力損失の低減を図ることがで
きるようになる。
The low-stage compression unit 52 and the high-stage compression unit 5
1 is communicated with the refrigerant passage 8BB provided in the intermediate partition plate 8, so that the refrigerant passage between the compression portions 52 and 51 can be shortened, and the pressure loss can be greatly reduced. Become like

【0038】尚、実施例では二段圧縮式の圧縮機Cで説
明したが、それに限らず、三段、四段と更に多段に圧縮
するものに適用しても本発明は有効である。
In the embodiment, the compressor C of the two-stage compression type has been described. However, the present invention is not limited to this, and the present invention is also effective when applied to a three-stage or four-stage compressor.

【0039】[0039]

【発明の効果】以上詳述した如く、本発明によれば単一
の密閉容器内に電動機と、この電動機にて駆動される圧
縮要素とを設け、この圧縮要素を、低段側圧縮部と高段
側圧縮部により構成して冷媒を順次多段圧縮する圧縮機
において、低段側圧縮部を内部に構成する第一のシリン
ダと、高段側圧縮部を内部に構成する第二のシリンダ
と、これら両シリンダ間に配設された中間仕切板と、第
一のシリンダに形成された吐出ポートと、第二のシリン
ダに形成された吸込ポートを備え、中間仕切板には、第
一のシリンダの吐出ポートと第二のシリンダの吸込ポー
トとを連通する通路を形成したので、低段側圧縮部にて
圧縮され、吐出ポートから吐出された冷媒は、中間仕切
板の通路を通って高段側圧縮部の吸込ポートに案内され
るようになる。
As described above in detail, according to the present invention, an electric motor and a compression element driven by the electric motor are provided in a single hermetically sealed container, and the compression element is provided with a low-stage compression section. In a compressor configured by a high-stage compression section and sequentially compressing the refrigerant in multiple stages, a first cylinder that internally configures a low-stage compression section, and a second cylinder that internally configures a high-stage compression section. An intermediate partition plate disposed between these two cylinders, a discharge port formed in the first cylinder, and a suction port formed in the second cylinder. A passage communicating with the discharge port of the second cylinder and the suction port of the second cylinder is formed, so that the refrigerant compressed at the low-stage compression section and discharged from the discharge port passes through the passage of the intermediate partition plate at the high stage. It is guided by the suction port of the side compression section.

【0040】即ち、両シリンダ間を仕切る中間仕切板が
低段側圧縮部と高段側圧縮部間の冷媒回路を構成するこ
とになるので、密閉容器外に格別な配管を取り付ける場
合に比較して、冷媒通路の短縮を図り、圧力損失の低減
を達成することができるようになるものである。
That is, since the intermediate partition plate for partitioning between the two cylinders constitutes a refrigerant circuit between the low-stage compression section and the high-stage compression section, compared with a case where special piping is mounted outside the closed vessel. Thus, the refrigerant passage can be shortened, and the pressure loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧縮機を採用した多段圧縮冷凍装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a multi-stage compression refrigeration apparatus employing a compressor of the present invention.

【図2】本発明の圧縮機の縦断側面図である。FIG. 2 is a vertical sectional side view of the compressor of the present invention.

【図3】圧縮要素図の拡大図である。FIG. 3 is an enlarged view of a compression element diagram.

【図4】冷媒通路の説明図である。FIG. 4 is an explanatory diagram of a refrigerant passage.

【図5】上側のシリンダの下面図である。FIG. 5 is a bottom view of the upper cylinder.

【図6】図5のA−A線断面図である。FIG. 6 is a sectional view taken along line AA of FIG. 5;

【図7】上中間仕切板の正面図である。FIG. 7 is a front view of an upper intermediate partition plate.

【図8】同上中間仕切板の側面図である。FIG. 8 is a side view of the intermediate partition plate.

【図9】下中間仕切板の正面図である。FIG. 9 is a front view of a lower intermediate partition plate.

【図10】同下中間仕切板の側面図である。FIG. 10 is a side view of the lower intermediate partition plate.

【図11】下側のシリンダの上面図である。FIG. 11 is a top view of the lower cylinder.

【図12】図11のB−B線断面図である。FIG. 12 is a sectional view taken along line BB of FIG. 11;

【図13】図1の多段圧縮冷凍装置のモリエル線図であ
る。
FIG. 13 is a Mollier diagram of the multistage compression refrigeration apparatus of FIG.

【図14】低段側圧縮部と高段側圧縮部の排除容積比と
成績係数の関係を示す図である
FIG. 14 is a diagram showing the relationship between the excluded volume ratio and the coefficient of performance of the low-stage compression unit and the high-stage compression unit.

【図15】気液分離器における気液分離温度と成績係数
の関係を示す図である。
FIG. 15 is a diagram showing a relationship between a gas-liquid separation temperature and a coefficient of performance in a gas-liquid separator.

【図16】同じく気液分離器における気液分離温度と成
績係数の関係を示すもう一つの図である。
FIG. 16 is another diagram showing the relationship between the gas-liquid separation temperature and the coefficient of performance in the gas-liquid separator.

【符号の説明】[Explanation of symbols]

C 圧縮機 R 多段圧縮冷凍装置 2 電動機 3 圧縮要素 8 中間仕切板 8A 上中間仕切板 8AA 貫通孔 8B 下中間仕切板 8BB 冷媒通路 9、10 シリンダ 13、14 ローラ 29 吐出ポート 29A バルブ 31 吸込ポート 37 凝縮器 38 キャピラリチューブ 39 気液分離器 41 キャピラリチューブ 42 冷却器 43 配管 44 配管 51 高段側圧縮部 52 低段側圧縮部 C Compressor R Multi-stage compression refrigeration system 2 Electric motor 3 Compression element 8 Intermediate partition plate 8A Upper intermediate partition plate 8AA Through hole 8B Lower intermediate partition plate 8BB Refrigerant passage 9, 10 Cylinder 13, 14 Roller 29 Discharge port 29A Valve 31 Suction port 37 Condenser 38 Capillary tube 39 Gas-liquid separator 41 Capillary tube 42 Cooler 43 Pipe 44 Pipe 51 High-stage compression unit 52 Low-stage compression unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単一の密閉容器内に電動機と、この電動
機にて駆動される圧縮要素とを設け、この圧縮要素を、
低段側圧縮部と高段側圧縮部により構成して冷媒を順次
多段圧縮する圧縮機において、 前記低段側圧縮部を内部に構成する第一のシリンダと、
前記高段側圧縮部を内部に構成する第二のシリンダと、
これら両シリンダ間に配設された中間仕切板と、前記第
一のシリンダに形成された吐出ポートと、前記第二のシ
リンダに形成された吸込ポートと、前記中間仕切板に形
成され、前記第一のシリンダの吐出ポートと前記第二の
シリンダの吸込ポートとを連通する通路とを備えたこと
を特徴とする圧縮機。
An electric motor and a compression element driven by the electric motor are provided in a single closed container.
In a compressor configured by a low-stage compression section and a high-stage compression section and sequentially compressing the refrigerant in multiple stages, a first cylinder that internally configures the low-stage compression section,
A second cylinder that constitutes the high-stage compression section inside,
An intermediate partition plate disposed between these two cylinders, a discharge port formed in the first cylinder, a suction port formed in the second cylinder, and a second port formed in the intermediate partition plate; A compressor comprising a passage communicating between a discharge port of one cylinder and a suction port of the second cylinder.
JP4238198A 1998-02-24 1998-02-24 Compressor Pending JPH11241693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238198A JPH11241693A (en) 1998-02-24 1998-02-24 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238198A JPH11241693A (en) 1998-02-24 1998-02-24 Compressor

Publications (1)

Publication Number Publication Date
JPH11241693A true JPH11241693A (en) 1999-09-07

Family

ID=12634489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238198A Pending JPH11241693A (en) 1998-02-24 1998-02-24 Compressor

Country Status (1)

Country Link
JP (1) JPH11241693A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026499A1 (en) * 2003-09-08 2005-03-24 Daikin Industries, Ltd. Rotary expansion machine and fluid machinery
JP2007100513A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Refrigerant compressor and refrigerant cycle device having the same
WO2007105440A1 (en) * 2006-02-28 2007-09-20 Daikin Industries, Ltd. Refrigeration device
KR100857794B1 (en) 2006-01-06 2008-09-09 엘지전자 주식회사 Air-conditioning system and Controlling Method for the same
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
CN103291620A (en) * 2012-02-24 2013-09-11 广东美芝制冷设备有限公司 Multi-air-cylinder rotary compressor as well as control method thereof
US8806888B2 (en) 2006-01-06 2014-08-19 Lg Electronics Inc. Air-conditioner with multi-stage compressor and phase separator
CN104712526A (en) * 2013-12-12 2015-06-17 珠海格力节能环保制冷技术研究中心有限公司 Compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026499A1 (en) * 2003-09-08 2005-03-24 Daikin Industries, Ltd. Rotary expansion machine and fluid machinery
US7896627B2 (en) 2003-09-08 2011-03-01 Daikin Industries, Ltd. Rotary type expander and fluid machinery
JP2007100513A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Refrigerant compressor and refrigerant cycle device having the same
KR100857794B1 (en) 2006-01-06 2008-09-09 엘지전자 주식회사 Air-conditioning system and Controlling Method for the same
US8806888B2 (en) 2006-01-06 2014-08-19 Lg Electronics Inc. Air-conditioner with multi-stage compressor and phase separator
WO2007105440A1 (en) * 2006-02-28 2007-09-20 Daikin Industries, Ltd. Refrigeration device
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
CN103291620A (en) * 2012-02-24 2013-09-11 广东美芝制冷设备有限公司 Multi-air-cylinder rotary compressor as well as control method thereof
CN104712526A (en) * 2013-12-12 2015-06-17 珠海格力节能环保制冷技术研究中心有限公司 Compressor

Similar Documents

Publication Publication Date Title
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
KR101316247B1 (en) 2 stage rotary compressor
US8967984B2 (en) Rotary compressor
WO2001022008A1 (en) Multi-stage compression refrigerating device
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
JP2001091071A (en) Multi-stage compression refrigerating machine
JP4591350B2 (en) Refrigeration equipment
JPH11241693A (en) Compressor
JP5217909B2 (en) Compressor
JP3619657B2 (en) Multistage compression refrigeration equipment
JP2008240666A (en) Rotary compressor and heat pump system
JPH07318179A (en) Sealed compressor, and freezer and air conditioner including the compressor
KR20060039043A (en) Rotary compressor and air conditioner using the same
JPH11230072A (en) Compressor
JP2001132675A (en) Two-stage compression type rotary compressor and two- stage compression refrigerating device
JPH1162863A (en) Compressor
JPH11230070A (en) Compressor
JP3599996B2 (en) Multi-stage compression refrigeration equipment
JPH0681786A (en) Two-stage compression type rotary compressor
KR101328229B1 (en) Rotary compressor
JPH11230073A (en) Compressor
US10619635B2 (en) Scallop step for a scroll compressor
JP3615364B2 (en) Multistage compression refrigeration equipment
CN109915375A (en) Pump assembly and compressor
JPH11223397A (en) Freezer refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Effective date: 20050128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A02 Decision of refusal

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A02