JP3619657B2 - Multistage compression refrigeration equipment - Google Patents

Multistage compression refrigeration equipment Download PDF

Info

Publication number
JP3619657B2
JP3619657B2 JP04281298A JP4281298A JP3619657B2 JP 3619657 B2 JP3619657 B2 JP 3619657B2 JP 04281298 A JP04281298 A JP 04281298A JP 4281298 A JP4281298 A JP 4281298A JP 3619657 B2 JP3619657 B2 JP 3619657B2
Authority
JP
Japan
Prior art keywords
stage compression
compression means
low
stage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04281298A
Other languages
Japanese (ja)
Other versions
JPH11223396A (en
Inventor
俊行 江原
愃雄 石合
健夫 小松原
昌也 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04281298A priority Critical patent/JP3619657B2/en
Priority to US09/236,042 priority patent/US6189335B1/en
Priority to EP99102227A priority patent/EP0935106A3/en
Publication of JPH11223396A publication Critical patent/JPH11223396A/en
Application granted granted Critical
Publication of JP3619657B2 publication Critical patent/JP3619657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の圧縮手段を備え、特に低段側圧縮手段と低段側圧縮手段を用いて冷媒を多段圧縮する多段圧縮冷凍装置に関するものである。
【0002】
【従来の技術】
従来冷蔵庫や空気調和機などに用いられる冷凍装置には、例えば特公平7−30743号公報(F04C23/00)に示される如く、それぞれロータリー用シリンダとその内部で回転するローラから成る二つの圧縮手段を同一の密閉容器内に収納したロータリー型の圧縮機を用い、各圧縮手段を低段側圧縮手段と高段側圧縮手段として、低段側圧縮手段により一段圧縮した冷媒ガスを高段側圧縮手段に吸い込ませることにより、冷媒を多段圧縮するものが開発されている。
【0003】
係る多段圧縮冷凍装置によれば、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得ることができる利点がある。
【0004】
【発明が解決しようとする課題】
機器の設置時のプルダウン中などの過渡的な状態では、多段圧縮させても効率の向上は望めず、却って各圧縮手段それぞれの一段圧縮による運転の方が排除容積が増加して効率的な運転を実現できる。逆に、夜間などの低負荷の状況では多段圧縮する必要も無くなる。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、複数の圧縮手段を備えた冷凍サイクルにおいて、負荷に応じて的確な運転を選択できる多段圧縮冷凍装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
即ち、本出願の請求項1の発明の多段圧縮冷凍装置は、電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成したものであって、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されると共に、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1は、0.35±0.1の範囲に設定され、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたものである。
【0007】
また、請求項2の発明の多段圧縮冷凍装置は、低段側圧縮手段、高段側圧縮手段、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成したものであって、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1を、0.35±0.1の範囲に設定し、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能とし、且つ、気液分離器内の気液分離温度を−5℃〜+25℃の範囲に設定したものである。
【0008】
また、請求項3の発明の多段圧縮冷凍装置は、電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成したものであって、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷 媒と共に高段側圧縮手段に吸引させるための合流器と、この合流器からの冷媒を高段側圧縮手段に吸引させるか、冷却器から出た冷媒を高段側圧縮手段に吸引させるか、更に、高段側圧縮手段へ冷媒を吸引させるか否かを切り換えるための第一切換電磁弁と、低段側圧縮手段から吐出された冷媒を合流器に流入させるか、密閉容器内に流通させるかを切り換えるための第二切換電磁弁と、冷却器から出た冷媒を低段側圧縮手段に吸引させるか否かを制御する第三電磁弁とを備え、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されており、第一切換電磁弁を前記冷却器から出た冷媒が高段側圧縮手段に吸引される状態とし、第三電磁弁を閉じることにより、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、第一切換電磁弁を高段側圧縮手段に冷媒を吸引させない状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が密閉容器内に流通される状態とし、且つ、第三電磁弁を開くことにより、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、第一切換電磁弁を冷却器から出た冷媒が高段側圧縮手段に吸引される状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が密閉容器内に流通される状態とし、且つ、第三電磁弁を開くことにより、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、第一切換電磁弁を合流器からの冷媒が高段側圧縮手段に吸引される状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が合流器に流入する状態とし、且つ、第三電磁弁を開くことにより、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたものである。
【0009】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態を詳述する。図1は本発明の多段圧縮冷凍装置Rの冷媒回路図、図2は本発明に適用するロータリー型の圧縮機Cの縦断側面図である。本発明の多段圧縮冷凍装置Rの冷媒回路は後述する第一のモードM1、第二のモードM2、第三のモードM3、第四のモードM4を運転可能に構成されているが、先ず図2から説明すると、1は密閉容器であり、内部の上側に電動機(ブラシレスDCモータ)2、下側にこの電動機2で回転駆動される圧縮要素3が収納されている。密閉容器1は予め2分割されたものに電動機2、圧縮要素3を収納した後、高周波溶着などによって密閉されたものである。
【0010】
電動機2は、密閉容器1の内壁に固定された固定子4と、この固定子4の内側に回転軸6を中心にして回転自在に支持された回転子5とから構成されている。そして、固定子4は回転子5に回転磁界を与える固定子巻線7を備えている。尚、W1、W2はそれぞれ回転子5の上面と下面に取り付けられたバランスウエイトである。
【0011】
圧縮要素3は中間仕切板8で仕切られた第1のロータリー用シリンダ9及び第2のロータリー用シリンダ10を備えている。各のシリンダ9、10には回転軸6で回転駆動される偏心部11、12が取り付けられており、これら偏心部11、12は偏心位置がお互いに位相を180度ずらした位置(即ち、回転軸6の対向する位置)に設けられている。
【0012】
13、14はそれぞれシリンダ9、10内を回転する第1のローラ、第2のローラであり、それぞれ偏心部11、12の回転でシリンダ内を回る。15、16はそれぞれ第1の枠体、第2の枠体であり、第1の枠体15は中間仕切板8との間にシリンダ9の閉じた圧縮空間を形成させ、第2の枠体16は同様に中間仕切板8との間にシリンダ10の閉じた圧縮空間を形成させている。また、第1の枠体15、第2の枠体16はそれぞれ回転軸6の下部を回転自在に軸支する軸受部17、18を備えている。
【0013】
上記上側のシリンダ9、偏心部11、ローラ13と、シリンダ9内を高圧室及び低圧室に区画するベーン(図示せず)などによって高段側圧縮部51(高段側圧縮手段)が構成され、下側のシリンダ10、偏心部12、ローラ14と、シリンダ10内を高圧室及び低圧室に区画するベーン(図示せず)などによって低段側圧縮部52(低段側圧縮手段)が構成される。
【0014】
また、低段側圧縮部52の排除容積をD1、高段側圧縮部51の排除容積をD2とすると、これらの排除容積比D2/D1は、0.35±0.1の範囲に設定されている。
【0015】
19は吐出マフラーであり、第1の枠体15を覆うように取り付けられている。シリンダ9と吐出マフラー19は第1の枠体15に設けられた図示しない吐出孔にて連通されている。
【0016】
一方、第2の枠体16には凹所21が設けられ、この凹所21を蓋体26にて閉塞している。そして、蓋体26をボルト27にて第2の枠体16と一体にシリンダ10に固定することにより、内部に膨張型消音器28を構成している。そして、第2の枠体16にはシリンダ10内と凹所21内とを連通する吐出ポート29が設けられている。
【0017】
尚、この第2の枠体16は密閉容器1内の最下部に位置しており、その周囲は潤滑油が貯留されるオイル溜まり30とされている。これにより、第2の枠体16周囲には潤滑油が満たされるかたちとなるので、密閉容器1内の高圧ガスが膨張型消音器28内に漏れる危険性が無くなり、冷媒循環量の減少による性能の低下を防止できる。
【0018】
前記吐出ポート29は密閉容器1外に引き出された配管31に連通しており、この配管31は同じく密閉容器1外に設けられた合流器32内に上方から挿入され、この合流器32内に開口している。また、この合流器32下端の出口配管32Aはシリンダ9につながる吸入管23に連通されている。
【0019】
他方、22は密閉容器1の上に設けられた吐出管であり、24はシリンダ10へつながる吸込管である。また、25は密閉ターミナルであり、密閉容器1の外部から固定子4の固定子巻線7へ電力を供給するものである(密閉ターミナル25と固定子巻線7とをつなぐリード線は図示せず)。
【0020】
次ぎに、図1の冷媒回路において、冷凍装置Rを構成する前記圧縮機Cの吐出管22は、配管36を経て凝縮器37の入り口に接続され、この凝縮器37の出口には一次膨張手段としてのキャピラリチューブ38が接続されている。このキャピラリチューブ38の出口には気液分離器39の上部が連通接続されると共に、この気液分離器39の下端には二次膨張手段としてのキャピラリチューブ41が接続されている。
【0021】
そして、キャピラリチューブ41の出口に冷却器42が接続され、冷却器42の出口に接続された配管43は前記圧縮機Cの吸込管24に連通されている。更に、気液分離器39の上部には分岐管44が接続され、この分岐管44は前記合流器32内に上方から挿入され、内部にて開口されている。
【0022】
また、合流器32内には第一切換電磁弁45が設けられ、この第一切換電磁弁45は出口配管32Aの手前に介設されている。そして、この第一切換電磁弁45には配管43から分岐した配管45Aが接続されている。
【0023】
更に、配管31には第二切換電磁弁46が介設され、この第二切換電磁弁46に接続された配管46Aは密閉容器1内に連通して開口している。また、前記配管45Aとの分岐点より下流側の配管43には第三電磁弁としての電磁弁47が介設されている。尚、多段圧縮冷凍装置Rの冷媒回路内には例えばR−134aなどのHFC冷媒やHC冷媒が所定量封入され、潤滑油はエステル油、エーテル油、HAB油、鉱物油などが使用されるが、実施例ではR−134aが冷媒として用いられ、また、潤滑油としてはエステル油が使用されているものとする。
【0024】
前記第一切換電磁弁45は切り換え動作によって合流器32からの冷媒を吸入管23から高段側圧縮部51に流通・停止できるように構成されると共に、切り換え動作によって冷却器42を出た冷媒を配管45Aを介して吸入管23から高段側圧縮部51に流通・停止できるように構成されている。更に、第一切換電磁弁45は切り換え動作によって合流器32からの冷媒と冷却器42からの冷媒を同時に停止することもできるように構成されている。
【0025】
また、第二切換電磁弁46は切り換え動作によって低段側圧縮部52から吐出された冷媒を配管31から合流器32に流通・停止できるように構成されると共に、切り換え動作によって低段側圧縮部52から吐出された冷媒を配管46Aを介して、密閉容器1内に流通・停止できるように構成されている。
【0026】
係る構成の冷媒回路で第一のモードM1、第二のモードM2、第三のモードM3、第四のモードM4について説明する。先ず第一のモードM1では、第一切換電磁弁45は合流器32から冷媒の流入を停止し、冷却器42から配管45Aを介して高段側圧縮部51に冷媒を流通するように構成されている。また、電磁弁47は閉じられて冷却器42から冷媒が低段側圧縮部52側に流通するのを停止する(図3)。
【0027】
また、第二のモードM2では、電磁弁47を開いて冷却器42から冷媒を吸込管24側に流通すると共に、第二切換電磁弁46は低段側圧縮部52から吐出された冷媒が合流器32に流入するのを停止し、低段側圧縮部52から吐出された冷媒を配管46Aを介して密閉容器1内に流通させる。また、第一切換電磁弁45は閉じられて合流器32からの冷媒の流入を停止すると共に、配管45Aからの冷媒の流入を停止する(図4)。
【0028】
また、第三のモードM3では、第一切換電磁弁45は合流器32から冷媒の流入を停止し、冷却器42から配管45Aを介して高段側圧縮部51に冷媒を流通すると共に、電磁弁47は開いて冷却器42からの冷媒を吸込管24から低段側圧縮部52に流通する。また、第二切換電磁弁46は低段側圧縮部52から吐出された冷媒が合流器32に流入するのを停止し、密閉容器1内に流通するように構成されている(図5)。
【0029】
更に、第四のモードM4では、電磁弁47を開いて冷却器42からの冷媒を吸込管24から低段側圧縮部52に流通させると共に、第二切換電磁弁46は低段側圧縮部52から吐出された冷媒を配管31を介して合流器32に流通させるように構成されている。また、第一切換電磁弁45は配管45Aからの冷媒の流入を停止し、合流器32からの冷媒を高段側圧縮部51に流通する(図6)。
【0030】
以上の構成で次ぎに各モードM1、M2、M3、M4の動作を説明する。第一のモードM1で電動機2が駆動されると、高段側圧縮部51で圧縮されたガス冷媒は、吐出孔より吐出マフラー19に吐出され、吐出マフラー19から密閉容器1内に吐出される。密閉容器1内の吐出された圧縮ガス冷媒は、吐出管22から配管36に吐出され、凝縮器37に流入する。そこで放熱して凝縮された後、キャピラリチューブ38にて減圧され、気液分離器39に流入する。
【0031】
そして、気液分離器39内からは液冷媒のみがキャピラリチューブ41に流出し、そこで減圧された後、冷却器42に流入して蒸発し冷却作用を発揮する。そして、冷却器42を出た低温冷媒は配管43、配管45Aを経て第一切換電磁弁45を通過し、吸入管23から高段側圧縮部51に吸い込まれる。
【0032】
即ち、第一のモードM1では低段側圧縮部52を使用せずに、高段側圧縮部51のみで冷却運転を行なう。これにより、夜間或いは外気温の低い場合、冷却能力を低下させて消費電力を抑制することが可能となる。
【0033】
また、第二のモードM2で電動機2が駆動されると、低段側圧縮部52で圧縮されたガス冷媒は第二切換電磁弁46から配管46Aに至り、密閉容器1内に吐出される。密閉容器1内の吐出された圧縮ガス冷媒は、吐出管22から配管36に吐出され、凝縮器37に流入する。そこで放熱して凝縮された後、キャピラリチューブ38にて減圧され、気液分離器39に流入する。
【0034】
そして、前述同様気液分離器39内からは液冷媒のみがキャピラリチューブ41に流出し、そこで減圧され冷却器42に流入して蒸発し冷却作用を発揮する。そして、冷却器42を出た低温冷媒は配管43、電磁弁47を経て、吸込管24から低段側圧縮部52に再び吸い込まれる。
【0035】
即ち、第二のモードM2では高段側圧縮部51を使用せずに、低段側圧縮部52のみで冷却運転を行なっている。これにより、第一のモードM1同様に夜間或いは外気温の低い場合、冷却能力を低下させて消費電力を抑制することが可能となる。
【0036】
また、第三のモードM3で電動機2が駆動されると、低段側圧縮部52で圧縮されたガス冷媒は第二切換電磁弁46から配管46Aにより密閉容器1内に吐出される。一方、高段側圧縮部51で圧縮されたガス冷媒も、吐出孔より吐出マフラー19に吐出され、吐出マフラー19から密閉容器1内に吐出される。
【0037】
密閉容器1内の吐出されたこれら圧縮ガス冷媒は、吐出管22から配管36に吐出され、凝縮器37に流入する。そこで放熱して凝縮された後、キャピラリチューブ38にて減圧され、気液分離器39に流入する。
【0038】
そして、前述同様気液分離器39内からは液冷媒のみがキャピラリチューブ41に流出し、そこで減圧され冷却器42に流入して蒸発し、冷却作用を発揮する。そして、冷却器42を出た低温冷媒は分流し、一方は配管43、電磁弁47を経て、吸込管24から低段側圧縮部52に再び吸い込まれる。
【0039】
また、冷却器42を出た低温冷媒の他方は配管45Aを経て第一切換電磁弁45を通り、吸入管23から高段側圧縮部51に吸い込まれる。この高段側圧縮部51から吐出された冷媒は、第二切換電磁弁46を介して配管46Aから密閉容器1内に吐出された低段側圧縮部52の圧縮ガス冷媒と密閉容器1内で合流し、再び吐出管22から配管36に吐出される。
【0040】
即ち、第三のモードM3では低段側圧縮部52と高段側圧縮部51の並列運転を行なっている。これにより、プルダウン時や、昼間或いは外気温の高い場合などの高負荷時に、排除容積を増大させ、冷却能力が最大となるようにしている。
【0041】
また、第四のモードM4で電動機2が駆動されると、低段側圧縮部52は吸込管24から冷媒を吸引して圧縮(一段圧縮)し、第二切換電磁弁46を経て配管31に吐出する。配管31に吐出された一段圧縮ガス冷媒は、合流器32、第一切換電磁弁45を経て吸入管23から高段側圧縮部51に吸引される。
【0042】
そこで圧縮(二段圧縮)された二段圧縮ガス冷媒は、吐出孔より密閉容器1内に吐出される。密閉容器1内の吐出された二段圧縮ガス冷媒は、吐出管22から配管36に吐出される。そして、凝縮器37に流入し、そこで放熱して凝縮された後、キャピラリチューブ38にて減圧され、気液分離器39に流入する。尚、このときの飽和ガス冷媒の温度、即ち、気液分離温度は−5℃〜+25℃の範囲となるようにキャピラリチューブ38の絞り量が選定される。
【0043】
そして、前述同様気液分離器39内からは液冷媒のみがキャピラリチューブ41に流出し、そこで減圧され冷却器42に流入して蒸発し冷却作用を発揮する。そして、冷却器42を出た低温ガス冷媒は配管43、電磁弁47を経て吸込管24から低段側圧縮部52に再び吸い込まれる。
【0044】
また、気液分離器39内上部の飽和ガス冷媒は、分岐管44に流出し、そこを通って合流器32に流入する。そこで、低段側圧縮部52から吐出された一段圧縮ガス冷媒と合流した後、共に第一切換電磁弁45を経て吸入管23から高段側圧縮部51に吸引され、圧縮される。即ち、第四のモードM4では低段側圧縮部52で圧縮された吐出された冷媒を高段側圧縮部51で再度圧縮し、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得られるようになっている。
【0045】
尚、このときの飽和ガス冷媒の温度、即ち、気液分離温度は−5℃〜+25℃の範囲となるようにキャピラリチューブ38の絞り量が選定される。
【0046】
そして、気液分離器39内からは液冷媒のみがキャピラリチューブ41方向に流出し、そこで減圧され冷却器42に流入して蒸発する。このときに周囲から熱を奪うことによって冷却器42は冷却作用を発揮する。そして、冷却器42を出た低温ガス冷媒は配管43を経て圧縮機Cに帰還し、吸込管24から低段側圧縮部52に再び吸い込まれる。
【0047】
また、気液分離器39内上部の飽和ガス冷媒は、分岐管44に流出し、そこを通って合流器32に流入する。そこで、低段側圧縮部52から吐出された一段圧縮ガス冷媒と合流した後、共に吸入管23から高段側圧縮部51に吸引され、再び圧縮される。即ち、低段側圧縮部52で圧縮された吐出された冷媒を高段側圧縮部51で再度圧縮することにより、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得られるようになっており、これを通常の多段圧縮冷凍装置Rとされている。
【0048】
係る多段圧縮冷凍装置Rは圧縮機Cの低段側圧縮部52、高段側圧縮部51、凝縮器37、キャピラリチューブ38、気液分離器39、キャピラリチューブ41及び冷却器42を順次環状に接続して冷凍サイクルが構成され、気液分離器39内の飽和ガス冷媒を低段側圧縮部52から吐出された冷媒と共に高段側圧縮部51に吸い込ませるようにしているので、高段側圧縮部51が吸い込むガス冷媒の温度を低下させることができるようになり、入力の低減が図られている。また、高段側圧縮部51の吐出ガス冷媒の温度が低くなるため、潤滑油としてエステル油を用いた場合にも、POE問題の発生や潤滑特性の劣化が抑制されている。
【0049】
また、気液分離器39内の液冷媒をキャピラリチューブ41に流して冷却器42にて蒸発させているので、冷媒循環量に対する冷凍効果が増大し、図7のモリエル線図に示す如き効率の向上を図ることが可能となる。
【0050】
ここで、低段側圧縮部52の排除容積D1と高段側圧縮部51の排除容積D2の比D2/D1と成績係数の関係を図8に示しており、成績係数は排除容積比D2/D1の30%(0.3)付近をピークとした山なりの特性はこの図からも明らかである。
【0051】
次ぎに、キャピラリチューブ38の絞り量を変更して気液分離器39における気液分離温度を変更し、各気液分離温度における図8の曲線のピーク値を図10に示す如く結んで行くと、図9或いは図10に示す如き山なりの特性となる。
【0052】
即ち、図9或いは図10に示される気液分離器39における気液分離温度と成績係数の関係を基にして、気液分離器39内の気液分離温度を−5℃〜+25℃の範囲に設定すると、図10の最下部に示す一段圧縮の冷凍装置の場合に比して成績係数は著しく改善される。
【0053】
このように、多段圧縮冷凍装置Rの運転を第一のモードM1、第二のモードM2、第三のモードM3、第四のモードM4に切り換えられるように構成しているので、夜間及び外気温の低い時などの低負荷時には第一のモードM1或いは第二のモードM2とすることにより、消費電力を抑制することが可能になる。
【0054】
また、多段圧縮冷凍装置Rの据え付け後や冷却器42の除霜後のプルダウン時などの高負荷時には前記第三のモードM3とすることにより、冷凍能力を最大として強力且つ迅速な冷却を行なうことが可能となる。更に、第四のモードM4を通常運転とすることにより、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得ることができるので、高段側圧縮部51が吸い込むガス冷媒温度を低下させ、入力の低減を図ることが可能となると共に、一段圧縮の冷凍装置に比較した成績係数を一層改善し、効率の向上を図ることが可能になる。
【0055】
【発明の効果】
以上詳述した如く本発明によれば、電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されると共に、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1は、0.35±0.1の範囲に設定され、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたので、通常は前記第四のモードとすることにより、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得ることができるようになると共に、高段側圧縮手段が吸い込むガス冷媒温度を低下させることができるようになり、入力の低減を図ることが可能となる。また、高段側圧縮手段の吐出ガス冷媒温度も低くなるため、潤滑油として例えばエステル油を用いた場合にも、POE問題の発生や潤滑特性の劣化を抑制することができるようになる。
【0056】
そして、気液分離器内の液冷媒を二次膨張手段に流して冷却器にて蒸発させるようにしているので、冷媒循環量に対する冷凍効果を増大させ、効率の向上を図ることが可能となる。
【0057】
また、冷凍装置の据え付け後や冷却器の除霜後のプルダウン時などの高負荷時には前記第三のモードとすることにより、冷凍能力を最大として強力且つ迅速な冷却作用を得ることができるようになると共に、夜間などの低負荷時には前記第一若しくは第二のモードとすることにより、消費電力を抑制することができるようになるものである。特に、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されているので、第一のモード或いは第二のモードにおいて高段側圧縮手段若しくは低段側圧縮手段のみが冷媒の圧縮を行う運転状況においてもバランス良い運転を行うことができるようになり、振動や騒音も低く抑えることができるようになる。更に、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1を、0.35±0.1の範囲に設定したので、特に前記第四のモードにおいて、一段圧縮の冷凍装置に比較した成績係数を一層改善し、効率の向上を図ることができるようになるものである。
【0058】
請求項2の発明によれば、低段側圧縮手段、高段側圧縮手段、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1を、0.35±0.1の範囲に設定し、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたので、通常は前記第四のモードとすることにより、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得ることができるようになると共に、高段側圧縮手段が吸い込むガス冷媒温度を低下させることができるようになり、入力の低減を図ることが可能となる。また、高段側圧縮手段の吐出ガス冷媒温度も低くなるため、潤滑油として例えばエステル油を用いた場合にも、POE問題の発生や潤滑特性の劣化を抑制することができるようになる。
【0059】
そして、気液分離器内の液冷媒を二次膨張手段に流して冷却器にて蒸発させるようにしているので、冷媒循環量に対する冷凍効果を増大させ、効率の向上を図ることが可能となる。
【0060】
また、冷凍装置の据え付け後や冷却器の除霜後のプルダウン時などの高負荷時には前記第三のモードとすることにより、冷凍能力を最大として強力且つ迅速な冷却作用を得ることができるようになると共に、夜間などの低負荷時には前記第一若しくは第二のモードとすることにより、消費電力を抑制することができるようになるものである。
【0061】
特に、気液分離器内の気液分離温度を−5℃〜+25℃の範囲に設定したので、特に前記第四のモードにおいて、一段圧縮の冷凍装置に比較した場合の成績係数を著しく改善することができるようになるものである。更に、低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1を、0.35±0.1の範囲に設定したので、特に前記第四のモードにおいて、一段圧縮の冷凍装置に比較した成績係数を一層改善し、効率の向上を図ることができるようになるものである。
【0062】
更に、請求項3の発明によれば、電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸引させるための合流器と、この合流器からの冷媒を高段側圧縮手段に吸引させるか、冷却器から出た冷媒を高段側圧縮手段に吸引させるか、更に、高段側圧縮手段へ冷媒を吸引させるか否かを切り換えるための第一切換電磁弁と、低段側圧縮手段から吐出された冷媒を合流器に流入させるか、密閉容器内に流通させるかを切り換えるための第二切換電磁弁と、冷却器から出た冷媒を低段側圧縮手段に吸引させるか否かを制御する第三電磁弁とを備え、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されており、第一切換電磁弁を前記冷却器から出た冷媒が高段側圧縮手段に吸引される状態とし、第三電磁弁を閉じることにより、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、高段側圧縮手段に吸引させる第一のモードと、第一切換電磁弁を高段側圧縮手段に冷媒を吸引させない状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が密閉容器内に流通される状態とし、且つ、第三電磁弁を開くことにより、低段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、低段側圧縮手段に吸引させる第二のモードと、第一切換電磁弁を冷却器から出た冷媒が高段側圧縮手段に吸引される状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が密閉容器内に流通される状態とし、且つ、第三電磁弁を開くことにより、高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、第一切換電磁弁を合流器からの冷媒が高段側圧縮手段に吸引される状態とし、第二切換電磁弁を低段側圧縮手段から吐出された冷媒が合流器に流入する状態とし、且つ、第三電磁弁を開くことにより、高段側圧縮手段から吐出された冷媒を凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を二次膨張手段から冷却器へと流して低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を高段側圧縮手段に吸引させると共に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたので、請求項1の発明同様通常は前記第四のモードとすることにより、一圧縮当たりのトルク変動を抑制しながら、高圧縮比を得ることができるようになると共に、高段側圧縮手段が吸い込むガス冷媒温度を低下させることができるようになり、入力の低減を図ることが可能となる。また、高段側圧縮手段の吐出ガス冷媒温度も低くなるため、潤滑油として例えばエステル油を用いた場合にも、POE問題の発生や潤滑特性の劣化を抑制することができるようになる。
【0063】
そして、気液分離器内の液冷媒を二次膨張手段に流して冷却器にて蒸発させるようにしているので、冷媒循環量に対する冷凍効果を増大させ、効率の向上を図ることが可能となる。また、冷凍装置の据え付け後や冷却器の除霜後のプルダウン時などの高負荷時には前記第三のモードとすることにより、冷凍能力を最大として強力且つ迅速な冷却作用を得る ことができるようになると共に、夜間などの低負荷時には前記第一若しくは第二のモードとすることにより、消費電力を抑制することができるようになるものである。特に、低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、回転軸の対向する位置に設けられた偏心部により両シリンダ内でそれぞれ回転するローラとから構成されているので、第一のモード或いは第二のモードにおいて高段側圧縮手段若しくは低段側圧縮手段のみが冷媒の圧縮を行う運転状況においてもバランス良い運転を行うことができるようになり、振動や騒音も低く抑えることができるようになる。
【0064】
特に、気液分離器内の飽和ガス冷媒を低段側圧縮手段から吐出された冷媒と共に高段側圧縮手段に吸引させるための合流器と、この合流器からの冷媒を高段側圧縮手段に吸引させるか、冷却器から出た冷媒を高段側圧縮手段に吸引させるか、更に、高段側圧縮手段へ冷媒を吸引させるか否かを切り換えるための第一切換電磁弁と、低段側圧縮手段から吐出された冷媒を合流器に流入させるか、密閉容器内に流通させるかを切り換えるための第二切換電磁弁と、冷却器から出た冷媒を低段側圧縮手段に吸引させるか否かを制御する第三電磁弁とを設けているので、前記各モードを支障なく円滑に実現することができるものである。
【図面の簡単な説明】
【図1】本発明の多段圧縮冷凍装置の冷媒回路図である。
【図2】図1の圧縮機の縦断側面図である。
【図3】図1の多段圧縮冷凍装置の第一のモードの冷媒の流れを示す冷媒回路図である。
【図4】図1の多段圧縮冷凍装置の第二のモードの冷媒の流れを示す冷媒回路図である。
【図5】図1の多段圧縮冷凍装置の第三のモードの冷媒の流れを示す冷媒回路図である。
【図6】図1の多段圧縮冷凍装置の第四のモードの冷媒の流れを示す冷媒回路図である。
【図7】第四のモードにおける多段圧縮冷凍装置のモリエル線図である。
【図8】低段側圧縮部と高段側圧縮部の排除容積比と成績係数の関係を示す図である。
【図9】気液分離器における気液分離温度と成績係数の関係を示す図である。
【図10】同じく気液分離器における気液分離温度と成績係数の関係を示すもう一つの図である。
【符号の説明】
C 圧縮機
R 多段圧縮冷凍装置
1 密閉容器
2 電動機
3 圧縮要素
9、10 シリンダ
13、14 ローラ
31 配管
32 合流器
37 凝縮器
38 キャピラリチューブ(一次膨張手段)
39 気液分離器
41 キャピラリチューブ(二次膨張手段)
42 冷却器
44 分岐管
45 第一切換電磁弁
45A 配管
46 第二切換電磁弁
46A 配管
47 電磁弁
51 高段側圧縮部
52 低段側圧縮部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-stage compression refrigeration apparatus that includes a plurality of compression means, and in particular uses a low-stage compression means and a low-stage compression means to compress refrigerant in multiple stages.
[0002]
[Prior art]
Conventional refrigeration devices used for refrigerators and air conditioners include two compression means each composed of a rotary cylinder and a roller that rotates inside, as disclosed in, for example, Japanese Patent Publication No. 7-30743 (F04C23 / 00). Using a rotary type compressor in which the compressor is stored in the same sealed container, each compression means is used as a low-stage compression means and a high-stage compression means. The thing which compresses a refrigerant | coolant multistage by making it suck | inhale to a means is developed.
[0003]
According to such a multistage compression refrigeration apparatus, there is an advantage that a high compression ratio can be obtained while suppressing torque fluctuation per compression.
[0004]
[Problems to be solved by the invention]
In a transitional state such as during pull-down when installing the equipment, improvement in efficiency cannot be expected even if multi-stage compression is performed. Can be realized. On the other hand, it is not necessary to perform multistage compression in low load situations such as at night.
[0005]
The present invention has been made to solve the problems of the related art, and provides a multistage compression refrigeration apparatus capable of selecting an appropriate operation according to a load in a refrigeration cycle having a plurality of compression means. With the goal.
[0006]
[Means for Solving the Problems]
That is, the multistage compression refrigeration apparatus according to the first aspect of the present application is a compressor in which an electric motor, a low-stage compression means and a high-stage compression means driven by a rotating shaft of the electric motor are housed in a sealed container. , A condenser, a primary expansion means, a gas-liquid separator, a secondary expansion means, and a cooler are connected in order to form a refrigeration cycle, and the low-stage compression means and the high-stage compression means are: Each of the cylinders and rollers that rotate in both cylinders by eccentric portions provided at positions opposite to the rotation shaftAnd the ratio D2 / D1 of the excluded volume D1 of the low-stage compression means and the excluded volume D2 of the high-stage compression means is set in a range of 0.35 ± 0.1,A first mode in which the refrigerant discharged from the high-stage side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is sucked by the high-stage side compression means; The second mode in which the refrigerant discharged from the side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler, and is sucked by the low stage compression means, and the high stage compression The refrigerant discharged from each of the means and the low-stage compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is divided into the high-stage compression means and the low-stage compression. A third mode for each of the means to suck, and a refrigerant discharged from the high-stage side compression means flows to the condenser, primary expansion means, and gas-liquid separator, and the liquid refrigerant in the gas-liquid separator is secondary expansion means To the cooler and let it suck into the lower stage compression means. A fourth mode in which the refrigerant discharged from the suction is sucked into the high stage compression means, and the saturated gas refrigerant in the gas-liquid separator is sucked into the high stage compression means together with the refrigerant discharged from the low stage compression means; Can be selectively executed.
[0007]
The multistage compression refrigeration apparatus according to the second aspect of the present invention comprises a low-stage compression means, a high-stage compression means, a condenser, a primary expansion means, a gas-liquid separator, a secondary expansion means, and a cooler connected in an annular fashion. And constitutes a refrigeration cycle,The ratio D2 / D1 of the exclusion volume D1 of the low stage compression means and the exclusion volume D2 of the high stage compression means is set in the range of 0.35 ± 0.1,A first mode in which the refrigerant discharged from the high-stage side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is sucked by the high-stage side compression means; The second mode in which the refrigerant discharged from the side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler, and is sucked by the low stage compression means, and the high stage compression The refrigerant discharged from each of the means and the low-stage compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is divided into the high-stage compression means and the low-stage compression. A third mode for each of the means to suck, and a refrigerant discharged from the high-stage side compression means flows to the condenser, primary expansion means, and gas-liquid separator, and the liquid refrigerant in the gas-liquid separator is secondary expansion means To the cooler and let it suck into the lower stage compression means. A fourth mode in which the refrigerant discharged from the suction is sucked into the high stage compression means, and the saturated gas refrigerant in the gas-liquid separator is sucked into the high stage compression means together with the refrigerant discharged from the low stage compression means; Can be selectively executed, and the gas-liquid separation temperature in the gas-liquid separator is set in the range of -5 ° C to + 25 ° C.
[0008]
The multistage compression refrigeration apparatus of the invention of claim 3Compressor, condenser, primary expansion means, gas-liquid separator, and secondary expansion means in which an electric motor and low-stage compression means and high-stage compression means driven by a rotating shaft of the electric motor are housed in a sealed container And a refrigeration cycle in which the coolers are sequentially connected in an annular shape, and the saturated gas refrigerant in the gas-liquid separator is cooled by being discharged from the low-stage compression means. A merger for sucking together with the medium to the high-stage compression means, and a refrigerant from this merger is sucked into the high-stage compression means, or a refrigerant coming out of the cooler is sucked into the high-stage compression means, Further, a first switching solenoid valve for switching whether or not the refrigerant is sucked into the high-stage compression means and the refrigerant discharged from the low-stage compression means are allowed to flow into the merger or flow into the sealed container. A second switching electromagnetic valve for switching between them and a third electromagnetic valve for controlling whether or not the refrigerant discharged from the cooler is sucked into the low-stage compression means, the low-stage compression means and the high-stage side The compression means is composed of cylinders and rollers that rotate in both cylinders by eccentric portions provided at positions opposite to the rotation shaft, respectively, and the refrigerant that has flowed out of the cooler through the first switching electromagnetic valve. It is in a state of being sucked by the higher stage compression means, By closing the solenoid valve, the refrigerant discharged from the high-stage compression means flows sequentially to the condenser, primary expansion means, gas-liquid separator, secondary expansion means, and cooler, and is sucked by the high-stage compression means. In one mode, the first switching solenoid valve is in a state in which refrigerant is not sucked into the high-stage compression means, and the second switching solenoid valve is in a state in which refrigerant discharged from the low-stage compression means is circulated in the sealed container. And, by opening the third solenoid valve, the refrigerant discharged from the low-stage compression means is sequentially flowed to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler, and the low-stage compression And the second switching solenoid valve is discharged from the low-stage compression means, and the second switching solenoid valve is discharged from the low-stage compression means. Make sure that the refrigerant is in the closed container and open the third solenoid valve. Thus, the refrigerant discharged from the high-stage compression means and the low-stage compression means respectively flows sequentially to the condenser, primary expansion means, gas-liquid separator, secondary expansion means, and cooler, and is divided into high stages. The third mode in which the compression means and the low-stage compression means are respectively sucked, and the first switching solenoid valve is in a state in which the refrigerant from the merger is sucked by the high-stage compression means, and the second switching solenoid valve is in the low-stage The refrigerant discharged from the side compression means flows into the merger, and the third solenoid valve is opened so that the refrigerant discharged from the higher stage compression means is condensed, condenser, primary expansion means, and gas-liquid separator. And the liquid refrigerant in the gas-liquid separator flows from the secondary expansion means to the cooler and is sucked into the low-stage compression means, and the refrigerant discharged from the low-stage compression means is compressed into the high stage And the saturated gas refrigerant in the gas-liquid separator is The fourth mode in which the refrigerant discharged from the stage is sucked into the high stage side compression means can be selectively executed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a multistage compression refrigeration apparatus R of the present invention, and FIG. 2 is a longitudinal side view of a rotary compressor C applied to the present invention. The refrigerant circuit of the multistage compression refrigeration apparatus R of the present invention is configured to be able to operate in a first mode M1, a second mode M2, a third mode M3, and a fourth mode M4, which will be described later. In the following description, reference numeral 1 denotes an airtight container, in which an electric motor (brushless DC motor) 2 is housed on the upper side, and a compression element 3 that is rotationally driven by the electric motor 2 is housed on the lower side. The sealed container 1 is sealed by high frequency welding or the like after the electric motor 2 and the compression element 3 are accommodated in one divided in advance.
[0010]
The electric motor 2 includes a stator 4 fixed to the inner wall of the hermetic container 1 and a rotor 5 supported inside the stator 4 so as to be rotatable about a rotation shaft 6. The stator 4 includes a stator winding 7 that applies a rotating magnetic field to the rotor 5. W1 and W2 are balance weights attached to the upper surface and the lower surface of the rotor 5, respectively.
[0011]
The compression element 3 includes a first rotary cylinder 9 and a second rotary cylinder 10 partitioned by an intermediate partition plate 8. Eccentric portions 11 and 12 that are rotationally driven by the rotary shaft 6 are attached to the cylinders 9 and 10, and the eccentric portions 11 and 12 are positions where the eccentric positions are shifted from each other by 180 degrees (ie, rotation It is provided at a position facing the shaft 6.
[0012]
Reference numerals 13 and 14 denote a first roller and a second roller that rotate in the cylinders 9 and 10, respectively, and rotate in the cylinder by the rotation of the eccentric portions 11 and 12, respectively. Reference numerals 15 and 16 denote a first frame body and a second frame body, respectively. The first frame body 15 forms a compression space in which the cylinder 9 is closed between the first partition body 8 and the second frame body. Similarly, a compression space 16 is closed between the intermediate partition plate 8 and the cylinder 10. The first frame body 15 and the second frame body 16 include bearing portions 17 and 18 that rotatably support the lower portion of the rotation shaft 6, respectively.
[0013]
The upper cylinder 9, the eccentric portion 11, the roller 13, and a vane (not shown) that divides the inside of the cylinder 9 into a high pressure chamber and a low pressure chamber constitute a high stage compression section 51 (high stage compression means). The lower cylinder 10, the eccentric portion 12, the roller 14, and a vane (not shown) that divides the inside of the cylinder 10 into a high pressure chamber and a low pressure chamber constitute a low-stage compression section 52 (low-stage compression means). Is done.
[0014]
Further, assuming that the exclusion volume of the low-stage compression unit 52 is D1, and the exclusion volume of the high-stage compression unit 51 is D2, the exclusion volume ratio D2 / D1 is set in a range of 0.35 ± 0.1. ing.
[0015]
Reference numeral 19 denotes a discharge muffler, which is attached so as to cover the first frame 15. The cylinder 9 and the discharge muffler 19 are communicated with each other through a discharge hole (not shown) provided in the first frame 15.
[0016]
On the other hand, a recess 21 is provided in the second frame 16, and the recess 21 is closed by a lid 26. The lid 26 is fixed to the cylinder 10 integrally with the second frame 16 with a bolt 27, thereby forming an expansion silencer 28 inside. The second frame 16 is provided with a discharge port 29 that allows the cylinder 10 and the recess 21 to communicate with each other.
[0017]
The second frame 16 is located at the lowermost part in the sealed container 1, and the periphery thereof is an oil reservoir 30 in which lubricating oil is stored. As a result, the periphery of the second frame 16 is filled with lubricating oil, so there is no risk of the high-pressure gas in the sealed container 1 leaking into the expansion silencer 28, and the performance due to the reduced refrigerant circulation rate. Can be prevented.
[0018]
The discharge port 29 communicates with a pipe 31 drawn out of the hermetic container 1, and this pipe 31 is inserted from above into a merger 32 that is also provided outside the hermetic container 1. It is open. The outlet pipe 32 </ b> A at the lower end of the merger 32 is connected to the suction pipe 23 connected to the cylinder 9.
[0019]
On the other hand, 22 is a discharge pipe provided on the airtight container 1, and 24 is a suction pipe connected to the cylinder 10. Reference numeral 25 denotes a hermetic terminal for supplying electric power from the outside of the hermetic container 1 to the stator winding 7 of the stator 4 (the lead wire connecting the hermetic terminal 25 and the stator winding 7 is not shown). )
[0020]
Next, in the refrigerant circuit of FIG. 1, the discharge pipe 22 of the compressor C constituting the refrigeration apparatus R is connected to the inlet of the condenser 37 through the pipe 36, and the outlet of the condenser 37 is a primary expansion means. The capillary tube 38 is connected. An upper portion of the gas-liquid separator 39 is connected to the outlet of the capillary tube 38, and a capillary tube 41 as a secondary expansion means is connected to the lower end of the gas-liquid separator 39.
[0021]
A cooler 42 is connected to the outlet of the capillary tube 41, and a pipe 43 connected to the outlet of the cooler 42 is communicated with the suction pipe 24 of the compressor C. Further, a branch pipe 44 is connected to the upper portion of the gas-liquid separator 39, and this branch pipe 44 is inserted into the merger 32 from above and opened inside.
[0022]
Further, a first switching electromagnetic valve 45 is provided in the merger 32, and this first switching electromagnetic valve 45 is interposed in front of the outlet pipe 32A. The first switching solenoid valve 45 is connected to a pipe 45A branched from the pipe 43.
[0023]
Further, a second switching electromagnetic valve 46 is interposed in the pipe 31, and a pipe 46 </ b> A connected to the second switching electromagnetic valve 46 is open to communicate with the sealed container 1. In addition, the pipe 43 downstream of the branch point with the pipe 45A hasAs a third solenoid valveAn electromagnetic valve 47 is interposed. A predetermined amount of HFC refrigerant such as R-134a or HC refrigerant is sealed in the refrigerant circuit of the multistage compression refrigeration apparatus R, and ester oil, ether oil, HAB oil, mineral oil, or the like is used as the lubricating oil. In the examples, R-134a is used as the refrigerant, and ester oil is used as the lubricating oil.
[0024]
The first switching electromagnetic valve 45 is configured so that the refrigerant from the merger 32 can be circulated and stopped from the suction pipe 23 to the high-stage compression unit 51 by the switching operation, and the refrigerant exiting the cooler 42 by the switching operation. Is configured to be able to circulate / stop from the suction pipe 23 to the high-stage compression section 51 via the pipe 45A. Further, the first switching electromagnetic valve 45 is configured to be able to simultaneously stop the refrigerant from the merger 32 and the refrigerant from the cooler 42 by a switching operation.
[0025]
The second switching solenoid valve 46 is configured so that the refrigerant discharged from the low-stage compression unit 52 by the switching operation can be circulated and stopped from the pipe 31 to the merger 32, and the low-stage compression unit by the switching operation. The refrigerant discharged from 52 can be circulated and stopped in the sealed container 1 through the pipe 46A.
[0026]
The first mode M1, the second mode M2, the third mode M3, and the fourth mode M4 will be described in the refrigerant circuit having such a configuration. First, in the first mode M1, the first switching electromagnetic valve 45 is configured to stop the inflow of the refrigerant from the merger 32 and to circulate the refrigerant from the cooler 42 to the high-stage compression unit 51 via the pipe 45A. ing. Further, the electromagnetic valve 47 is closed to stop the refrigerant from flowing from the cooler 42 to the low-stage compression unit 52 side (FIG. 3).
[0027]
In the second mode M2, the electromagnetic valve 47 is opened to allow the refrigerant to flow from the cooler 42 to the suction pipe 24 side, and the second switching electromagnetic valve 46 is joined to the refrigerant discharged from the low-stage compression unit 52. The refrigerant is stopped from flowing into the vessel 32 and the refrigerant discharged from the low-stage compression section 52 is circulated into the sealed container 1 through the pipe 46A. Further, the first switching electromagnetic valve 45 is closed to stop the inflow of the refrigerant from the merger 32 and stop the inflow of the refrigerant from the pipe 45A (FIG. 4).
[0028]
Further, in the third mode M3, the first switching solenoid valve 45 stops the inflow of the refrigerant from the merger 32, distributes the refrigerant from the cooler 42 to the high-stage compression unit 51 via the pipe 45A, and electromagnetically The valve 47 is opened to allow the refrigerant from the cooler 42 to flow from the suction pipe 24 to the low-stage compression unit 52. Further, the second switching electromagnetic valve 46 is configured to stop the refrigerant discharged from the low-stage compression unit 52 from flowing into the merger 32 and to flow into the sealed container 1 (FIG. 5).
[0029]
Further, in the fourth mode M4, the electromagnetic valve 47 is opened to allow the refrigerant from the cooler 42 to flow from the suction pipe 24 to the low-stage side compression unit 52, and the second switching electromagnetic valve 46 is connected to the low-stage side compression unit 52. The refrigerant discharged from the refrigerant is circulated to the merger 32 via the pipe 31. Further, the first switching electromagnetic valve 45 stops the inflow of the refrigerant from the pipe 45A, and circulates the refrigerant from the merger 32 to the high stage compression unit 51 (FIG. 6).
[0030]
Next, the operation of each mode M1, M2, M3, and M4 with the above configuration will be described. When the electric motor 2 is driven in the first mode M1, the gas refrigerant compressed by the high-stage compression unit 51 is discharged from the discharge hole to the discharge muffler 19, and is discharged from the discharge muffler 19 into the sealed container 1. . The compressed gas refrigerant discharged in the sealed container 1 is discharged from the discharge pipe 22 to the pipe 36 and flows into the condenser 37. Then, after being dissipated and condensed, the pressure is reduced in the capillary tube 38 and flows into the gas-liquid separator 39.
[0031]
Then, only the liquid refrigerant flows out of the gas-liquid separator 39 into the capillary tube 41, where it is decompressed, and then flows into the cooler 42 to evaporate and exhibit a cooling action. The low-temperature refrigerant that has exited the cooler 42 passes through the first switching electromagnetic valve 45 through the pipe 43 and the pipe 45 </ b> A, and is sucked into the high-stage compression unit 51 from the suction pipe 23.
[0032]
That is, in the first mode M1, the cooling operation is performed only by the high stage compression section 51 without using the low stage compression section 52. This makes it possible to reduce power consumption by reducing the cooling capacity at night or when the outside air temperature is low.
[0033]
In addition, when the electric motor 2 is driven in the second mode M2, the gas refrigerant compressed by the low-stage compression unit 52 reaches the pipe 46A from the second switching electromagnetic valve 46 and is discharged into the sealed container 1. The compressed gas refrigerant discharged in the sealed container 1 is discharged from the discharge pipe 22 to the pipe 36 and flows into the condenser 37. Then, after being dissipated and condensed, the pressure is reduced in the capillary tube 38 and flows into the gas-liquid separator 39.
[0034]
As described above, only the liquid refrigerant flows out from the gas-liquid separator 39 into the capillary tube 41, where it is decompressed, flows into the cooler 42, evaporates, and exhibits a cooling action. And the low-temperature refrigerant | coolant which came out of the cooler 42 passes through the piping 43 and the electromagnetic valve 47, and is suck | inhaled again from the suction pipe 24 to the low stage compression part 52. FIG.
[0035]
That is, in the second mode M2, the cooling operation is performed only by the low-stage compression section 52 without using the high-stage compression section 51. As a result, as in the first mode M1, at night or when the outside air temperature is low, it is possible to reduce power consumption by reducing the cooling capacity.
[0036]
Further, when the electric motor 2 is driven in the third mode M3, the gas refrigerant compressed by the low-stage compression unit 52 is discharged from the second switching electromagnetic valve 46 into the sealed container 1 through the pipe 46A. On the other hand, the gas refrigerant compressed by the high-stage compression unit 51 is also discharged from the discharge hole to the discharge muffler 19 and is discharged from the discharge muffler 19 into the sealed container 1.
[0037]
The compressed gas refrigerant discharged in the sealed container 1 is discharged from the discharge pipe 22 to the pipe 36 and flows into the condenser 37. Then, after being dissipated and condensed, the pressure is reduced in the capillary tube 38 and flows into the gas-liquid separator 39.
[0038]
As described above, only the liquid refrigerant flows out from the gas-liquid separator 39 into the capillary tube 41, where it is decompressed, flows into the cooler 42, evaporates, and exhibits a cooling action. And the low temperature refrigerant | coolant which came out of the cooler 42 is shunted, and one side is again suck | inhaled by the low stage side compression part 52 from the suction pipe 24 through the piping 43 and the solenoid valve 47. FIG.
[0039]
The other of the low-temperature refrigerant that has exited the cooler 42 passes through the first switching electromagnetic valve 45 through the pipe 45 </ b> A and is sucked into the high-stage compression unit 51 from the suction pipe 23. The refrigerant discharged from the high-stage compression section 51 is compressed in the closed container 1 and the compressed gas refrigerant of the low-stage compression section 52 discharged into the sealed container 1 from the pipe 46A via the second switching electromagnetic valve 46. It merges and is discharged from the discharge pipe 22 to the pipe 36 again.
[0040]
That is, in the third mode M3, the low-stage compression unit 52 and the high-stage compression unit 51 are operated in parallel. As a result, the displacement volume is increased and the cooling capacity is maximized at the time of pull-down, high load such as in the daytime or when the outside air temperature is high.
[0041]
When the electric motor 2 is driven in the fourth mode M4, the low-stage compression unit 52 sucks and compresses the refrigerant from the suction pipe 24 (single-stage compression), and passes through the second switching electromagnetic valve 46 to the pipe 31. Discharge. The one-stage compressed gas refrigerant discharged to the pipe 31 is sucked from the suction pipe 23 to the high-stage compression unit 51 through the merger 32 and the first switching electromagnetic valve 45.
[0042]
Therefore, the compressed two-stage compressed gas refrigerant is discharged into the sealed container 1 through the discharge hole. The two-stage compressed gas refrigerant discharged in the sealed container 1 is discharged from the discharge pipe 22 to the pipe 36. Then, it flows into the condenser 37, where it dissipates heat and is condensed, and then is decompressed by the capillary tube 38 and flows into the gas-liquid separator 39. Note that the amount of restriction of the capillary tube 38 is selected so that the temperature of the saturated gas refrigerant at this time, that is, the gas-liquid separation temperature, is in the range of −5 ° C. to + 25 ° C.
[0043]
As described above, only the liquid refrigerant flows out of the gas-liquid separator 39 into the capillary tube 41, where it is decompressed, flows into the cooler 42, evaporates, and exhibits a cooling action. Then, the low-temperature gas refrigerant exiting the cooler 42 is sucked again into the low-stage compression unit 52 from the suction pipe 24 through the pipe 43 and the electromagnetic valve 47.
[0044]
The saturated gas refrigerant in the upper part of the gas-liquid separator 39 flows out into the branch pipe 44 and flows into the merger 32 through the branch pipe 44. Therefore, after joining with the one-stage compressed gas refrigerant discharged from the low-stage compression section 52, both are sucked from the suction pipe 23 to the high-stage compression section 51 through the first switching electromagnetic valve 45 and compressed. That is, in the fourth mode M4, the discharged refrigerant compressed by the low-stage compression unit 52 is compressed again by the high-stage compression unit 51, and a high compression ratio is obtained while suppressing torque fluctuation per compression. It is supposed to be.
[0045]
Note that the amount of restriction of the capillary tube 38 is selected so that the temperature of the saturated gas refrigerant at this time, that is, the gas-liquid separation temperature, is in the range of −5 ° C. to + 25 ° C.
[0046]
Then, only the liquid refrigerant flows out from the gas-liquid separator 39 in the direction of the capillary tube 41, where it is decompressed and flows into the cooler 42 and evaporates. At this time, the cooler 42 exhibits a cooling action by removing heat from the surroundings. Then, the low-temperature gas refrigerant that has exited the cooler 42 returns to the compressor C via the pipe 43 and is sucked into the low-stage compression unit 52 again from the suction pipe 24.
[0047]
The saturated gas refrigerant in the upper part of the gas-liquid separator 39 flows out into the branch pipe 44 and flows into the merger 32 through the branch pipe 44. Therefore, after joining with the one-stage compressed gas refrigerant discharged from the low-stage compression section 52, both are sucked into the high-stage compression section 51 from the suction pipe 23 and compressed again. In other words, by compressing the discharged refrigerant compressed by the low-stage compression unit 52 again by the high-stage compression unit 51, a high compression ratio can be obtained while suppressing torque fluctuation per compression. This is an ordinary multistage compression refrigeration apparatus R.
[0048]
The multi-stage compression refrigeration apparatus R includes a low-stage compression unit 52, a high-stage compression unit 51, a condenser 37, a capillary tube 38, a gas-liquid separator 39, a capillary tube 41, and a cooler 42 that are sequentially annular. Since the refrigeration cycle is configured to be connected and the saturated gas refrigerant in the gas-liquid separator 39 is sucked into the high-stage compression section 51 together with the refrigerant discharged from the low-stage compression section 52, the high-stage side The temperature of the gas refrigerant sucked by the compression unit 51 can be lowered, and the input is reduced. Moreover, since the temperature of the discharge gas refrigerant of the high-stage side compression unit 51 is lowered, even when ester oil is used as the lubricating oil, occurrence of POE problems and deterioration of the lubricating characteristics are suppressed.
[0049]
Further, since the liquid refrigerant in the gas-liquid separator 39 flows into the capillary tube 41 and is evaporated by the cooler 42, the refrigeration effect on the refrigerant circulation amount increases, and the efficiency as shown in the Mollier diagram of FIG. It is possible to improve.
[0050]
Here, FIG. 8 shows the relationship between the ratio D2 / D1 of the excluded volume D1 of the low-stage compression section 52 and the excluded volume D2 of the high-stage compression section 51 and the coefficient of performance, and the coefficient of performance is the excluded volume ratio D2 / The peak-like characteristics having a peak near 30% (0.3) of D1 are also apparent from this figure.
[0051]
Next, when the amount of restriction of the capillary tube 38 is changed to change the gas-liquid separation temperature in the gas-liquid separator 39, the peak values of the curve of FIG. 8 at each gas-liquid separation temperature are connected as shown in FIG. 9 or 10 as shown in FIG.
[0052]
That is, based on the relationship between the gas-liquid separation temperature and the coefficient of performance in the gas-liquid separator 39 shown in FIG. 9 or 10, the gas-liquid separation temperature in the gas-liquid separator 39 is in the range of −5 ° C. to + 25 ° C. If it is set to, the coefficient of performance is remarkably improved as compared with the case of the one-stage compression refrigeration apparatus shown at the bottom of FIG.
[0053]
As described above, the operation of the multistage compression refrigeration apparatus R is configured to be switched to the first mode M1, the second mode M2, the third mode M3, and the fourth mode M4. When the load is low, such as when the power is low, the power consumption can be suppressed by setting the first mode M1 or the second mode M2.
[0054]
In addition, when the multistage compression refrigeration apparatus R is installed or when the load is high, such as when the cooler 42 is defrosted, during the high load, the third mode M3 is used to maximize the refrigeration capacity and perform strong and quick cooling. Is possible. Furthermore, by setting the fourth mode M4 to the normal operation, a high compression ratio can be obtained while suppressing torque fluctuation per compression, so that the temperature of the gas refrigerant sucked by the high stage compression unit 51 is lowered. Thus, it is possible to reduce the input, further improve the coefficient of performance compared with the one-stage compression refrigeration apparatus, and improve the efficiency.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, a compressor, a condenser, and a primary expansion unit that contain an electric motor and a low-stage compression means and a high-stage compression means driven by the rotation shaft of the electric motor in a sealed container. In the multistage compression refrigeration system comprising a refrigeration cycle by sequentially connecting the means, the gas-liquid separator, the secondary expansion means, and the cooler, the low-stage compression means and the high-stage compression means are respectively a cylinder and a rotation. From rollers that rotate in both cylinders by eccentric parts provided at opposite positions of the shaftAnd the ratio D2 / D1 of the excluded volume D1 of the low-stage compression means and the excluded volume D2 of the high-stage compression means is set in a range of 0.35 ± 0.1,A first mode in which the refrigerant discharged from the high-stage side compression means flows sequentially to the condenser, primary expansion means, gas-liquid separator, secondary expansion means, and cooler, and is sucked by the high-stage side compression means; The second mode in which the refrigerant discharged from the side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler, and is sucked by the low stage compression means, and the high stage compression The refrigerant discharged from each of the means and the low-stage compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is divided into the high-stage compression means and the low-stage compression. A third mode for each of the means to suck, and a refrigerant discharged from the high-stage side compression means flows to the condenser, primary expansion means, and gas-liquid separator, and the liquid refrigerant in the gas-liquid separator is secondary expansion means To the cooler and let it suck into the lower stage compression means. A fourth mode in which the refrigerant discharged from the suction is sucked into the high stage compression means, and the saturated gas refrigerant in the gas-liquid separator is sucked into the high stage compression means together with the refrigerant discharged from the low stage compression means; Therefore, it is possible to obtain a high compression ratio while suppressing torque fluctuation per compression and to achieve high-stage compression. The temperature of the gas refrigerant sucked by the means can be lowered, and the input can be reduced. In addition, since the temperature of the discharge gas refrigerant of the high-stage compression unit is lowered, even when ester oil is used as the lubricating oil, it is possible to suppress the occurrence of the POE problem and the deterioration of the lubricating characteristics.
[0056]
Since the liquid refrigerant in the gas-liquid separator flows into the secondary expansion means and is evaporated by the cooler, it is possible to increase the refrigeration effect on the refrigerant circulation amount and improve the efficiency. .
[0057]
In addition, by setting the third mode at the time of high load such as pull-down after installing the refrigeration system or after defrosting the cooler, it is possible to obtain a powerful and quick cooling action with the maximum refrigeration capacity. In addition, when the load is low such as at night, the power consumption can be suppressed by setting the first or second mode. In particular, the low-stage compression means and the high-stage compression means are each composed of a cylinder and a roller that rotates in both cylinders by eccentric portions provided at positions opposite to the rotation shaft. In this mode or the second mode, it becomes possible to perform a balanced operation even in an operation situation where only the high-stage compression means or the low-stage compression means compresses the refrigerant, and vibration and noise can be kept low. become able to.Furthermore, since the ratio D2 / D1 between the exclusion volume D1 of the low-stage compression means and the exclusion volume D2 of the high-stage compression means is set in the range of 0.35 ± 0.1, particularly in the fourth mode, The coefficient of performance compared with a single-stage compression refrigeration system can be further improved, and the efficiency can be improved.
[0058]
According to the second aspect of the present invention, the low-stage compression means, the high-stage compression means, the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler are sequentially connected in an annular manner to perform the refrigeration cycle. In the configured multistage compression refrigeration system,The ratio D2 / D1 of the exclusion volume D1 of the low stage compression means and the exclusion volume D2 of the high stage compression means is set in the range of 0.35 ± 0.1,A first mode in which the refrigerant discharged from the high-stage side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is sucked by the high-stage side compression means; The second mode in which the refrigerant discharged from the side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler, and is sucked by the low stage compression means, and the high stage compression The refrigerant discharged from each of the compressor and the low-stage compression means flows sequentially to the condenser, primary expansion means, gas-liquid separator, secondary expansion means and cooler, and is divided into high-stage compression means and low-stage compression. A third mode in which each means is sucked, and the refrigerant discharged from the high-stage side compression means flows to the condenser, primary expansion means, and gas-liquid separator, and the liquid refrigerant in the gas-liquid separator is secondary expansion means From the air to the cooler and sucked by the low-stage compression means, and further the low-stage compression hand A fourth mode in which the high-stage compression unit sucks the refrigerant discharged from the high-stage side compression unit and sucks the saturated gas refrigerant in the gas-liquid separator into the high-stage side compression unit together with the refrigerant discharged from the low-stage side compression unit; Therefore, it is possible to obtain a high compression ratio while suppressing torque fluctuation per one compression and to achieve high-stage compression. The temperature of the gas refrigerant sucked by the means can be lowered, and the input can be reduced. In addition, since the temperature of the discharge gas refrigerant of the high-stage compression unit is also lowered, it is possible to suppress the occurrence of POE problems and the deterioration of the lubricating characteristics even when, for example, ester oil is used as the lubricating oil.
[0059]
Since the liquid refrigerant in the gas-liquid separator flows into the secondary expansion means and is evaporated by the cooler, it is possible to increase the refrigeration effect on the refrigerant circulation amount and improve the efficiency. .
[0060]
In addition, by setting the third mode at the time of high load such as pull-down after installing the refrigeration system or after defrosting the cooler, it is possible to obtain a powerful and quick cooling action with the maximum refrigeration capacity. In addition, when the load is low such as at night, the power consumption can be suppressed by setting the first or second mode.
[0061]
In particular, since the gas-liquid separation temperature in the gas-liquid separator is set in the range of −5 ° C. to + 25 ° C., particularly in the fourth mode, the coefficient of performance when compared with the single-stage compression refrigeration apparatus is remarkably improved. It will be able to be.Furthermore, since the ratio D2 / D1 between the exclusion volume D1 of the low-stage compression means and the exclusion volume D2 of the high-stage compression means is set in the range of 0.35 ± 0.1, particularly in the fourth mode, The coefficient of performance compared with a single-stage compression refrigeration system can be further improved, and the efficiency can be improved.
[0062]
Furthermore, according to the invention of claim 3, A compressor, a condenser, a primary expansion means, a gas-liquid separator, and a secondary expansion, which are housed in a hermetic container with a motor and a low-stage compression means and a high-stage compression means driven by the rotating shaft of the motor In a multi-stage compression refrigeration system in which a refrigeration cycle is configured by sequentially connecting means and a cooler in an annular manner, the saturated gas refrigerant in the gas-liquid separator is sucked into the high stage compression means together with the refrigerant discharged from the low stage compression means And the refrigerant from the merger is sucked into the high-stage compression means, the refrigerant discharged from the cooler is sucked into the high-stage compression means, or the refrigerant is sent to the high-stage compression means A first switching solenoid valve for switching whether or not to suck the refrigerant, and a second switching solenoid for switching whether the refrigerant discharged from the low-stage compression means flows into the merger or flows into the sealed container The refrigerant from the valve and cooler And a third solenoid valve for controlling whether or not the suction is performed by each of the cylinders. The low-stage compression means and the high-stage compression means are both cylinders by means of a cylinder and an eccentric portion provided at a position facing the rotation shaft. The first switching electromagnetic valve is in a state where the refrigerant discharged from the cooler is sucked into the high-stage compression means, and the third electromagnetic valve is closed to A first mode in which the refrigerant discharged from the side compression means flows sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler and is sucked by the high stage compression means; The valve is set in a state in which the high-stage compression means does not suck the refrigerant, the second switching electromagnetic valve is set in a state in which the refrigerant discharged from the low-stage compression means is circulated in the sealed container, and the third electromagnetic valve is opened. Was discharged from the lower stage compression means. The second mode in which the medium is sequentially flowed to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler, and is sucked by the low-stage compression means, and the first switching solenoid valve exited from the cooler. The refrigerant is sucked into the high-stage compression means, the second switching solenoid valve is put into a state where the refrigerant discharged from the low-stage compression means is circulated in the sealed container, and the third solenoid valve is opened. Thus, the refrigerant discharged from the high-stage compression means and the low-stage compression means respectively flows to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler sequentially, and is divided into high-stage compression. A third mode in which the compressor and the low-stage compression means are respectively sucked, and the first switching solenoid valve is in a state in which the refrigerant from the merger is sucked by the high-stage compression means, and the second switching solenoid valve is placed on the low-stage side The refrigerant discharged from the compression means is in a state of flowing into the merger, and the third solenoid valve is By opening, the refrigerant discharged from the high-stage compression means flows to the condenser, the primary expansion means, and the gas-liquid separator, and the liquid refrigerant in the gas-liquid separator flows from the secondary expansion means to the cooler. The low-stage compression means sucks the refrigerant discharged from the low-stage compression means into the high-stage compression means, and the saturated gas refrigerant in the gas-liquid separator is discharged from the low-stage compression means. Since the fourth mode in which the refrigerant is sucked into the high-stage compression means together with the refrigerant can be selectively executed, the torque fluctuation per one compression is normally made by using the fourth mode as in the first aspect of the invention. As a result, it becomes possible to obtain a high compression ratio and to reduce the temperature of the gas refrigerant sucked in by the high-stage compression means, thereby making it possible to reduce the input. In addition, since the temperature of the discharge gas refrigerant of the high-stage compression unit is lowered, even when ester oil is used as the lubricating oil, it is possible to suppress the occurrence of the POE problem and the deterioration of the lubricating characteristics.
[0063]
Since the liquid refrigerant in the gas-liquid separator flows into the secondary expansion means and is evaporated by the cooler, it is possible to increase the refrigeration effect on the refrigerant circulation amount and improve the efficiency. . In addition, when the load is high, such as during pull-down after installing the refrigeration system or after defrosting the cooler, the third mode is used to obtain a strong and quick cooling action with the maximum refrigeration capacity. In addition, the power consumption can be suppressed by setting the first or second mode at low load such as at night. In particular, the low-stage compression means and the high-stage compression means are each composed of a cylinder and a roller that rotates in both cylinders by eccentric portions provided at positions opposite to the rotation shaft. In this mode or the second mode, it becomes possible to perform a balanced operation even in an operation situation where only the high-stage compression means or the low-stage compression means compresses the refrigerant, and vibration and noise can be kept low. become able to.
[0064]
In particular, a merging device for sucking the saturated gas refrigerant in the gas-liquid separator together with the refrigerant discharged from the low-stage compression unit into the high-stage compression unit, and the refrigerant from the merger to the high-stage compression unit A first switching solenoid valve for switching whether to suck or to suck the refrigerant discharged from the cooler into the high-stage compression means, or to suck the refrigerant into the high-stage compression means, and the low-stage side A second switching solenoid valve for switching whether the refrigerant discharged from the compressing means flows into the merger or flows into the sealed container, and whether the low-stage compressing means sucks the refrigerant discharged from the cooler Since the third solenoid valve for controlling the above is provided, each of the modes can be smoothly realized without any trouble.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a multistage compression refrigeration apparatus of the present invention.
FIG. 2 is a longitudinal side view of the compressor of FIG. 1;
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow in a first mode of the multistage compression refrigeration apparatus of FIG. 1;
4 is a refrigerant circuit diagram showing a refrigerant flow in a second mode of the multistage compression refrigeration apparatus of FIG. 1. FIG.
FIG. 5 is a refrigerant circuit diagram showing a third mode refrigerant flow of the multistage compression refrigeration apparatus of FIG. 1;
6 is a refrigerant circuit diagram illustrating a refrigerant flow in a fourth mode of the multistage compression refrigeration apparatus of FIG. 1. FIG.
FIG. 7 is a Mollier diagram of the multistage compression refrigeration apparatus in the fourth mode.
FIG. 8 is a diagram showing the relationship between the excluded volume ratio and the coefficient of performance of the low-stage compression section and the high-stage compression section.
FIG. 9 is a diagram showing the relationship between the gas-liquid separation temperature and the coefficient of performance in the gas-liquid separator.
FIG. 10 is another diagram showing the relationship between the gas-liquid separation temperature and the coefficient of performance in the same gas-liquid separator.
[Explanation of symbols]
C compressor
R Multistage compression refrigeration equipment
1 Airtight container
2 Electric motor
3 compression elements
9, 10 cylinder
13, 14 Roller
31 Piping
32 Merger
37 Condenser
38 Capillary tube (primary expansion means)
39 Gas-liquid separator
41 Capillary tube (secondary expansion means)
42 Cooler
44 branch pipe
45 First switching solenoid valve
45A piping
46 Second switching solenoid valve
46A piping
47 Solenoid valve
51 High-stage compression section
52 Low stage compression section

Claims (3)

電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、
前記低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、前記回転軸の対向する位置に設けられた偏心部により前記両シリンダ内でそれぞれ回転するローラとから構成されると共に、前記低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1は、0.35±0.1の範囲に設定され、
前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記高段側圧縮手段に吸引させる第一のモードと、前記低段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記低段側圧縮手段に吸引させる第二のモードと、前記高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して前記高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を前記二次膨張手段から前記冷却器へと流して前記低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を前記高段側圧縮手段に吸引させると共に、前記気液分離器内の飽和ガス冷媒を前記低段側圧縮手段から吐出された冷媒と共に前記高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたことを特徴とする多段圧縮冷凍装置。
Compressor, condenser, primary expansion means, gas-liquid separator, and secondary expansion means in which an electric motor and low-stage compression means and high-stage compression means driven by a rotating shaft of the electric motor are housed in a sealed container And a multi-stage compression refrigeration apparatus in which a refrigeration cycle is configured by sequentially connecting the coolers in a ring shape,
The low-stage compression means and the high-stage compression means are each composed of a cylinder and rollers that rotate in the cylinders by eccentric portions provided at positions opposite to the rotation shaft, respectively. The ratio D2 / D1 between the displacement volume D1 of the stage-side compression means and the displacement volume D2 of the high-stage compression means is set in the range of 0.35 ± 0.1,
A first mode in which the refrigerant discharged from the high-stage compression means is sequentially flowed to the condenser, primary expansion means, gas-liquid separator, secondary expansion means and cooler, and is sucked by the high-stage compression means; The second mode in which the refrigerant discharged from the low-stage compression means is sequentially flowed to the condenser, primary expansion means, gas-liquid separator, secondary expansion means, and cooler, and is sucked by the low-stage compression means And the refrigerant discharged from the high-stage compression means and the low-stage compression means respectively flow sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler. A third mode in which the stage-side compression unit and the low-stage side compression unit respectively suck the refrigerant, and the refrigerant discharged from the high-stage side compression unit flows to the condenser, the primary expansion unit, and the gas-liquid separator; Liquid refrigerant in the separator is transferred from the secondary expansion means to the cooler. Then, the low-stage side compression unit sucks the refrigerant discharged from the low-stage side compression unit, and the high-stage side compression unit sucks the saturated gas refrigerant in the gas-liquid separator. A multi-stage compression refrigeration apparatus, wherein the fourth mode in which the high-stage compression means is sucked together with the refrigerant discharged from the side compression means can be selectively executed.
低段側圧縮手段、高段側圧縮手段、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、
前記低段側圧縮手段の排除容積D1と高段側圧縮手段の排除容積D2の比D2/D1を、0.35±0.1の範囲に設定し、
前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記高段側圧縮手段に吸引させる第一のモードと、前記低段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記低段側圧縮手段に吸引させる第二のモードと、前記高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して前記高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を前記二次膨張手段から前記冷却器へと流して前記低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を前記高段側圧縮手段に吸引させると共に、前記気液分離器内の飽和ガス冷媒を前記低段側圧縮手段から吐出された冷媒と共に前記高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能とし、且つ、気液分離器内の気液分離温度を−5℃〜+25℃の範囲に設定したことを特徴とする多段圧縮冷凍装置。
In a multi-stage compression refrigeration apparatus in which a low-stage compression means, a high-stage compression means, a condenser, a primary expansion means, a gas-liquid separator, a secondary expansion means, and a cooler are sequentially connected in an annular manner to constitute a refrigeration cycle.
The ratio D2 / D1 of the exclusion volume D1 of the low-stage compression means and the exclusion volume D2 of the high-stage compression means is set in a range of 0.35 ± 0.1,
A first mode in which the refrigerant discharged from the high-stage compression means is sequentially flowed to the condenser, primary expansion means, gas-liquid separator, secondary expansion means and cooler, and is sucked by the high-stage compression means; The second mode in which the refrigerant discharged from the low-stage compression means is sequentially flowed to the condenser, primary expansion means, gas-liquid separator, secondary expansion means, and cooler, and is sucked by the low-stage compression means And the refrigerant discharged from the high-stage compression means and the low-stage compression means respectively flow sequentially to the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means, and the cooler. A third mode in which the stage-side compression unit and the low-stage side compression unit respectively suck the refrigerant, and the refrigerant discharged from the high-stage side compression unit flows to the condenser, the primary expansion unit, and the gas-liquid separator; Liquid refrigerant in the separator is transferred from the secondary expansion means to the cooler. Then, the low-stage side compression unit sucks the refrigerant discharged from the low-stage side compression unit, and the high-stage side compression unit sucks the saturated gas refrigerant in the gas-liquid separator. The fourth mode in which the high-stage compression means is sucked together with the refrigerant discharged from the side compression means can be selectively executed, and the gas-liquid separation temperature in the gas-liquid separator is set to −5 ° C. to + 25 ° C. A multi-stage compression refrigeration apparatus characterized by being set in a range of
電動機と該電動機の回転軸により駆動される低段側圧縮手段及び高段側圧縮手段を密閉容器内に収納して成る圧縮機、凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器を順次環状に接続して冷凍サイクルを構成した多段圧縮冷凍装置において、Compressor, condenser, primary expansion means, gas-liquid separator, and secondary expansion means in which an electric motor and low-stage compression means and high-stage compression means driven by a rotating shaft of the electric motor are housed in a sealed container And a multi-stage compression refrigeration apparatus in which a refrigeration cycle is configured by sequentially connecting the coolers in an annular shape
前記気液分離器内の飽和ガス冷媒を前記低段側圧縮手段から吐出された冷媒と共に前記高段側圧縮手段に吸引させるための合流器と、A merger for sucking the saturated gas refrigerant in the gas-liquid separator together with the refrigerant discharged from the low-stage compression means to the high-stage compression means;
該合流器からの冷媒を前記高段側圧縮手段に吸引させるか、前記冷却器から出た冷媒を前記高段側圧縮手段に吸引させるか、更に、前記高段側圧縮手段へ冷媒を吸引させるか否The refrigerant from the merger is sucked into the high-stage compression means, the refrigerant discharged from the cooler is sucked into the high-stage compression means, or further, the refrigerant is sucked into the high-stage compression means Whether or not かを切り換えるための第一切換電磁弁と、A first switching solenoid valve for switching between;
前記低段側圧縮手段から吐出された冷媒を前記合流器に流入させるか、前記密閉容器内に流通させるかを切り換えるための第二切換電磁弁と、A second switching solenoid valve for switching whether the refrigerant discharged from the low-stage compression means flows into the merger or flows into the sealed container;
前記冷却器から出た冷媒を前記低段側圧縮手段に吸引させるか否かを制御する第三電磁弁とを備え、A third solenoid valve for controlling whether or not the refrigerant discharged from the cooler is sucked into the low-stage compression means,
前記低段側圧縮手段及び高段側圧縮手段は、それぞれシリンダと、前記回転軸の対向する位置に設けられた偏心部により前記両シリンダ内でそれぞれ回転するローラとから構成されており、The low-stage compression means and the high-stage compression means are each composed of a cylinder and a roller that rotates in each of the cylinders by an eccentric portion provided at a position opposite to the rotation shaft,
前記第一切換電磁弁を前記冷却器から出た冷媒が前記高段側圧縮手段に吸引される状態とし、前記第三電磁弁を閉じることにより、前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記高段側圧縮手段に吸引させる第一のモードと、The first switching solenoid valve is brought into a state in which the refrigerant discharged from the cooler is sucked into the high-stage compression means, and the third solenoid valve is closed so that the refrigerant discharged from the high-stage compression means A first mode in which the condenser, the primary expansion means, the gas-liquid separator, the secondary expansion means and the cooler are sequentially flowed and sucked by the high-stage compression means;
前記第一切換電磁弁を前記高段側圧縮手段に冷媒を吸引させない状態とし、前記第二切換電磁弁を前記低段側圧縮手段から吐出された冷媒が前記密閉容器内に流通される状態とし、且つ、前記第三電磁弁を開くことにより、前記低段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、前記低段側圧縮手段に吸引させる第二のモードと、The first switching solenoid valve is in a state in which the high-stage compression means does not suck the refrigerant, and the second switching solenoid valve is in a state in which the refrigerant discharged from the low-stage compression means is circulated in the sealed container. And, by opening the third electromagnetic valve, the refrigerant discharged from the low-stage compression means flows sequentially to the condenser, primary expansion means, gas-liquid separator, secondary expansion means and cooler, A second mode in which the low-stage compression means sucks;
前記第一切換電磁弁を前記冷却器から出た冷媒が前記高段側圧縮手段に吸引される状態とし、前記第二切換電磁弁を前記低段側圧縮手段から吐出された冷媒が前記密閉容器内に流通される状態とし、且つ、前記第三電磁弁を開くことにより、前記高段側圧縮手段と低段側圧縮手段からそれぞれ吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器、二次膨張手段及び冷却器に順次流し、分流して前記高段側圧縮手段と低段側圧縮手段にそれぞれ吸引させる第三のモードと、The first switching electromagnetic valve is brought into a state in which the refrigerant discharged from the cooler is sucked by the high-stage compression means, and the refrigerant discharged from the second switching electromagnetic valve from the low-stage compression means is the sealed container The refrigerant discharged from the high-stage compression means and the low-stage compression means is allowed to flow through the condenser, the primary expansion means, and the gas-liquid separation by opening the third solenoid valve. A third mode in which the gas is sequentially flowed to the condenser, the secondary expansion means, and the cooler, and is divided and sucked by the high-stage compression means and the low-stage compression means,
前記第一切換電磁弁を前記合流器からの冷媒が前記高段側圧縮手段に吸引される状態とし、前記第二切換電磁弁を前記低段側圧縮手段から吐出された冷媒が前記合流器に流入する状態とし、且つ、前記第三電磁弁を開くことにより、前記高段側圧縮手段から吐出された冷媒を前記凝縮器、一次膨張手段、気液分離器に流し、当該気液分離器内の液冷媒を前記二次膨張手段から前記冷却器へと流して前記低段側圧縮手段に吸引させ、更に当該低段側圧縮手段から吐出された冷媒を前記高段側圧縮手段に吸引させると共に、前記気液分離器内の飽和ガス冷媒を前記低段側圧縮手段から吐出された冷媒と共に前記高段側圧縮手段に吸い込ませる第四のモードとを選択的に実行可能としたことを特徴とする多段圧縮冷凍装置。The first switching electromagnetic valve is brought into a state in which refrigerant from the merger is sucked into the high-stage compression means, and the refrigerant discharged from the low-stage compression means is turned into the second switching electromagnetic valve in the merger. When the third solenoid valve is opened, the refrigerant discharged from the high-stage compression unit is caused to flow into the condenser, the primary expansion unit, and the gas-liquid separator. The liquid refrigerant flows from the secondary expansion means to the cooler and is sucked into the low-stage compression means, and further, the refrigerant discharged from the low-stage compression means is sucked into the high-stage compression means. The fourth mode in which the saturated gas refrigerant in the gas-liquid separator is sucked into the high stage compression means together with the refrigerant discharged from the low stage compression means can be selectively executed. Multistage compression refrigeration equipment.
JP04281298A 1998-02-06 1998-02-09 Multistage compression refrigeration equipment Expired - Fee Related JP3619657B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04281298A JP3619657B2 (en) 1998-02-09 1998-02-09 Multistage compression refrigeration equipment
US09/236,042 US6189335B1 (en) 1998-02-06 1999-01-22 Multi-stage compressing refrigeration device and refrigerator using the device
EP99102227A EP0935106A3 (en) 1998-02-06 1999-02-04 Multi-stage compressing refrigeration device and refrigerator using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04281298A JP3619657B2 (en) 1998-02-09 1998-02-09 Multistage compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH11223396A JPH11223396A (en) 1999-08-17
JP3619657B2 true JP3619657B2 (en) 2005-02-09

Family

ID=12646375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04281298A Expired - Fee Related JP3619657B2 (en) 1998-02-06 1998-02-09 Multistage compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3619657B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321485B2 (en) 1997-04-08 2008-01-22 X2Y Attenuators, Llc Arrangement for energy conditioning
US7336468B2 (en) 1997-04-08 2008-02-26 X2Y Attenuators, Llc Arrangement for energy conditioning
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US20080196420A1 (en) * 2004-08-09 2008-08-21 Andreas Gernemann Flashgas Removal From a Receiver in a Refrigeration Circuit
WO2006104613A2 (en) 2005-03-01 2006-10-05 X2Y Attenuators, Llc Conditioner with coplanar conductors
JP2007232280A (en) * 2006-03-01 2007-09-13 Daikin Ind Ltd Refrigeration unit
BRPI0802382B1 (en) * 2008-06-18 2020-09-15 Universidade Federal De Santa Catarina - Ufsc REFRIGERATION SYSTEM
JP6276004B2 (en) * 2013-11-19 2018-02-07 株式会社Nttファシリティーズ refrigerator
US20170350623A1 (en) * 2015-01-15 2017-12-07 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device and compressor used in same

Also Published As

Publication number Publication date
JPH11223396A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
CN108397387B (en) Co-rotating compressor with multiple compression mechanisms and system with same
US20060168996A1 (en) Refrigerating device, refrigerator, compressor, and gas-liguid separator
WO2001022008A1 (en) Multi-stage compression refrigerating device
JP2006275495A (en) Refrigerating device and refrigerator
JP2001091071A (en) Multi-stage compression refrigerating machine
JP4219198B2 (en) Refrigerant cycle equipment
JP3619657B2 (en) Multistage compression refrigeration equipment
JP2010156498A (en) Refrigerating device
JPH11241693A (en) Compressor
JP2004278824A (en) Refrigeration cycle device and air conditioner
JPH11230072A (en) Compressor
JPH1162863A (en) Compressor
JP2006275494A (en) Refrigerating device, refrigerator and compressor
JP3291472B2 (en) Rotary compressor
JPH11230070A (en) Compressor
KR101328229B1 (en) Rotary compressor
JP3599996B2 (en) Multi-stage compression refrigeration equipment
JP3291470B2 (en) Rotary compressor
JPH11223397A (en) Freezer refrigerator
JPH06330857A (en) Enclosed compressor
JP3615364B2 (en) Multistage compression refrigeration equipment
JP3695963B2 (en) Rotary compressor
JPH02133757A (en) Two-stage compression refrigerating cycle
JP3357865B2 (en) Multi-stage compression refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees