WO2021171488A1 - 複合材部材の製造方法及び複合材部材の製造装置 - Google Patents

複合材部材の製造方法及び複合材部材の製造装置 Download PDF

Info

Publication number
WO2021171488A1
WO2021171488A1 PCT/JP2020/008050 JP2020008050W WO2021171488A1 WO 2021171488 A1 WO2021171488 A1 WO 2021171488A1 JP 2020008050 W JP2020008050 W JP 2020008050W WO 2021171488 A1 WO2021171488 A1 WO 2021171488A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
material member
composite
bending
longitudinal direction
Prior art date
Application number
PCT/JP2020/008050
Other languages
English (en)
French (fr)
Inventor
哲行 益子
祐樹 可児
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2020/008050 priority Critical patent/WO2021171488A1/ja
Publication of WO2021171488A1 publication Critical patent/WO2021171488A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented

Definitions

  • the present disclosure relates to a method for manufacturing a composite material member containing a fiber and a resin, and a device for manufacturing the composite material member.
  • Patent Document 1 the gap between layers that occurs when the composite material member is bent at the corner portion of the mandrel is reduced by lifting the overhang portion of the composite material member to reduce the difference in peripheral length between layers (Patent Document 1). 1 fig.4B).
  • the composite material is used.
  • the plate thickness dimension t of the member 100 is the difference in bending radius, and the difference in peripheral length is proportional to the plate thickness dimension t. Therefore, it is possible to reduce the difference in circumference by lifting the overhang portion of the composite material member as in Patent Document 1. However, when the plate thickness is large, wrinkles may occur only by lifting the overhang portion of the composite material member as in Patent Document 1.
  • the width dimension w of the composite material member 100 becomes the difference in bending radius.
  • the circumference difference is proportional to the width dimension w.
  • the width dimension w of the composite material member 100 to be molded is larger than the plate thickness dimension t, and when bending molding is performed in the in-plane direction, it is possible to suppress the generation of wrinkles. It can be more difficult than outward bending.
  • the present disclosure has been made in view of such circumstances, and provides a method for manufacturing a composite material member and an apparatus for manufacturing a composite material member capable of suppressing wrinkles generated when the composite material member is bent and molded.
  • the purpose is to provide.
  • the method for manufacturing a composite material member includes a clamping step of clamping both ends of the composite material member containing fibers and a resin, and a longitudinal length along both ends of the composite material member clamped by the clamping step.
  • the bending step comprises a tension applying step of applying tension in a direction and a bending step of deforming the composite material member in a state where the tension is applied by the tension applying step to obtain a desired bending shape. It has an angle maintaining step of maintaining a constant angle formed by one end and the other end of the clamped composite member during bending deformation of the composite member.
  • the composite material member manufacturing apparatus includes a clamp device that clamps both ends of the composite material member containing fiber and resin, a control device that controls the clamp device, and a mandrel having a curved surface.
  • the control device is provided with the composite material by pressing a side portion of the composite material member against the curved surface of the mandrel in a state where tension is applied in the longitudinal direction along both ends of the composite material member.
  • the clamping device is controlled so that the member is deformed to obtain a desired bending shape, and during bending deformation of the composite member, one end and the other end of the clamped composite member are subjected to bending deformation.
  • the clamping device is controlled so that the forming angle is kept constant.
  • FIG. 3 is a plan view showing a state in which bending deformation has further progressed from the state of FIG. 3A. It is a perspective view which showed the manufacturing apparatus of the composite material member which concerns on 1st Embodiment. It is a schematic diagram which showed the distribution of the frictional force applied to a composite material member. It is a side view which showed the manufacturing apparatus of the composite material member of FIG.
  • FIG. 8 is a cross-sectional view taken along the line AA of FIG. It is a perspective view which showed the modification 1.
  • FIG. It is a perspective view which showed the modification 2.
  • FIG. 1 schematically shows a bending molding method for the composite member 1 according to the present embodiment.
  • a desired composite member 1 is manufactured using this bending molding method.
  • the composite material member 1 is composed of a composite material containing a resin and fibers such as carbon fibers.
  • the composite material member 1 described in the present specification is in a state before curing.
  • the composite material member 1 may be thermoplastic or thermosetting.
  • the composite material member 1 can be used, for example, as a structural material for an aircraft, a ship, a vehicle, or the like. Examples of the composite material used for the composite material member 1 include carbon fiber reinforced plastic (CFRP), glass fiber reinforced plastic (GFRP: Glass Fiber Reinforced Plastic), and aramid fiber reinforced plastic (AFRP: Aramid Fiber Reinforced Plastic). Be done.
  • CFRP carbon fiber reinforced plastic
  • GFRP Glass Fiber Reinforced Plastic
  • AFRP Aramid Fiber Reinforced Plastic
  • the composite material member 1 is viewed in a plan view.
  • the composite material member 1 has a long flat plate shape.
  • the shape of the composite member 1 is not limited to a flat plate having a rectangular cross section, and the cross section may be L-shaped or U-shaped.
  • a plurality of 0 ° layer fibers 3 extend in parallel in the longitudinal direction L1 of the composite material member 1.
  • the 0 ° layer may be located on the outermost surface of the composite member 1, or may be located on any layer in the stacking direction (plate thickness direction).
  • the composite material member 1 has a plurality of + 45 ° layers, ⁇ 45 ° layers, and 90 ° layers laminated in the plate thickness direction with respect to the 0 ° layer.
  • any one or more of the + 45 ° layer, the ⁇ 45 ° layer and the 90 ° layer may be omitted. Further, a + 45 ° layer, a ⁇ 45 ° layer or a 90 ° layer may be located on the outermost surface of the composite material member 1.
  • the width direction L2 of the composite material member 1 is a direction orthogonal to the longitudinal direction L1. Therefore, the plate thickness direction L3 (see, for example, FIG. 4) of the composite material member 1 is the direction perpendicular to the paper surface in FIG. That is, since FIG. 1 shows the composite material member 1 in a plan view, the plate thickness direction L3 of the composite material member 1 is a direction perpendicular to the paper surface of FIG.
  • the left figure of FIG. 1 shows the state before bending deformation
  • the right figure of FIG. 1 shows the state after bending deformation.
  • the neutral axis C1 of the bending when the bending deformation is performed around the bending center O1 is shown.
  • the bending neutral shaft C1 (hereinafter, simply referred to as “neutral shaft C1”) does not expand or contract in the longitudinal direction L1 of the composite material member 1 when the composite material member 1 is bent around the bending center O1. It is an axis.
  • the bending deformation is performed in the plane including the longitudinal direction L1 and the width direction L2, so that the bending deformation occurs.
  • the ends 1a and 1b of the composite member 1 that are clamped during bending are shown by thick solid lines. Bending deformation is performed in a state where tension is applied to the longitudinal direction L1 of the composite member 1 in the direction in which the clamped ends 1a and 1b are separated from each other.
  • the clamped ends 1a and 1b on both sides extend in the width direction L2, respectively. Therefore, since the clamped both end portions 1a and 1b extend in parallel, the angle formed by the clamped one end portion 1a and the other end portion 1b is set to 0 °. Both end portions 1a and 1b mean both one end portion 1a and the other end portion 1b. Since the angle formed by the clamped both ends 1a and 1b depends on the clamped state, the angle is not limited to 0 ° as shown in FIG.
  • the composite material member 1 is deformed into an arc shape.
  • the angles formed by the clamped both ends 1a and 1b are kept constant. That is, the bending center O1 side is closer than the neutral axis C1 of the clamped both end portions 1a'and 1b', and the inside of the clamped both end portions 1a', 1b' is closer to the bending center O1 side, as in the case of performing general bending deformation.
  • the angle formed by the clamped both ends 1a'and 1b' does not change so that the opposite side of the bending center O1 is separated from the vertical axis C1.
  • the end portions 1a'and 1b'shown as comparative examples are shown by solid lines thinner than the end portions 1a and 1b of the present embodiment.
  • the manufacturing apparatus 10 of the composite material member 1 includes a clamp device 12 for clamping both ends of the composite material member 1, a mandrel 14, and a truncated cone roller (extension member) 16.
  • the clamp device 12 is controlled by a control device (not shown), and applies tension to the composite member 1 in the longitudinal direction L1 by driving the composite member 1 in the direction of arrow A3 with both ends clamped.
  • Both sides of the clamp device 12 may be movable, one clamp device 12 may be fixed, and the other clamp device 12 may be movable.
  • the positions clamped by the clamping device 12 are the clamped ends 1a and 1b shown in FIG.
  • the clamping device 12 moves so as to approach the mandrel 14 in a state where the composite material member 1 is clamped by a command of the control device.
  • the mandrel 14 has a curved surface 14a corresponding to a desired bending shape.
  • the curved surface 14a has a curved surface shape that is convex on the composite material member 1.
  • the mandrel 14 is fixed to a frame or the like (not shown) and is immovable.
  • the truncated cone roller 16 has a truncated cone shape.
  • the large diameter side of the truncated cone roller 16 is arranged so as to be located on the bending center O1 side (mandrel 14 side).
  • the rotation axis C2 of the truncated cone roller 16 extends in the substantially width direction L2 of the composite material member 1. Specifically, the position of the rotation axis C2 of the truncated cone roller 16 is appropriately changed by the control device in a direction orthogonal to the curved surface 14a of the mandrel 14.
  • the truncated cone roller 16 is moved by the control device in the longitudinal direction L1 of the composite material member 1, that is, the translational direction M1.
  • two truncated cone rollers 16 are provided in the plate thickness direction L3 of the composite material member 1.
  • the axial length of the cone roller 16 in the rotation axis C2 direction is longer than the length of the composite member 1 in the width direction L2.
  • the side peripheral surface of the truncated cone roller 16 can be brought into contact with the entire width direction L2 of the composite material member 1.
  • a frictional force is applied to both surfaces of the composite material member 1 by sandwiching the composite material member 1 between the two conical base rollers 16.
  • the truncated cone roller 16 is rotationally driven around the rotation axis C2 at a predetermined rotation speed by a command of the control device.
  • the rotation direction R1 is the same as the translational direction M1 of the truncated cone roller 16 on the composite member 1 side.
  • the peripheral speed on the surface of the composite member 1 obtained by the truncated cone roller 16 is set to be higher than the translational velocity of the truncated cone roller 16 in the translation direction M1. That is, backspin is applied to the surface of the composite material member 1 by the truncated cone roller 16. As a result, a frictional force is locally applied to the surface of the composite material member 1 to extend the composite material member 1 in the longitudinal direction L1. Since the large diameter side of the truncated cone roller 16 is arranged on the mandrel 14 (see FIG.
  • a pressing roller (pressing member) 18 is provided on the side of the composite material member 1 opposite to the bending center O1 side.
  • the pressing roller 18 has a cylindrical shape and is free to rotate around the central axis C3.
  • the pressing roller 18 is moved in the longitudinal direction L1 of the composite material member 1 by the control device.
  • the pressing roller 18 presses one side portion 1c of the composite material member 1 and presses the other side portion 1d of the composite material member 1 against the curved surface 14a of the mandrel 14 (see FIG. 3A).
  • the shape of the bending deformation of the composite member 1 is sequentially determined in the longitudinal direction L1 as shown in FIGS. 3A and 3B.
  • the pressing roller 18 is omitted for simplification of the illustration.
  • FIG. 6 shows the positional relationship between the truncated cone roller 16 and the pressing roller 18 with respect to the composite material member 1.
  • the composite member 1 is sandwiched by the truncated cone roller 16 from the plate thickness direction L3, and with respect to the curved surface 14a of the mandrel 14 (see FIG. 3A) by the pressing roller 18 toward the bending center side. Is pressed.
  • the control device is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • a method of manufacturing the composite material member 1 using the above-mentioned manufacturing apparatus 10 of the composite material member 1 will be described with reference to FIG. 7.
  • a mandrel 14 having a curved surface 14a having a desired shape is fixedly installed (mandrel arrangement step S1).
  • both ends of the composite material member 1 are clamped by the clamping device 12 (clamping step S2), and tension is applied between the clamped both ends 1a and 1b (see FIG. 1) (tension applying step S3).
  • the bending step is started (step S4).
  • the side portion 1d of the composite material member 1 is pressed against the curved surface 14a of the mandrel 14 from one side (left side in FIG.
  • the pressing step S5 is performed by the pressing roller 18 shown in FIGS. 4 and 6.
  • the side peripheral surface of the truncated cone roller 16 is brought into contact with the entire width direction L2 of the composite member member 1, and the frictional force is applied to the surface of the composite member 1 by the truncated cone roller 16.
  • the extension step S6 for extending the composite member 1 in the longitudinal direction L1 is performed.
  • the composite material member 1 is bent and deformed by being sequentially pressed against the curved surface 14a of the mandrel 14 toward L1 in the longitudinal direction, and the entire composite material member 1 is bent and deformed. As shown in FIG.
  • one end of the clamped composite member 1 is controlled by controlling the position and orientation of the clamping device 12 throughout the bending step including the pressing step S5 and the stretching step S6.
  • the angle formed by the portion 1a and the other end portion 1b is maintained constant (angle maintenance step S7).
  • the bending step ends (step S8). In-plane bending deformation of the composite material member 1 is performed by each of the above steps S1 to S8.
  • the above-mentioned steps S1 to S8 are merely examples and can be changed as appropriate.
  • the ends 1a and 1b (see FIG. 1) clamped by the clamping device 12 are cut into the desired shape.
  • a cutting step may be provided. As a result, it was decided to maintain the angle formed by the clamped one end 1a and the other end 1b to be constant, so that the shape of the clamped ends 1a and 1b after the bending step is desired. It may not be in shape. Therefore, the desired shape can be obtained by cutting the clamped ends 1a and 1b into a desired shape.
  • the peripheral speed increases and the frictional force increases as the diameter side increases.
  • the large diameter side of the truncated cone roller 16 is arranged on the bending center O1 side of the composite material member 1.
  • the frictional force can be increased toward the bending center O1 side where the large diameter side of the truncated cone roller 16 is arranged, and the wrinkle that is likely to be generated toward the bending center O1 side can be suppressed.
  • a pressing roller 18 was provided to sequentially press and bend the side portion 1d of the composite material member 1 toward the longitudinal direction L1 against the curved surface 14a of the mandrel 14.
  • the pressing roller 18 is controlled in synchronization with the truncated cone roller 16.
  • the manufacturing apparatus 10 of the present embodiment includes two heads 20. As shown in FIG. 9, each head 20 includes two truncated cone rollers 16 and a plurality of pressing rollers 18'. As shown in FIG. 9, the composite material member 21 of the present embodiment has an L-shape having a bent cross-sectional shape.
  • the composite member 21 has a web portion 21a on the bending center side (mandrel 14 side: left side in FIG. 9) and a flange portion 21b connected to the web portion 21a and bent upward by about 90 °. It has. Therefore, the neutral shaft C1'of the bending deformation of the composite material member 21 is located on the flange portion 21b side. Therefore, when the frictional force is applied by the truncated cone roller 16, the entire web portion 21a with which the truncated cone roller 16 abuts is inside the neutral axis C1', so that the composite member 21 is bent in-plane. In that case, a wrinkle may occur in the entire web portion 21a. Therefore, it is preferable to impart a predetermined frictional force distribution over the entire web portion 21a.
  • the pressing rollers 18' are provided at a plurality of locations along the shape of the flange portion 21b.
  • each head 20 is controlled to move from the center of the mandrel 14 to the side in the direction of arrow A4.
  • Each head 20 is provided with a heater (heating member) 22 on the upstream side of the truncated cone roller 16 in the moving direction of arrow A4, and a cooler (cooling member) on the downstream side of the truncated cone roller 16 in the moving direction of arrow A4. 24 is provided.
  • the heater 22 is, for example, an electric heating type, and heats the composite material member 21.
  • the cooler 24 is, for example, a cooling means provided with a water cooling coil, and cools the composite member 21.
  • the arrow A5 shown in FIG. 8 indicates the locus of each head 20. In this way, each head 20 moves along the curved surface 14a of the mandrel 14.
  • the clamping device 12 is driven in the direction of arrow A3, which is the longitudinal direction of the composite member 21, and applies tension to the composite member 21, while sequentially facing the mandrel 14 side and in the direction of arrow A3 during the bending process. It is moved in a direction substantially orthogonal to (arrow A6 direction).
  • the composite material member 21 is made thermoplastic, it can be deformed by heating the composite material member 21 with a heater 22 before applying a frictional force to the composite material member 21 by the truncated cone roller 16. Then, after applying a frictional force to the composite material member 21 by the truncated cone roller 16, the shape can be determined by cooling the composite material member 21 with the cooler 24.
  • the truncated cone roller 16 used in each of the above-described embodiments can be deformed as an extension member for extending the composite member members 1 and 21 in the longitudinal direction L1 as follows.
  • a disk 30 may be used as the extending member.
  • the central axis C4 which is the center of rotation, is arranged on the side opposite to the bending center of the composite material member 1 with the composite material member 1 interposed therebetween.
  • the disk 30 is rotationally driven around the central axis C4 by the control device.
  • the rotation direction R2 is set to be the same as the translational direction M1 of the disk 30 on the composite member 1 side.
  • Two discs 30 are provided apart from each other in the plate thickness direction L3 of the composite material member 1.
  • the disk surface (upper surface or lower surface of the disk 30 in FIG. 10) 30a of the disk 30 is rotated in a state of being in contact with the surface of the composite material member 1.
  • the peripheral speed of the disk 30 increases, so that the frictional force increases, and a larger frictional force can be applied toward the bending center side.
  • a plurality of cylindrical rollers 40 may be used as the stretching member.
  • the cylindrical rollers 40 are provided at predetermined intervals in a direction (width direction L2) orthogonal to the longitudinal direction L1 of the composite material member 1.
  • Each cylindrical roller 40 is individually rotated and controlled by a control device.
  • Each cylindrical roller 40 has the same shape, and each is pressed toward the composite material member 1.
  • the pressing force is applied to each cylindrical roller 40 via the pressing member 41.
  • the magnitude of the pressing force is individually set as shown by the arrow A7.
  • a backup roller 42 is provided on the opposite side (lower side in FIG. 11) of the cylindrical roller 40 with the composite material member 1 sandwiched between them. That is, each columnar roller 40 and the backup roller 42 are provided as a pair in the plate thickness direction L3 of the composite material member 1.
  • the backup roller 42 has a long cylindrical shape extending in the width direction L2 of the composite material member 1. By using the long backup roller 42, each of the upper cylindrical rollers 40 can be stably received.
  • each columnar roller 40 is brought into contact with the surface of the composite material member 1, and the composite material member 1 is extended in the longitudinal direction L1.
  • Each columnar roller 40 is rotated in the direction of pushing out), and control is performed so that a larger frictional force is generated as the columnar roller 40 located on the bending center side of the composite material member 1. That is, a larger pressing force is applied to the cylindrical roller 40 located on the bending center side (see arrow A7).
  • the length of the arrow A7 shown in FIG. 11 indicates the magnitude of the pressing force. As a result, the frictional force can be increased toward the bending center side of the composite material member 1.
  • the columnar roller 40 may be controlled so that the frictional force applied to the composite material member 1 increases toward the bending center side of the composite material member 1.
  • the rotation speed of each cylindrical roller 40 is controlled. You may.
  • the peripheral speed of the cylindrical roller 40 may be changed by changing the diameter of each cylindrical roller 40.
  • the pressing plate 50 may be used as the extending member.
  • the pressing plate 50 is a plate-like body extending in a direction (width direction L2) orthogonal to the longitudinal direction L1 of the composite material member 1.
  • two pressing plates 50 are provided as a pair at intervals in the plate thickness direction L3 of the composite material member 1.
  • the pressing plate 50 is pressed against the surface of the composite member 1 in a sliding state by a plurality of springs (pressing force applying members) 51.
  • a plurality of springs 51 are provided at intervals in the extending direction (width direction L2 in the figure) of the pressing plate 50.
  • the spring constant of each spring 51 is the same.
  • the fixed end 51a of each spring 51 is fixed to a fixed portion of a manufacturing apparatus (not shown).
  • the position of each fixed end 51a is provided on a straight line L4 parallel to the width direction L2 of the composite material member 1 when the composite material member 1 is sandwiched between the pressing plates 50 as shown in FIG. 12B. Has been done.
  • the natural length of the spring 51 is longer toward the bending center side in a no-load state in which the composite member 1 is not sandwiched between the pressing plates 50.
  • FIG. 12B when the composite material member 1 having a constant thickness is sandwiched between the pair of pressing plates 50, a larger pressing force is applied toward the bending center side. As a result, the frictional force can be increased toward the bending center side of the composite material member 1.
  • the pressing plate 50 may be a single member or may be composed of a plurality of members (plate-like bodies) divided in the width direction L2. Further, the position of the fixed end 51a of the spring 51 does not have to match on the straight line L4, and the frictional force is increased toward the bending center side of the composite material member 1 by appropriately changing the natural length of the spring 51. You can do it.
  • in-plane bending of the composite material member has been described as an example, but it can also be applied to out-of-plane bending (see FIG. 13A). ..
  • the method for manufacturing the composite material member and the apparatus for manufacturing the composite material member described above are grasped as follows, for example.
  • the method for manufacturing a composite material member includes a clamping step of clamping both ends of the composite material member (1, 21) containing a fiber and a resin, and a method of clamping the composite material member clamped by the clamping step.
  • the bending step maintains a constant angle formed by one end (1a) and the other end (1b) of the clamped composite member during bending deformation of the composite member. It has an angle maintenance process.
  • the bending deformation is changed so that the angle formed by one end of the composite material member and the other end is directed toward the bending center side. If this is done, the peripheral length may be shortened by bending on the bending center side, and the composite member may shrink to generate wrinkles. Therefore, when the composite material member is bent and deformed, the angle formed by one end of the clamped composite material member and the other end is kept constant. As a result, it is possible to prevent the circumference from becoming shorter before and after bending even on the bending center side. Therefore, it is possible to suppress the shrinkage of the bending center side of the composite material member and the generation of wrinkles.
  • the composite material member may be any as long as it is plastically deformed during the bending process, and may be thermosetting or thermoplastic.
  • a frictional force is locally applied to the surface of the composite material member on the bending center (O1) side to extend the length of the composite material member. It has an extension process that extends in the direction.
  • the frictional force is increased toward the bending center side of the composite material member.
  • the composite material member shrinks during the bending process toward the bending center side of the composite material member, it is preferable to increase the frictional force toward the bending center side.
  • the frictional force is locally applied to the entire width direction of the composite material member orthogonal to the longitudinal direction.
  • the method for manufacturing a composite member includes a mandrel arranging step of arranging a mandrel (14) having a curved surface (14a), and the bending step is the composite of the curved surface of the mandrel. It has a pressing step of sequentially pressing a side portion (1d) of a material member in the longitudinal direction to obtain a bent shape, and the pressing step is performed in synchronization with the stretching step.
  • the composite member is made thermoplastic, and a heating step of heating the composite member before the stretching step and the composite after the stretching step. It has a cooling process for cooling the material members.
  • the composite member When the composite member is thermoplastic, it can be deformed by heating the composite member before the stretching step. Then, after the stretching step, the shape is determined by cooling the composite member.
  • a heating step for heating the composite material member may be provided after the stretching step.
  • the method for manufacturing a composite member according to one aspect of the present disclosure includes a cutting step of cutting the clamped end portion into a desired shape after the bending step.
  • a desired shape may be obtained by cutting the clamped end portion into a desired shape.
  • the composite material member manufacturing apparatus (10) controls a clamping device (12) that clamps both ends of the composite material member (1,21) containing a fiber and a resin, and the clamping device.
  • a control device and a mandrel (14) having a curved surface (14a) are provided, and the control device is a state in which tension is applied in the longitudinal direction (L1) along both ends of the composite material member.
  • the clamp device is controlled so as to deform the composite material member into a desired bending shape by pressing the side portion of the composite material member against the curved surface, and during bending deformation of the composite material member.
  • the clamping device is controlled so that the angle formed by one end (1a) and the other end (1b) of the clamped composite member is kept constant.
  • the composite material member may be any as long as it is plastically deformed during the bending process, and may be thermosetting or thermoplastic.
  • an extension member that locally applies a frictional force to the surface of the composite material member on the bending center (O1) side to extend the composite material member in the longitudinal direction. It is equipped with 16, 30, 40, 50).
  • the frictional force is increased toward the bending center side of the composite material member.
  • the composite material member shrinks during the bending process toward the bending center side of the composite material member, it is preferable to increase the frictional force toward the bending center side.
  • the extension member includes a truncated cone-shaped truncated cone roller (16) whose large diameter side is arranged on the bending center side of the composite material member, and is controlled by the control.
  • the device brings the outer peripheral surface of the truncated cone roller into contact with the surface of the composite member, and rotates the truncated cone roller in the direction of extending the composite member in the longitudinal direction.
  • the extension member is a disk (30) in which the center of rotation is opposite to the bending center of the composite material member on the opposite side of the composite material member.
  • the control device brings the disk surface of the disk into contact with the surface of the composite member, and rotates the disk around the center of rotation in the direction of extending the composite member in the longitudinal direction. ..
  • the peripheral speed increases and the frictional force increases toward the outer peripheral side of the disk.
  • the disk is arranged so that the center of rotation is opposite to the center of bending of the composite member. As a result, the frictional force can be increased toward the bending center side where the outer peripheral side of the disk is arranged.
  • the extension member includes a plurality of cylindrical roller (40) having a cylindrical shape provided in a direction orthogonal to the longitudinal direction of the composite material member.
  • the control device brings the outer peripheral surface of each of the cylindrical rollers into contact with the surface of the composite material member, rotates each of the cylindrical rollers in the direction of extending the composite material member in the longitudinal direction, and causes the composite material member to rotate. It is controlled so that a larger frictional force is generated as the cylindrical roller located on the bending center side.
  • each columnar roller After arranging a plurality of columnar rollers in a direction orthogonal to the longitudinal direction of the composite material member, it was decided to control each columnar roller so that a larger frictional force is generated toward the bending center side of the composite material member. As a result, the frictional force can be increased toward the bending center side of the composite material member.
  • the pressing force of each columnar roller against the composite member may be controlled, or the rotation speed of each columnar roller may be controlled. Further, the peripheral speed of the cylindrical roller may be changed by changing the diameter of each cylindrical roller.
  • the extension member is provided in a direction orthogonal to the longitudinal direction of the composite material member and is pressed against the surface of the composite material member in a sliding state.
  • the pressing force additional member (51) that generates a larger pressing force toward the bending center side of the composite material member. ) Is provided.
  • the pressing plate may be a single member extending in a direction orthogonal to the longitudinal direction of the composite member, or may be composed of a plurality of members divided in the longitudinal direction.
  • the composite material member manufacturing apparatus includes a pressing member (18) that presses the composite material member against the mandrel side, and the control device comprises the composite with respect to the curved surface of the mandrel.
  • the pressing member is controlled so as to obtain a bent shape by sequentially pressing the side portions of the material member in the longitudinal direction, and the extending member is controlled in synchronization with the pressing member.
  • the composite material member is made thermoplastic, and the composite material member is heated before applying a frictional force to the composite material member by the extension member. It has a member (22) and a cooling member (24) that cools the composite material member after applying a frictional force to the composite material member by the stretching member.
  • the composite material member When the composite material member is made thermoplastic, it can be deformed by heating the composite material member before applying a frictional force to the composite material member by the extension member. Then, after applying a frictional force to the composite material member by the stretching member, the shape is determined by cooling the composite material member.
  • a heating member that heats the composite material member after applying a frictional force by the stretching member may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

繊維と樹脂とを含む複合材部材(1)の両端をクランプするクランプ工程と、クランプ工程によってクランプされた複合材部材(1)の両端間に沿う長手方向(L1)に張力を付加する張力付加工程と、張力付加工程によって張力が付加された状態で複合材部材(1)を変形させて所望の曲げ形状を得る曲げ工程と、を有し、曲げ工程は、複合材部材(L1)の曲げ変形中に、クランプされた複合材部材(1)の一方の端部(1a)と他方の端部(1b)とがなす角を一定に維持する角度維持工程を有している。

Description

複合材部材の製造方法及び複合材部材の製造装置
 本開示は、繊維と樹脂とを含む複合材部材の製造方法及び複合材部材の製造装置に関するものである。
 繊維と樹脂とを含む複合材部材を曲げ成形する際、曲げ中心に近い側の繊維と遠い側の繊維とで周長差が発生し、リンクル(wrinkle)などの成形不良が発生する。曲げ成形の際に発生する周長差を幾何学的に説明すると次の通りである。曲げの前後で部材端面のなす角が変化することにより、曲げ中心に近い側は複合材部材の曲げ中心から見た周長が曲げ中心から遠い側よりも短くなる。このため曲げの中立軸よりも内側は圧縮方向に力が働き、中立軸よりも外側は引っ張り方向に力が働く。したがって、曲げ中心に近い側ではリンクルが発生する。
 下記特許文献1では、マンドレルのコーナ部で複合材部材を折り曲げる際に発生する層間のずれを、複合材部材のオーバーハング部を持ち上げて層間の周長差を低減するようにしている(特許文献1のfig.4B)。
米国特許出願公開第2004/0043196号明細書
 特許文献1のように、板状とされた複合材部材の平面が凸または凹となるように曲げが生じる面外方向の曲げ成形を行う場合(面外曲げについて図13A参照)は、複合材部材100の板厚寸法t分が曲げ半径の差になり、周長差は板厚寸法tに比例する。このため、特許文献1のように複合材部材のオーバーハング部を持ち上げることで周長差を低減することは可能である。しかし、板厚が大きい場合には、特許文献1のように複合材部材のオーバーハング部を持ち上げるだけではリンクルが発生してしまうおそれがある。
 一方で、複合材部材の平面内で曲げが生じる面内方向の曲げ成形を行う場合(面内曲げについて図13B参照)は、複合材部材100の幅寸法w分が曲げ半径の差になり、周長差は幅寸法wの寸法に比例する。一般的に、成形対象となる複合材部材100の幅寸法wは、板厚寸法tと比較して大きなものであり、面内方向に曲げ成形を施す場合はリンクルの発生を抑制することが面外方向の曲げ成形よりも困難となる場合がある。
 本開示は、このような事情に鑑みてなされたものであって、複合材部材を曲げ成形する際に発生するリンクルを抑制することができる複合材部材の製造方法及び複合材部材の製造装置を提供することを目的とする。
 本開示の一態様に係る複合材部材の製造方法は、繊維と樹脂とを含む複合材部材の両端をクランプするクランプ工程と、前記クランプ工程によってクランプされた前記複合材部材の両端間に沿う長手方向に張力を付加する張力付加工程と、前記張力付加工程によって張力が付加された状態で前記複合材部材を変形させて所望の曲げ形状を得る曲げ工程と、を有し、前記曲げ工程は、前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部と他方の端部とがなす角を一定に維持する角度維持工程を有している。
 本開示の一態様に係る複合材部材の製造装置は、繊維と樹脂とを含む複合材部材の両端をクランプするクランプ装置と、前記クランプ装置を制御する制御装置と、曲面を有するマンドレルと、を備え、前記制御装置は、前記複合材部材の両端間に沿う長手方向に張力が付加された状態で、前記マンドレルの前記曲面に対して前記複合材部材の側部を押し当てることによって前記複合材部材を変形させて所望の曲げ形状とするように前記クランプ装置を制御するとともに、前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部と他方の端部とがなす角が一定に維持されるように前記クランプ装置を制御する。
 複合材部材を曲げ成形する際に発生するリンクルを抑制することができる。
本開示の第1実施形態に係る曲げ成形法を示した模式図である。 図1の右図のように曲げ変形した状態を示した図である。 第1実施形態に係る複合材部材の製造装置を示した平面図である。 図3Aの状態からさらに曲げ変形が進行した状態を示した平面図である。 第1実施形態に係る複合材部材の製造装置を示した斜視図である。 複合材部材に付加される摩擦力の分布を示した模式図である。 図4の複合材部材の製造装置を示した側面図である。 第1実施形態に係る複合材部材の製造方法を示したフローチャートである。 第2実施形態に係る複合材部材の製造装置を示した平面図である。 図8のA-A断面図である。 変形例1を示した斜視図である。 変形例2を示した斜視図である。 変形例3を示した側面図である。 図12Aの押付板間に複合材部材を挟んだ状態を示した側面図である。 面外変形を示した模式図である。 面内変形を示した模式図である。
 以下に、本開示に係る実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本開示の第1実施形態について説明する。
 図1には、本実施形態に係る複合材部材1の曲げ成形方法が模式的に示されている。この曲げ成形方法を用いて所望の複合材部材1を製造する。
 複合材部材1は、樹脂と炭素繊維等の繊維とを含む複合材料から構成されている。なお、本明細書において説明する複合材部材1は、硬化前の状態とされている。複合材部材1は、熱可塑性であってもよく、熱硬化性であっても良い。複合材部材1は、例えば航空機や、船舶、車両等の構造材に用いることができる。複合材部材1に用いられる複合材料としては、例えば、炭素繊維強化プラスチック(CFRP)、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastic)、アラミド繊維強化プラスチック(AFRP:Aramid Fiber Reinforced Plastic)等が挙げられる。
 図1において、複合材部材1は平面視されている。複合材部材1は長尺の平板形状とされている。なお、複合材部材1の形状は、横断面が矩形状とされた平板形状に限定されるものではなく、横断面がL字形状やU字形状とされていても良い。複合材部材1の長手方向L1には、複数の0°層の繊維3が平行に延在している。0°層は、複合材部材1の最表面に位置していてもよく、また積層方向(板厚方向)の任意の層に位置しても良い。複合材部材1は、0°層に対して板厚方向に+45°層、-45°層及び90°層が複数積層されている。なお、+45°層、-45°層及び90°層のうちのいずれか1つ以上の層を省略しても良い。また、複合材部材1の最表面に、+45°層、-45°層又は90°層を位置させても良い。
 複合材部材1の幅方向L2は、長手方向L1に直交する方向とされている。したがって、複合材部材1の板厚方向L3(例えば図4参照)は、図1において紙面垂直方向となる。すなわち、図1は複合材部材1を平面視で示しているので、複合材部材1の板厚方向L3は図1の紙面に対して垂直な方向となる。
 図1の左図は、曲げ変形前の状態を示し、図1の右図は曲げ変形後の状態を示す。曲げ中心O1周りに曲げ変形させた時の曲げの中立軸C1を示す。曲げの中立軸C1(以下、単に「中立軸C1」という。)は、曲げ中心O1を中心として複合材部材1を曲げた場合に、複合材部材1の長手方向L1に伸びも縮みも生じない軸である。曲げ中心O1周りに曲げ変形させる時は、長手方向L1及び幅方向L2を含む面内で曲げ変形が行われるので、面内曲げ変形となる。
 曲げ成形時にクランプされる複合材部材1の端部1a,1bが太実線で示されている。クランプされた端部1a,1b間が離間する方向に複合材部材1の長手方向L1に張力を付加した状態で曲げ変形が行われる。
 クランプされた両側の端部1a,1bは、それぞれ幅方向L2に延在している。したがって、クランプされた両端部1a,1bが平行に延在しているので、クランプされた一方の端部1aと他方の端部1bとがなす角は0°とされる。両端部1a,1bは、一方の端部1aと他方の端部1bの両方を意味する。なお、クランプされた両端部1a,1bのなす角は、クランプされた状態に依存するので、図1のように0°に限定されるものではない。
 図1の左図の矢印A1で示すように曲げ中心O1周りに面内曲げ変形を行うと、図1の右図のようになる。同図に示すように、複合材部材1は円弧状に変形させられる。この曲げ変形の際に、クランプされた両端部1a,1bのなす角は一定に維持されている。すなわち、一般的な曲げ変形を行ったときのように、クランプされた両端部1a’,1b’の中立軸C1よりも曲げ中心O1側が近づき、かつクランプされた両端部1a’,1b’の中立軸C1よりも曲げ中心O1の反対側が離れるように、クランプされた両端部1a’,1b’同士のなす角が変化するのではない。なお、図1の右図では、比較例として示した端部1a’,1b’は、本実施形態の端部1a,1bよりも細い実線で示されている。
 このように複合材部材1の一方の端部1a’と他方の端部1b’とがなす角を変化させて両端部1a’,1bが曲げ中心O1側に向くように曲げ変形を行うと、曲げ中心O1側(中立軸C1の内側)では周長が曲げによって短くなり複合材部材1の中立軸C1の内側が収縮してリンクルが発生するおそれがある。
 これに対して、本実施形態では、上述のように、複合材部材1を曲げ変形させる際に、クランプされた一方の端部1aと他方の端部1bとが平行関係を維持するように互いがなす角を一定に維持することとした。このようにすることで、図2の矢印A2に示すように、曲げ変形時には、曲げ中心O1側に位置する部分ほど複合材部材1が長手方向L1に伸張する方向に変形力が複合材部材1に付加されるようになる。
 これにより、曲げ中心O1側において曲げ前後で周長が短くなることを抑制でき、複合材部材1の曲げ中心O1側が収縮してリンクルが発生することを抑制できる。
 次に、上記曲げ変形を実現する装置について説明する。
 図3Aに示されているように、複合材部材1の製造装置10は、複合材部材1の両端をクランプするクランプ装置12と、マンドレル14と、円錐台ローラ(伸張部材)16とを備えている。
 クランプ装置12は、制御装置(図示せず)によって制御され、複合材部材1の両端をクランプした状態で矢印A3方向に駆動させることで複合材部材1に対して長手方向L1に張力を与える。なお、クランプ装置12の両側が可動とされていても良く、一方のクランプ装置12が固定とされ、他方のクランプ装置12が可動とされていても良い。
 クランプ装置12によってクランプされた位置が、図1に示したクランプされた端部1a,1bとなる。
 クランプ装置12は、制御装置の指令によって、複合材部材1をクランプした状態で、マンドレル14に対して接近するように移動する。
 マンドレル14は、所望の曲げ形状に対応した曲面14aを有している。曲面14aは、複合材部材1に凸となる曲面形状とされている。マンドレル14は、図示しない架台等に固定され不動とされている。
 円錐台ローラ16は、円錐台形状とされている。円錐台ローラ16の大径側が曲げ中心O1側(マンドレル14側)に位置するように配置されている。円錐台ローラ16の回転軸線C2は、複合材部材1の略幅方向L2に延在している。具体的には、円錐台ローラ16の回転軸線C2は、制御装置によって、マンドレル14の曲面14aに直交する方向に適宜位置が変化する。円錐台ローラ16は、制御装置によって、複合材部材1の長手方向L1すなわち並進方向M1に移動される。
 図4に示されているように、円錐台ローラ16は、複合材部材1の板厚方向L3に2つ設けられている。円錐台ローラ16の回転軸線C2方向の軸方向長さは、複合材部材1の幅方向L2の長さよりも長い。これにより、複合材部材1の幅方向L2の全体に対して円錐台ローラ16の側周面を当接させることができる。両円錐台ローラ16で複合材部材1を挟み込むことによって複合材部材1の両面に摩擦力を与える。
 円錐台ローラ16は、制御装置の指令によって所定回転数で回転軸線C2回りに回転駆動される。回転方向R1は、複合材部材1側において円錐台ローラ16の並進方向M1と同一方向となるようになっている。円錐台ローラ16によって得られる複合材部材1の表面における周速は、並進方向M1の円錐台ローラ16の並進速度よりも大きくなるように設定されている。すなわち、円錐台ローラ16によって複合材部材1の表面にバックスピンがかけられるようになっている。これにより、複合材部材1の表面に局所的に摩擦力を与えて複合材部材1を長手方向L1に伸ばすようになる。
 円錐台ローラ16の大径側がマンドレル14(図3A参照)側に配置されているので、マンドレル14側ほど円錐台ローラ16の周速が大きくなる。これにより、図5に示すように、マンドレル14側すなわち曲げ中心O1側ほど大きな摩擦力が複合材部材1の表面に作用するようになっている。
 図4に示されているように、複合材部材1の曲げ中心O1側とは反対側に押当ローラ(押当部材)18が設けられている。押当ローラ18は円柱形状とされており、中心軸線C3回りに回転自由とされている。押当ローラ18は、制御装置によって、複合材部材1の長手方向L1に移動される。これにより、押当ローラ18は、複合材部材1の一方の側部1cを押圧してマンドレル14(図3A参照)の曲面14aに対して複合材部材1の他方の側部1dを押し当てる。押当ローラ18の移動に伴い、図3A及び図3Bに示すように、複合材部材1の曲げ変形の形状が長手方向L1に順次決定されていく。なお、図3A及び図3Bでは、図示の簡略化のために押当ローラ18が省略されている。
 図6には、複合材部材1に対する円錐台ローラ16と押当ローラ18の位置関係が示されている。同図に示すように、複合材部材1は、円錐台ローラ16によって板厚方向L3から挟まれるとともに、曲げ中心側に向けて押当ローラ18によってマンドレル14(図3A参照)の曲面14aに対して押し当てられる。
 図4及び図6に示したように、円錐台ローラ16による複合材部材1への摩擦力の付与と、押当ローラ18によるマンドレル14側への押し当ては同期して行われる。
 制御装置は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 次に、上述した複合材部材1の製造装置10を用いた複合材部材1の製造方法について図7を用いて説明する。
 先ず、図3Aに示したように、所望形状の曲面14aを有するマンドレル14を固定設置する(マンドレル配置工程S1)。
 そして、複合材部材1の両端をクランプ装置12によってクランプし(クランプ工程S2)、クランプされた両端部1a,1b(図1参照)間に張力を与える(張力付加工程S3)。
 次に、曲げ工程を開始する(ステップS4)。
 複合材部材1の長手方向L1における一方(図3Aにおいて左方)から他方に向かって、複合材部材1の側部1dをマンドレル14の曲面14aに押し当てる(押当工程S5)。押当工程S5は、図4及び図6に示した押当ローラ18によって行われる。
 押当工程S5と同期させて、円錐台ローラ16の側周面を複合材部材1の幅方向L2の全体に対して当接させて、円錐台ローラ16によって複合材部材1の表面に摩擦力を局所的に付加して複合材部材1を長手方向L1に伸ばす伸張工程S6が行われる。
 複合材部材1は、長手方向L1に向かってマンドレル14の曲面14aに順次押し当てられて曲げ変形させられながら、複合材部材1の全体を曲げ変形される。
 以上の押当工程S5及び伸張工程S6を含む曲げ工程の全体にわたって、クランプ装置12の位置及び姿勢を制御することによって、図1に示したように、クランプされた複合材部材1の一方の端部1aと他方の端部1bとがなす角が一定に維持される(角度維持工程S7)。
 所定の変形量を複合材部材1に付与した後に、曲げ工程が終了する(ステップS8)
 以上の各工程S1~S8によって、複合材部材1に対する面内曲げ変形が行われる。なお、上述した各工程S1~S8は、あくまでも例示であって、適宜変更することができる。
 曲げ工程を行って所望の曲げ形状を得た後(すなわちステップS8で曲げ工程が終了した後)に、クランプ装置12によってクランプされていた端部1a,1b(図1参照)を所望形状に切断する切断工程を設けても良い。これにより、クランプされた一方の端部1aと他方の端部1bとがなす角が一定となるように維持することとしたので、曲げ工程後のクランプされた端部1a,1bの形状が所望形状となっていない場合がある。そこで、クランプされていた端部1a,1bを所望形状に切断することで所望形状を得ることができる。
 以上説明した本実施形態の作用効果は以下の通りである。
 複合材部材1をマンドレル14に押し当てて曲げる際に、クランプされた複合材部材1の一方の端部1aと他方の端部1bとがなす角を一定に維持するようにした。これにより、曲げ中心O1側であっても曲げ前後で周長が短くなることを抑制できる。よって、複合材部材1の曲げ中心側が収縮してリンクルが発生することを抑制できる。
 円錐台ローラ16によって、複合材部材1の曲げ中心O1側の表面に局所的に摩擦力を与えて複合材部材1を長手方向L1に伸ばすこととした。すなわち、局所的に摩擦力が与えられた部分が引っ張られて伸ばされることになる。この局所的に摩擦力が与えられた表面を介して長手方向L1への引張力が複合材部材1の板厚方向L3に伝達される。これにより、複合材部材1の曲げ中心O1側にリンクルが発生することを抑制できる。
 円錐台ローラ16の外周面を複合材部材1の表面に当接させて円錐台ローラ16を回転させることとしたので、大径側ほど周速が大きくなり摩擦力が大きくなる。そして、円錐台ローラ16の大径側を複合材部材1の曲げ中心O1側に配置することとした。これにより、円錐台ローラ16の大径側が配置された曲げ中心O1側ほど摩擦力を大きくすることができ、曲げ中心O1側ほど発生しやすいリンクルを抑制することができる。
 円錐台ローラ16の側周面を複合材部材1の幅方向L2の全体に当接させて局所的に摩擦力を付加することとした。これにより、複合材部材1の曲げ中心O1側ほど大きい摩擦力が付加されるものの、複合材部材の表面の幅方向L2の全体に摩擦力が付加されるので、複合材部材1の表面の品質を安定させることができる。
 例えば、円錐台ローラ16の軸方向長さを短くして複合材部材1の幅方向L2の曲げ中心O1側のみに局所的に摩擦力を付加する一方で、曲げ中心O1からみて円錐台ローラ16の外側に位置する複合材部材1の外側側部分に対して摩擦力を付加しない構成も採用することができる。しかし、摩擦力が付加されない表面が残ることで付加した摩擦力の分布が不連続になり、複合材部材1の品質が不安定になるおそれがある。したがって、本実施形態のように複合材部材1の幅方向L2の全体に当接させて局所的に摩擦力を付加することで、複合材部材1に対して連続的に変化するように摩擦力を付加することが好ましい。
 マンドレル14の曲面14aに対して複合材部材1の側部1dを長手方向L1に向かって順次押し当てて曲げる押当ローラ18を設けた。この押当ローラ18を、円錐台ローラ16と同期させて制御することとした。これにより、マンドレル14に複合材部材1の側部1dを押し当てて形状を付与する変形時に、局所的に摩擦力を付加して長手方向L1に複合材部材1を伸ばすことができるので、リンクルの発生を効果的に抑制できる。
[第2実施形態]
 次に、本開示の第2実施形態について、図8を用いて説明する。本実施形態は、第1実施形態に示した複合材部材1の製造装置10を基本として、熱可塑性とされた複合材部材の面内曲げ変形に適用したものである。したがって、第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
 図8に示すように、本実施形態の製造装置10は、2つのヘッド20を備えている。各ヘッド20には、図9に示すように、2つの円錐台ローラ16と、複数の押当ローラ18’とを備えている。
 本実施形態の複合材部材21は、図9のように横断面形状が屈曲したL字形状となっている。具体的には、複合材部材21は、曲げ中心側(マンドレル14側:図9において左側)のウェブ部21aと、ウェブ部21aに接続されると共に上方に約90°屈曲されたフランジ部21bとを備えている。したがって、複合材部材21の曲げ変形の中立軸C1’は、フランジ部21b側に位置する。このため、円錐台ローラ16による摩擦力の付与は、円錐台ローラ16が当接するウェブ部21aの全体が中立軸C1’よりも内側になるので、複合材部材21に対して面内曲げを行った場合にウェブ部21aの全体にリンクルが発生するおそれがある。したがって、ウェブ部21aの全体にわたって所定の摩擦力分布を付与することが好ましい。
 押当ローラ18’は、フランジ部21bの形状に沿って複数ヶ所に設けられている。
 図8に示すように、各ヘッド20は、矢印A4方向に、それぞれがマンドレル14の中央から側方に向かって移動するように制御される。各ヘッド20は、矢印A4の移動方向における円錐台ローラ16の上流側にはヒータ(加熱部材)22が設けられ、矢印A4の移動方向における円錐台ローラ16の下流側にはクーラ(冷却部材)24が設けられている。ヒータ22は、例えば電気加熱式とされ、複合材部材21を加熱する。クーラ24は、例えば水冷コイルを備えた冷却手段とされ、複合材部材21を冷却する。
 なお、図8に示した矢印A5は、各ヘッド20の軌跡を示す。このように、マンドレル14の曲面14aに沿って各ヘッド20が移動する。
 クランプ装置12は、複合材部材21の長手方向である矢印A3方向に駆動されて複合材部材21に対して張力を付加しつつ、曲げ工程の際には順次マンドレル14側に向かいかつ矢印A3方向に略直交する方向(矢印A6方向)に移動される。
 本実施形態によれば、以下の作用効果を奏する。
 複合材部材21が熱可塑性とされている場合には、円錐台ローラ16によって複合材部材21に摩擦力を付加する前に複合材部材21をヒータ22で加熱することによって変形可能とする。そして、円錐台ローラ16によって複合材部材21に摩擦力を付加した後は、複合材部材21をクーラ24で冷却することによって形状を決定することができる。
[変形例]
 なお、上述した各実施形態に用いられた円錐台ローラ16は、複合材部材1,21を長手方向L1に伸ばす伸張部材として以下のように変形することができる。
<変形例1>
 図10に示すように、伸張部材として円板30を用いることとしても良い。
 円板30は、回転中心となる中心軸線C4が複合材部材1の曲げ中心とは複合材部材1を挟んで反対側に配置されている。円板30は、制御装置によって中心軸線C4回りに回転駆動される。回転方向R2は、複合材部材1側において円板30の並進方向M1と同一方向となるようになっている。
 円板30は、複合材部材1の板厚方向L3に離間して2つ設けられている。円板30のディスク面(図10における円板30の上面又は下面)30aが複合材部材1の表面に当接させられた状態で回転させられる。これにより、円板30の外周側ほど周速が大きくなることで摩擦力が大きくなり、曲げ中心側ほど大きな摩擦力を付加することができる。
<変形例2>
 図11に示すように、伸張部材として複数の円柱ローラ40を用いることとしても良い。
 各円柱ローラ40は、複合材部材1の長手方向L1に直交する方向(幅方向L2)に所定の間隔を空けて設けられている。各円柱ローラ40は、制御装置によって個別に回転制御される。
 各円柱ローラ40は、同一形状とされており、それぞれが複合材部材1に向けて押圧されるようになっている。押圧力は、押圧部材41を介して各円柱ローラ40に与えられる。押圧力の大きさは、矢印A7で示すように個別に設定される。
 円柱ローラ40の複合材部材1を挟んだ反対側(図11において下側)には、バックアップローラ42が設けられている。すなわち、各円柱ローラ40とバックアップローラ42とは、複合材部材1の板厚方向L3において対となって設けられている。バックアップローラ42は、複合材部材1の幅方向L2に延在した長尺状の円筒形状とされている。長尺状のバックアップローラ42を用いることで、上方の各円柱ローラ40を安定的に受け止めることができる。
 各円柱ローラ40の外周面を複合材部材1の表面に当接させて、複合材部材1を長手方向L1に伸ばす回転方向R3(すなわち複合材部材1の並進方向M1に複合材部材1の表面を押出す方向)に各円柱ローラ40を回転させるとともに、複合材部材1の曲げ中心側に位置する円柱ローラ40ほど大きな摩擦力が生じるように制御する。すなわち、曲げ中心側に位置する円柱ローラ40ほど大きな押圧力が加わるようにする(矢印A7参照)。なお、図11に示した矢印A7の長さは押圧力の大きさを示している。これにより、複合材部材1の曲げ中心側ほど摩擦力を大きくすることができる。
 なお、円柱ローラ40の制御としては、複合材部材1の曲げ中心側ほど複合材部材1に付加する摩擦力が大きくなるように制御すれば良く、例えば、各円柱ローラ40の回転数を制御しても良い。また、各円柱ローラ40の径を異ならせることによって円柱ローラ40の周速を変化させるようにしても良い。
<変形例3>
 図12A及び図12Bに示すように、伸張部材として押付板50を用いることとしても良い。
 押付板50は、複合材部材1の長手方向L1に直交する方向(幅方向L2)に延在する板状体である。
 図12Bに示すように、押付板50は、複合材部材1の板厚方向L3に間隔を空けて2つで一対として設けられている。押付板50は、複数のバネ(押付力付加部材)51によって、複合材部材1の表面に対して摺動状態で押し付けられている。各バネ51は、押付板50の延在方向(同図において幅方向L2)に間隔を空けて複数設けられている。各バネ51のバネ定数は同一とされている。各バネ51の固定端51aは、図示しない製造装置の固定部に固定されている。各固定端51aの位置は、図12Bのように押付板50の間に複合材部材1を間に挟んだ場合に、複合材部材1の幅方向L2に平行となる直線L4上に位置に設けられている。
 図12Aに示すように、押付板50の間に複合材部材1を間に挟まない無負荷の状態において、バネ51の自然長は曲げ中心側ほど長くなっている。これにより、図12Bに示すように、一定厚さの複合材部材1を一対の押付板50の間に挟んだ状態では、曲げ中心側ほど大きな押付力が加わるようになっている。これにより、複合材部材1の曲げ中心側ほど摩擦力を大きくすることができる。
 なお、押付板50としては、単一の部材でもよく、幅方向L2に分割された複数の部材(板状体)で構成しても良い。
 また、バネ51の固定端51aの位置は、直線L4上に一致させなくても良く、バネ51の自然長を適宜変更することによって、複合材部材1の曲げ中心側ほど摩擦力を大きくするようにしても良い。
 なお、上記の各実施形態及びその各変形例では、複合材部材の面内曲げ(図13B参照)を一例として説明したが、面外曲げ(図13A参照)に対しても適用することができる。
 以上説明した本開示の複合材部材の製造方法及び複合材部材の製造装置は、例えば以下のように把握される。
 本開示の一態様に係る複合材部材の製造方法は、繊維と樹脂とを含む複合材部材(1,21)の両端をクランプするクランプ工程と、前記クランプ工程によってクランプされた前記複合材部材の両端間に沿う長手方向(L1)に張力を付加する張力付加工程と、前記張力付加工程によって張力が付加された状態で前記複合材部材を変形させて所望の曲げ形状を得る曲げ工程と、を有し、前記曲げ工程は、前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部(1a)と他方の端部(1b)とがなす角を一定に維持する角度維持工程を有している。
 複合材部材の両端をクランプして張力を付加した状態で曲げる際に、複合材部材の一方の端部と他方の端部とがなす角を変化させて曲げ中心側に向くように曲げ変形を行うと、曲げ中心側では周長が曲げによって短くなり複合材部材が収縮してリンクルが発生するおそれがある。そこで、複合材部材を曲げて変形させる際に、クランプされた複合材部材の一方の端部と他方の端部とがなす角を一定に維持するようにした。これにより、曲げ中心側であっても曲げ前後で周長が短くなることを抑制できる。よって、複合材部材の曲げ中心側が収縮してリンクルが発生することを抑制できる。
 なお、複合材部材としては、曲げ工程中に塑性変形するものであればよく、熱硬化性でも熱可塑性でも良い。
 本開示の一態様に係る複合材部材の製造方法では、前記曲げ工程は、前記複合材部材の曲げ中心(O1)側の表面に局所的に摩擦力を付加して前記複合材部材を前記長手方向に伸ばす伸張工程を有している。
 複合材部材の曲げ中心側の表面に局所的に摩擦力を付加して複合材部材を長手方向に伸ばすこととした。すなわち、局所的に摩擦力が付加された部分が引っ張られて伸ばされることになる。これにより、複合材部材の曲げ中心側にリンクルが発生することを抑制できる。
 伸張工程では、複合材部材を曲げている部分に局所的に摩擦力を付与することが好ましい。
 本開示の一態様に係る複合材部材の製造方法では、前記摩擦力は、前記複合材部材の曲げ中心側ほど大きくされている。
 複合材部材の曲げ中心側ほど曲げ工程時に複合材部材が縮むので、曲げ中心側ほど摩擦力を大きくすることが好ましい。
 本開示の一態様に係る複合材部材の製造方法では、前記複合材部材の前記長手方向に直交する幅方向の全体に対して局所的に前記摩擦力を付加する。
 複合材部材の幅方向の全体に対して局所的に前記摩擦力を付加することとした。これにより、複合材部材の曲げ中心側ほど大きな摩擦力が付加されるものの、複合材部材の表面の幅方向の全体に摩擦力が付加されるので、摩擦力が付加されない表面が残ることを可及的に回避できる。これにより、複合材部材の表面の品質を安定させることができる。
 本開示の一態様に係る複合材部材の製造方法では、曲面(14a)を有するマンドレル(14)を配置するマンドレル配置工程を有し、前記曲げ工程は、前記マンドレルの前記曲面に対して前記複合材部材の側部(1d)を前記長手方向に向かって順次押し当てて曲げ形状を得る押当工程を有し、前記押当工程は、前記伸張工程に同期して行われる。
 マンドレルの曲面に対して複合材部材の側部を長手方向に向かって順次押し当てて曲げる押当工程を有している。この押当工程を、伸張工程と同期させることとした。これにより、マンドレルに複合材部材の側部を押し当てて形状を付与する変形時に、局所的に摩擦力を付加して長手方向に複合材部材を伸ばすことができるので、リンクルの発生を効果的に抑制できる。
 本開示の一態様に係る複合材部材の製造方法では、前記複合材部材は、熱可塑性とされ、前記伸張工程の前に前記複合材部材を加熱する加熱工程と、前記伸張工程の後に前記複合材部材を冷却する冷却工程と、を有している。
 複合材部材が熱可塑性とされている場合には、伸張工程の前に複合材部材を加熱することによって変形可能とする。そして、伸張工程の後は、複合材部材を冷却することによって形状を決定する。
 なお、複合材部材が熱硬化性とされている場合には、伸張工程の後に複合材部材を加熱する加熱工程を設けても良い。
 本開示の一態様に係る複合材部材の製造方法では、前記曲げ工程の後に、クランプされていた前記端部を所望形状に切断する切断工程を有している。
 クランプした一方の端部と他方の端部とがなす角が一定となるように維持することとしたので、曲げ工程後の端部の形状が所望形状となっていない場合がある。そこで、クランプされていた端部を所望形状に切断することで所望形状を得ることとしてもよい。
 本開示の一態様に係る複合材部材の製造装置(10)は、繊維と樹脂とを含む複合材部材(1,21)の両端をクランプするクランプ装置(12)と、前記クランプ装置を制御する制御装置と、曲面(14a)を有するマンドレル(14)と、を備え、前記制御装置は、前記複合材部材の両端間に沿う長手方向(L1)に張力が付加された状態で、前記マンドレルの前記曲面に対して前記複合材部材の側部を押し当てることによって前記複合材部材を変形させて所望の曲げ形状とするように前記クランプ装置を制御するとともに、前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部(1a)と他方の端部(1b)とがなす角が一定に維持されるように前記クランプ装置を制御する。
 複合材部材の両端をクランプして張力を付加した状態で複合材部材の側部をマンドレルに押し当てて曲げる際に、複合材部材の一方の端部と他方の端部とがなす角を変化させて曲げ中心側に向くように曲げを行うと、曲げ中心側では周長が曲げによって短くなり複合材部材が収縮してリンクルが発生するおそれがある。そこで、複合材部材をマンドレルに押し当てて曲げる際に、クランプされた複合材部材の一方の端部と他方の端部とがなす角を一定に維持するようにした。これにより、曲げ中心側であっても曲げ前後で周長が短くなることを抑制できる。よって、複合材部材の曲げ中心側が収縮してリンクルが発生することを抑制できる。
 なお、複合材部材としては、曲げ工程中に塑性変形するものであればよく、熱硬化性でも熱可塑性でも良い。
 本開示の一態様に係る複合材部材の製造装置では、前記複合材部材の曲げ中心(O1)側の表面に局所的に摩擦力を与えて前記複合材部材を前記長手方向に伸ばす伸張部材(16,30,40,50)を備えている。
 伸張部材によって、複合材部材の曲げ中心側の表面に局所的に摩擦力を与えて複合材部材を長手方向に伸ばすこととした。すなわち、局所的に摩擦力が与えられた部分が引っ張られて伸ばされることになる。この局所的に摩擦力が与えられた表面を介して長手方向への引張力が複合材部材の板厚方向に伝達される。これにより、複合材部材の曲げ中心側にリンクルが発生することを抑制できる。
 本開示の一態様に係る複合材部材の製造装置では、前記摩擦力は、前記複合材部材の曲げ中心側ほど大きくされている。
 複合材部材の曲げ中心側ほど曲げ工程時に複合材部材が縮むので、曲げ中心側ほど摩擦力を大きくすることが好ましい。
 本開示の一態様に係る複合材部材の製造装置では、前記伸張部材は、大径側が前記複合材部材の曲げ中心側に配置された円錐台形状の円錐台ローラ(16)を備え、前記制御装置は、前記円錐台ローラの外周面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に前記円錐台ローラを回転させる。
 円錐台ローラの外周面を複合材部材の表面に当接させて円錐台ローラを回転させることとしたので、大径側ほど周速が大きくなり摩擦力が大きくなる。そして、円錐台ローラの大径側を複合材部材の曲げ中心側に配置することとした。これにより、円錐台ローラの大径側が配置された曲げ中心側ほど摩擦力を大きくすることができる。
 本開示の一態様に係る複合材部材の製造装置では、前記伸張部材は、回転中心が前記複合材部材の曲げ中心とは該複合材部材を挟んで反対側に配置された円板(30)を備え、前記制御装置は、前記円板のディスク面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に前記円板を前記回転中心回りに回転させる。
 円板のディスク面を複合材部材の表面に当接させて円板を回転させることとしたので、円板の外周側ほど周速が大きくなり摩擦力が大きくなる。そして、円板は、回転中心が複合材部材の曲げ中心とは反対側に配置することとした。これにより、円板の外周側が配置された曲げ中心側ほど摩擦力を大きくすることができる。
 本開示の一態様に係る複合材部材の製造装置では、前記伸張部材は、前記複合材部材の前記長手方向に直交する方向に設けられた円柱形状の複数の円柱ローラ(40)を備え、前記制御装置は、各前記円柱ローラの外周面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に各前記円柱ローラを回転させるとともに、前記複合材部材の曲げ中心側に位置する前記円柱ローラほど大きな摩擦力が生じるように制御する。
 複数の円柱ローラを複合材部材の長手方向に直交する方向に並べた上で、複合材部材の曲げ中心側ほど大きな摩擦力が生じるように各円柱ローラを制御することとした。これにより、複合材部材の曲げ中心側ほど摩擦力を大きくすることができる。
 円柱ローラの制御としては、各円柱ローラの複合材部材に対する押付力を制御しても良いし、各円柱ローラの回転数を制御しても良い。また、各円柱ローラの径を異ならせることによって円柱ローラの周速を変化させるようにしても良い。
 本開示の一態様に係る複合材部材の製造装置では、前記伸張部材は、前記複合材部材の前記長手方向に直交する方向に設けられ、前記複合材部材の表面に対して摺動状態で押し付けられる押付板(50)とされ、前記押付板を前記複合材部材の表面に当接させた場合に、前記複合材部材の曲げ中心側の部位ほど大きな押付力を生じさせる押付力付加部材(51)を備えている。
 複合材部材の表面に摺動状態で押し当てられる押付板を押し付けて、複合材部材の曲げ中心側の部位ほど大きな押付力が生じるように押付板を押付力付加部材で押圧することとした。これにより、複合材部材の曲げ中心側ほど摩擦力を大きくすることができる。
 押付板としては、複合材部材の長手方向に直交する方向に延在する単一の部材でもよく、該長手方向に分割された複数の部材で構成しても良い。
 本開示の一態様に係る複合材部材の製造装置では、前記複合材部材を前記マンドレル側に押し当てる押当部材(18)を備え、前記制御装置は、前記マンドレルの前記曲面に対して前記複合材部材の側部を前記長手方向に向かって順次押し当てて曲げ形状を得るように前記押当部材を制御するとともに、前記押当部材に同期させて前記伸張部材を制御する。
 マンドレルの曲面に対して複合材部材の側部を長手方向に向かって順次押し当てて曲げる押当部材を有している。この押当部材を、伸張部材と同期させて制御することとした。これにより、マンドレルに複合材部材の側部を押し当てて形状を付与する変形時に、局所的に摩擦力を付加して長手方向に複合材部材を伸ばすことができるので、リンクルの発生を効果的に抑制できる。
 本開示の一態様に係る複合材部材の製造装置では、前記複合材部材は、熱可塑性とされ、前記伸張部材によって前記複合材部材に摩擦力を付加する前に前記複合材部材を加熱する加熱部材(22)と、前記伸張部材によって前記複合材部材に摩擦力を付加した後に前記複合材部材を冷却する冷却部材(24)と、を有している。
 複合材部材が熱可塑性とされている場合には、伸張部材によって複合材部材に摩擦力を付加する前に複合材部材を加熱することによって変形可能とする。そして、伸張部材によって複合材部材に摩擦力を付加した後は、複合材部材を冷却することによって形状を決定する。
 なお、複合材部材が熱硬化性とされている場合には、伸張部材によって摩擦力を付加した後に複合材部材を加熱する加熱部材を設けても良い。
1 複合材部材
1a クランプされた一方の端部
1b クランプされた他方の端部
1c (一方の)側部
1d (他方の)側部
3 0°層の繊維
10 複合材部材の製造装置
12 クランプ装置
14 マンドレル
14a 曲面
16 円錐台ローラ(伸張部材)
18 押当ローラ(押当部材)
18’ 押当ローラ(押当部材)
20 ヘッド
21 複合材部材
21a ウェブ部
21b フランジ部
22 ヒータ(加熱部材)
24 クーラ(冷却部材)
30 円板(伸張部材)
30a ディスク面
40 円柱ローラ(伸張部材)
41 押圧部材
42 バックアップローラ
50 押付板(伸張部材)
51 バネ(押付力付加部材)
51a 固定端
100 複合材部材
C1 中立軸
C1’ 中立軸
L1 長手方向
L2 幅方向
L3 板厚方向
O1 曲げ中心

Claims (15)

  1.  繊維と樹脂とを含む複合材部材の両端をクランプするクランプ工程と、
     前記クランプ工程によってクランプされた前記複合材部材の両端間に沿う長手方向に張力を付加する張力付加工程と、
     前記張力付加工程によって張力が付加された状態で前記複合材部材を変形させて所望の曲げ形状を得る曲げ工程と、
     を有し、
     前記曲げ工程は、前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部と他方の端部とがなす角を一定に維持する角度維持工程を有している複合材部材の製造方法。
  2.  前記曲げ工程は、前記複合材部材の曲げ中心側の表面に局所的に摩擦力を付加して前記複合材部材を前記長手方向に伸ばす伸張工程を有している請求項1に記載の複合材部材の製造方法。
  3.  前記摩擦力は、前記複合材部材の曲げ中心側ほど大きくされている請求項2に記載の複合材部材の製造方法。
  4.  前記複合材部材の前記長手方向に直交する幅方向の全体に対して局所的に前記摩擦力を付加する請求項3に記載の複合材部材の製造方法。
  5.  曲面を有するマンドレルを配置するマンドレル配置工程を有し、
     前記曲げ工程は、前記マンドレルの前記曲面に対して前記複合材部材の側部を前記長手方向に向かって順次押し当てて曲げ形状を得る押当工程を有し、
     前記押当工程は、前記伸張工程に同期して行われる請求項2から4のいずれか一項に記載の複合材部材の製造方法。
  6.  前記複合材部材は、熱可塑性とされ、
     前記伸張工程の前に前記複合材部材を加熱する加熱工程と、
     前記伸張工程の後に前記複合材部材を冷却する冷却工程と、
     を有している請求項2から5のいずれか一項に記載の複合材部材の製造方法。
  7.  繊維と樹脂とを含む複合材部材の両端をクランプするクランプ装置と、
     前記クランプ装置を制御する制御装置と、
     曲面を有するマンドレルと、
     を備え、
     前記制御装置は、前記複合材部材の両端間に沿う長手方向に張力が付加された状態で、前記マンドレルの前記曲面に対して前記複合材部材の側部を押し当てることによって前記複合材部材を変形させて所望の曲げ形状とするように前記クランプ装置を制御するとともに、
     前記複合材部材の曲げ変形中に、クランプされた前記複合材部材の一方の端部と他方の端部とがなす角が一定に維持されるように前記クランプ装置を制御する複合材部材の製造装置。
  8.  前記複合材部材の曲げ中心側の表面に局所的に摩擦力を与えて前記複合材部材を前記長手方向に伸ばす伸張部材を備えている請求項7に記載の複合材部材の製造装置。
  9.  前記摩擦力は、前記複合材部材の曲げ中心側ほど大きくされている請求項8に記載の複合材部材の製造装置。
  10.  前記伸張部材は、大径側が前記複合材部材の曲げ中心側に配置された円錐台形状の円錐台ローラを備え、
     前記制御装置は、前記円錐台ローラの外周面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に前記円錐台ローラを回転させる請求項9に記載の複合材部材の製造装置。
  11.  前記伸張部材は、回転中心が前記複合材部材の曲げ中心とは該複合材部材を挟んで反対側に配置された円板を備え、
     前記制御装置は、前記円板のディスク面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に前記円板を前記回転中心回りに回転させる請求項9に記載の複合材部材の製造装置。
  12.  前記伸張部材は、前記複合材部材の前記長手方向に直交する方向に設けられた円柱形状の複数の円柱ローラを備え、
     前記制御装置は、各前記円柱ローラの外周面を前記複合材部材の表面に当接させて、前記複合材部材を前記長手方向に伸ばす方向に各前記円柱ローラを回転させるとともに、前記複合材部材の曲げ中心側に位置する前記円柱ローラほど大きな摩擦力が生じるように制御する請求項9に記載の複合材部材の製造装置。
  13.  前記伸張部材は、前記複合材部材の前記長手方向に直交する方向に設けられ、前記複合材部材の表面に対して摺動状態で押し付けられる押付板とされ、
     前記押付板を前記複合材部材の表面に当接させた場合に、前記複合材部材の曲げ中心側の部位ほど大きな押付力を生じさせる押付力付加部材を備えている請求項9に記載の複合材部材の製造装置。
  14.  前記複合材部材を前記マンドレル側に押し当てる押当部材を備え、
     前記制御装置は、前記マンドレルの前記曲面に対して前記複合材部材の側部を前記長手方向に向かって順次押し当てて曲げ形状を得るように前記押当部材を制御するとともに、前記押当部材に同期させて前記伸張部材を制御する請求項8から13のいずれか一項に記載の複合材部材の製造装置。
  15.  前記複合材部材は、熱可塑性とされ、
     前記伸張部材によって前記複合材部材に摩擦力を付加する前に前記複合材部材を加熱する加熱部材と、
     前記伸張部材によって前記複合材部材に摩擦力を付加した後に前記複合材部材を冷却する冷却部材と、
     を有している請求項8から14のいずれか一項に記載の複合材部材の製造装置。
PCT/JP2020/008050 2020-02-27 2020-02-27 複合材部材の製造方法及び複合材部材の製造装置 WO2021171488A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008050 WO2021171488A1 (ja) 2020-02-27 2020-02-27 複合材部材の製造方法及び複合材部材の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008050 WO2021171488A1 (ja) 2020-02-27 2020-02-27 複合材部材の製造方法及び複合材部材の製造装置

Publications (1)

Publication Number Publication Date
WO2021171488A1 true WO2021171488A1 (ja) 2021-09-02

Family

ID=77490047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008050 WO2021171488A1 (ja) 2020-02-27 2020-02-27 複合材部材の製造方法及び複合材部材の製造装置

Country Status (1)

Country Link
WO (1) WO2021171488A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520897A (ja) * 2005-12-20 2009-05-28 ズィ、 ユニヴァーサティ、アヴ、メイン、システィム 複合建設部材および作成方法
WO2016208450A1 (ja) * 2015-06-25 2016-12-29 健二 久保村 深絞り加工可能なプリプレグ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520897A (ja) * 2005-12-20 2009-05-28 ズィ、 ユニヴァーサティ、アヴ、メイン、システィム 複合建設部材および作成方法
WO2016208450A1 (ja) * 2015-06-25 2016-12-29 健二 久保村 深絞り加工可能なプリプレグ及びその製造方法

Similar Documents

Publication Publication Date Title
CN106536800B (zh) 处理装置以及处理方法
JP5921908B2 (ja) 伸張機
JP5669777B2 (ja) 強化繊維基材の製造方法および製造装置
JP6411677B1 (ja) 複合材部品の製造方法、および、複合材部品製造装置
WO2020136926A1 (ja) Frp連続成形装置及びfrp連続成形方法
JP6732101B2 (ja) 繊維材の賦形装置及び繊維材の賦形方法
WO2021171488A1 (ja) 複合材部材の製造方法及び複合材部材の製造装置
US20070107833A1 (en) Belt and method of making same
JP6045293B2 (ja) 積層シートの製造方法
JP2006056022A (ja) 湾曲したfrp桁材用の強化繊維プリフォームの製作方法
JP7124132B2 (ja) 積層体成形装置及び積層体成形方法
JP6411673B1 (ja) 複合材部品の製造方法、および、複合材部品製造装置
WO2015182231A1 (ja) カール除去装置及びカール除去方法
KR101842866B1 (ko) 림 제조용 복합재 적층장치
JP7326486B2 (ja) 複合材構造体の製造方法
JP5683579B2 (ja) 微細表面構造を有するフィルムの製造方法および製造装置
JP2007092196A (ja) エンボス加工用離型紙
JP7339212B2 (ja) 巻取装置、フィルムロールの製造システム、および、フィルムロールの製造方法
JP5838944B2 (ja) 燃料電池用電解質膜に用いられる補強膜の製造方法
WO2022219910A1 (ja) パネル構造体の製造装置、およびパネル構造体の製造方法
WO2021014504A1 (ja) 複合材成形装置および複合材成形方法
JP7310027B2 (ja) 賦形装置および賦形方法
RU2779188C1 (ru) Устройство для непрерывной формовки frp и способ непрерывной формовки frp
JPH0312540B2 (ja)
JP4775702B2 (ja) エンボス加工装置および加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP