WO2021170087A1 - 燃料电池控制系统和燃料电池控制方法 - Google Patents

燃料电池控制系统和燃料电池控制方法 Download PDF

Info

Publication number
WO2021170087A1
WO2021170087A1 PCT/CN2021/078158 CN2021078158W WO2021170087A1 WO 2021170087 A1 WO2021170087 A1 WO 2021170087A1 CN 2021078158 W CN2021078158 W CN 2021078158W WO 2021170087 A1 WO2021170087 A1 WO 2021170087A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
air
fuel cell
cavity
cell control
Prior art date
Application number
PCT/CN2021/078158
Other languages
English (en)
French (fr)
Inventor
牛鹏飞
赵高霞
唐海锋
张泽裕
金鑫
伍培明
王向军
于海超
王征宇
冯洋
康明龙
高磊
杜洪水
马逍龙
杨如意
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21761113.6A priority Critical patent/EP4068438A4/en
Priority to US17/790,401 priority patent/US11811112B2/en
Publication of WO2021170087A1 publication Critical patent/WO2021170087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to the field of fuel cells, and in particular, to a fuel cell control system and a fuel cell control method.
  • auxiliary systems such as a hydrogen supply system, a clean fresh air supply system, and a circulating water cooling management system need to be installed.
  • the high-quality and high-flow air supply has a significant effect on increasing the power output of the fuel cell engine, so an air compressor is generally required to force air intake.
  • air compressors are not allowed to use traditional oil-lubricated bearings (such as dynamic pressure sliding bearings), but generally use dynamic pressure air bearings to support the rotor and offset the shaft of the rotor system To load.
  • the present disclosure aims to propose a fuel cell control system that can reduce axial force, extend service life, improve system efficiency, and improve performance, and can achieve precise control of the system to meet The working requirements of air compressors under different working conditions.
  • An air compressor the air compressor has a compression cavity and the compression cavity has an air inlet and an air outlet, the compression cavity is provided with a rotatable pressure wheel, and the air outlet is in communication with the reactor;
  • Control flow passage the first end of the control flow passage is communicated with the intake side of the pressure wheel, and the second end of the control flow passage is communicated with the wheel back side of the pressure wheel, and the control flow passage is Is provided with a return valve for adjusting the flow rate of the control flow channel;
  • a central control unit which is communicatively connected with the return valve to control the opening of the return valve.
  • the control flow channel is used to make part of the compressed high-pressure gas flow back to the air inlet through the control flow channel.
  • Part of the pressure energy of the gas is converted into kinetic energy, which reduces the pressure wheel back
  • the pressure on the side reduces the axial force, thereby prolonging the service life of the air compressor and improving the efficiency of the system.
  • the opening of the return valve controls the flow of the gas flowing through the control flow channel to achieve the system The precise control of the air compressor meets the working requirements of the air compressor under different working conditions, and optimizes the working performance of the air compressor under special working conditions.
  • the gas returning to the air inlet re-enters the pressure roller for compression, which can effectively Improve the domain surge characteristics of the air compressor and enhance the performance of the air compressor.
  • it also includes: air filtration;
  • the air filter is arranged in the air intake direction of the air compressor and located upstream of the air intake port.
  • the fuel cell control system further includes: a first sensor for detecting intake pressure and/or intake temperature of the air compressor, the first sensor being arranged adjacent to the intake port And it is in communication connection with the central control unit.
  • the first sensor is arranged in the intake direction of the air compressor and located downstream of the first end of the control flow passage.
  • the fuel cell control system further includes: a second sensor for detecting the rotation speed of the pressure wheel, the second sensor is disposed adjacent to the pressure wheel and is communicatively connected with the central control unit.
  • an intercooler is provided between the air outlet and the reactor, and an intercooler is provided between the intercooler and the reactor for detecting the temperature and/or inlet of the reactor.
  • the third sensor of air pressure, the third sensor is communicatively connected with the central control unit.
  • the air compressor includes:
  • a housing assembly the housing assembly having the compression cavity, a mounting cavity, and a rotating shaft matching cavity, the rotating shaft matching cavity being arranged between the compression cavity and the mounting cavity;
  • a rotor shaft the rotor shaft is rotatably fitted in the rotating shaft fitting cavity and extends into the compression cavity and the installation cavity respectively, and the pressure roller is sleeved on the rotor shaft;
  • the drive assembly is sleeved on the rotor shaft and located in the installation cavity.
  • control flow channel includes an internal flow channel and an external flow channel, the internal flow channel is located inside the housing assembly, and the internal flow channel and the wheel back of the pressure roller Side communication; the external flow channel is located outside the housing assembly, and the external flow channel is respectively communicated with the internal flow channel and the air inlet side of the pressure roller, the return valve is provided on the external On the runner.
  • the compression chamber has a through backflow hole
  • the return hole is located on the air inlet side of the pressure wheel, and the wheel back side of the pressure wheel communicates with the return hole through the internal flow channel and the external flow channel.
  • the internal flow channel is in the axial direction of the rotor shaft and is located between the compression cavity and the installation cavity.
  • the housing assembly includes: a pressure housing, the compression cavity is defined in the pressure housing; a drive housing, which defines the installation cavity in the drive housing; a back plate, The back plate is arranged between the pressure shell and the drive housing, the back plate is located on the wheel back side of the pressure wheel and a back pressure gap is formed between the pressure wheel, and the drive housing
  • the body is arranged on the side of the back plate facing away from the pressure wheel, a thrust cavity is formed between the back plate and the drive housing; the back plate is provided with a first shaft hole,
  • the drive housing is provided with a second shaft hole, the thrust cavity is provided with a thrust bearing, and the first shaft hole, the second shaft hole and the thrust cavity jointly define the shaft fit Cavity.
  • an air guide channel is provided on the back plate or the drive housing, and the air guide channel communicates with the back pressure gap to form a part of the control flow channel.
  • an air guide channel is formed between the back plate and the drive housing, an air guide hole is provided on the back plate or the drive housing, the back pressure gap, the air guide channel and The air guide holes are communicated to form a part of the control flow channel.
  • a shaft seal is sleeved on the rotor shaft, the rotor shaft is installed in the first shaft hole through the shaft seal, and a gap is formed between the shaft seal and the inner wall of the first shaft hole. There is a flow gap, and the back pressure gap is communicated with the air conduction through hole or the air conduction hole through the flow gap.
  • the thrust bearing includes: a thrust rotor, a bearing foil and a positioning ring;
  • the thrust rotor is sleeved on the rotor shaft, the bearing foil is provided on the side wall of the thrust cavity, and the bearing foil is spaced apart from the thrust rotor to form a communication with the first The thrust clearance of a shaft hole;
  • the positioning ring is arranged in the thrust cavity, the positioning ring is arranged around the thrust rotor, and the positioning ring is sandwiched between the drive housing and the back plate.
  • Another objective of the present disclosure is to provide a fuel cell control method to reduce axial force, extend service life, improve system efficiency and improve performance, and can achieve precise control of the system to meet air compressors under different operating conditions. Job requirements.
  • a fuel cell control method which is used in the fuel cell control system according to the embodiment of the first aspect of the present disclosure, includes:
  • the opening range of the return valve is controlled according to the rotation speed of the air compressor and the pressure of the gas entering the reactor.
  • the return valve is controlled.
  • the opening degree controls the flow of the gas flowing through the control channel, so as to achieve precise control of the system, meet the working requirements of the air compressor under different working conditions, and optimize the working performance of the air compressor under special working conditions;
  • the gas returning to the air inlet re-enters the pressure roller for compression, which can effectively improve the surge characteristics of the air compressor and enhance the performance of the air compressor.
  • the return valve is controlled to open a second amplitude, wherein the second amplitude is greater than the first A range.
  • the present disclosure also provides a computing processing device, including:
  • a memory in which computer readable codes are stored
  • One or more processors when the computer-readable code is executed by the one or more processors, the computing processing device executes the fuel cell control method described above.
  • the present disclosure also provides a computer program, including computer readable code, which when the computer readable code runs on a computing processing device, causes the computing processing device to execute the fuel cell control method described above.
  • the present disclosure also provides a computer-readable medium in which the above-mentioned computer program is stored.
  • Figure 1 is a schematic diagram of the principle of axial force generation of an air compressor in the related art
  • FIG. 2 is a schematic structural diagram of a fuel cell control system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the structure of an air compressor of an embodiment of the present disclosure.
  • Fig. 4 is an enlarged schematic diagram of part A circled in Fig. 3;
  • Fig. 5 is a partial structural diagram of an air compressor of an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a gas flow path in an air compressor according to an embodiment of the present disclosure
  • Fig. 7 is a perspective view of a pressure shell of an embodiment of the present disclosure.
  • Figure 8 is a perspective view of a backplane of an embodiment of the present disclosure.
  • Figure 9 is a perspective view of a positioning ring of an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a fuel cell control system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a fuel cell control system according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a fuel cell control system according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic structural diagram of a fuel cell control system according to an embodiment of the present disclosure.
  • FIG. 14 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 15 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • Air compressor 10 bolt 11, external flow passage 12, rubber seal 13, nut 14, return valve 15, first sensor 16, second sensor 17, third sensor 18,
  • Housing assembly 100 compression cavity 101, installation cavity 102, drainage gap 103, thrust cavity 104, back pressure gap 105, ventilation gap 106,
  • Reactor 20 post-compression pipeline 21, central control unit 30, air filter 40, intercooler 50.
  • the fuel cell control system 1 according to an embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • the fuel cell control system 1 includes: a reactor 20, an air compressor 10, a control flow channel and a central control unit 30.
  • the air compressor 10 has a compression chamber 101, the compression chamber 101 has an air inlet 113 and an air outlet 114, the compression chamber 101 is provided with a rotatable pressure wheel 300, and the air outlet 114 is in communication with the reactor 20, for example, the outlet
  • the gas port 114 communicates with the reactor 20 through the compressed pipe 21.
  • the first end of the control flow channel communicates with the air inlet side of the pressure roller 300, and the second end of the control flow channel communicates with the wheel back side of the pressure wheel 300.
  • the control flow channel is provided with a return valve 15 for adjusting the flow rate of the control flow channel, and the central control unit 30 is communicatively connected with the return valve 15 to control the opening degree (that is, the opening range) of the return valve 15.
  • the central control unit 30 controls the return valve 15 to close the flow of the gas flowing through the control flow channel is zero, and the gas flowing out of the pressure wheel 300 flows to the reactor 20 through the gas outlet 114; the central control unit 30 controls the return valve 15 to flow out when the return valve 15 is opened.
  • the gas of the pressure wheel 300 is divided into two parts, one part of the gas flows to the reactor 20 through the gas outlet 114, the other part of the gas flows into the control flow channel, and then flows back into the compression chamber 101 through the control flow channel.
  • the flow rate of the gas flowing into the control flow channel can be controlled by controlling the opening degree of the return valve 15.
  • an air compressor compresses air during operation to make the gas reach a certain pressure to meet the chemical reaction requirements of the fuel cell reactor.
  • the pressure of the gas on the inlet side of the pressure roller i.e., the front pressure
  • P1 the pressure of the gas on the inlet side of the pressure roller
  • P2 the pressure of the gas on the inlet side of the pressure roller
  • the pressure of the gas acts on the pressure wheel to generate forces F1 and F2, and the directions of F1 and F2 are opposite.
  • the pressure P2 of the back side of the wheel is large, so the final direction of the force resultant force F generated engaged with P2 F2.
  • the above is the reason for the axial force.
  • the inventors of the present disclosure have discovered through research that excessive axial force will increase the possibility of bearing wear and reduce the reliability of the thrust bearing, thereby reducing the life of the air compressor of the fuel cell; and, excessive axial force It will cause the thrust bearing to be forced to increase the bearing area in the design to offset the axial force, and this will cause the thrust bearing to increase the friction area, power loss and heat generation, and reduce the efficiency of the entire system.
  • the compressed high-pressure gas part flows back to the air inlet 113 through the control flow channel, and a part of the pressure energy of the gas is converted into kinetic energy, which reduces the wheel back of the pressure roller 300.
  • the pressure on the side reduces the axial force, thereby prolonging the service life of the air compressor 10 and improving the efficiency of the entire system; and by controlling the opening of the return valve 15, the flow through the control flow channel can be precisely controlled.
  • the flow rate of the gas so as to realize the precise control of the system, meet the working requirements of the air compressor 10 under different working conditions, and optimize the working performance of the air compressor 10 under special working conditions;
  • the gas re-enters the pressure wheel 300 for compression, which can effectively improve the surge characteristics of the air compressor 10 and improve the performance of the air compressor 10.
  • the fuel cell control system 1 further includes an air filter 40.
  • the air filter 40 is used to remove particulate impurities in the air, and the air filter 40 is located upstream of the air inlet 113 in the air intake direction of the air compressor 10. In this way, the air entering the air compressor 10 can be purified.
  • the air pressure is low, and the air density is low, resulting in a decrease in the density and pressure of the gas flowing into the air intake of the vehicle, and the pressure of the gas will be further after the air filter. Decrease, so that the flow rate of the gas flowing into the air compressor is reduced, and the flow rate is reduced, resulting in the reduction of the air intake efficiency of the air compressor, and even the backflow of the gas flowing into the pressure wheel, which will cause the air compressor to surge and system overspeed. , Which has a serious impact on the chemical reaction of the fuel cell, and produces surge noise, which reduces the reliability of the system.
  • the fuel cell control system 1 further includes: a first sensor 16.
  • the first sensor 16 is used to detect the intake pressure and intake temperature of the air compressor 10.
  • the first sensor 16 is arranged adjacent to the air inlet 113, and the first sensor 16 is communicatively connected with the central control unit 30.
  • the first sensor 16 is located between the air inlet 113 and the pressure wheel 300.
  • the first sensor 16 can feed back the detected information (that is, intake pressure and intake temperature) to the central control unit 30, and the central control unit 30 controls the opening of the return valve 15 so that the flow rate of the gas flowing into the control flow channel is Changes.
  • the first sensor 16 can also be used to detect at least one of the intake pressure and the intake temperature of the air compressor 10, and those skilled in the art can make corresponding adjustments according to specific conditions.
  • the central control unit 30 appropriately adjusts the opening of the return valve 15 so that a certain flow of gas flows back to the intake port 113 through the control flow channel.
  • the gas returning to the air inlet 113 re-enters the pressure wheel 300 for compression, thereby increasing the gas flow into the air compressor 10, improving the working conditions of the entire system, and optimizing the working performance of the air compressor 10 under special working conditions.
  • the first sensor 16 is located downstream of the first end of the control flow passage in the intake direction of the air compressor 10. For example, after the gas flowing into the control flow channel flows back to the air inlet 113, it is mixed with the outside air flowing into the air inlet 113, and passes through the first sensor 16, that is, the air flow detected by the first sensor 16 is the return gas and The total airflow after the confluence of outside air. In this way, the first sensor 16 can detect the total air flow entering the air compressor 10 in real time and feed it back to the central control unit 30.
  • the central control unit 30 controls the opening of the return valve 15 according to the actual situation to further control the return to the intake air. The flow rate of the gas at the port 113, thereby improving the control accuracy of the system.
  • the fuel cell control system 1 further includes: a second sensor 17.
  • the second sensor 17 is used to detect the rotation speed of the pressure wheel 300, the second sensor 17 is arranged adjacent to the pressure wheel 300, and the second sensor 17 is communicatively connected with the central control unit 30.
  • the rotation speed of the pressure wheel 300 will affect the pressure on the back side of the pressure wheel 300, thereby affecting the magnitude of the axial force. For example, when the speed of the pressure wheel 300 is low, the pressure on the back side of the pressure wheel 300 is small, that is, the axial force generated by the gas pressure is small, so there is no need for a large amount of gas flow on the back side of the pressure wheel 300 to reduce the axial force. ; When the rotation speed of the pressure wheel 300 is large, the pressure on the back side of the pressure wheel 300 is greater, that is, the axial force generated by the gas pressure is large, so a large amount of gas on the back side of the pressure wheel 300 is required to reduce the axial direction force.
  • the central control unit 30 controls the return valve 15 to close or open to a small extent to ensure the gas flow into the reactor 20 and ensure the performance and responsiveness of the system;
  • the second sensor 17 detects that the rotation speed of the pressure roller 300 is relatively large, the second sensor 17 communicates with the central control unit 30, and the central control unit 30 controls the return valve 15 to open greatly to increase the efficiency of gas return and effectively Reduce the pressure on the back side of the pressure roller 300 and reduce the axial force. In this way, the control accuracy of the system can be further improved.
  • an intercooler 50 is provided between the gas outlet 114 and the reactor 20, and a third sensor 18 is provided between the intercooler 50 and the reactor 20.
  • the third sensor 18 is used to detect the intake air temperature and intake pressure of the reactor 20, and the third sensor 18 is communicatively connected with the central control unit 30.
  • the central control unit 30 controls the return valve 15 to open greatly, so that the flow of the gas flowing into the control flow channel increases, thereby effectively reducing the pressure.
  • the pressure on the back side of the wheel 300 reduces the axial force. In this way, the control accuracy of the system can be further improved.
  • the air compressor includes: a housing assembly 100, a rotor shaft 200 and a driving assembly 600.
  • the housing assembly 100 has a compression cavity 101, a mounting cavity 102 and a rotating shaft matching cavity, and the rotating shaft matching cavity is disposed between the compression cavity 101 and the mounting cavity 102.
  • the rotor shaft 200 is rotatably fitted in the shaft fitting cavity, and the rotor shaft 200 extends into the compression cavity 101 and the mounting cavity 102 respectively, that is, the rotating shaft fitting cavity communicates with the compression cavity 101 and the mounting cavity 102 respectively.
  • the pressing wheel 300 is sleeved on the rotor shaft 200.
  • the first end of the control flow channel is connected to the air inlet side of the pressure roller 300, and the second end of the control flow channel is connected to the wheel back side of the pressure wheel 300.
  • the driving assembly 600 is sleeved on the rotor shaft 200, and the driving assembly 600 is located in the mounting cavity 102 to provide power.
  • the driving assembly 600 may include a motor stator 610 and a motor rotor 620, and the motor rotor 620 is rotatably provided in the motor stator 610.
  • control flow channel may be arranged outside the housing assembly 100, or the control flow channel may also be arranged inside the housing assembly 100.
  • the control flow channel may also be partly arranged outside the housing assembly 100 and another part. It is provided inside the housing assembly 100.
  • the control flow channel can guide the gas flow on the back side of the pressure roller 300, thereby reducing the pressure on the back side of the pressure roller 300 and reducing the axial force.
  • the compression chamber 101 has a through return hole 111, and the control flow channel includes an inner flow channel and an outer flow channel 12.
  • the internal flow channel is located inside the housing assembly 100 and is defined by the housing assembly 100.
  • the internal flow channel is located on the wheel back side of the pressure roller 300, the external flow channel 12 is located outside the housing assembly 100, and the external flow channel 12 communicates with the internal flow channel.
  • the external flow passage 12 On the intake side of the pressure roller 300, the external flow passage 12 may be an external communication pipe, or may be a reflux device integrated outside the housing assembly 100. Among them, the return valve 15 is provided on the external flow passage 12.
  • the return hole 111 is located on the intake side of the pressure roller 300, and the wheel back side of the pressure roller 300 communicates with the return hole 111 through the internal flow passage and the external flow passage 12, so as to achieve communication with the intake side of the pressure roller 300.
  • the gas on the wheel back side of the pressure roller 300 may pass through the inner flow passage, the outer flow passage 12, and the return hole 111 in sequence, and then flow back to the air inlet side of the pressure roller 300.
  • the gas on the back side of the pressure roller 300 still has a certain positive pressure when it circulates to the external flow passage 12, and because the return hole 111 is located in front of the pressure roller 300 after the air filtration operation, the pressure drop of the air filter and the pressure of the pressure roller 300 Under the action of suction, the pressure of the gas at the return hole 111 is slightly lower than the atmospheric pressure.
  • the air in the air compressor 10 can form an automatic and smooth circulation between the air inlet side of the pressure roller 300, the wheel back side of the pressure roller 300, the internal runner and the external runner 12, thereby reducing the pressure roller.
  • the pressure on the wheel back side of 300 reduces the axial force.
  • the internal flow channel is located between the compression cavity 101 and the installation cavity 102 in the axial direction of the rotor shaft 200.
  • the internal flow channel is located on the back side of the compression cavity 101 and on the front side of the installation cavity 102. In this way, the flowing gas can take away the heat generated by the parts at the corresponding position.
  • the housing assembly 100 includes: a compression housing 110, a driving housing 120 and a back plate 130.
  • the compression housing 110 defines a compression cavity 101
  • the driving housing 120 defines an installation cavity 102.
  • the back plate 130 is arranged between the pressure shell 110 and the drive housing 120.
  • the back plate 130 is located on the wheel back side of the pressure wheel 300, and a back pressure gap 105 is formed between the back plate 130 and the pressure wheel 300. In this way, pressure can be prevented.
  • the wheel 300 is rubbed during operation, and at the same time, the pressurized high-pressure gas is allowed to circulate.
  • the driving housing 120 is disposed on a side of the back plate 130 facing away from the pressing wheel 300, and a thrust cavity 104 is formed between the back plate 130 and the driving housing 120.
  • a first shaft hole 131 is provided on the back plate 130
  • a second shaft hole 121 is provided in the drive housing 120
  • a thrust bearing 400 is provided in the thrust cavity 104, the first shaft hole 131, the second shaft hole 121 and the stop
  • the pushing cavity 104 jointly defines a rotating shaft matching cavity.
  • the pressure housing 110 and the driving housing 120 can be installed and fixed by bolts 11, and the back plate 130 is clamped between the pressure housing 110 and the driving housing 120, that is, the back plate 130 is located on the rear side of the pressure housing 110 and The front side of the housing 120 is driven.
  • the pressure shell 110 presses the back plate 130 together with the thrust bearing 400 on the drive housing 120 in the front-rear direction, so that the structure is simple and reliable.
  • the thrust cavity 104 is defined by the rear surface of the back plate 130 and the front end surface of the drive housing 120.
  • the first shaft hole 131 communicates with the compression chamber 101
  • the second shaft hole 121 communicates with the mounting cavity 102
  • the thrust chamber 104 communicates with the first shaft. In this way, the gas can flow through the thrust cavity 104 and cool the thrust bearing 400, and the components in the installation cavity 102 can be cooled.
  • a rubber sealing ring 13 is provided at the fitting position of the pressure shell 110 and the driving housing 120, and a rubber sealing ring 13 is provided at the fitting position of the pressure shell 110 and the back plate 130.
  • the gas can be prevented from leaking, so as to ensure that the gas circulates smoothly in the internal flow channel.
  • the thrust bearing 400 may include a thrust rotor 410, a bearing foil 420 and a positioning ring 430.
  • the thrust rotor 410 is sleeved on the rotor shaft 200, the bearing foil 420 is provided on the side wall of the thrust cavity 104, and the bearing foil 420 is spaced from the thrust rotor 410 to form a thrust gap communicating with the first shaft hole 131 .
  • the positioning ring 430 is disposed in the thrust cavity 104, the positioning ring 430 is disposed around the thrust rotor 410, and the positioning ring 430 is sandwiched between the driving housing 120 and the back plate 130.
  • the thrust rotor 410 is located in the middle of the two bearing foils 420 in the front-rear direction, and the front and rear end faces of the thrust rotor 410 form a thrust gap with the two bearing foils 420, respectively.
  • the thrust rotor 410 and the bearing foil 420 generate dynamic pressure due to the specially designed structure during relative operation, so as to balance the axial force acting on the pressure roller 300.
  • an air guide channel is provided on the back plate 130, and the air guide channel communicates with the back pressure gap 105 to form a part of the internal flow channel.
  • one end of the air guide channel is connected with the back pressure gap 105 and the other end is connected with the external flow channel 12.
  • the air guide channel is directly connected with the back pressure gap 105; for another example, the first shaft hole 131 and the back pressure gap 105 Connected, one end of the air guide channel is communicated with the first shaft hole 131 and the other end is communicated with the external flow channel 12, at this time, the back pressure gap 105 is indirectly communicated with the air guide channel through the shaft fitting cavity.
  • an air guide channel is provided on the driving housing 120, and the air guide channel communicates with the back pressure gap 105 to form a part of the internal flow channel.
  • the first shaft hole 131 communicates with the back pressure gap 105
  • the thrust chamber 104 communicates with the first shaft hole 131
  • one end of the air guide channel communicates with the thrust chamber 104 and the other end communicates with the external flow passage 12.
  • the back pressure gap 105 is indirectly communicated with the air guide channel through the rotating shaft fitting cavity.
  • the one end of the air guide channel on the driving housing 120 can also be communicated with the second shaft hole 121.
  • an air guide channel is formed between the back plate 130 and the drive housing 120, and one of the back plate 130 and the drive housing is provided with an air guide hole 132, a back pressure gap 105, an air guide The channel communicates with the air guide hole 132 to form a part of the internal flow channel.
  • an air guide channel is formed between the back plate 130 and the drive housing 120, and the back plate 130 is provided with an air guide hole 132.
  • One end of the air guide hole 132 is connected to the back pressure gap 105 and the other end is connected to one end of the air guide channel The other end of the channel communicates with the external flow channel 12.
  • the air guide hole 132 of this embodiment is used to indicate that its structure can refer to the structure shown in the drawings of the present disclosure, as long as the air guide channel communicates with the back pressure gap 105.
  • an air guide channel is formed between the back plate 130 and the drive housing 120.
  • the drive housing 120 is provided with an air guide hole 132.
  • One end of the air guide hole 132 is connected to the thrust cavity 104 or the second shaft hole 121.
  • the air guide hole 132 The other end of the air guide channel is connected to one end of the air guide channel, and the other end of the air guide channel is connected to the external flow channel 12, that is, the back pressure gap 105 communicates with the air guide hole 132 through the rotating shaft fitting cavity.
  • the air guide hole 132 in this embodiment is used to indicate that its structure can refer to the structure shown in the drawings of the present disclosure, as long as the air guide channel and the back pressure gap 105 are connected Just connect.
  • an air guide channel is formed between the back plate 130 and the drive housing 120.
  • the air guide channel includes a drainage gap 103 and a vent gap 106.
  • the back plate 130 is provided with air guide holes 132 and a vent gap 106.
  • the two ends of the valve are respectively connected to one side of the thrust cavity 104 and the air guide hole 132, and the other side of the air guide hole 132 is connected to one end of the drainage gap 103, that is, the drainage gap 103 and the ventilation gap 106 are spaced apart from each other. The other end communicates with the external flow channel 12.
  • the back pressure gap 105 is in communication with the air guide channel through the rotating shaft matching cavity, and the internal flow channel includes the thrust cavity 104, the ventilation gap 106, the air guide hole 132 and the drainage gap 103.
  • the air guide holes 132 may be semi-circular counterbores, circular counterbores or other shapes of holes, grooves, etc., and the air guide holes 132 may be a plurality of air guide holes 132 arranged at intervals along the circumferential direction of the back plate 130.
  • the air guide channel includes a drainage gap 103 and a ventilation gap 106, the drainage gap 103 and the ventilation gap 106 are spaced apart, as shown in FIG.
  • the air guide hole 132, the air guide hole 132 near the middle part connects the back pressure gap 105 and the ventilation gap 106, and the air guide hole 132 near the edge connects the ventilation gap 106 and the drainage gap 103.
  • an air guide channel is formed between the back plate 130 and the drive housing 120.
  • the positioning ring 430 is provided with a communication thrust cavity 104 and an air guide channel (for example, the vent hole 431 of the vent gap 106).
  • the positioning ring 430 has a circular ring shape, and the positioning ring 430 is provided with a vent hole 431 penetrating in the radial direction.
  • the vent hole 431 includes but is not limited to a round hole, a rectangular groove, a semi-circular groove, etc., and the vent hole 431 may be one Or more.
  • the gas can enter the thrust cavity 104 through the first shaft hole 131, and then flow into the air guide channel through the vent hole 431, that is, the back pressure gap 105 communicates with the air guide channel through the shaft fitting cavity.
  • the drainage gap 103, the ventilation gap 106, and the air guide hole 132 shown in the figure can be provided to communicate with the external flow passage 12, or the air guide hole 132 can be provided on the back plate 130 or the drive housing 120. Connect the air guide channel and the external flow channel 12. Since the thrust bearing 400 needs to bear a relatively large axial force, the thrust rotor 410 and the bearing foil 420 will generate more heat during startup and high-speed operation. The flowing gas can cool the thrust bearing 400 to a certain extent. Therefore, the temperature of the thrust bearing 400 can be lowered, and the reliability of the thrust bearing 400 can be improved.
  • the present disclosure only gives an exemplary description of the arrangement of the air guide channel and the air guide hole, and is not a restriction on the air guide channel and the air guide hole.
  • the specific structure of the back plate 130 and the drive housing 120 can be adjusted They make adjustments as long as the gas flows.
  • a shaft seal 210 is sleeved on the rotor shaft 200, and the rotor shaft 200 is installed in the first shaft hole 131 through the shaft seal 210, between the shaft seal 210 and the inner wall of the first shaft hole 131 A flow gap is formed, so that the back pressure gap 105 can communicate with one of the air guide channel and the air guide hole 132 through the flow gap.
  • whether the back pressure gap 105 communicates with the air guide channel or the air guide hole 132 through the flow gap depends on the specific implementation. For example, in the foregoing various embodiments, when the air guide channel is closer to the back in the airflow direction When the gap 105 is pressed, the back pressure gap 105 communicates with the air guide channel through the flow gap.
  • a labyrinth seal structure 211 may be formed between the shaft seal 210 and the first shaft hole 131.
  • the front end of the shaft seal 210 abuts against the wheel back of the pressure roller 300
  • the rear end of the shaft seal 210 abuts against the thrust rotor 410
  • the shaft seal 210 has a plurality of ribs distributed at intervals along the axial direction. A curved and extending gap is formed inside. In this way, excessive gas leakage to the thrust bearing 400 can be prevented.
  • the first shaft hole 131 communicates with the external flow passage 12 through the thrust cavity 104.
  • the gas on the wheel back side of the pressure roller 300 flows through the thrust cavity 104 to the outer flow passage 12 after passing through the first shaft hole 131.
  • the flowing gas can take away the heat generated by the relative rotation of the rotor shaft 200 and the thrust bearing 400 at a high speed.
  • the housing assembly 100 is provided with a cooling flow passage 151 disposed adjacent to the thrust bearing 400 and the internal flow passage. In this way, the gas in the thrust bearing 400 and the internal flow passage can be cooled.
  • the fuel cell control system 1 according to a specific embodiment of the present disclosure will be described below with reference to the drawings.
  • the return valve 15 is provided in the outer flow passage 12 to adjust the flow rate of the outer flow passage 12, and the first sensor 16 is provided between the air inlet 113 and the pressure roller 300 to detect the air compressor 10
  • the second sensor 17 is provided on the pressure shell 110 to detect the rotation speed of the pressure wheel 300
  • the third sensor 18 is provided between the intercooler 50 and the reactor 20 to monitor the actual gas entering the reactor 20.
  • the signals detected by the first sensor 16, the second sensor 17, and the third sensor 18 are respectively transmitted to the central control unit 30 through the wiring harness.
  • the central control unit 30 determines the power of the reactor 20 and the air compressor 10 by analyzing and judging the signals. In the working state, the reflux valve 15 is adjusted and controlled.
  • the cover plate 140 is installed at the rear end of the drive housing 120 by bolts 11, and a rubber sealing ring 13 is provided at the mating position of the cover plate 140 and the drive housing 120.
  • the pressure wheel 300, the shaft seal 210, and the thrust rotor 410 are sequentially installed on the rotor shaft 200 from front to back, and are pressed against the shoulder of the rotor shaft 200 by the nut 14 and rotate together with the rotor shaft 200 at a high speed.
  • a radial air bearing 500 is respectively provided in the second rotating shaft hole 121, and a sleeve 510 is provided on the inner side of the radial air bearing 500, and the sleeve 510 is sleeved on the rotor shaft 200.
  • the radial air bearing 500 supports the rotor shaft 200, and the radial air bearing 500 is fixed by a bearing seat 520.
  • the pressure shell 110 is provided with a vent hole 112 and a return hole 111, and the vent hole 112 and the return hole 111 are connected by an external flow channel 12.
  • a back pressure gap 105 is defined between the wheel back of the pressure wheel 300 and the front surface of the back plate 130.
  • the back plate 130 is provided with a first shaft hole 131.
  • a thrust gap is formed between.
  • the rear surface of the back plate 130 and the front end surface of the drive housing 120 define a ventilation gap 106 and a drainage gap 103.
  • the drainage gap 103 is located outside the ventilation gap 106.
  • the positioning ring 430 is provided with a ventilation hole connecting the thrust gap and the ventilation gap 106. 431.
  • the air guide hole 132 connects the drainage gap 103 and the ventilation gap 106.
  • the internal flow channel includes a back pressure gap 105, a gap formed between the labyrinth seal structure 211 and the first shaft hole 131, a thrust gap, a vent 431, a vent gap 106, an air guide hole 132 and a drainage gap 103.
  • the central control unit 30 controls the return valve 15 to close, the flow of the gas flowing through the control flow channel is zero, and the gas flowing out of the pressure wheel 300 flows to the reactor 20 through the gas outlet 114; the central control unit 30 controls the return valve 15 to flow out when the return valve 15 is opened.
  • the gas of the pressure wheel 300 is divided into two parts, one part of the gas flows to the reactor 20 through the gas outlet 114, and the other part of the gas flows into the control flow channel.
  • the flow path of the gas in the control flow channel is as follows: the high-pressure gas entering the back pressure gap 105 enters the thrust gap through the gap formed between the labyrinth seal structure 211 and the first shaft hole 131. After the flowing gas passes through the thrust gap, it will flow out through the vent hole 431 on the positioning ring 430. After the gas flows out of the positioning ring 430, it passes through the ventilation gap 106, and then enters the drainage gap 103 through the gas guide hole 132. The gas in the drainage gap 103 enters the outer flow passage 12 through the vent hole 112, then circulates through the outer flow passage 12 to the return hole 111, and enters the front side of the pressure roller 300 again. Wherein, the flow rate of the gas entering the external flow channel 12 is determined by the opening degree of the return valve 15. (Part of the gas will flow through the second shaft hole 121 to cool it down between the radial air bearing 500 and the sleeve 510)
  • the air on the back side of the pressure wheel 300 still has a certain positive pressure when circulating to the external flow passage 12, and the return hole 111 is located in front of the pressure wheel 300 after the air filter 40 is operated, the pressure drop of the air filter 40 and the pressure Under the suction effect of the wheel 300, the pressure of the gas at the return hole 111 is slightly lower than the atmospheric pressure. Therefore, the gas can start from the back pressure gap 105, pass through the shaft seal 210, the thrust bearing 400, the positioning ring 430, the ventilation gap 106, the air guide hole 132, and the drainage gap 103, flow to the air release hole 112, and then pass through the external flow channel 12. Flow to the return hole 111.
  • the gas flowing through the control flow channel can form an automatic and smooth circulation, thereby reducing the pressure on the wheel back side of the pressure roller 300, thereby reducing the axial force acting on the wheel back of the pressure roller 300.
  • the thrust bearing 400 needs to withstand greater axial force, the thrust rotor 410 and the bearing foil 420 will generate more heat when starting and running at high speed, and the flowing gas can cool the thrust bearing 400 to a certain extent. .
  • the heat-carrying gas is cooled by the cooling channel 122 and then flows back to the air inlet 113, which can effectively improve the surge characteristics of the air compressor 10, thereby enhancing the performance of the air compressor 10.
  • the fuel cell control system 1 is energized, the air compressor 10 is started, the rotor system speed is low, the boost pressure has not been fully established, the pressure on the back side of the pressure roller 300 is small, that is, the axial force is small , There is no need for a large amount of gas flow to reduce the axial force; at the same time, because the thrust bearing 400 has a certain load on the rotor system, and the dynamic pressure air film has not yet been generated, the thrust rotor 410 and the bearing foil 420 are in contact and friction state, resulting in A certain amount of heat.
  • the second sensor 17 detects that the rotation speed of the rotor system (that is, the rotation speed of the pressure wheel 300) is low, and the central control unit 30 controls the return valve 15 to open in a small range, so that a small amount of gas circulates along the control flow path to cool the thrust bearing 400 In addition, a large amount of gas reflux can be avoided, the gas flow into the reactor 20 can be ensured, and the performance and responsiveness of the system can be ensured.
  • the rotor system in the fuel cell control system 1 has a low speed and a small load.
  • a dynamic pressure air film is generated between the thrust rotor 410 and the bearing foil 420, and the rotor
  • the shaft and the thrust bearing 400, the thrust rotor 410 and the bearing foil 420 are no longer in contact, thereby reducing the heat generated.
  • the thrust bearing 400 can be cooled through the cooling channel 151, without the need to use the circulating flow along the control channel.
  • the gas cools the thrust bearing 400.
  • the second sensor 17 detects the rotation speed of the rotor system (that is, the rotation speed of the pressure wheel 300), the central control unit 30 receives the signal transmitted by the second sensor 17, the central control unit 30 controls the return valve 15 to close, and the gas pressurized by the air compressor 10 It enters the reactor 20 through the compressed pipeline for chemical reaction. In this way, the gas flow into the reactor 20 is relatively large, which can improve the performance and responsiveness of the system.
  • the rotation speed of the rotor system in the fuel cell control system 1 is relatively high.
  • the pressure on the back side of the pressure roller 300 is greater, that is, the axial force is greater, and the thrust bearing 400 generates more heat.
  • the second sensor 17 detects that the rotation speed of the rotor system (that is, the rotation speed of the pressure wheel 300) is high
  • the third sensor 18 detects that the pressure of the gas flowing into the reactor 20 reaches the set value
  • the central control unit 30 receives the second sensor 17 and the third sensor 18 With the transmitted signal, the central control unit 30 controls the return valve 15 to open greatly.
  • the gas pressurized by the air compressor 10 is divided into two parts, a part of the gas enters the reactor 20 through the pressurized pipeline for chemical reaction, and the other part of the gas flows back to the air inlet 113 through the control flow channel.
  • the efficiency of gas recirculation can be increased, the pressure behind the pressure roller 300 can be effectively reduced, and the flow of the gas flowing through the control flow channel will increase and the flow velocity will be accelerated, so that the heat taken away will increase and the cooling effect will be better.
  • the axial force can be reduced, the gas flow into the reactor 20 can be ensured, the thrust bearing 400 and the radial air bearing 500 can be cooled, and the range of the air compressor 10 can be improved.
  • Surge characteristics thus taking into account the functional requirements of air compressor rotor system axial force control, fuel cell reactor requirements, air bearing cooling, and air compressor domain surge characteristics improvement. It can adapt to different use environments and form the entire air return. Precise closed-loop control of the system.
  • the fuel cell control method according to the embodiment of the second aspect of the present disclosure which is used in the fuel cell control system 1 of the embodiment of the first aspect of the present disclosure, includes:
  • the opening range of the return valve 15 is controlled according to the rotation speed of the air compressor 10 and the pressure of the gas entering the reactor 20.
  • the fuel cell control method of the embodiment of the present disclosure not only the axial force can be reduced, thereby prolonging the service life of the air compressor 10 and improving the system efficiency, but also according to the rotation speed of the air compressor 10 and the gas pressure entering the reactor 20.
  • the opening of the return valve 15 controls the flow of gas flowing through the control flow channel, so as to achieve precise control of the system, meet the working requirements of the air compressor 10 under different working conditions, and optimize the air compressor 10 under special working conditions. Working performance;
  • the gas returning to the air inlet 113 re-enters the pressure roller 300 for compression, which can effectively improve the surge characteristics of the air compressor 10 and enhance the performance of the air compressor 10.
  • the fuel cell control method takes into account functional requirements such as axial force control of the air compressor rotor system, fuel cell reactor requirements, air bearing cooling, and improvement of air compressor domain surge characteristics, and can adapt to different functions.
  • functional requirements such as axial force control of the air compressor rotor system, fuel cell reactor requirements, air bearing cooling, and improvement of air compressor domain surge characteristics, and can adapt to different functions.
  • a microprocessor or a digital signal processor may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 14 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 15.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 14.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item. The use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Fuel Cell (AREA)

Abstract

本公开涉及燃料电池领域,具体涉及燃料电池控制系统和燃料电池控制方法,该燃料电池控制系统包括:反应堆(20);空气压缩机(10),空气压缩机(10)具有压缩腔(101),且压缩腔(101)具有进气口(113)和出气口(114),压缩腔(101)内设有可转动的压轮(300),出气口(114)与反应堆(20)连通;控制流道,控制流道的第一端与压轮(300)的进气侧连通,且控制流道的第二端与压轮(300)的轮背侧连通,控制流道上设有用于调节控制流道的流量的回流阀(15);中控单元(30),中控单元(30)与回流阀(15)通讯连接以控制回流阀(15)的开度。

Description

燃料电池控制系统和燃料电池控制方法
相关申请的交叉引用
本公开要求在2020年02月28日提交中国专利局、申请号为202010127765.7、名称为“燃料电池控制系统和燃料电池控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及燃料电池领域,具体而言,涉及一种燃料电池控制系统和燃料电池控制方法。
背景技术
为了保障燃料电池发动机的正常工作,需要安装氢气供应系统、干净新鲜空气供应系统和循环水冷却管理系统等辅助系统。而高质量和高流量的空气供应对提高燃料电池发动机的功率输出具有明显的效果,因此一般需要空气压缩机来强制进气。由于质子交换膜对空气清洁程度有很高的要求,所以空气压缩机不允许使用传统的油润滑轴承(如动压滑动轴承),而一般采用动压空气轴承来支撑转子以及抵消转子系统的轴向载荷。
概述
有鉴于此,本公开旨在提出一种燃料电池控制系统,所述燃料电池控制系统可以减小轴向力,延长使用寿命,提高系统效率以及提升性能,并且可以实现对系统的精准控制,满足不同工况下空气压缩机的工作需求。
为达到上述目的,本公开的技术方案是这样实现的:
根据本公开实施例的燃料电池控制系统,包括:
反应堆;
空气压缩机,所述空气压缩机具有压缩腔且所述压缩腔具有进气口和出气口,所述压缩腔内设有可转动的压轮,所述出气口与所述反应堆连通;
控制流道,所述控制流道的第一端与所述压轮的进气侧连通,且所述控制流道的第二端与所述压轮的轮背侧连通,所述控制流道上设有用于调节所述控制流道的流量的回流阀;
中控单元,所述中控单元与所述回流阀通讯连接以控制所述回流阀的开度。
根据本公开实施例的燃料电池控制系统,利用控制流道,使被压缩后的部分高压气体通过控制流道回流至进气口处,气体的一部分压力能转化为动 能,降低了压轮轮背侧的压力,减小了轴向力,从而延长了空气压缩机的使用寿命,提高系统效率,并且,通过控制回流阀的开度,控制流经控制流道的气体的流量,从而实现对系统的精准控制,满足不同工况下空气压缩机的工作需求,优化特殊工况下空气压缩机的工作性能;除此之外,回流到进气口的气体重新进入压轮进行压缩,可以有效地改善空气压缩机的域喘振特性,提升空气压缩机的性能。
可选地,还包括:空滤;
所述空滤设置于所述空气压缩机的进气方向上,且位于所述进气口的上游。
根据本公开的一些实施例,燃料电池控制系统还包括:用于检测所述空气压缩机的进气压力和/或进气温度的第一传感器,所述第一传感器邻近所述进气口设置且与所述中控单元通讯连接。
可选地,所述第一传感器设置于所述空气压缩机的进气方向上,且位于所述控制流道的第一端的下游。
根据本公开的一些实施例,燃料电池控制系统还包括:用于检测所述压轮的转速的第二传感器,所述第二传感器邻近所述压轮设置且与所述中控单元通讯连接。
根据本公开的一些实施例,所述出气口与所述反应堆之间设有中冷器,所述中冷器与所述反应堆之间设有用于检测所述反应堆的进气温度和/或进气压力的第三传感器,所述第三传感器与所述中控单元通讯连接。
根据本公开的一些实施例,所述空气压缩机包括:
壳体组件,所述壳体组件具有所述压缩腔、安装腔以及转轴配合腔,所述转轴配合腔设置在所述压缩腔、安装腔之间;
转子轴,所述转子轴可转动地配合在所述转轴配合腔内且分别延伸至所述压缩腔和所述安装腔内,所述压轮套设在所述转子轴上;
驱动组件,所述驱动组件套设在所述转子轴上且位于所述安装腔内。
在本公开的一些实施例中,所述控制流道包括内部流道和外部流道,所述内部流道位于所述壳体组件内部,且所述内部流道与所述压轮的轮背侧连通;所述外部流道位于所述壳体组件的外部,且所述外部流道分别与所述内部流道和所述压轮的进气侧连通,所述回流阀设在所述外部流道上。
可选地,所述压缩腔具有贯通的回流孔;
所述回流孔位于所述压轮的进气侧,所述压轮的轮背侧通过所述内部流道、所述外部流道与所述回流孔连通。
可选地,所述内部流道在所述转子轴的轴向上,且位于所述压缩腔与所述安装腔之间。
在本公开的一些实施例中,所述壳体组件包括:压壳,所述压壳内限定 出所述压缩腔;驱动壳体,所述驱动壳体内限定出所述安装腔;背板,所述背板设置在所述压壳和所述驱动壳体之间,所述背板位于所述压轮的轮背侧且与所述压轮之间形成有背压间隙,所述驱动壳体设置在所述背板的背向所述压轮的一侧,所述背板与所述驱动壳体之间围构形成有止推腔;所述背板上设置有第一转轴孔,所述驱动壳体内设置有第二转轴孔,所述止推腔内设置有止推轴承,所述第一转轴孔、所述第二转轴孔和所述止推腔共同限定出所述转轴配合腔。
在本公开的一些具体实施例中,所述背板或所述驱动壳体上设有导气通道,所述导气通道与所述背压间隙连通以构成所述控制流道的一部分。
可选地,所述背板和所述驱动壳体之间形成有导气通道,所述背板或所述驱动壳体上设有导气孔,所述背压间隙、所述导气通道和所述导气孔相连通以构成所述控制流道的一部分。
可选地,所述转子轴上套设有轴封,所述转子轴通过所述轴封安装在所述第一转轴孔内,所述轴封和所述第一转轴孔的内壁之间形成有流动间隙,所述背压间隙通过所述流动间隙与所述导气通孔或所述导气孔相连通。
可选地,所述止推轴承包括:止推转子、轴承箔片和定位环;
所述止推转子套设在所述转子轴上,所述轴承箔片设在所述止推腔的侧壁上,所述轴承箔片与所述止推转子间隔开以形成连通所述第一转轴孔的止推间隙;
所述定位环设在所述止推腔内,所述定位环围绕所述止推转子设置,所述定位环夹设在所述驱动壳体和所述背板之间。
本公开的另一个目的在于提出一种燃料电池控制方法,以减小轴向力,延长使用寿命,提高系统效率以及提升性能,并且可以实现对系统的精准控制,满足不同工况下空气压缩机的工作需求。
为达到上述目的,本公开的技术方案是这样实现的:
一种燃料电池控制方法,所述燃料电池控制方法用于本公开第一方面实施例所述的燃料电池控制系统,包括:
通电,启动所述空气压缩机;
根据所述空气压缩机的转速和进入所述反应堆的气体压力控制所述回流阀的开启幅度。
根据本公开实施例的燃料电池控制方法,不仅可以减小轴向力,从而延长空气压缩机的使用寿命,提高系统效率,并且,根据空气压缩机的转速和进入反应堆的气体压力控制回流阀的开度,控制流经控制流道的气体的流量,从而可以实现对系统的精准控制,满足不同工况下空气压缩机的工作需求,优化特殊工况下空气压缩机的工作性能;除此之外,回流到进气口的气体重新进入压轮进行压缩,可以有效地改善空气压缩机的域喘振特性,提升空气 压缩机的性能。
根据本公开的一些实施例,当所述空气压缩机的转速小于第一转速时,控制所述回流阀开启第一幅度;
当所述空气压缩机的转速大于等于所述第一转速且小于第二转速时,控制所述回流阀的开启幅度为零;
当所述空气压缩机的转速大于等于所述第二转速且进入所述反应堆的气体压力达到设定值时,控制所述回流阀开启第二幅度,其中,所述第二幅度大于所述第一幅度。
本公开还提供了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行上述的燃料电池控制方法。
本公开还提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行上述的燃料电池控制方法。
本公开还提供了一种计算机可读介质,其中存储了上述的计算机程序。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是相关技术中的空气压缩机的轴向力产生的原理示意图;
图2是本公开实施例的燃料电池控制系统的结构示意图;
图3是本公开实施例的空气压缩机的结构示意图;
图4是图3中圈示的A部的放大示意图;
图5是本公开实施例的空气压缩机的局部结构示意图;
图6是本公开实施例的空气压缩机内气体流动路径的示意图;
图7是本公开实施例的压壳的立体图;
图8是本公开实施例的背板的立体图;
图9是本公开实施例的定位环的立体图;
图10是本公开实施例的燃料电池控制系统的结构示意图;
图11是本公开实施例的燃料电池控制系统的结构示意图;
图12是本公开实施例的燃料电池控制系统的结构示意图;
图13是本公开实施例的燃料电池控制系统的结构示意图;
图14示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图15示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
附图标记说明:
燃料电池控制系统1、
空气压缩机10、螺栓11、外部流道12、橡胶密封圈13、螺母14、回流阀15、第一传感器16、第二传感器17、第三传感器18、
壳体组件100、压缩腔101、安装腔102、引流间隙103、止推腔104、背压间隙105、通气间隙106、
压壳110、回流孔111、放气孔112、进气口113、出气口114、驱动壳体120、第二转轴孔121、背板130、第一转轴孔131、导气孔132、盖板140、冷却流道151、
转子轴200、轴封210、迷宫密封结构211、压轮300、止推轴承400、止推转子410、轴承箔片420、定位环430、通气孔431、径向空气轴承500、套筒510、轴承座520、驱动组件600、电机定子610、电机转子620、
反应堆20、压后管道21、中控单元30、空滤40、中冷器50。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面参考附图详细描述根据本公开实施例的燃料电池控制系统1。
如图2-图13所示,根据本公开实施例的燃料电池控制系统1,包括:反应堆20、空气压缩机10、控制流道和中控单元30。
具体而言,空气压缩机10具有压缩腔101,压缩腔101具有进气口113和出气口114,压缩腔101内设有可转动的压轮300,出气口114与反应堆20连通,例如,出气口114通过压后管道21与反应堆20连通。控制流道的第一端与压轮300的进气侧连通,控制流道的第二端与压轮300的轮背侧连通。 控制流道上设有用于调节控制流道的流量的回流阀15,中控单元30与回流阀15通讯连接以控制回流阀15的开度(即开启幅度)。
常温常压的空气通过进气口113进入压轮300,旋转的压轮300由于其特殊的流通结构对空气做功,使常压的空气流出压轮300时变成具有很高压力的压缩空气。当中控单元30控制回流阀15关闭时,流经控制流道的气体的流量为零,流出压轮300的气体通过出气口114流至反应堆20;当中控单元30控制回流阀15开启时,流出压轮300的气体分为两部分,一部分气体通过出气口114流至反应堆20,另一部分气体会流入控制流道,通过控制流道再回流至压缩腔101内。其中,可以通过控制回流阀15的开度,控制流入控制流道的气体的流量。
在相关技术中,如图1所示,空气压缩机在运转过程中压缩空气,使气体达到一定的压力以满足燃料电池反应堆的化学反应需求。此时,压轮的进气侧的气体的压力(即前压)为P1,气体压力在压轮的旋转作用下增大,在出口及压轮的轮背侧的气体的压力(即背压)为P2,并且P2>P1。气体的压力作用在压轮上从而产生力F1和F2,并且F1和F2的方向相反。由于轮背侧的压力P2较大,因此最终合力F 的方向与P2产生的力F2的方向相同。以上即为轴向力产生的原因。
本公开的发明人通过研究发现,过大的轴向力会提高轴承磨损的可能性,降低止推轴承的可靠性,从而降低燃料电池的空气压缩机的寿命;并且,过大的轴向力将会导致在设计时被迫增大止推轴承的承载面积,以抵消轴向力,而这将会导致止推轴承的摩擦面积增大,功率损失及发热量增多,降低整个系统的效率。
由此,根据本公开实施例的燃料电池控制系统1,被压缩后的高压气体部分通过控制流道回流至进气口113处,气体的一部分压力能转化为动能,降低了压轮300轮背侧的压力,减小了轴向力,从而延长了空气压缩机10的使用寿命,提高了整个系统的效率;并且,通过控制回流阀15的开度,可以精准地控制流经控制流道的气体的流量,从而实现对系统的精准控制,满足不同工况下空气压缩机10的工作需求,优化特殊工况下空气压缩机10的工作性能;除此之外,回流到进气口113的气体重新进入压轮300进行压缩,可以有效地改善空气压缩机10的域喘振特性,提升空气压缩机10的性能。
在本公开的一些实施例中,如图1所示,燃料电池控制系统1还包括空滤40。空滤40用于清除空气中的微粒杂质,空滤40在空气压缩机10的进气方向上位于进气口113的上游。这样,可以净化进入空气压缩机10的空气。
相关技术中,在高海拔及空气稀薄的地域,空气压力较低,空气密度较小,导致流入整车进气口的气体的密度减小、压力下降,并且,气体经过空滤后压力会进一步下降,从而使得流入空气压缩机的气体的流量减小、流速 降低,导致空气压缩机的进气效率降低,甚至会导致流入压轮的气体回流,进而造成空气压缩机喘振、系统超速等问题,对燃料电池的化学反应造成严重影响,并且产生了喘振噪声、降低了系统的可靠性。
为此,根据本公开的一些实施例,如图1所示,燃料电池控制系统1还包括:第一传感器16。第一传感器16用于检测空气压缩机10的进气压力和进气温度。第一传感器16邻近进气口113设置,第一传感器16与中控单元30通讯连接。例如,第一传感器16位于进气口113与压轮300之间。这样,第一传感器16可以将检测到的信息(即进气压力和进气温度)反馈给中控单元30,中控单元30控制回流阀15的开度,使得流入控制流道的气体的流量发生变化。当然,第一传感器16也可以用于检测空气压缩机10的进气压力和进气温度中的至少一个,本领域技术人员可以根据具体情况作出相应的调整。
具体地,如图10所示,当第一传感器16检测到空气压缩机10的进气温度和进气压力处于高原环境下,并且经系统计算后,第一传感器16检测到空气压缩机10的进气温度和进气压力低于空气压缩机10的喘振空气流量时,中控单元30适当地调节回流阀15的开度,使一定流量的气体通过控制流道回流至进气口113,回流至进气口113的气体重新进入压轮300进行压缩,从而增加进入空气压缩机10的气体流量,改善整个系统的工作状况,并且可以优化特殊工况下空气压缩机10的工作性能。
根据本公开的一些实施例,如图1所示,第一传感器16在空气压缩机10的进气方向上位于控制流道的第一端的下游。例如,流入控制流道内的气体在回流至进气口113后,与流入进气口113的外界空气混合,共同经过第一传感器16,也就是说,第一传感器16检测的气流为回流气体与外界空气汇合后的总气流。这样,第一传感器16可以实时检测进入空气压缩机10的总气流的情况,并反馈给中控单元30,中控单元30根据实际情况控制回流阀15的开度,以进一步控制回流至进气口113的气体的流量,从而提高系统的控制精度。
根据本公开的一些实施例,如图1所示,燃料电池控制系统1还包括:第二传感器17。第二传感器17用于检测压轮300的转速,第二传感器17邻近压轮300设置,第二传感器17与中控单元30通讯连接。
压轮300的转速大小会影响到压轮300轮背侧的压力的大小,从而影响轴向力的大小。例如,当压轮300转速较小时,压轮300轮背侧的压力较小,即,气体压力产生的轴向力较小,因此无需压轮300轮背侧的气体大量流动以降低轴向力;当压轮300的转速较大时,压轮300轮背侧的压力较大,即,气体压力产生的轴向力较大,因此需要压轮300轮背侧的气体大量流动以降低轴向力。
具体地,当第二传感器17检测到压轮300的转速较小时,中控单元30控制回流阀15关闭或小幅度地开启,以保证流入反应堆20的气体流量,保证系统的性能及响应性;当第二传感器17检测到压轮300的转速较大时,第二传感器17与中控单元30通讯,中控单元30控制回流阀15大幅度地开启,以增大气体回流的效率,有效地降低压轮300轮背侧的压力,减小轴向力。这样,可以进一步提高系统的控制精度。
根据本公开的一些实施例,如图1所示,出气口114与反应堆20之间设有中冷器50,中冷器50与反应堆20之间设有第三传感器18。第三传感器18用于检测反应堆20的进气温度和进气压力,第三传感器18与中控单元30通讯连接。
例如,当第三传感器18检测到流入反应堆20的气体的压力达到设定值时,中控单元30控制回流阀15大幅度开启,使得流入控制流道内的气体的流量增大,从而有效降低压轮300轮背侧的压力,减小轴向力。这样,可以更进一步地提高系统的控制精度。
根据本公开的一些实施例,如图3所示,空气压缩机包括:壳体组件100、转子轴200和驱动组件600。壳体组件100具有压缩腔101、安装腔102以及转轴配合腔,转轴配合腔设置在压缩腔101、安装腔102之间。转子轴200可转动地配合在转轴配合腔内,转子轴200分别延伸至压缩腔101和安装腔102内,也就是说,转轴配合腔分别与压缩腔101和安装腔102连通。压轮300套设在转子轴200上。
控制流道的第一端连通压轮300的进气侧,控制流道的第二端连通压轮300的轮背侧。驱动组件600套设在转子轴200上,驱动组件600位于安装腔102内,以提供动力。例如,驱动组件600可以包括电机定子610和电机转子620,电机转子620可转动地设在电机定子610内。
其中,控制流道可以设置在壳体组件100的外部,或者,控制流道也可以设在壳体组件100的内部,当然,控制流道还可以一部分设在壳体组件100的外部、另一部分设在壳体组件100的内部。只要控制流道可以连通压轮300的进气侧和轮背侧即可,本公开在此不做特殊限定。这样,控制流道可以引导压轮300轮背侧的气体流动,从而降低压轮300轮背侧的压力,降低轴向力。
根据本公开的一些实施例,如图3所示,压缩腔101具有贯通的回流孔111,控制流道包括内部流道和外部流道12。内部流道位于壳体组件100内部,由壳体组件100限定出,内部流道位于压轮300的轮背侧,外部流道12位于壳体组件100的外部,外部流道12连通内部流道和压轮300的进气侧,外部流道12可以是外接的连通管,也可以是集成在壳体组件100外部的回流装置。其中,回流阀15设在外部流道12上。
具体地,回流孔111位于压轮300的进气侧,压轮300的轮背侧通过内部流道、外部流道12与回流孔111连通,从而实现与压轮300的进气侧连通。也就是说,压轮300的轮背侧的气体可以依次经过内部流道、外部流道12、回流孔111再回流至压轮300的进气侧。
由于压轮300的轮背侧的气体流通至外部流道12时仍具有一定正压力,并且由于回流孔111在空滤操作后且位于压轮300前,在空滤压降以及压轮300的抽吸作用下,回流孔111处气体的压力比大气压力略小。这样,空气压缩机10内的气体可以在压轮300的进气侧、压轮300的轮背侧、内部流道以及外部流道12之间形成一个自动、顺畅的循环,从而降低了压轮300的轮背侧的压力,减小了轴向力。
在本公开的一些实施例中,如图3所示,内部流道在转子轴200的轴向上位于压缩腔101与安装腔102之间。例如,内部流道位于压缩腔101的后侧且位于安装腔102的前侧。这样,流动的气体可以带走对应位置的零部件产生的热量。
根据本公开的一些实施例,如图2所示,壳体组件100包括:压壳110、驱动壳体120和背板130。压壳110内限定出压缩腔101,驱动壳体120内限定出安装腔102。背板130设置在压壳110和驱动壳体120之间,背板130位于压轮300的轮背侧,且背板130与压轮300之间形成有背压间隙105,这样,可以防止压轮300在运转时发生碰磨,同时允许增压后的高压气体流通。驱动壳体120设置在背板130的背向压轮300的一侧,背板130与驱动壳体120之间围构形成有止推腔104。背板130上设置有第一转轴孔131,驱动壳体120内设置有第二转轴孔121,止推腔104内设置有止推轴承400,第一转轴孔131、第二转轴孔121和止推腔104共同限定出转轴配合腔。
具体地,压壳110与驱动壳体120可以通过螺栓11安装固定,背板130被夹紧在压壳110和驱动壳体120之间,即,背板130位于压壳110的后侧且位于驱动壳体120的前侧。压壳110在前后方向上将背板130连同止推轴承400压紧在驱动壳体120上,这样,结构简单可靠。止推腔104由背板130的后表面与驱动壳体120的前端面限定出来,第一转轴孔131连通压缩腔101,第二转轴孔121连通安装腔102,止推腔104连通第一转轴孔131和第二转轴孔121,这样,气体可以流经止推腔104并冷却止推轴承400,并且可以冷却安装腔102内的零部件。
进一步地,如图2所示,在压壳110和驱动壳体120配合处设有橡胶密封圈13,在压壳110与背板130的配合处设有橡胶密封圈13。这样,可以防止气体发生泄漏,从而保证气体顺利地在内部流道内流通。
在本公开的一些实施例中,如图2所示,止推轴承400可以包括:止推转子410、轴承箔片420和定位环430。止推转子410套设在转子轴200上, 轴承箔片420设在止推腔104的侧壁上,轴承箔片420与止推转子410间隔开以形成连通第一转轴孔131的止推间隙。定位环430设在止推腔104内,定位环430围绕止推转子410设置,定位环430夹设在驱动壳体120和背板130之间。例如,轴承箔片420为两个,止推转子410在前后方向上位于两个轴承箔片420的中间,止推转子410的前后两端面分别与两个轴承箔片420之间形成止推间隙,以允许气体流通,并且,止推转子410和轴承箔片420在相对运转过程中因特殊设计的结构产生动压力,以平衡作用于压轮300上的轴向力。
在本公开的一些实施例中,背板130上设有导气通道,导气通道与背压间隙105连通以构成内部流道的一部分。例如,导气通道的一端与背压间隙105连通且另一端与外部流道12连通,此时,导气通道与背压间隙105直接连通;又如,第一转轴孔131与背压间隙105连通,导气通道的一端与第一转轴孔131连通且另一端与外部流道12连通,此时,背压间隙105通过转轴配合腔与导气通道间接连通。
在本公开的另一些实施例中,驱动壳体120上设有导气通道,导气通道与背压间隙105连通以构成内部流道的一部分。例如,第一转轴孔131与背压间隙105连通,止推腔104与第一转轴孔131连通,导气通道的一端与止推腔104连通且另一端与外部流道12连通,此时,背压间隙105通过转轴配合腔与导气通道间接连通。当然,驱动壳体120上的导气通道的所述一端还可以与第二转轴孔121连通。
在本公开的又一些实施例中,背板130和驱动壳体120之间形成有导气通道,背板130和驱动壳体中的一个上设有导气孔132,背压间隙105、导气通道和导气孔132相连通以构成内部流道的一部分。
例如,背板130和驱动壳体120之间形成有导气通道,背板130上设有导气孔132,导气孔132的一端连通背压间隙105且另一端连通导气通道的一端,导气通道的另一端连通外部流道12。尽管没有给出附图,本实施例的导气孔132用于表示其构成可以参照本公开的附图所示出的结构,只要实现导气通道与背压间隙105的连通即可。
又如,背板130和驱动壳体120之间形成有导气通道,驱动壳体120上设有导气孔132,导气孔132的一端连通止推腔104或第二转轴孔121,导气孔132的另一端连通导气通道的一端,导气通道的另一端连通外部流道12,即,背压间隙105通过转轴配合腔与导气孔132连通。同样可以理解的是,尽管没有给出附图,本实施例中的导气孔132用于表示其构成可以参照本公开的附图所示出的结构,只要实现导气通道与背压间隙105的连通即可。
又或者,如图4所示,背板130和驱动壳体120之间形成有导气通道,导气通道包括引流间隙103和通气间隙106,背板130上设有导气孔132,通 气间隙106的两端分别与止推腔104和导气孔132的一侧相连通,导气孔132的另一侧与引流间隙103的一端连通,即,引流间隙103和通气间隙106间隔开,引流间隙103的另一端与外部流道12连通。此时,背压间隙105通过转轴配合腔与导气通道连通,内部流道包括止推腔104、通气间隙106、导气孔132和引流间隙103。其中,导气孔132可以是半圆沉孔、圆形沉孔或者其他形状的孔、槽等,导气孔132可以为沿背板130的周向间隔布置的多个。
进一步地,导气通道包括引流间隙103和通气间隙106,引流间隙103和通气间隙106间隔开,如图7所示,背板130的邻近中部的位置处和背板130的边缘处分别设有导气孔132,靠近中部的导气孔132连通背压间隙105和通气间隙106,靠近边缘的导气孔132连通通气间隙106和引流间隙103。
在本公开的一些具体实施例中,背板130和驱动壳体120之间形成有导气通道,如图4和图8所示,定位环430设有连通止推腔104和导气通道(例如通气间隙106)的通气孔431。例如,定位环430为圆环形,定位环430上设有沿径向贯通的通气孔431,通气孔431包括但不局限于圆孔、矩形槽、半圆槽等结构,通气孔431可以为一个或多个。
这样,气体可以通过第一转轴孔131进入止推腔104内,随后经由通气孔431流至导气通道内,即,背压间隙105通过转轴配合腔与导气通道连通。本实施例中,可以通过设置图中示出的引流间隙103、通气间隙106和导气孔132实现与外部流道12的连通,也可以在背板130或驱动壳体120上设置导气孔132来连通导气通道和外部流道12。由于止推轴承400需要承受较大的轴向力,止推转子410与轴承箔片420在启动及高速运转时会产生较多的热量,流动的气体可以在一定程度上冷却止推轴承400,从而能够给止推轴承400降温,提升止推轴承400的可靠性。
可以理解,本公开中仅给出了导气通道和导气孔的设置形式的示例性说明,并非对导气通道和导气孔的限制,可以根据背板130和驱动壳体120的具体结构形式对它们作出调整,只要保证气体流动即可。
可选地,如图3所示,转子轴200上套设有轴封210,转子轴200通过轴封210安装在第一转轴孔131内,轴封210和第一转轴孔131的内壁之间形成有流动间隙,如此,背压间隙105可以通过该流动间隙与导气通道和导气孔132中的一个相连通。这里,背压间隙105通过该流动间隙与导气通道连通还是与导气孔132连通,视具体实施情况而定,例如,在前述各种实施例中,当导气通道在气流方向上更加邻近背压间隙105时,背压间隙105便通过该流动间隙与导气通道连通。
其中,如图4所示,轴封210与第一转轴孔131之间可以形成迷宫密封结构211。例如,轴封210的前端与压轮300的轮背相抵,轴封210的后端与止推转子410相抵,轴封210沿轴向间隔分布有多个凸筋,从而在第一转轴 孔210内形成有弯曲延伸的间隙。这样,可以防止过量的气体泄漏至止推轴承400。
在本公开的一些具体实施例中,如图4所示,第一转轴孔131通过止推腔104与外部流道12连通。也就是说,压轮300的轮背侧的气体在通过第一转轴孔131后,经由止推腔104流至外部流道12。这样,流动的气体可以带走转子轴200与止推轴承400高速相对转动而产生的热量。
在本公开的一些实施例中,如图2所示,壳体组件100设有邻近止推轴承400和内部流道设置的冷却流道151。这样,可以对止推轴承400和内部流道内的气体进行冷却。
下面参考附图描述根据本公开的一个具体实施例的燃料电池控制系统1。
如图2-图13所示,回流阀15设在外部流道12内以调节外部流道12的流量,第一传感器16设在进气口113与压轮300之间以检测空气压缩机10的进气情况,第二传感器17设在压壳110上以检测压轮300的转速,第三传感器18设在中冷器50与反应堆20之间以监测实际进入反应堆20的气体情况。第一传感器16、第二传感器17和第三传感器18检测到的信号分别通过线束传递给中控单元30,中控单元30通过对所述信号的分析判断,确定反应堆20及空气压缩机10的工作状态,从而对回流阀15进行调节控制。
如图3-图9所示,盖板140通过螺栓11安装在驱动壳体120的后端,盖板140与驱动壳体120的配合处设有橡胶密封圈13。压轮300、轴封210、止推转子410从前至后依次安装在转子轴200上,靠螺母14压紧在转子轴200的轴肩上,并且随转子轴200一起高速转动。第二转轴孔121内分别设有径向空气轴承500,在径向空气轴承500的内侧设有套筒510,套筒510套设在转子轴200上。径向空气轴承500对转子轴200起到支撑作用,径向空气轴承500通过轴承座520固定。
压壳110上设有放气孔112和回流孔111,放气孔112和回流孔111之间通过外部流道12连接。压轮300的轮背与背板130的前表面之间限定出背压间隙105,背板130上开设有第一转轴孔131,止推转子410的前后两端面分别与两个轴承箔片420之间形成止推间隙。背板130的后表面与驱动壳体120的前端面限定出通气间隙106和引流间隙103,引流间隙103位于通气间隙106的外侧,定位环430设有连通止推间隙和通气间隙106的通气孔431,导气孔132连通引流间隙103与通气间隙106。内部流道包括背压间隙105、迷宫密封结构211与第一转轴孔131之间形成的间隙、止推间隙、通气孔431、通气间隙106、导气孔132和引流间隙103。
当中控单元30控制回流阀15关闭时,流经控制流道的气体的流量为零,流出压轮300的气体通过出气口114流至反应堆20;当中控单元30控制回流阀15开启时,流出压轮300的气体分为两部分,一部分气体通过出气口114 流至反应堆20,另一部分气体会流入控制流道。
其中,气体在控制流道内的流经路径如下:进入背压间隙105的高压气体,经过迷宫密封结构211与第一转轴孔131之间形成的间隙进入止推间隙内。流动的气体经过止推间隙后,会通过定位环430上的通气孔431流出。气体流出定位环430后,会经过通气间隙106,之后通过导气孔132进入引流间隙103内。引流间隙103内的气体通过放气孔112进入外部流道12,随后经由外部流道12流通到回流孔111,再次进入压轮300的前侧。其中,进入外部流道12的气体的流量大小由回流阀15的开度决定。(部分气体会经过第二转轴孔121流通至径向空气轴承500与套筒510之间对其进行冷却)
由于压轮300的轮背侧的气体流通至外部流道12时仍具有一定正压力,并且回流孔111在空滤40操作后且位于压轮300前,在空滤40的压降作用以及压轮300的抽吸作用下,回流孔111处气体的压力比大气压力略小。因此,气体可以从背压间隙105开始,经过轴封210、止推轴承400、定位环430、通气间隙106、导气孔132、引流间隙103,流到放气孔112处,再经由外部流道12流至回流孔111。
这样,流经控制流道的气体可以形成一个自动、顺畅的循环,从而降低了压轮300的轮背侧的压力,进而减小了作用在压轮300的轮背上的轴向力。此外,由于止推轴承400需要承受较大的轴向力,止推转子410和轴承箔片420启动及高速运转时会产生较多的热量,流动的气体可以在一定程度上冷却止推轴承400。带走热量的气体利用冷却流道122进行降温,随后回流至进气口113,可以有效地改善空气压缩机10的域喘振特性,从而提升空气压缩机10的性能。
下面参考附图描述根据本公开实施例的燃料电池控制系统1在不同工况下的工作过程。
如图11所示,燃料电池控制系统1通电,空气压缩机10启动,转子系统转速较低,增压压力还未完全建立,压轮300轮背侧的压力较小,即轴向力较小,不需要大量气体流动以降低轴向力;同时,由于止推轴承400对转子系统有一定的负载,并且动压气膜尚未产生,止推转子410与轴承箔片420处于接触摩擦状态,从而产生一定的热量。此时,第二传感器17检测到转子系统转速(即压轮300转速)较低,中控单元30控制回流阀15小幅度开启,从而使少量气体沿控制流道循环流动以冷却止推轴承400,并且,可以避免气体大量回流,保证流入反应堆20的气体流量,保证系统的性能及响应性。
如图12所示,燃料电池控制系统1中的转子系统转速较低、负荷较小,当转子系统的转速达到一定数值时,止推转子410与轴承箔片420之间产生动压气膜,转子轴与止推轴承400、止推转子410与轴承箔片420不再接触,从而产生的热量减少,此时止推轴承400可以通过冷却流道151进行冷却, 无需利用沿控制流道循环流动的气体去冷却止推轴承400。同时,第二传感器17检测转子系统转速(即压轮300转速),中控单元30接收第二传感器17传递的信号,中控单元30控制回流阀15关闭,经过空气压缩机10增压的气体通过压后管路进入反应堆20进行化学反应,这样,流入反应堆20的气体流量较大,可以提高系统的性能及响应性。
如图13所示,此时燃料电池控制系统1中的转子系统转速较高。压轮300轮背侧的压力较大,即轴向力较大,并且止推轴承400产生的热量较多。第二传感器17检测到转子系统转速(即压轮300转速)较高,第三传感器18检测到流入反应堆20的气体压力达到设定值,中控单元30接收第二传感器17和第三传感器18传递的信号,中控单元30控制回流阀15大幅度开启。经过空气压缩机10增压的气体分为两部分,一部分气体通过压后管路进入反应堆20进行化学反应,另一部分气体经过控制流道回流至进气口113。这样,可以增大气体回流的效率,有效降低压轮300轮背后的压力,并且,流经控制流道的气体的流量增大、流速加快,从而带走的热量增多,冷却效果更好。
综上所述,根据本公开实施例的燃料电池控制系统1,可以降低轴向力、保证流入反应堆20的气体流量、冷却止推轴承400和径向空气轴承500、改善空气压缩机10的域喘振特性,从而兼顾了空气压缩机转子系统轴向力控制、燃料电池反应堆需求、空气轴承冷却、空气压缩机域喘振特性改善等功能需求,可以适应不同的使用环境,形成了整个空气回流系统的精确闭环控制。
根据本公开第二方面实施例的燃料电池控制方法,该燃料电池控制方法用于本公开第一方面实施例的燃料电池控制系统1,包括:
通电,启动空气压缩机10;
根据空气压缩机10的转速和进入反应堆20的气体压力控制回流阀15的开启幅度。
根据本公开实施例的燃料电池控制方法,不仅可以减小轴向力,从而延长空气压缩机10的使用寿命,提高系统效率,并且,根据空气压缩机10的转速和进入反应堆20的气体压力控制回流阀15的开度,控制流经控制流道的气体的流量,从而可以实现对系统的精准控制,满足不同工况下空气压缩机10的工作需求,优化特殊工况下空气压缩机10的工作性能;除此之外,回流到进气口113的气体重新进入压轮300进行压缩,可以有效地改善空气压缩机10的域喘振特性,提升空气压缩机10的性能。
根据本公开的一些实施例,如图11所示,当空气压缩机10的转速小于第一转速时,此时,转子系统转速较低,增压压力还未完全建立,控制回流阀15开启第一幅度。
如图12所示,当空气压缩机10的转速大于等于所述第一转速且小于第二转速时,此时,转子系统转速较低、负荷较小,控制回流阀15的开启幅度 为零,即,控制回流阀15关闭。
如图13所示,当空气压缩机10的转速大于等于所述第二转速且进入反应堆20的气体压力达到设定值时,此时,转子系统转速较高,控制回流阀15开启第二幅度。其中,所述第二幅度大于所述第一幅度。
由此,根据本公开实施例的燃料电池控制方法,兼顾了空气压缩机转子系统轴向力控制、燃料电池反应堆需求、空气轴承冷却、空气压缩机域喘振特性改善等功能需求,可以适应不同的使用环境,形成了整个空气回流系统的精确闭环控制。
本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图14示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图15所述的便携式或者固定存储单元。该存储单元可以具有与图14的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并 未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种燃料电池控制系统,其特征在于,包括:
    反应堆;
    空气压缩机,所述空气压缩机具有压缩腔且所述压缩腔具有进气口和出气口,所述压缩腔内设有可转动的压轮,所述出气口与所述反应堆连通;
    控制流道,所述控制流道的第一端与所述压轮的进气侧连通,且所述控制流道的第二端与所述压轮的轮背侧连通,所述控制流道上设有用于调节所述控制流道的流量的回流阀;
    中控单元,所述中控单元与所述回流阀通讯连接以控制所述回流阀的开度。
  2. 根据权利要求1所述的燃料电池控制系统,其特征在于,还包括:空滤;
    所述空滤设置于所述空气压缩机的进气方向上,且位于所述进气口的上游。
  3. 根据权利要求1所述的燃料电池控制系统,其特征在于,还包括:
    用于检测所述空气压缩机的进气压力和/或进气温度的第一传感器,所述第一传感器邻近所述进气口设置,且与所述中控单元通讯连接。
  4. 根据权利要求3所述的燃料电池控制系统,其特征在于,所述第一传感器设置于所述空气压缩机的进气方向上,且位于所述控制流道的第一端的下游。
  5. 根据权利要求1所述的燃料电池控制系统,其特征在于,还包括:
    用于检测所述压轮的转速的第二传感器,所述第二传感器邻近所述压轮设置,且与所述中控单元通讯连接。
  6. 根据权利要求1所述的燃料电池控制系统,其特征在于,所述出气口与所述反应堆之间设有中冷器,所述中冷器与所述反应堆之间设有用于检测所述反应堆的进气温度和/或进气压力的第三传感器,所述第三传感器与所述中控单元通讯连接。
  7. 根据权利要求1-6中任一项所述的燃料电池控制系统,其特征在于,所述空气压缩机包括:
    壳体组件,所述壳体组件具有所述压缩腔、安装腔以及转轴配合腔,所述转轴配合腔设置在所述压缩腔、安装腔之间;
    转子轴,所述转子轴可转动地配合在所述转轴配合腔内,且分别延伸至 所述压缩腔和所述安装腔内,所述压轮套设在所述转子轴上;
    驱动组件,所述驱动组件套设在所述转子轴上且位于所述安装腔内。
  8. 根据权利要求7所述的燃料电池控制系统,其特征在于,所述控制流道包括内部流道和外部流道,所述内部流道位于所述壳体组件内部,且所述内部流道与所述压轮的轮背侧连通;所述外部流道位于所述壳体组件的外部,且所述外部流道分别与所述内部流道和所述压轮的进气侧连通,所述回流阀设在所述外部流道上。
  9. 根据权利要求8所述的燃料电池控制系统,其特征在于,所述压缩腔具有贯通的回流孔;
    所述回流孔位于所述压轮的进气侧,所述压轮的轮背侧通过所述内部流道、所述外部流道与所述回流孔连通。
  10. 根据权利要求8所述的燃料电池控制系统,其特征在于,所述内部流道在所述转子轴的轴向上,且位于所述压缩腔与所述安装腔之间。
  11. 根据权利要求7所述的燃料电池控制系统,其特征在于,所述壳体组件包括:
    压壳,所述压壳内限定出所述压缩腔;
    驱动壳体,所述驱动壳体内限定出所述安装腔;
    背板,所述背板设置在所述压壳和所述驱动壳体之间,所述背板位于所述压轮的轮背侧且与所述压轮之间形成有背压间隙,所述驱动壳体设置在所述背板的背向所述压轮的一侧,所述背板与所述驱动壳体之间围构形成有止推腔;
    所述背板上设置有第一转轴孔,所述驱动壳体内设置有第二转轴孔,所述止推腔内设置有止推轴承,所述第一转轴孔、所述第二转轴孔和所述止推腔共同限定出所述转轴配合腔。
  12. 根据权利要求11所述的燃料电池控制系统,其特征在于,所述背板或所述驱动壳体上设有导气通道,所述导气通道与所述背压间隙连通以构成所述控制流道的一部分。
  13. 根据权利要求11所述的燃料电池控制系统,其特征在于,所述背板和所述驱动壳体之间形成有导气通道,所述背板或所述驱动壳体上设有导气孔,所述背压间隙、所述导气通道和所述导气孔相连通以构成所述控制流道的一部分。
  14. 根据权利要求13所述的燃料电池控制系统,其特征在于,所述转子轴 上套设有轴封,所述转子轴通过所述轴封安装在所述第一转轴孔内,所述轴封和所述第一转轴孔的内壁之间形成有流动间隙,所述背压间隙通过所述流动间隙与所述导气通孔或所述导气孔相连通。
  15. 根据权利要求11所述的燃料电池控制系统,其特征在于,所述止推轴承包括:止推转子、轴承箔片和定位环;
    所述止推转子套设在所述转子轴上,所述轴承箔片设在所述止推腔的侧壁上,所述轴承箔片与所述止推转子间隔开以形成连通所述第一转轴孔的止推间隙;
    所述定位环设在所述止推腔内,所述定位环围绕所述止推转子设置,所述定位环夹设在所述驱动壳体和所述背板之间。
  16. 一种用于权利要求1-15中任一项所述的燃料电池控制系统的燃料电池控制方法,其特征在于,包括:
    通电,启动所述空气压缩机;
    根据所述空气压缩机的转速和进入所述反应堆的气体压力控制所述回流阀的开启幅度。
  17. 根据权利要求16所述的燃料电池控制方法,其特征在于,当所述空气压缩机的转速小于第一转速时,控制所述回流阀开启第一幅度;
    当所述空气压缩机的转速大于等于所述第一转速且小于第二转速时,控制所述回流阀的开启幅度为零;
    当所述空气压缩机的转速大于等于所述第二转速且进入所述反应堆的气体压力达到设定值时,控制所述回流阀开启第二幅度,其中,所述第二幅度大于所述第一幅度。
  18. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求16或17所述的燃料电池控制方法。
  19. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求16或17所述的燃料电池控制方法。
  20. 一种计算机可读介质,其中存储了如权利要求19所述的计算机程序。
PCT/CN2021/078158 2020-02-28 2021-02-26 燃料电池控制系统和燃料电池控制方法 WO2021170087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21761113.6A EP4068438A4 (en) 2020-02-28 2021-02-26 FUEL CELL CONTROL SYSTEM AND FUEL CELL CONTROL METHOD
US17/790,401 US11811112B2 (en) 2020-02-28 2021-02-26 Fuel cell control system and fuel cell control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010127765.7 2020-02-28
CN202010127765.7A CN112510225B (zh) 2020-02-28 2020-02-28 燃料电池控制系统和燃料电池控制方法

Publications (1)

Publication Number Publication Date
WO2021170087A1 true WO2021170087A1 (zh) 2021-09-02

Family

ID=74953250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078158 WO2021170087A1 (zh) 2020-02-28 2021-02-26 燃料电池控制系统和燃料电池控制方法

Country Status (4)

Country Link
US (1) US11811112B2 (zh)
EP (1) EP4068438A4 (zh)
CN (1) CN112510225B (zh)
WO (1) WO2021170087A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748892B1 (ko) * 2006-09-01 2007-08-13 현대자동차주식회사 축하중 저감을 위한 터보 압축기의 구조
KR20090022272A (ko) * 2007-08-30 2009-03-04 주식회사 뉴로스 축방향의 하중을 감소시킬 수 있는 터보블로워의 구조
JP2016223433A (ja) * 2015-06-01 2016-12-28 株式会社Ihi 遠心圧縮機、及び回転機械
CN209340175U (zh) * 2018-11-30 2019-09-03 长城汽车股份有限公司 燃料电池车用空气压缩机及燃料电池汽车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000886A1 (de) * 2011-10-01 2013-04-04 Daimler Ag Elektrischer Turbolader zur Luftversorgung einer Brennstoffzelle
US9624936B2 (en) * 2012-05-16 2017-04-18 Compressor Controls Corporation Turbocompressor antisurge control by vibration monitoring
US8846262B2 (en) * 2012-10-25 2014-09-30 GM Global Technology Operations LLC Reactive compressor surge mitigation strategy for a fuel cell power system
KR101416397B1 (ko) * 2013-03-19 2014-07-08 현대자동차 주식회사 연료전지 시스템 및 이의 운전방법
CN108699966B (zh) * 2016-03-08 2021-08-24 三菱重工发动机和增压器株式会社 增压器的喘振检测方法以及喘振检测装置
JP2019046761A (ja) * 2017-09-07 2019-03-22 株式会社豊田自動織機 燃料電池システム
CN107893772B (zh) * 2017-10-09 2020-05-22 中国第一汽车股份有限公司 一种带能量回收功能的离心式燃料电池空气压缩机
JP6881240B2 (ja) * 2017-11-02 2021-06-02 トヨタ自動車株式会社 燃料電池システムおよびタービンの制御方法
JP6972941B2 (ja) * 2017-11-09 2021-11-24 トヨタ自動車株式会社 燃料電池システム及びその制御方法
CN108172866A (zh) * 2017-12-29 2018-06-15 萍乡北京理工大学高新技术研究院 燃料电池空气供给系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748892B1 (ko) * 2006-09-01 2007-08-13 현대자동차주식회사 축하중 저감을 위한 터보 압축기의 구조
KR20090022272A (ko) * 2007-08-30 2009-03-04 주식회사 뉴로스 축방향의 하중을 감소시킬 수 있는 터보블로워의 구조
JP2016223433A (ja) * 2015-06-01 2016-12-28 株式会社Ihi 遠心圧縮機、及び回転機械
CN209340175U (zh) * 2018-11-30 2019-09-03 长城汽车股份有限公司 燃料电池车用空气压缩机及燃料电池汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068438A4 *

Also Published As

Publication number Publication date
US20230051988A1 (en) 2023-02-16
CN112510225B (zh) 2022-03-22
CN112510225A (zh) 2021-03-16
EP4068438A1 (en) 2022-10-05
EP4068438A4 (en) 2024-02-28
US11811112B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2021170088A1 (zh) 空气压缩机和车辆
US11143096B2 (en) Turbomachine, in particular for a fuel cell system, fuel cell system, method for operating a turbomachine, and method for operating a fuel cell system
CN107893772B (zh) 一种带能量回收功能的离心式燃料电池空气压缩机
CN110425156A (zh) 一种两级气悬浮离心式电动直驱空压机
US11221012B2 (en) Turbo fluid machine
WO2022205599A1 (zh) 一种高速离心压缩机
KR20140135383A (ko) 연료전지 차량용 공기 블로워
KR101988936B1 (ko) 복합식 냉각구조를 갖는 연료전지용 터보 송풍기
CN110792615A (zh) 两级离心同向串联式带有废气回收装置的燃料电池空压机
WO2021170087A1 (zh) 燃料电池控制系统和燃料电池控制方法
CN114165463A (zh) 一种离心式空压机和燃料电池系统
CN211820078U (zh) 空气压缩机的驱动壳体、空气压缩机和车辆
WO2020134517A1 (zh) 压缩机
CN114810673B (zh) 一种高速离心压缩机二级压缩回流内循环风冷系统
CN219068012U (zh) 空气悬浮离心鼓风机及负压风冷高速永磁电机
WO2022105206A1 (zh) 平衡轴向力的多推力盘燃气轮机
CN211820079U (zh) 空气压缩机、车辆和空气压缩机的压壳组件
JP3399063B2 (ja) タービン遮熱装置
CN219509885U (zh) 一种离心压缩机内部冷却结构
CN114837966B (zh) 一种离心式空压机及其控制方法
CN218151509U (zh) 一种自带冷却功能的电动增压器
CN221647204U (zh) 一种轴流鼓风机
US11920490B2 (en) Charging device with thrust bearing
CN116378976A (zh) 离心式空压机
CN110959073B (zh) 涡轮机,尤其用于燃料电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021761113

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE