WO2022205599A1 - 一种高速离心压缩机 - Google Patents

一种高速离心压缩机 Download PDF

Info

Publication number
WO2022205599A1
WO2022205599A1 PCT/CN2021/096361 CN2021096361W WO2022205599A1 WO 2022205599 A1 WO2022205599 A1 WO 2022205599A1 CN 2021096361 W CN2021096361 W CN 2021096361W WO 2022205599 A1 WO2022205599 A1 WO 2022205599A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
stage
air guide
diffuser
bearing seat
Prior art date
Application number
PCT/CN2021/096361
Other languages
English (en)
French (fr)
Inventor
王升科
邢子义
谢元豪
Original Assignee
烟台东德实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台东德实业有限公司 filed Critical 烟台东德实业有限公司
Priority to EP21931919.1A priority Critical patent/EP4112941A4/en
Priority to US17/915,103 priority patent/US20240209861A1/en
Priority to CA3177625A priority patent/CA3177625A1/en
Publication of WO2022205599A1 publication Critical patent/WO2022205599A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a high-speed centrifugal compressor.
  • the development of new energy fuel cell vehicles is considered to be an important link in the transformation of transportation energy and power.
  • the engines In order to ensure the normal operation of fuel cell engines, the engines generally require auxiliary systems such as hydrogen supply subsystem, air supply subsystem and circulating water cooling management subsystem.
  • the research of the research shows that the high-pressure, large-flow air supply has obvious effect on improving the power output of the existing fuel cell engine. Therefore, before the general air enters the engine, the intake air must be pressurized.
  • the centrifugal air compressor is an energy conversion device to achieve this goal, and is one of the important components of the fuel cell engine air supply system.
  • the structure of the current high-speed centrifugal compressor mainly includes a casing, a stator and a main shaft.
  • a primary bearing seat and a secondary bearing seat for supporting the main shaft are respectively installed on the inner sides of the two ends of the casing, and a secondary bearing seat is respectively installed on the outer sides of the two ends of the motor casing.
  • the first-stage diffuser and the second-stage diffuser are installed at both ends of the main shaft.
  • the first-stage diffuser and the second-stage diffuser are respectively installed with a first-stage worm gear and a second-stage worm wheel. and secondary volutes.
  • the spindle speed exceeds 10000r/min. Due to its high speed, if the sealing ring is used to seal between the high pressure chamber and the low pressure chamber, the sealing ring will be quickly worn and damaged, and the sealing effect will not be achieved. Good technical means to solve the sealing problem between the high pressure chamber and the low pressure chamber.
  • centrifugal compressors are generally cooled by two forms of external water cooling and internal air cooling.
  • the internal air cooling form requires that the internal parts of the centrifugal compressor have the function of guiding the air, and can form a reasonable conduction route for the air to travel inside.
  • Fully cool each component but the current internal air-cooled structure has a single internal conduction route and an unreasonable design. Only individual components can be cooled, but each functional component cannot be cooled, and the cooling effect is poor. Therefore, it is necessary to cool the internal components.
  • the air-cooled structure is redesigned.
  • the thrust air bearing is an important part in the centrifugal compressor.
  • the air bearing uses the compression effect of the wedge-shaped air film between the top foil and the thrust disc to generate the axial bearing capacity, mainly including the bottom plate, the middle support, the top layer
  • the three-part foil, of which the design of the top foil is critical, directly affects the overall performance of the air bearing.
  • the current top foils mainly include two structures: split type and integral type. The advantages and disadvantages of these two structures in the prior art are now analyzed as follows: split structure, one side of each top foil is fixed, and the other side is fixed. One side is the free end, and its advantages are: the free end of each top foil has good floatability and can fully form an air film.
  • top foil Once a certain top foil is deformed, it will not affect other top foils; its disadvantages are: (1) The assembly process is very demanding and complex. The positioning and welding of each top foil have strict requirements, and the machining accuracy is required to be high. A little warpage will affect the overall flatness of the bearing. (2), The free end is easy to move or warp in the axial direction, so as to come into contact with the thrust disc, which causes the wear of the free end of the top foil and the thrust disc, which seriously reduces the stability and service life of the bearing. The integral structure connects the top foils as a whole.
  • the advantages are: easy positioning and assembly, the free end will not move or warp in the axial direction, and the contact wear between the free end of the top foil and the thrust disc is avoided;
  • the disadvantages are: (1) The floating of the free end of the top foil is too limited, which affects the rise or fall of the free end with the waveform, thereby affecting the stability of the gas film formation; (2) When the top foil is partially deformed , it will cause stress or even deflection of the entire top foil, making the entire top foil unusable.
  • the present invention provides a high-speed centrifugal compressor, which solves the problem that the conventional internal air-cooling structure has a single conduction path, can only cool individual components, and cannot cool down various functional components. It solves the problem of air leakage from the two-stage high-pressure chamber to the low-pressure chamber inside the centrifugal compressor, reducing the compression efficiency.
  • a high-speed centrifugal compressor includes a casing, a stator and a main shaft.
  • a primary bearing seat and a secondary bearing seat for supporting the main shaft are respectively installed on the inner sides of both ends of the casing, and a primary diffuser and a primary diffuser are respectively installed on the outer sides of both ends of the casing.
  • Two-stage diffuser, both ends of the main shaft pass through the first-stage diffuser and the second-stage diffuser to install the first-stage worm gear and the second-stage worm wheel respectively, and the first-stage worm gear and the second-stage worm gear are installed with a first-stage volute and a second-stage volute.
  • the first-stage volute and the second-stage volute are connected by a connecting pipe, a thrust plate is sleeved on the main shaft between the first-stage diffuser and the first-stage bearing seat, and two sides of the thrust plate are respectively provided with a thrust plate.
  • Thrust air bearing, radial air bearings are respectively provided between the primary bearing seat and the secondary bearing seat and the main shaft, a sealing end cover is provided between the primary worm gear and the primary diffuser, and the sealing end cover is
  • a number of annular grooves are arranged between the first-stage worm gear and the second-stage diffuser and a plurality of annular grooves are arranged between the second-stage diffuser and the main shaft; a return air cooling system is arranged in the casing.
  • the return air cooling system includes:
  • the first-stage diffuser includes a diffuser body, the diffuser body is provided with an air intake hole that communicates with the inner cavity of the first-stage volute, and the center of the diffuser body is provided with a worm gear hole for diffusing
  • first annular air guide groove There is a first annular air guide groove, the cooling air return cavity and the first annular air guide groove are connected through a number of first air guide holes, the first air guide holes are communicated with the air guide groove, and the other side of the diffuser body A plurality of first bosses corresponding to the thrust bearings are provided, a first air guide channel is formed between the adjacent first bosses, and the first air guide channel is communicated with the worm gear hole;
  • the first-stage bearing seat includes a bearing seat body, the center of the bearing seat body is provided with a main shaft hole, one side of the bearing seat body is provided with a thrust bearing installation groove, and the bearing seat body on the periphery of the thrust bearing installation groove is provided with The second annular air guide groove communicated with the air inlet hole, the thrust bearing installation groove and the second annular air guide groove are connected through a plurality of second air guide holes, and the groove bottom of the thrust bearing installation groove is provided with a plurality of second air guide holes.
  • the second boss corresponding to the thrust bearing, a second air guide channel that communicates with the adjacent second bosses is formed, the second air guide channel is communicated with the main shaft hole, and the thrust bearing installation groove is connected to the second annular
  • the bearing seat body between the air guide grooves is provided with a plurality of through holes communicating with the first annular air guide groove;
  • the air in the inner cavity of the first-stage volute enters the second annular air guide groove from the air inlet hole, and enters the thrust bearing installation groove through the second air guide hole, and part of the air in the thrust bearing installation groove enters through the second air guide channel
  • the main shaft hole is discharged to the gap between the stator and the main shaft through the radial air bearing.
  • the air hole enters the first annular air guide groove, and is discharged from the first annular air guide groove to the gap between the stator and the main shaft through the through hole, and then enters the secondary bearing seat and the second shaft through the main shaft hole of the secondary bearing seat through the radial air bearing.
  • the cavity between the stage diffusers is discharged to the outside, and then discharged to the outside of the casing through the small holes on the casing.
  • the bottom of the secondary diffuser is provided with an exhaust channel
  • the bottom of the housing is provided with an exhaust hole communicating with the exhaust channel
  • the air between the secondary bearing seat and the secondary diffuser is exhausted Channel and vent vents.
  • a plurality of wind guide vanes are arranged along the circumference of the diffuser body on the same side at the periphery of the cooling gas return cavity.
  • the bearing seat body is provided with a radial air bearing installation groove, and the bearing seat body on both sides of the radial air bearing installation groove is provided with block grooves for installing the radial air bearing.
  • annular grooves between the sealing end cover and the first-stage worm gear are arranged on the inner surface of the sealing end cover or the outer surface of the first-stage worm wheel, and several annular grooves between the second-stage diffuser and the main shaft are arranged on the inner surface of the sealing end cover or the outer surface of the first-stage worm wheel.
  • the inner surface of the secondary diffuser or the outer surface of the main shaft is arranged on the inner surface of the secondary diffuser or the outer surface of the main shaft.
  • the thrust air bearing includes a bottom plate, an intermediate support, and a top layer foil.
  • the top layer foil includes a plurality of single-piece foils. The flexible connection between the two forms a monolithic top foil structure.
  • the two adjacent single foil sheets are connected flexibly by a tie, the tie is wavy, and the tie is integrally formed with the two adjacent single foils.
  • the two adjacent single-piece foils are connected by two ties, and the two ties are respectively arranged on the annular inner edge and the outer edge of the two adjacent single-piece foils, and the single-piece foil is connected to the outer edge of the ring.
  • Notches are respectively provided at the connection parts of the laces, and the notches of two adjacent single foils are butted to form a space for accommodating the laces.
  • a sealing end cover is added between the first-stage worm gear and the first-stage diffuser.
  • the internal air-cooling structure is more optimized, and the two thrust air bearings, two radial air bearings, main shaft and stator in the high-speed centrifugal compressor can be adjusted.
  • the cooling effect is good, and the internal heat can be discharged in time without the formation of heat accumulation, which avoids the forced shutdown due to excessive internal temperature.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram of the internal air cooling route and principle structure of the present invention.
  • FIG. 3 is a schematic view of the front three-dimensional structure of the first-stage diffuser of the present invention.
  • FIG. 4 is a schematic cross-sectional structural diagram of a first-stage diffuser of the present invention.
  • FIG. 5 is a schematic diagram of the rear perspective structure of the first-stage diffuser of the present invention.
  • FIG. 6 is a schematic view of the front three-dimensional structure of the first-class bearing seat of the present invention.
  • FIG. 7 is a schematic cross-sectional structural diagram of a first-level bearing seat of the present invention.
  • FIG. 8 is a schematic diagram of a rear perspective structure of a first-class bearing seat of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the thrust air bearing of the present invention.
  • FIG. 10 is a schematic structural diagram of the bottom plate of the thrust air bearing of the present invention.
  • FIG. 11 is a schematic structural diagram of the middle support member installed on the base plate of the present invention.
  • FIG. 12 is a schematic view of the structure of the top foil of the thrust air bearing of the present invention.
  • a high-speed centrifugal compressor includes a casing 1, a stator 2 and a main shaft 3.
  • the inner sides of both ends of the casing 1 are respectively installed with a primary bearing seat 4 and a secondary bearing seat for supporting the main shaft 3 5.
  • the first-stage diffuser 6 and the second-stage diffuser 7 are installed on the outer sides of the two ends of the casing 1, respectively, and the first-stage worm gear 8 and the second-stage diffuser 7 are respectively installed at both ends of the main shaft 3 through the first-stage diffuser 6 and the second-stage diffuser 7.
  • the secondary worm gear 9, the primary worm gear 8 and the secondary worm gear 9 are provided with a primary volute 10 and a secondary volute 11, and the primary volute 10 and the secondary volute 11 are connected by a connecting pipe.
  • a thrust disc 35 is sleeved on the main shaft 3 between the diffuser 6 and the primary bearing seat 4, and a thrust air bearing 36 is respectively provided on both sides of the thrust disc 35.
  • a radial air bearing 37 is respectively provided between the bearing seat 5 and the main shaft 3
  • a sealing end cover 38 is provided between the first-stage worm gear 8 and the first-stage diffuser 6
  • a sealing end cover 39 and the first-stage worm wheel 8 are provided.
  • Several annular grooves 39 are provided, and several annular grooves 39 are provided between the secondary diffuser 7 and the main shaft 3 ; the casing 1 is provided with a return air cooling system.
  • the return air cooling system includes: the first-stage diffuser 6 includes a diffuser body 12, and the diffuser body 12 is provided with an air inlet 13 that communicates with the inner cavity of the first-stage volute 10, so
  • the diffuser body 12 is provided with a worm gear hole 14 in the center, a cooling air return cavity 15 is provided on one side of the diffuser body 12, and a plurality of air guide grooves 16 are arranged at the bottom of the cooling air return cavity 15.
  • the worm gear hole 14 is connected to each other, and the diffuser body 12 on the other side of the periphery of the cooling gas return cavity 15 is provided with a first annular air guide groove 17 , and several annular air guide grooves 17 pass between the cooling air return cavity 15 and the first annular air guide groove 17 .
  • the first air guide holes 18 communicate with each other, and the first air guide holes 18 communicate with the air guide grooves 16.
  • the other side of the diffuser body 12 is provided with a number of first bosses 19 corresponding to the thrust bearings, adjacent to the first bosses 19.
  • a first air guide channel 20 is formed between the stages 19, and the first air guide channel 20 is communicated with the worm gear hole 14;
  • the primary bearing seat 4 includes a bearing seat body 21 , a main shaft hole 22 is provided in the center of the bearing seat body 21 , a thrust bearing installation groove 23 is provided on one side of the bearing seat body 21 , and the outer periphery of the thrust bearing installation groove 23 is provided.
  • the bearing seat body 21 is provided with a second annular air guide groove 24 that communicates with the air inlet 13, and the thrust bearing installation groove 23 and the second annular air guide groove 24 are connected through a plurality of second air guide holes 25.
  • the bottom of the thrust bearing installation groove 23 is provided with a plurality of second bosses 26 corresponding to the thrust bearing, and a second air guide channel 27 is formed between the adjacent second bosses 26.
  • the second air guide channel 27 communicates with the main shaft hole 22, and the bearing seat body 21 between the thrust bearing installation groove 23 and the second annular air guide groove 24 is provided with a plurality of through holes 28 communicated with the first annular air guide groove 17;
  • the air in the inner cavity of the first-stage volute 10 enters the second annular air guide groove 24 from the air inlet hole 13, and enters the thrust bearing installation groove 23 through the second air guide hole 25. Part of the air in the thrust bearing installation groove 23 After one of the thrust bearings is cooled, it enters the main shaft hole 22 through the second air guide channel 27 and is discharged to the gap between the stator 2 and the main shaft 3, and the other part cools the other thrust bearing and passes through the first air guide channel.
  • 20 Enter the worm gear hole 14 and return to the cooling air return cavity 15, and then enter the first air guide hole 18 through the air guide groove 16, enter the first annular air guide groove 17 from the first air guide hole 18, and pass through the first annular air guide groove 17.
  • the through hole 28 is discharged to the gap between the stator 2 and the main shaft 3 , and then enters the cavity between the secondary bearing seat 5 and the secondary diffuser 7 through the main shaft hole of the secondary bearing seat 5 and is discharged to the outside.
  • the bottom of the secondary diffuser 7 is provided with an exhaust passage 29
  • the bottom of the housing 1 is provided with an exhaust hole 30 communicating with the exhaust passage 29
  • the secondary bearing seat 5 is connected to the secondary diffuser 7 .
  • the air therebetween is exhausted to the outside through the exhaust passage 29 and the exhaust hole 30 .
  • the diffuser body 12 on the same side at the periphery of the cooling air return cavity 15 is provided with a plurality of air guide vanes 31 along the circumference.
  • the air guide vanes 31 cooperate with the first-stage worm gear 8 to improve the air compression efficiency.
  • a number of air outlet holes 32 are provided between the first annular air guide groove 17 and the outer end surface of the diffuser body 12, and part of the air entering the first annular air guide groove 17 is discharged into the centrifugal compressor, and the centrifugal The inside of the compressor is cooled, and the other part is directly discharged from the air outlet 32 into the primary compression chamber, and continues to be transported to the secondary compression chamber.
  • the bearing seat body 21 is provided with a radial air bearing installation groove 33 .
  • the radial air bearing installation groove 33 is used to install the radial air bearing.
  • a part of the air will enter the radial air from the main shaft hole 22 .
  • the bearing installation grooves 33 are arranged backward to the gap between the stator 2 and the main shaft 3, and the air in the main shaft hole 22 can cool the radial air bearing.
  • the bearing seat body 21 on both sides of the radial air bearing installation groove 33 is provided with block grooves 34 for installing the radial air bearing. fixed.
  • annular grooves 39 between the sealing end cover 38 and the first stage worm gear 8 are provided on the inner surface of the sealing end cover 38 or the outer surface of the first stage worm wheel 8, and between the second stage diffuser 7 and the main shaft 3 Several annular grooves 39 are provided on the inner surface of the secondary diffuser 7 or the outer surface of the main shaft 3, which can form an air-tight sealing structure.
  • the thrust air bearing 36 includes a bottom plate 40, an intermediate support member, and a top layer foil 41.
  • the bottom plate 40 is annular.
  • the bottom plate 40 is provided with several cooling grooves 45 along the circumference, and the outer edge of the bottom plate 40 is provided with several fixed installations.
  • the intermediate support includes a plurality of supporting foils 47 and elastic foils 48, the supporting foils 47 and the elastic foils 48 are fixed on the bottom plate 40 by spot welding, and the supporting foils 47 and the elastic foils 48 are set in pairs , used to support the top layer foil 41;
  • the top layer foil 41 includes a plurality of single-piece foils 42, and the plurality of single-piece foils 42 are arranged in a ring shape, and the flexibility between two adjacent single-piece foils 42 is flexible.
  • the connections form a monolithic top foil structure.
  • the two adjacent single foil sheets 42 are connected flexibly by a tie 43 , the tie 43 is wavy, and the tie 43 is integrally formed with the two adjacent single foil sheets 42 .
  • the corrugated tie 43 not only ensures the integrity of the top foil 41, but also enables the top foil 41 to have a certain amount of stretching and deformation, which will not affect the rise or fall of the free end of the single foil 42 with the waveform.
  • the stability of forming the gas film is ensured, and even if the top foil 41 is partially deformed, it will not cause the entire top foil 41 to be unusable due to flexural deformation caused by stress.
  • the two adjacent single-piece foils 42 are connected by two ties 43, and the two ties 43 are respectively arranged on the annular inner and outer edges of the two adjacent single-piece foils 42.
  • Slots 44 are respectively provided at the connection between the foil 42 and the tie 43, and the slots of two adjacent single foils 42 are connected to form a space for accommodating the tie, which can ensure that the tie 43 in the space has a certain length, thereby It has room for stretching and deformation to increase the connection strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种高速离心压缩机,包括壳体(1)、定子(2)和主轴(3),壳体(1)两端内侧分别安装用于支撑主轴(3)的一级轴承座(4)和二级轴承座(5),一级扩压器(6)与一级轴承座(4)之间的主轴(3)上套设有止推盘(35),止推盘(35)两侧分别设有一个止推空气轴承(36),一级轴承座(4)和二级轴承座(5)与主轴(3)之间分别设有径向空气轴承(37),一级蜗轮(8)与一级扩压器(6)之间设有密封端盖(38),密封端盖(38)与一级蜗轮(8)之间设有若干道环形槽(39),二级扩压器(7)与主轴(3)之间设有若干道环形槽(39);壳体(1)内设有回流风冷系统。

Description

一种高速离心压缩机 技术领域:
本发明涉及一种高速离心压缩机。
背景技术:
目前发展新能源燃料电池汽车被认为是交通能源动力转型的重要环节,为了保障燃料电池发动机正常工作,发动机一般需要氢气供应子系统、空气供应子系统和循环水冷却管理子系统等辅助系统,大量的研究表明,高压、大流量的空气供应对提高现有燃料电池发动机的功率输出具有明显的效果。因此,一般空气进入发动机之前,要对进气进行增压,离心式空压机就是实现该目标的一种能量转换装置,是燃料电池发动机空气供应系统的重要零部件之一。
目前的高速离心压缩机,其结构主要包括壳体、定子和主轴,壳体两端内侧分别安装用于支撑主轴的一级轴承座和二级轴承座,电机壳体两端外侧分别安装一级扩压器和二级扩压器,主轴两端穿出一级扩压器和二级扩压器分别安装一级蜗轮和二级蜗轮,一级蜗轮和二级蜗轮外安装有一级蜗壳和二级蜗壳。在工作时,存在如下缺点:
一、主轴转速超过10000r/min,由于其转速很高,如果通过密封圈对高压腔与低压腔之间进行密封,密封圈会很快磨损损坏,起不到密封效果,目前行业内还没有很好的技术手段解决高压腔与低压腔之间的密封问题。
二、工作时内部会产生大量的热量,这些热量如果不及时排出形成热量堆积,会出现因内部温度过高导致被迫停机的情况。现在一般都通过外部水冷和内部风冷两种形式对离心压缩机进行降温,其中,内部风冷形式要求离心压缩 机内部零件具有导风功能,在内部形成供空气行进的合理的导通路线才能对各部件进行充分降温,而现在的内部风冷结构,内部导通路线单一,设计不合理,只能对个别部件进行降温,无法对各功能部件进行降温,冷却效果差,因此,需要对内部的风冷结构进行重新改进设计。
三、止推空气轴承是离心压缩机内的重要部件,空气轴承是利用顶层箔片和止推盘间楔形气膜的压缩效应来产生轴向承载力的,主要包括底板、中间支撑件、顶层箔片三部分,其中顶层箔片的设计至关重要,会直接影响空气轴承的整体性能。现在的顶层箔片,目前主要包括分体式和整体式两种结构,现对现有技术中这两种结构的优缺点进行分析如下:分体式结构,每片顶层箔片的一侧固定,另一侧为自由端,其优点是:每片顶层箔片自由端的浮动性好,可充分形成气膜,一旦某片顶层箔片产生变形,不会对其他顶层箔片造成影响;其缺点是:(1)、对组装工艺要求很高且比较复杂,每片顶层箔片的定位以及焊接都有严格要求,加工精度要求高,稍微有点翘曲则会影响轴承整体的平面度,(2)、自由端容易沿轴向发生移动或翘曲,从而与止推盘接触,导致顶层箔片自由端和止推盘磨损,严重降低了轴承的稳定性及使用寿命。整体式结构,将各顶层箔片连接为一个整体,其优点是:便于定位和组装,自由端不会沿轴向发生移动或翘曲,避免了顶层箔片自由端和止推盘接触磨损;其缺点是:(1)、过于限制了顶层箔片自由端的浮动性,影响自由端随波形的升高或降低,从而影响形成气膜的稳定性,(2)、当顶层箔片局部发生变形时,会造成整个顶层箔片产生应力甚至挠曲变形,造成整个顶层箔片无法使用。
综上,高速离心压缩机的上述结构问题,已成为行业内亟需解决的技术难题。
发明内容:
本发明为了弥补现有技术的不足,提供了一种高速离心压缩机,解决了以往的内部风冷结构导通路线单一、只能对个别部件进行降温、无法对各功能部件进行降温、冷却效果差的问题,解决了空气从两级高压腔向离心压缩机内部的低压腔泄漏、降低压缩效率的问题。
本发明为解决上述技术问题所采用的技术方案是:
一种高速离心压缩机,包括壳体、定子和主轴,壳体两端内侧分别安装用于支撑主轴的一级轴承座和二级轴承座,壳体两端外侧分别安装一级扩压器和二级扩压器,主轴两端穿出一级扩压器和二级扩压器分别安装一级蜗轮和二级蜗轮,一级蜗轮和二级蜗轮外安装有一级蜗壳和二级蜗壳,一级蜗壳和二级蜗壳之间通过连接管相连,所述一级扩压器与一级轴承座之间的主轴上套设有止推盘,止推盘两侧分别设有一个止推空气轴承,所述一级轴承座和二级轴承座与主轴之间分别设有径向空气轴承,所述一级蜗轮与一级扩压器之间设有密封端盖,密封端盖与一级蜗轮之间设有若干道环形槽,所述二级扩压器与主轴之间设有若干道环形槽;所述壳体内设有回流风冷系统。
所述回流风冷系统包括:
所述一级扩压器包括扩压器本体,所述扩压器本体上设有与一级蜗壳内腔相连通的进气孔,所述扩压器本体中心设有蜗轮孔,扩压器本体的一侧设有冷却气回流腔,冷却气回流腔的槽底设有若干导气槽,导气槽与蜗轮孔相连通,冷却气回流腔外围的另一侧扩压器本体上设有第一环形导气槽,冷却气回流腔与第一环形导气槽之间通过若干个第一导气孔相连通,第一导气孔与导气槽相连通,扩压器本体的另一侧设有若干与止推轴承对应的第一凸台,相邻第一凸台之间形成第一导气通道,第一导气通道与蜗轮孔相连通;
所述一级轴承座包括轴承座本体,所述轴承座本体中心设有主轴孔,轴承 座本体的一侧设有止推轴承安装槽,止推轴承安装槽的外围的轴承座本体上设有与进气孔相连通的第二环形导气槽,止推轴承安装槽与第二环形导气槽之间通过若干个第二导气孔相连通,止推轴承安装槽的槽底设有若干与止推轴承对应的第二凸台,相邻第二凸台之间形成相连通的第二导气通道,第二导气通道与主轴孔相连通,所述止推轴承安装槽与第二环形导气槽之间的轴承座本体设有若干与第一环形导气槽相连通的贯穿孔;
所述一级蜗壳内腔的空气从进气孔进入第二环形导气槽,经第二导气孔进入止推轴承安装槽,止推轴承安装槽内的空气一部分经第二导气通道进入主轴孔经径向空气轴承向定子和主轴之间的间隙排放,另一部分经第一导气通道进入蜗轮孔回流至冷却气回流腔,再经导气槽进入第一导气孔,从第一导气孔进入第一环形导气槽,从第一环形导气槽经贯穿孔向定子和主轴之间的间隙排放,再经二级轴承座的主轴孔经径向空气轴承进入二级轴承座与二级扩压器之间的空腔向外排放,再经壳体上的小孔排放到壳体外。
所述二级扩压器的底部设有排气通道,所述壳体底部设有与排气通道相连通的排气孔,二级轴承座与二级扩压器之间的空气经排气通道和排气孔排出。
所述冷却气回流腔外围的同一侧扩压器本体上沿圆周设有若干导风叶片。
所述第一环形导气槽与扩压器本体的外端面之间设有若干出气孔。
所述轴承座本体上设有径向空气轴承安装槽,所述径向空气轴承安装槽两侧的轴承座本体上设有用于安装径向空气轴承的挡块槽。
所述密封端盖与一级蜗轮之间的若干道环形槽设在密封端盖的内表面或一级蜗轮的外表面,所述二级扩压器与主轴之间的若干道环形槽设在二级扩压器的内表面或主轴的外表面。
所述止推空气轴承包括底板、中间支撑件、顶层箔片,所述顶层箔片包括若干片单片箔片,所述若干片单片箔片呈环形布置,相邻两单片箔片之间柔性连接形成整体式顶层箔片结构。
所述相邻两单片箔片之间通过系带实现柔性连接,所述系带为波浪形,所述系带与相邻两单片箔片为一体成型制成。
所述相邻两单片箔片之间通过两条系带进行连接,所述两条系带分别设置在相邻两单片箔片的环形内边缘和外边缘,所述单片箔片与系带的连接处分别开设槽口,相邻两单片箔片的槽口对接后形成容纳系带的空间。
本发明采用上述方案,具有以下优点:
在一级蜗轮与一级扩压器之间增加密封端盖,密封端盖与一级蜗轮之间设有若干道环形槽,主轴与二级扩压器之间设有若干道环形槽,当主轴带动一级蜗轮和二级蜗轮高速旋转时,一级蜗壳和二级蜗壳内形成高压腔,空气在压力作用下从高压腔向低压腔泄漏,当空气经过环形槽时,在环形槽内便会形成气封,阻挡后续空气继续向低压腔泄漏,若干道环形槽形成的若干道气封,可大大增强高压腔与低压腔之间的密封效果,提升高压腔的压缩效率。
通过对一级扩压器、一级轴承座的结构进行改进,使内部风冷结构更加优化,可以对高速离心压缩机内的两个止推空气轴承、两个径向空气轴承、主轴及定子进行降温,冷却效果好,内部热量可及时排出不会形成热量堆积,避免了出现因内部温度过高导致被迫停机的情况。
通过将止推空气轴承中相邻两单片箔片之间柔性连接形成整体式顶层箔片结构,兼具了以往的分体式结构和整体式结构的优点,便于定位和组装,可以降低弹性箔片的加工精度,弹性箔片稍微有点翘曲不会影响轴承整体的平面度;单片箔片的自由端不会沿轴向发生移动或翘曲,从而避免了与止推盘接触导致 磨损,延长了使用寿命;波浪形系带既保证了顶层箔片的整体性,又使顶层箔片具有一定的拉伸量和形变量,不会影响单片箔片自由端随波形的升高或降低,保证了形成气膜的稳定性,即使顶层箔片局部发生变形,也不会造成整个顶层箔片因产生应力导致挠曲变形而无法使用。
附图说明:
图1为本发明的结构示意图。
图2为本发明的内部风冷路线及原理结构示意图。
图3为本发明一级扩压器的主视立体结构示意图。
图4为本发明一级扩压器的剖视结构示意图。
图5为本发明一级扩压器的后视立体结构示意图。
图6为本发明一级轴承座的主视立体结构示意图。
图7为本发明一级轴承座的剖视结构示意图。
图8为本发明一级轴承座的后视立体结构示意图。
图9为本发明止推空气轴承的结构示意图。
图10为本发明止推空气轴承的底板的结构示意图。
图11为本发明中间支撑件安装在底板上的结构示意图。
图12为本发明止推空气轴承的顶层箔片的结构示意图。
图中,1、壳体,2、定子,3、主轴,4、一级轴承座,5、二级轴承座,6、一级扩压器,7、二级扩压器,8、一级蜗轮,9、二级蜗轮,10、一级蜗壳,11、二级蜗壳,12、扩压器本体,13、进气孔,14、蜗轮孔,15、冷却气回流腔,16、导气槽,17、第一环形导气槽,18、第一导气孔,19、第一凸台,20、第一导气通道,21、轴承座本体,22、主轴孔,23、止推轴承安装槽,24、第二环形导气槽,25、第二导气孔,26、第二凸台,27、第二导气通道,28、贯穿 孔,29、排气通道,30、排气孔,31、导风叶片,32、出气孔,33、径向空气轴承安装槽,34、挡块槽,35、止推盘,36、止推空气轴承,37、径向空气轴承,38、密封端盖,39、环形槽,40、底板,41、顶层箔片,42、单片箔片,43、系带,44、槽口,45、冷却凹槽,46、固定安装孔,47、支撑箔片,48、弹性箔片。
具体实施方式:
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。
如图1-12所示,一种高速离心压缩机,包括壳体1、定子2和主轴3,壳体1两端内侧分别安装用于支撑主轴3的一级轴承座4和二级轴承座5,壳体1两端外侧分别安装一级扩压器6和二级扩压器7,主轴3两端穿出一级扩压器6和二级扩压器7分别安装一级蜗轮8和二级蜗轮9,一级蜗轮8和二级蜗轮9外安装有一级蜗壳10和二级蜗壳11,一级蜗壳10和二级蜗壳11之间通过连接管相连,所述一级扩压器6与一级轴承座4之间的主轴3上套设有止推盘35,止推盘35两侧分别设有一个止推空气轴承36,所述一级轴承座4和二级轴承座5与主轴3之间分别设有径向空气轴承37,所述一级蜗轮8与一级扩压器6之间设有密封端盖38,密封端盖39与一级蜗轮8之间设有若干道环形槽39,所述二级扩压器7与主轴3之间设有若干道环形槽39;所述壳体1内设有回流风冷系统。
当主轴3带动一级蜗轮8和二级蜗轮9高速旋转时,一级蜗壳10和二级蜗壳11内形成高压腔,空气在压力作用下从高压腔向低压腔泄漏,当空气经过环形槽39时,在环形槽39内便会形成气封,阻挡后续空气继续向低压腔泄漏,若干道环形槽39形成的若干道气封,可大大增强高压腔与低压腔之间的密封效 果,提升高压腔的压缩效率。
所述回流风冷系统包括:所述一级扩压器6包括扩压器本体12,所述扩压器本体12上设有与一级蜗壳10内腔相连通的进气孔13,所述扩压器本体12中心设有蜗轮孔14,扩压器本体12的一侧设有冷却气回流腔15,冷却气回流腔15的槽底设有若干导气槽16,导气槽16与蜗轮孔14相连通,冷却气回流腔15外围的另一侧扩压器本体12上设有第一环形导气槽17,冷却气回流腔15与第一环形导气槽17之间通过若干个第一导气孔18相连通,第一导气孔18与导气槽16相连通,扩压器本体12的另一侧设有若干与止推轴承对应的第一凸台19,相邻第一凸台19之间形成第一导气通道20,第一导气通道20与蜗轮孔14相连通;
所述一级轴承座4包括轴承座本体21,所述轴承座本体21中心设有主轴孔22,轴承座本体21的一侧设有止推轴承安装槽23,止推轴承安装槽23的外围的轴承座本体21上设有与进气孔13相连通的第二环形导气槽24,止推轴承安装槽23与第二环形导气槽24之间通过若干个第二导气孔25相连通,止推轴承安装槽23的槽底设有若干与止推轴承对应的第二凸台26,相邻第二凸台26之间形成相连通的第二导气通道27,第二导气通道27与主轴孔22相连通,所述止推轴承安装槽23与第二环形导气槽24之间的轴承座本体21设有若干与第一环形导气槽17相连通的贯穿孔28;
所述一级蜗壳10内腔的空气从进气孔13进入第二环形导气槽24,经第二导气孔25进入止推轴承安装槽23,止推轴承安装槽23内的空气一部分对其中一个止推轴承进行冷却后,经第二导气通道27进入主轴孔22向定子2和主轴3之间的间隙排放,另一部分对另一个止推轴承进行冷却后,经第一导气通道20进入蜗轮孔14回流至冷却气回流腔15,再经导气槽16进入第一导气孔18,从 第一导气孔18进入第一环形导气槽17,从第一环形导气槽17经贯穿孔28向定子2和主轴3之间的间隙排放,再经二级轴承座5的主轴孔进入二级轴承座5与二级扩压器7之间的空腔向外排放。所述二级扩压器7的底部设有排气通道29,所述壳体1底部设有与排气通道29相连通的排气孔30,二级轴承座5与二级扩压器7之间的空气经排气通道29和排气孔30向外排出。
所述冷却气回流腔15外围的同一侧扩压器本体12上沿圆周设有若干导风叶片31,导风叶片31与一级蜗轮8配合,可提升空气压缩效率。
所述第一环形导气槽17与扩压器本体12的外端面之间设有若干出气孔32,进入到第一环形导气槽17内的空气,一部分向离心压缩机内部排放,对离心压缩机内部进行冷却,另一部分直接从出气孔32排至一级压缩腔内,继续向二级压缩腔输送。
所述轴承座本体21上设有径向空气轴承安装槽33,径向空气轴承安装槽33一方面用来安装径向空气轴承,另一方面,一部分空气也会从主轴孔22进入径向空气轴承安装槽33内向后排至定子2与主轴3的缝隙内,主轴孔22内的空气可对径向空气轴承起到冷却作用。
所述径向空气轴承安装槽33两侧的轴承座本体21上设有用于安装径向空气轴承的挡块槽34,挡块槽34内通过螺钉安装挡块,用来对径向空气轴承进行固定。
所述密封端盖38与一级蜗轮8之间的若干道环形槽39设在密封端盖38的内表面或一级蜗轮8的外表面,所述二级扩压器7与主轴3之间的若干道环形槽39设在二级扩压器7的内表面或主轴3的外表面,都可形成气封密封结构。
所述止推空气轴承36包括底板40、中间支撑件、顶层箔片41,底板40呈 环形,底板40上沿圆周设有若干条冷却凹槽45,底板40的外边缘设有若干个固定安装孔46;中间支撑件包括若干支撑箔片47和弹性箔片48,支撑箔片47和弹性箔片48通过点焊方式固定在底板40上,支撑箔片47和弹性箔片48两两一组,用来对顶层箔片41进行支撑;所述顶层箔片41包括若干片单片箔片42,所述若干片单片箔片42呈环形布置,相邻两单片箔片42之间柔性连接形成整体式顶层箔片结构。
所述相邻两单片箔片42之间通过系带43实现柔性连接,所述系带43为波浪形,所述系带43与相邻两单片箔片42为一体成型制成。波浪形系带43既保证了顶层箔片41的整体性,又使顶层箔片41具有一定的拉伸量和形变量,不会影响单片箔片42自由端随波形的升高或降低,保证了形成气膜的稳定性,即使顶层箔片41局部发生变形,也不会造成整个顶层箔片41因产生应力导致挠曲变形而无法使用。
所述相邻两单片箔片42之间通过两条系带43进行连接,所述两条系带43分别设置在相邻两单片箔片42的环形内边缘和外边缘,所述单片箔片42与系带43的连接处分别开设槽口44,相邻两单片箔片42的槽口对接后形成容纳系带的空间,可保证空间内的系带43具有一定长度,从而具备拉伸和形变的空间,增加连接强度。
上述具体实施方式不能作为对本发明保护范围的限制,对于本技术领域的技术人员来说,对本发明实施方式所做出的任何替代改进或变换均落在本发明的保护范围内。
本发明未详述之处,均为本技术领域技术人员的公知技术。

Claims (10)

  1. 一种高速离心压缩机,其特征在于:包括壳体、定子和主轴,壳体两端内侧分别安装用于支撑主轴的一级轴承座和二级轴承座,壳体两端外侧分别安装一级扩压器和二级扩压器,主轴两端穿出一级扩压器和二级扩压器分别安装一级蜗轮和二级蜗轮,一级蜗轮和二级蜗轮外安装有一级蜗壳和二级蜗壳,一级蜗壳和二级蜗壳之间通过连接管相连,所述一级扩压器与一级轴承座之间的主轴上套设有止推盘,止推盘两侧分别设有一个止推空气轴承,所述一级轴承座和二级轴承座与主轴之间分别设有径向空气轴承,所述一级蜗轮与一级扩压器之间设有密封端盖,密封端盖与一级蜗轮之间设有若干道环形槽,所述二级扩压器与主轴之间设有若干道环形槽;所述壳体内设有回流风冷系统。
  2. 根据权利要求1所述的一种高速离心压缩机,其特征在于:所述回流风冷系统包括:
    所述一级扩压器包括扩压器本体,所述扩压器本体上设有与一级蜗壳内腔相连通的进气孔,所述扩压器本体中心设有蜗轮孔,扩压器本体的一侧设有冷却气回流腔,冷却气回流腔的槽底设有若干导气槽,导气槽与蜗轮孔相连通,冷却气回流腔外围的另一侧扩压器本体上设有第一环形导气槽,冷却气回流腔与第一环形导气槽之间通过若干个第一导气孔相连通,第一导气孔与导气槽相连通,扩压器本体的另一侧设有若干与止推轴承对应的第一凸台,相邻第一凸台之间形成第一导气通道,第一导气通道与蜗轮孔相连通;
    所述一级轴承座包括轴承座本体,所述轴承座本体中心设有主轴孔,轴承座本体的一侧设有止推轴承安装槽,止推轴承安装槽的外围的轴承座本体上设有与进气孔相连通的第二环形导气槽,止推轴承安装槽与第二环形导气槽之间通过若干个第二导气孔相连通,止推轴承安装槽的槽底设有若干与止推轴承对 应的第二凸台,相邻第二凸台之间形成相连通的第二导气通道,第二导气通道与主轴孔相连通,所述止推轴承安装槽与第二环形导气槽之间的轴承座本体设有若干与第一环形导气槽相连通的贯穿孔;
    所述一级蜗壳内腔的空气从进气孔进入第二环形导气槽,经第二导气孔进入止推轴承安装槽,止推轴承安装槽内的空气一部分经第二导气通道进入主轴孔经径向空气轴承向定子和主轴之间的间隙排放,另一部分经第一导气通道进入蜗轮孔回流至冷却气回流腔,再经导气槽进入第一导气孔,从第一导气孔进入第一环形导气槽,从第一环形导气槽经贯穿孔向定子和主轴之间的间隙排放,再经二级轴承座的主轴孔经径向空气轴承进入二级轴承座与二级扩压器之间的空腔向外排放,再经壳体上的小孔排放到壳体外。
  3. 根据权利要求2所述的一种高速离心压缩机,其特征在于:所述二级扩压器的底部设有排气通道,所述壳体底部设有与排气通道相连通的排气孔,二级轴承座与二级扩压器之间的空气经排气通道和排气孔排出。
  4. 根据权利要求2所述的一种高速离心压缩机,其特征在于:所述冷却气回流腔外围的同一侧扩压器本体上沿圆周设有若干导风叶片。
  5. 根据权利要求2所述的一种高速离心压缩机,其特征在于:所述第一环形导气槽与扩压器本体的外端面之间设有若干出气孔。
  6. 根据权利要求2所述的一种高速离心压缩机,其特征在于:所述轴承座本体上设有径向空气轴承安装槽,所述径向空气轴承安装槽两侧的轴承座本体上设有用于安装径向空气轴承的挡块槽。
  7. 根据权利要求1所述的一种高速离心压缩机,其特征在于:所述密封端 盖与一级蜗轮之间的若干道环形槽设在密封端盖的内表面或一级蜗轮的外表面,所述二级扩压器与主轴之间的若干道环形槽设在二级扩压器的内表面或主轴的外表面。
  8. 根据权利要求1所述的一种高速离心压缩机,其特征在于:所述止推空气轴承包括底板、中间支撑件、顶层箔片,所述顶层箔片包括若干片单片箔片,所述若干片单片箔片呈环形布置,相邻两单片箔片之间柔性连接形成整体式顶层箔片结构。
  9. 根据权利要求8所述的一种高速离心压缩机,其特征在于:所述相邻两单片箔片之间通过系带实现柔性连接,所述系带为波浪形,所述系带与相邻两单片箔片为一体成型制成。
  10. 根据权利要求8所述的一种高速离心压缩机,其特征在于:所述相邻两单片箔片之间通过两条系带进行连接,所述两条系带分别设置在相邻两单片箔片的环形内边缘和外边缘,所述单片箔片与系带的连接处分别开设槽口,相邻两单片箔片的槽口对接后形成容纳系带的空间。
PCT/CN2021/096361 2021-04-02 2021-05-27 一种高速离心压缩机 WO2022205599A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21931919.1A EP4112941A4 (en) 2021-04-02 2021-05-27 HIGH SPEED CENTRIFUGAL COMPRESSOR
US17/915,103 US20240209861A1 (en) 2021-04-02 2021-05-27 High-speed Centrifugal Compressor
CA3177625A CA3177625A1 (en) 2021-04-02 2021-05-27 High-speed centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363253.5A CN112879318B (zh) 2021-04-02 2021-04-02 一种高速离心压缩机
CN202110363253.5 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022205599A1 true WO2022205599A1 (zh) 2022-10-06

Family

ID=76039862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096361 WO2022205599A1 (zh) 2021-04-02 2021-05-27 一种高速离心压缩机

Country Status (5)

Country Link
US (1) US20240209861A1 (zh)
EP (1) EP4112941A4 (zh)
CN (1) CN112879318B (zh)
CA (1) CA3177625A1 (zh)
WO (1) WO2022205599A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165462B (zh) * 2021-11-01 2023-11-14 广州市昊志机电股份有限公司 一种离心式空压机和燃料电池系统
CN114922843B (zh) * 2022-04-22 2023-03-31 烟台东德实业有限公司 一种高速离心空压机
CN114857077B (zh) * 2022-04-22 2023-01-10 烟台东德实业有限公司 一种稳定型高速离心空压机
CN114593138B (zh) * 2022-05-11 2022-09-20 烟台东德实业有限公司 一种基于镶块的空气轴承
CN114893419B (zh) * 2022-05-23 2023-05-23 烟台东德实业有限公司 一种燃料电池单级高速离心空压机与膨胀机集成系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410680A (zh) * 2001-09-25 2003-04-16 Lg电子株式会社 涡轮压缩机
US20050271311A1 (en) * 2004-06-07 2005-12-08 Honeywell International Inc. Thrust bearing
CN102135104A (zh) * 2011-04-22 2011-07-27 爱科腾博(大连)科技有限公司 涡轮压缩机
CN110425156A (zh) * 2019-08-29 2019-11-08 势加透博洁净动力如皋有限公司 一种两级气悬浮离心式电动直驱空压机
CN111478497A (zh) * 2020-04-21 2020-07-31 北京稳力科技有限公司 两级串联离心式气体压缩机及其电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150308456A1 (en) * 2014-02-19 2015-10-29 Honeywell International Inc. Electric motor-driven compressor having bi-directional liquid coolant passage
US9732766B2 (en) * 2014-02-19 2017-08-15 Honeywell International Inc. Electric motor-driven compressor having a heat shield forming a wall of a diffuser
EP3557080A1 (fr) * 2018-04-20 2019-10-23 Belenos Clean Power Holding AG Pompe à chaleur comprenant un compresseur de fluide
CN112460047A (zh) * 2020-11-26 2021-03-09 广州市昊志机电股份有限公司 一种两级离心式压缩机和氢燃料电池系统
CN112460048A (zh) * 2020-12-24 2021-03-09 烟台东德实业有限公司 一种双极离心空压机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410680A (zh) * 2001-09-25 2003-04-16 Lg电子株式会社 涡轮压缩机
US20050271311A1 (en) * 2004-06-07 2005-12-08 Honeywell International Inc. Thrust bearing
CN102135104A (zh) * 2011-04-22 2011-07-27 爱科腾博(大连)科技有限公司 涡轮压缩机
CN110425156A (zh) * 2019-08-29 2019-11-08 势加透博洁净动力如皋有限公司 一种两级气悬浮离心式电动直驱空压机
CN111478497A (zh) * 2020-04-21 2020-07-31 北京稳力科技有限公司 两级串联离心式气体压缩机及其电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112941A4 *

Also Published As

Publication number Publication date
CN112879318B (zh) 2021-09-14
EP4112941A4 (en) 2024-04-24
EP4112941A1 (en) 2023-01-04
CA3177625A1 (en) 2022-10-02
CN112879318A (zh) 2021-06-01
US20240209861A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2022205599A1 (zh) 一种高速离心压缩机
CN209781242U (zh) 一种两级气悬浮离心式电动直驱空压机
CN110425156A (zh) 一种两级气悬浮离心式电动直驱空压机
CN114876824B (zh) 一种高速离心空压机与膨胀机集成系统风冷结构
CN112879353B (zh) 一种高速离心压缩机回流风冷系统
US20230049251A1 (en) Air compressor and vehicle
CN112460048A (zh) 一种双极离心空压机
CN113809885A (zh) 一种压缩机及具有该压缩机的空调和汽车
CN110594170B (zh) 离心式压缩机和氢燃料电池系统
CN114810673B (zh) 一种高速离心压缩机二级压缩回流内循环风冷系统
CN111271304B (zh) 一种双冷却系统的离心式空气压缩机
CN115388017B (zh) 一种高速离心空压机的膨胀端总成
CN115434952B (zh) 一种高速离心空压机与膨胀机集成装置的热交换系统
CN112761972B (zh) 一种燃料电池用空压机
CN115013104A (zh) 一种燃料电池能量回收系统
CN115898903A (zh) 一种燃料电池及其离心式空压机
CN212028101U (zh) 一种双冷却系统的离心式空气压缩机
CN114645859A (zh) 一种双侧两级高速离心空压机与膨胀机集成系统
CN111535884B (zh) 一种惰性混合气体轴承高效膨胀装置
CN215990422U (zh) 空压机用风冷却单元、空压机及氢燃料电池系统
CN219287275U (zh) 一种气浮电机系统
CN214145944U (zh) 一种双极离心空压机
CN219993997U (zh) 一种通过石墨烯辅助散热的离心压缩机散热系统
CN219592206U (zh) 氢能源空压机电机
CN216056688U (zh) 一种压缩机及具有该压缩机的空调和汽车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17915103

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021931919

Country of ref document: EP

Effective date: 20220926

ENP Entry into the national phase

Ref document number: 3177625

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE