WO2021169981A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2021169981A1
WO2021169981A1 PCT/CN2021/077603 CN2021077603W WO2021169981A1 WO 2021169981 A1 WO2021169981 A1 WO 2021169981A1 CN 2021077603 W CN2021077603 W CN 2021077603W WO 2021169981 A1 WO2021169981 A1 WO 2021169981A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
liquid crystal
display device
crystal layer
Prior art date
Application number
PCT/CN2021/077603
Other languages
English (en)
French (fr)
Inventor
张庆训
王倩
赵文卿
李忠孝
杨松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/599,299 priority Critical patent/US11598987B2/en
Publication of WO2021169981A1 publication Critical patent/WO2021169981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device.
  • TFT-LCD Thin film transistor liquid crystal display devices
  • OLED organic light emitting diodes
  • micro OLEDs also highlight their respective advantages.
  • the divergence angle of the light emitted from the display screen has a large angle range, in which only the light in a small angle range can be observed by human eyes, resulting in low light utilization.
  • the conventional anti-peep treatment includes attaching a layer of anti-peep film on the surface of the display screen.
  • the anti-peep film will cause the utilization of light. Waste.
  • reflective display devices with directivity function can achieve higher light utilization and have good application prospects.
  • An aspect of the present disclosure provides a display device, which includes: a liquid crystal layer having a first surface and a second surface opposed to each other, the second surface having a light incident area and a light output area; Adjacent to the first surface in the liquid crystal layer; and a light absorbing layer located on the first surface of the liquid crystal layer, the light absorbing layer comprising: a first light shielding layer, a second light shielding layer, and A filling layer between the first light-shielding layer and the second light-shielding layer, the second light-shielding layer is located between the first light-shielding layer and the liquid crystal layer, and a first light-shielding layer is provided on the second light-shielding layer.
  • the liquid crystal layer is configured to modulate light incident from the light incident area into a first refracted light under the action of a first voltage, and the first refracted light is emitted from the first opening Enter the filling layer, reflect between the first light-shielding layer and the second light-shielding layer, and enter the light-incident area under the action of a second voltage different from the first voltage
  • the light of is modulated into a second refracted light, and the second refracted light is directed toward the reflecting part, reflected by the reflecting part, and emitted from the light exit area.
  • the refractive index of the filling layer is equal to the first equivalent refractive index of the liquid crystal layer under the first voltage.
  • the distance h between the first light-shielding layer and the second light-shielding layer, and the width d of the first opening in the direction from the light entrance area to the light exit area satisfy The following formula: 2*h*tan( ⁇ )>d, where ⁇ is the angle between the light incident on the filling layer and the thickness direction of the filling layer.
  • the refractive index of the filling layer is between 1.6 and 2.0.
  • the filling layer is a transparent film layer.
  • the display device further includes a backlight module disposed on a side of the liquid crystal layer facing away from the light absorption layer, and the backlight module is used to face the liquid crystal layer.
  • the light incident area of the liquid crystal layer injects light and transmits the light emitted from the light exit area of the liquid crystal layer.
  • the display device further includes a third light-shielding layer disposed between the liquid crystal layer and the backlight module, and the third light-shielding layer includes exposing the The second opening of the light area and the third opening of the light exit area are exposed.
  • the backlight module includes: a light guide plate, a light source assembly, and an optical film layer; the optical film layer is arranged between the light guide plate and the liquid crystal layer, and the optical film layer is arranged There is a fourth opening, the fourth opening communicates with the second opening and exposes the light incident area, the refractive index of the optical film layer is smaller than the refractive index of the light guide plate; the light source assembly is arranged on the On the side surface of the light guide plate, and is configured to emit collimated polarized light toward the side surface of the light guide plate, so that the light entering the light guide plate is totally reflected in the light guide plate from the fourth opening Shoot out, and shoot into the light incident area.
  • the incident angle of the collimated polarized light emitted by the light source assembly toward the side surface of the light guide plate is between 70° and 80°.
  • the reflecting member is a reflecting prism, and the reflecting surface of the reflecting prism is inclined with respect to the first surface.
  • the first equivalent refractive index of the liquid crystal layer under the first voltage is greater than the second equivalent refractive index of the liquid crystal layer under the second voltage.
  • the display device has a plurality of pixel units, and each pixel unit includes the light-incident area and the light-exit area.
  • the display device further includes a driving electrode layer located on at least one side of the liquid crystal layer and configured to provide a driving electric field for the liquid crystal layer.
  • the driving electrode layer includes a first electrode layer and a second electrode layer, the first electrode layer is located on a side of the light absorbing layer away from the liquid crystal layer, and the second electrode layer It is located on the side of the liquid crystal layer away from the light absorption layer.
  • Figure 1 is a working principle diagram of a reflective display device
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the structure of a light absorption layer according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of an equivalent width of a slit according to an embodiment of the present disclosure
  • Fig. 7 is an angular spectrum of light diffraction according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of providing a third light shielding layer on the backlight module according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 1 is a working principle diagram of a reflective display device.
  • the light emitted by the backlight module 91 (as shown by the solid arrow in FIG. 1)
  • the light enters the liquid crystal layer 92 from the light incident area A1, this part of light is irradiated on the reflector 94 under the deflection of the liquid crystal layer 92, and is reflected by the reflector 94 and then exits the light exit area A2.
  • the pixels in the reflective display device 10 are in the dark state, the light emitted by the backlight module 91 (as shown by the dashed arrow in FIG.
  • the black matrix layer 93 It is irradiated downward to the black matrix layer 93, so that it cannot be emitted from the light exit area A2.
  • some media in the reflective display device such as black matrix
  • the light emitted by the backlight module 91 will be on the liquid crystal layer 92.
  • the reflected light is irradiated on the reflector 94, it may be emitted from the light exit area A2, causing light leakage of the display device, thereby affecting the contrast performance.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • a pixel unit in the display device is taken as an example for description.
  • the display device 20 includes: a liquid crystal layer 1, a light absorbing layer 2 arranged on a first surface of the liquid crystal layer 1, and a backlight module arranged on a second surface of the liquid crystal layer 1 opposite to the first surface 4.
  • the second surface of the liquid crystal layer 1 has a light incident area 1a and a light output area 1b.
  • the light incident area 1a and the light output area 1b are located on the side of the liquid crystal layer 1 away from the light absorbing layer 2, and the side of the liquid crystal layer 1 close to the light absorbing layer 2
  • the reflector 3 is provided.
  • the light-absorbing layer 2 includes: a first light-shielding layer 21, a second light-shielding layer 22, and a filling layer 23 located between the first light-shielding layer 21 and the second light-shielding layer 22.
  • the second light-shielding layer 22 is located between the first light-shielding layer 21 and the liquid crystal. Between the layers 1, the second light-shielding layer 22 is provided with a first opening 22a.
  • the liquid crystal layer 1 makes the pixel in the dark state under the action of the first voltage. At this time, the liquid crystal layer 1 modulates the light incident from the light incident area 1a into the first refracted light (as shown by the solid arrow in FIG. 2), The first refracted light enters the filling layer 23 from the first opening 22 a and is reflected between the first light shielding layer 21 and the second light shielding layer 22.
  • the light incident area 1a is arranged on the left side of the liquid crystal layer 1
  • the light output area 1b is arranged on the right side of the liquid crystal layer 1
  • the reflector 3 is arranged on the right side of the liquid crystal layer 1 and above the light output area 1b.
  • the first opening 22a is arranged on the left side of the reflector 3, and exposes the filling layer 23, and the exposed filling layer 23 is in contact with the liquid crystal layer 1.
  • the liquid crystal layer 1 when the liquid crystal layer makes the pixel in the dark state under the action of the first voltage, the liquid crystal layer 1 has the first equivalent refractive index, so as to modulate the light incident from the light incident area 1a to the first For refracting light, the first equivalent refractive index may be 1.8.
  • the refractive index of the filling layer 23 may be close to (for example, equal to) the first refractive index, so that the first refracted light can be incident from the liquid crystal layer 1 into the filling layer 23.
  • the first light-shielding layer 21 and the second light-shielding layer 22 may be made of materials with lower reflectivity. As shown in FIG. 2, the first refracted light after entering the filling layer 23 is reflected back and forth between the first light-shielding layer 21 and the second light-shielding layer 22, and part of the light is shielded by the first light-shielding layer 21 and the second light-shielding layer each time.
  • the layer 22 absorbs, so that the energy of the first refracted light gradually attenuates, and is finally absorbed by the first light shielding layer 21 and the second light shielding layer 22.
  • the display device of the embodiment of the present disclosure when the pixel is in the dark state, the light entering the liquid crystal layer 1 from the light incident area 1a can enter the light absorbing layer 2, but will not occur in the liquid crystal layer 1. Reflect, thereby reducing the problem of light leakage in the dark state caused by this.
  • the liquid crystal layer 1 also makes the pixels in the display device in a bright state under the action of a second voltage different from the first voltage. At this time, the liquid crystal layer 1 modulates the light incident from the light incident area 1a. It is the second refracted light (as shown by the dashed arrow in FIG. 2), the second refracted light is directed toward the light reflecting part 3, and is reflected by the 3 light reflecting parts toward the light exit area 1b.
  • the reflector 3 is provided at a position where the reflector 3 reflects the second refracted light inside the liquid crystal layer 1.
  • the reflector 3 is a reflective prism, and the reflective prism has a reflective surface.
  • the reflective surface is inclined with respect to the second light shielding layer 22 (ie, the first surface of the liquid crystal layer 1) for performing the second refracted light. reflection.
  • the material of the reflective prism may include metal, or the surface of the reflective prism is coated with a metal layer.
  • the cross section of the reflecting prism may be triangular.
  • the deflection angle of the liquid crystal can be controlled to make the liquid crystal layer 1 have a second equivalent refractive index, so that the second refracted light is to the right side compared to the light incident from the light incident area 1a A greater degree of deflection occurs, and then irradiates the reflector 3, and is reflected by the reflector 3 to the light exit area 1b.
  • the deflection angle of the liquid crystal can be controlled to make the liquid crystal layer 1 have the first equivalent refractive index, so that the first refracted light is to the left compared to the light incident from the light incident area 1a A greater degree of deflection occurs, so that the first refracted light can enter the filling layer 23 exposed by the first opening 22a.
  • the first equivalent refractive index of the liquid crystal layer 1 is greater than the second equivalent refractive index.
  • the equivalent refractive index of the liquid crystal layer represents the refractive index that the entire liquid crystal layer exhibits under the action of a specific voltage.
  • the refractive index of the filling layer 23 may be set between 1.6 and 2.0. In the embodiments of the present disclosure, the filling layer 23 is made equal to the first equivalent refractive index, for example, the refractive index of the filling layer 23 is 1.8.
  • the filling layer 23 can be made of OC, resin and other materials.
  • the filling layer 23 is a transparent film layer, thereby facilitating the display device to realize transparent display.
  • a transparent film layer means that the film layer can transmit at least 50% (for example, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95%) of the visible wavelength range. Incident light.
  • FIG. 3 is a schematic structural diagram of a light absorption layer provided by an embodiment of the disclosure. As shown in FIG. 3, the distance h between the first light shielding layer 21 and the second light shielding layer 22 and the width d of the first opening 22a satisfy the following formula:
  • is the angle between the light entering the filling layer 23 and the thickness direction of the filling layer 23.
  • the width d of the first opening 22a may refer to the size of the first opening 22a along the arrangement direction of the light incident area 1a to the light output area 1b.
  • FIG. 4 is a schematic structural diagram of a display device according to another embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a backlight module provided by an embodiment of the present disclosure.
  • the display device 30 further includes a backlight module 4, the backlight module 4 is arranged on the side of the liquid crystal layer 1 away from the light absorption layer 2, the backlight module 4 is used to enter the liquid crystal layer 1
  • the area 1a injects light and transmits the light emitted from the light-emitting area 1b of the liquid crystal layer 1.
  • the display device 30 shown in FIG. 4 has the same structure as the display device 20 shown in FIG. 2, and the description thereof will not be repeated here.
  • the backlight module 4 includes: a light guide plate 41, a light source assembly 42 and an optical film layer 43.
  • the light guide plate 41 has a first surface 411 and a second surface 412 facing the liquid crystal layer.
  • the first surface 411 is a side surface of the light guide plate 41.
  • the second surface 412 includes a first area 412 a and a second area 412 b.
  • the first area 412 a is opposite to the light incident area 1 a of the liquid crystal layer 1, and the second area 412 b is used to receive light emitted from the light exit area 1 b of the liquid crystal layer 1.
  • the optical film layer 43 is disposed on the second surface 412 of the light guide plate 41, and the optical film layer 43 is provided with a second opening 43a.
  • the second opening 43a exposes the first region 412a.
  • the refractive index of the optical film layer 43 is smaller than that of the light guide plate 41.
  • the refractive index of the light guide plate 41 may be between 1.2 and 1.5, such as 1.5, and the refractive index of the optical film layer 43 may be less than 1.3, such as 1.2.
  • the light source assembly 42 is arranged opposite to the first surface 411, and is used to emit collimated polarized light toward the first surface 411, so that the light entering the light guide plate 41 is totally reflected in the light guide plate 41 and then emitted from the first area 412a and emitted. Enter the corresponding light incident zone 1a.
  • the incident angle of the collimated polarized light can be greater than the critical angle of total reflection at the interface between the optical film layer 43 and the light guide plate 41, so that the incident angle of the light guide plate 41
  • the light is totally reflected in the light guide plate 41 and enters the liquid crystal layer 1 when the light reaches the second opening 43a.
  • the second opening 43a can be filled with a filling material close to the refractive index of the light guide plate 41, so that the light propagating through total reflection in the light guide plate 41 can enter the liquid crystal layer from the first region 412a.
  • FIG. 6 is a schematic diagram of the equivalent width of the slit provided by the embodiment of the disclosure.
  • the equivalent width y x*cos( ⁇ ), where x is the slit width of the slit, and ⁇ is the injection The angle between the light of the liquid crystal layer 1 and the thickness direction of the optical film layer 43.
  • Fig. 7 is an angular spectrum of light diffraction provided by an embodiment of the disclosure, as shown in Fig. 7, where the abscissa represents the angle, the ordinate represents the normalized energy intensity, and the solid line represents the normalized when the light is incident at a small angle. The change curve of energy intensity. The dashed line represents the change curve of normalized energy intensity when light is incident at a large angle.
  • the incident angle of the collimated polarized light emitted by the light source assembly 42 toward the first surface 411 may be 75° ⁇ 5°, so that the diffracted light of the light incident into the second opening 43a Can meet actual needs.
  • the light source assembly 42 includes a collimated light source 421 and a polarizing plate 422.
  • the collimated light source 421 is used to emit collimated light toward the polarizing plate 422, and the polarizing plate 422 is located on the second side of the light guide plate 41. Between a surface 411 and the collimated light source 421.
  • the collimated light source 421 may include a light emitting element 421a (such as an LED, etc.) and a lamp cover 421b.
  • the lamp cover 421b is used to reflect the diverging light of the light emitting element 421a to form a collimated light beam.
  • a corresponding polarizer can be selected according to actual needs so that the light emitted by the collimated light source 421 can be incident into the light guide plate 41 according to a predetermined polarization direction.
  • FIG. 8 is a schematic diagram of providing a third light shielding layer on the backlight module according to an embodiment of the present disclosure.
  • a third light shielding layer 5 is also provided between the optical film layer 43 and the liquid crystal layer 1.
  • the third light shielding layer 5 is provided with a third opening 5a at a position corresponding to the light incident area 1a, and a third opening 5b is provided at a position corresponding to the light exit area 1b, and the third opening 5a is connected to the second opening 43a.
  • the third light-shielding layer 5 can prevent the light that enters the optical film layer 43 from entering the liquid crystal layer 1; at the same time, it can also prevent The ambient light propagating in the direction from the optical film layer 43 to the liquid crystal layer 1 enters the liquid crystal layer 1.
  • the third opening 5b corresponding to the light exit area 1b can also limit the light exit range.
  • the third light shielding layer 5 can be used to define the light incident area 1a and the light output area 1b of the liquid crystal layer.
  • the display device has a plurality of pixel units, and the plurality of pixel units may be arranged in multiple rows and multiple columns, and each pixel includes a light incident area 1a and a light output area 1b.
  • FIG. 9 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • the display device 40 shown in FIG. 9 has the same structure as the display devices 20 and 30 shown in FIG. 2 and FIG. 4, and the description thereof will not be repeated here.
  • the display device 40 further includes a driving electrode layer, which is located on at least one side of the liquid crystal layer 1 and is used to provide a driving electric field for the liquid crystal layer 1.
  • the driving electrode layer can provide a high-voltage drive signal to the liquid crystal layer 1, so that the liquid crystal layer 1 has a larger equivalent refractive index; when the pixel is in the bright state, the driving electrode layer can provide a high-voltage driving signal to the liquid crystal layer 1. 1 Provide a low-voltage drive signal, so that the liquid crystal layer 1 has a smaller equivalent refractive index.
  • the driving electrode layer includes a first electrode layer 61 and a second electrode layer 62. The first electrode layer 61 and the second electrode layer 62 may be arranged on the same side of the liquid crystal layer 1 or may be arranged on different sides of the liquid crystal layer 1.
  • the display device may further include a substrate 7 and a thin film transistor 8 located in each pixel unit, and the thin film transistor 8 is disposed between the substrate 7 and the light absorption layer 2.
  • the first electrode layer 61 may be a pixel electrode layer including a plurality of pixel electrodes
  • the second electrode layer 62 may be a common electrode layer.
  • the first electrode layer 61 and the second electrode layer 62 are arranged on different sides of the liquid crystal layer 1, the first electrode layer 61 is located between the thin film transistor 8 and the light absorbing layer 2, and the second electrode layer 62 is located on the liquid crystal layer 1 away from the light.
  • the third light shielding layer 5 is arranged between the backlight module 4 and the second electrode layer 62.
  • the second electrode layer 62 can be provided between the thin film transistor 8 and the substrate 7, or the second electrode layer 62 can be provided more than once.
  • One electrode strip structure, the multiple electrode strip structures of the second electrode layer 62 and the multiple pixel electrodes of the first electrode layer 61 are arranged in the same layer and spaced apart.
  • the use of the display device of the disclosed embodiment can significantly improve the light transmission problem when the pixel is in the dark state while ensuring the display device has a good transmittance, thereby improving the brightness and dark contrast of the display device and enhancing the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置(20),包括:具有相对的第一表面和第二表面的液晶层(1),第二表面具有入光区(1a)和出光区(1b);设置在液晶层(1)内邻近第一表面的反射件(3);位于液晶层(1)的第一表面上的光吸收层(2),光吸收层(2)包括:第一遮光层(21)、第二遮光层(22)和位于第一遮光层(21)与第二遮光层(22)之间的填充层(23),第二遮光层(22)位于第一遮光层(21)与液晶层(1)之间,第二遮光层(22)上设置有第一开口(22a),液晶层(1)被构造为:在第一电压的作用下将从入光区(1a)射入的光线调制为第一折射光,第一折射光从第一开口(22a)射入填充层(23),并在第一遮光层(21)与第二遮光层(22)之间反射;以及在不同于第一电压的第二电压的作用下将从入光区(1a)射入的光线调制为第二折射光,第二折射光射向反射件(3),被反射件(3)反射,并从出光区(1b)射出。

Description

显示装置
相关申请的交叉引用
本申请要求于2020年2月27日提交至中国知识产权局的中国专利申请No.202010122380.1的优先权,所述申请的内容通过引用其全部合并于此。
技术领域
本公开涉及显示技术领域,具体涉及一种显示装置。
背景技术
近年来,显示领域蓬勃发展,薄膜晶体管液晶显示装置(TFT-LCD)目前占据大部分视场,并且有机发光二极管(OLED)、迷你OLED、微型OLED等显示技术也凸显各自的优势。然而在目前的显示装置中,显示屏出射的光的发散角具有大角度范围,其中仅小角度范围的光能够被人眼观测到,造成光的利用率低。在某些应用场景下,用户为了保证个人隐私,会对显示屏做防窥处理,常规的防窥处理包括在显示屏表面贴附一层防窥膜,然而防窥膜会造成光的利用率的浪费。和薄膜晶体管液晶显示装置等相比,具有指向性功能的反射式显示装置能够达到更高的光利用率,具有很好的应用前景。
发明内容
本公开的一方面提供了一种显示装置,该显示装置包括:液晶层,其具有相对的第一表面和第二表面,所述第二表面具有入光区和出光区;反射件,其设置在所述液晶层内邻近所述第一表面;以及位于所述液晶层的所述第一表面上的光吸收层,所述光吸收层包括:第一遮光层、第二遮光层和位于所述第一遮光层与所述第二遮光层之间的填充层,所述第二遮光层位于所述第一遮光层与所述液晶层之间,所述第二遮光层上设置有第一开口,其中,所述液晶层被构造为:在第一电压的作用下将从所述入光区射入的光线调制为第一折射光,所 述第一折射光从所述第一开口射入所述填充层,并在所述第一遮光层与所述第二遮光层之间反射,以及在不同于所述第一电压的第二电压的作用下将从所述入光区射入的光线调制为第二折射光,所述第二折射光射向所述反射件,被所述反射件反射,并从所述出光区射出。
根据本公开的实施例,所述填充层的折射率等于所述液晶层在所述第一电压下的第一等效折射率。
根据本公开的实施例,所述第一遮光层和所述第二遮光层之间的距离h、所述第一开口沿从所述入光区向所述出光区的方向上的宽度d满足以下公式:2*h*tan(θ)>d,其中,θ为射入所述填充层的光线与所述填充层的厚度方向之间的夹角。
根据本公开的实施例,所述填充层的折射率在1.6~2.0之间。
根据本公开的实施例,所述填充层为透明膜层。
根据本公开的实施例,所述显示装置还包括背光模组,所述背光模组设置在所述液晶层背离所述光吸收层的一侧,所述背光模组用于向所述液晶层的入光区射入光线,并对从所述液晶层的出光区射出的光线进行透射。
根据本公开的实施例,所述显示装置还包括第三遮光层,所述第三遮光层设置在所述液晶层与所述背光模组之间,所述第三遮光层包括暴露所述入光区的第二开口和暴露所述出光区的第三开口。
根据本公开的实施例,所述背光模组包括:导光板、光源组件和光学膜层;所述光学膜层设置在所述导光板与所述液晶层之间,所述光学膜层上设置有第四开口,所述第四开口与所述第二开口连通并暴露所述入光区,所述光学膜层的折射率小于所述导光板的折射率;所述光源组件设置在所述导光板的侧表面上,并被构造为朝向所述导光板的侧表面发射准直偏振光,以使射入所述导光板的光线在所述导光板内全反射后从所述第四开口射出,并射入所述入光区。
根据本公开的实施例,所述光源组件朝向所述导光板的侧表面发射的准直偏振光的入射角在70°和80°之间。
根据本公开的实施例,所述反射件是反射棱镜,所述反射棱镜的反射面相对于所述第一表面倾斜。
根据本公开的实施例,所述液晶层在所述第一电压下的第一等效折射率大于所述液晶层在所述第二电压下的第二等效折射率。
根据本公开的实施例,所述显示装置具有多个像素单元,每个像素单元均包括所述入光区和所述出光区。
根据本公开的实施例,所述显示装置还包括驱动电极层,所述驱动电极层位于所述液晶层的至少一侧,用于为所述液晶层提供驱动电场。
根据本公开的实施例,所述驱动电极层包括第一电极层和第二电极层,所述第一电极层位于所述光吸收层背离所述液晶层的一侧,所述第二电极层位于所述液晶层背离所述光吸收层的一侧。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为反射式显示装置的工作原理图;
图2为根据本公开的实施例的显示装置的结构示意图;
图3为根据本公开的实施例的光吸收层的结构示意图;
图4为根据本公开的另一实施例的显示装置的结构示意图;
图5为根据本公开的实施例的背光模组的结构示意图;
图6为根据本公开的实施例的狭缝的等效宽度的示意图;
图7为根据本公开的实施例的光线发生衍射的角谱;
图8为根据本公开的实施例的在背光模组上设置第三遮光层的示意图;
图9为根据本公开的另一实施例的显示装置的结构示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
除非另作定义,本公开实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为反射式显示装置的工作原理图,如图1所示,当反射式显示装置10中的像素处于亮态时,背光模组91发射的光线(如图1中实线箭头所示)从入光区A1射入液晶层92,这部分光线在液晶层92的偏转作用下照射至反射件94上,被反射件94反射后从出光区A2射出。当反射式显示装置10中的像素处于暗态时,背光模组91发射的光线(如图1中虚线箭头所示)从入光区A1射入液晶层92后,在液晶层92的偏转作用下照射至黑矩阵层93,从而无法从出光区A2射出。但是,由于反射式显示装置中的一些介质(如黑矩阵)具有一定的反射率,因此,当反射式显示装置10中的像素处于暗态时,背光模组91发出的光线会在液晶层92中发生反射,反射后的光线一旦照射至反射件94上,将有可能从出光区A2射出,导致显示装置发生漏光,从而影响对比度性能。
图2为根据本公开的实施例的显示装置的结构示意图。在下文中以显示装置中的一个像素单元为例进行说明。
如图2所示,显示装置20包括:液晶层1、设置在液晶层1的第一表面上的光吸收层2和设置在液晶层1与第一表面相对的第二表面上的背光模组4。液晶层1的第二表面具有入光区1a和出光区1b,入光区1a和出光区1b位于液晶层1远离光吸收层2的一侧,液晶层1内靠近光吸收层2的一侧设置有反射件3。光吸收层2包括:第一遮光层21、第二遮光层22和位于第一遮光层21与第二遮光层22之 间的填充层23,第二遮光层22位于第一遮光层21与液晶层1之间,第二遮光层22上设置有第一开口22a。液晶层1在第一电压的作用下使像素处于暗态,此时,液晶层1将从入光区1a射入的光线调制为第一折射光(如图2中实线箭头所示),第一折射光从第一开口22a射入填充层23,并在第一遮光层21与第二遮光层22之间反射。
如图2所示,入光区1a设置在液晶层1的左侧,出光区1b设置在液晶层1的右侧,反射件3设置在液晶层1的右侧、且位于出光区1b的上方,第一开口22a设置在反射件3的左侧,且将填充层23露出,露出的填充层23与液晶层1相接触。在本公开实施例中,当液晶层在第一电压的作用下使像素处于暗态时,液晶层1具有第一等效折射率,以将从入光区1a射入的光线调制为第一折射光,其中,第一等效折射率可以为1.8。填充层23的折射率可以与第一折射率相接近(例如,相等),以使第一折射光可以从液晶层1中射入至填充层23中。
在本公开实施例中,第一遮光层21和第二遮光层22可以采用反射率较低的材料。如图2所示,进入填充层23后的第一折射光在第一遮光层21和第二遮光层22之间来回反射,每次反射均有一部分光线被第一遮光层21和第二遮光层22吸收,使得第一折射光的能量逐渐衰减,最终被第一遮光层21和第二遮光层22所吸收。因此,采用本公开实施例的显示装置,当像素处在暗态时,从入光区1a射入液晶层1中的光线可以射入光吸收层2中,而不会在液晶层1中发生反射,从而减少由此导致的暗态漏光的问题。
如图2所示,液晶层1还在与第一电压不同的第二电压的作用下使显示装置中的像素处于亮态,此时,液晶层1将从入光区1a射入的光线调制为第二折射光(如图2中虚线箭头所示),第二折射光射向光反射件3,并被光反射3件朝出光区1b反射。反射件3在液晶层1的内侧被设置在使反射件3反射第二折射光的位置处。
在本公开的实施例中,反射件3为反射棱镜,反射棱镜具有反射面,反射面相对于第二遮光层22(即,液晶层1的第一表面)倾斜,用于对第二折射光进行反射。反射棱镜的材料可以包括金属,或 者,反射棱镜的表面涂覆有金属层。沿平行于图2纸面的方向,反射棱镜的截面可以为三角形。
当像素处于亮态时,可以控制液晶的偏转角度,使液晶层1具有第二等效折射率,从而使第二折射光相较于从入光区1a射入的光线而言,向右侧发生较大程度地偏折,进而照射至反射件3上,并由反射件3反射至出光区1b。当像素处于暗态时,可以控制液晶的偏转角度,使液晶层1具有第一等效折射率,从而使第一折射光相较于从入光区1a射入的光线而言,向左侧发生较大程度地偏折,从而使第一折射光可以射入被第一开口22a露出的填充层23中。液晶层1的第一等效折射率大于第二等效折射率。液晶层的等效折射率表示在特定电压的作用下整个液晶层所呈现的折射率。
在一些实施例中,可以使填充层23的折射率设置在1.6~2.0之间,在本公开实施例中,使填充层23与第一等效折射率相等,例如填充层23的折射率为1.8,填充层23可以采用OC、树脂等材料。
在一些实施例中,填充层23为透明膜层,从而有利于显示装置实现透明显示。在本公开实施例中,透明膜层是指该膜层可以透过至少50%(例如,至少60%、至少70%、至少80%、至少90%或者至少95%)的可见波长范围内的入射光。
图3为本公开实施例提供的光吸收层的结构示意图,如图3所示,第一遮光层21和第二遮光层22之间的距离h、第一开口22a的宽度d满足以下公式:
2*h*tan(θ)>d;
其中,θ为射入填充层23的光线与填充层23厚度方向之间的夹角。需要说明的是,在本公开实施例中,第一开口22a的宽度d可以是指沿入光区1a到出光区1b的排列方向上第一开口22a的尺寸。
图4为根据本公开的另一实施例的显示装置的结构示意图,图5为本公开实施例提供的背光模组的结构示意图。结合图4和图5所示,显示装置30还包括背光模组4,背光模组4设置在液晶层1背离光吸收层2的一侧,背光模组4用于向液晶层1的入光区1a射入光线,并对液晶层1的出光区1b射出的光线进行透射。图4示出的显示装 置30具有与图2示出的显示装置20相同的结构,在此将不再对其进行重复描述。
参照图4和图5,背光模组4包括:导光板41、光源组件42和光学膜层43。导光板41具有第一表面411和朝向液晶层的第二表面412。第一表面411为导光板41的侧表面。第二表面412包括第一区域412a和第二区域412b,第一区域412a与液晶层1的入光区1a相对,第二区域412b用于接收液晶层1的出光区1b射出的光线。光学膜层43设置在导光板41的第二表面412上,光学膜层43上设置有第二开口43a,第二开口43a将第一区域412a露出,光学膜层43的折射率小于导光板41的折射率。例如,可以使导光板41的折射率在1.2至1.5之间,例如可以是1.5,光学膜层43的折射率小于1.3,例如可以是1.2。光源组件42与第一表面411相对设置,用于朝向第一表面411发射准直偏振光,以使射入导光板41的光线在导光板41内全反射后从第一区域412a射出,并射入相应的入光区1a。
由于光学膜层43的折射率小于导光板41的折射率,因此,可以使准直偏振光的入射角大于光学膜层43与导光板41界面全反射临界角,以使射入导光板41的光线在导光板41内全反射,并在光线到达第二开口43a时射入液晶层1。第二开口43a中可以填充与导光板41的折射率接近的填充材料,以利于导光板41内全反射传播的光线可以从第一区域412a射入液晶层。
由于第二开口43a为一较小的狭缝,因此,光线在经过第二开口43a时发生衍射,衍射光强可以通过I=I 0*(sinα/α)^2公式计算得到,其中,I 0为中央明纹光强,α是单缝边缘光线与中心光线的相位差,其随着狭缝的等效宽度的增大而增大。
图6为本公开实施例提供的狭缝的等效宽度的示意图,如图6所示,等效宽度y=x*cos(δ),其中,x为狭缝的缝宽,δ为射入液晶层1的光线与光学膜层43厚度方向之间的夹角。图7为本公开实施例提供的光线发生衍射的角谱,如图7所示,其中,横坐标表示角度,纵坐标表示归一化能量强度,实线表示光线以小角度入射时归一化能量强度的变化曲线,虚线表示光线以大角度入射时归一化能量强度的 变化曲线。当归一化能量大于0时,代表光线发生衍射。根据图7可以看出,当光线以小角度入射时,衍射角度范围较小,衍射现象较弱,当光线以大角度入射时,衍射角度范围较大,衍射现象明显。因此,在本公开实施例中,可以使光源组件42朝向第一表面411发射的准直偏振光的入射角可以为75°±5°,从而使入射至第二开口43a中的光线的衍射光可以满足实际需要。
在一些实施例中,如图5所示,光源组件42包括:准直光源421和偏振片422,准直光源421用于朝向偏振片422发射准直光线,偏振片422位于导光板41的第一表面411与准直光源421之间。准直光源421可以包括发光件421a(诸如LED等)和灯罩421b,灯罩421b用于对发光件421a的发散光线进行反射,形成准直光束。在本公开实施例中,可以根据实际需要,选择相应的偏振片以使准直光源421射出的光线可以按照预定的偏振方向射入导光板41中。
图8为根据本公开的实施例的在背光模组上设置第三遮光层的示意图,结合图4和图8所示,光学膜层43与液晶层1之间还设置第三遮光层5,第三遮光层5对应于入光区1a的位置均设置有第三开口5a,对应于出光区1b的位置设置有第三开口5b,第三开口5a与第二开口43a连通。由于第三遮光层5设置在光学膜层43和液晶层1之间,因此第三遮光层5可以防止侧向射入光学膜层43中的光线射入液晶层1中;同时,还可以防止沿光学膜层43到液晶层1的方向传播的外界环境光进入液晶层1中。此外,对应于出光区1b的第三开口5b还可以限制出光的范围。第三遮光层5可用于限定液晶层的入光区1a和出光区1b。
在一些实施例中,显示装置具有多个像素单元,多个像素单元可以成多行多列排布,每个像素均包括入光区1a和出光区1b。
图9为根据本公开的另一实施例的显示装置的结构示意图。图9示出的显示装置40具有与图2和图4示出的显示装置20、30相同的结构,在此将不再对其进行重复描述。
如图9所示,显示装置40还包括驱动电极层,驱动电极层位于液晶层1的至少一侧,用于为液晶层1提供驱动电场。例如,在像素 处于暗态时,驱动电极层可以向液晶层1提供高电压驱动信号,使液晶层1具有较大的等效折射率;在像素处于亮态时,驱动电极层可以向液晶层1提供低电压驱动信号,使液晶层1具有较小的等效折射率。驱动电极层包括第一电极层61和第二电极层62,第一电极层61和第二电极层62可以设置在液晶层1的同一侧,也可以设置在液晶层1的不同侧。
在本公开实施例中,显示装置还可以包括衬底7和位于每个像素单元中的薄膜晶体管8,薄膜晶体管8设置在衬底7与光吸收层2之间。第一电极层61可以为像素电极层,其包括多个像素电极,第二电极层62可以为公共电极层。当第一电极层61和第二电极层62设置在液晶层1的不同侧时,第一电极层61位于薄膜晶体管8与光吸收层2之间,第二电极层62位于液晶层1背离光吸收层2的一侧,第三遮光层5设置在背光模组4和第二电极层62之间。第一电极层61和第二电极层62位于液晶层1的同一侧时,可以将第二电极层62设置在薄膜晶体管8与衬底7之间,或者,将第二电极层62设置为多个电极条结构,将第二电极层62的多个电极条结构与第一电极层61的多个像素电极同层且间隔设置。
综上,采用公开实施例的显示装置,可以在确保显示装置具有良好透过率的同时,明显改善像素处于暗态时的透光问题,进而提高了显示装置的亮暗对比度,增强显示效果。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (14)

  1. 一种显示装置,包括:
    液晶层,其具有相对的第一表面和第二表面,所述第二表面具有入光区和出光区;
    反射件,其设置在所述液晶层内邻近所述第一表面;以及
    位于所述液晶层的所述第一表面上的光吸收层,所述光吸收层包括:第一遮光层、第二遮光层和位于所述第一遮光层与所述第二遮光层之间的填充层,所述第二遮光层位于所述第一遮光层与所述液晶层之间,所述第二遮光层上设置有第一开口,
    其中,所述液晶层被构造为:
    在第一电压的作用下将从所述入光区射入的光线调制为第一折射光,所述第一折射光从所述第一开口射入所述填充层,并在所述第一遮光层与所述第二遮光层之间反射,以及
    在不同于所述第一电压的第二电压的作用下将从所述入光区射入的光线调制为第二折射光,所述第二折射光射向所述反射件,被所述反射件反射,并从所述出光区射出。
  2. 根据权利要求1所述的显示装置,其中,所述填充层的折射率等于所述液晶层在所述第一电压下的第一等效折射率。
  3. 根据权利要求1所述的显示装置,其中,所述第一遮光层和所述第二遮光层之间的距离h、所述第一开口沿从所述入光区向所述出光区的方向上的宽度d满足以下公式:
    2*h*tan(θ)>d,
    其中,θ为射入所述填充层的光线与所述填充层的厚度方向之间的夹角。
  4. 根据权利要求2所述的显示装置,其中,所述填充层的折射率在1.6~2.0之间。
  5. 根据权利要求1所述的显示装置,其中,所述填充层为透明膜层。
  6. 根据权利要求1至5中任一项所述的显示装置,还包括背光模组,所述背光模组设置在所述液晶层背离所述光吸收层的一侧,所述背光模组用于向所述液晶层的入光区射入光线,并对从所述液晶层的出光区射出的光线进行透射。
  7. 根据权利要求6所述的显示装置,还包括第三遮光层,所述第三遮光层设置在所述液晶层与所述背光模组之间,所述第三遮光层包括暴露所述入光区的第二开口和暴露所述出光区的第三开口。
  8. 根据权利要求7所述的显示装置,其中,所述背光模组包括:导光板、光源组件和光学膜层,
    所述光学膜层设置在所述导光板与所述液晶层之间,所述光学膜层上设置有第四开口,所述第四开口与所述第二开口连通并暴露所述入光区,所述光学膜层的折射率小于所述导光板的折射率,以及
    所述光源组件设置在所述导光板的侧表面上,并被构造为朝向所述导光板的侧表面发射准直偏振光,以使射入所述导光板的光线在所述导光板内全反射后从所述第四开口射出,并射入所述入光区。
  9. 根据权利要求8所述的显示装置,其中,所述光源组件朝向所述导光板的侧表面发射的准直偏振光的入射角在70°和80°之间。
  10. 根据权利要求1所述的显示装置,其中,所述反射件是反射棱镜,所述反射棱镜的反射面相对于所述第一表面倾斜。
  11. 根据权利要求1所述的显示装置,其中,所述液晶层在所述第一电压下的第一等效折射率大于所述液晶层在所述第二电压下 的第二等效折射率。
  12. 根据权利要求1至11中任意一项所述的显示装置,其中,所述显示装置具有多个像素单元,每个像素单元均包括所述入光区和所述出光区。
  13. 根据权利要求1至12中任意一项所述的显示装置,其中,所述显示装置还包括驱动电极层,所述驱动电极层位于所述液晶层的至少一侧,用于为所述液晶层提供驱动电场。
  14. 根据权利要求13所述的显示装置,其中,所述驱动电极层包括第一电极层和第二电极层,所述第一电极层位于所述光吸收层背离所述液晶层的一侧,所述第二电极层位于所述液晶层背离所述光吸收层的一侧。
PCT/CN2021/077603 2020-02-27 2021-02-24 显示装置 WO2021169981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/599,299 US11598987B2 (en) 2020-02-27 2021-02-24 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010122380.1 2020-02-27
CN202010122380.1A CN111190306B (zh) 2020-02-27 2020-02-27 显示装置

Publications (1)

Publication Number Publication Date
WO2021169981A1 true WO2021169981A1 (zh) 2021-09-02

Family

ID=70708834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077603 WO2021169981A1 (zh) 2020-02-27 2021-02-24 显示装置

Country Status (3)

Country Link
US (1) US11598987B2 (zh)
CN (1) CN111190306B (zh)
WO (1) WO2021169981A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190306B (zh) 2020-02-27 2022-07-15 京东方科技集团股份有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825802A (zh) * 2009-03-06 2010-09-08 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN107255885A (zh) * 2017-08-16 2017-10-17 京东方科技集团股份有限公司 显示面板及其制造方法
CN110262119A (zh) * 2019-07-18 2019-09-20 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
CN110673388A (zh) * 2019-10-15 2020-01-10 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置
KR102093630B1 (ko) * 2013-12-05 2020-03-27 엘지디스플레이 주식회사 액정표시장치 및 이의 제조 방법
CN111190306A (zh) * 2020-02-27 2020-05-22 京东方科技集团股份有限公司 显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503685B2 (ja) * 1999-08-30 2004-03-08 日本電気株式会社 液晶表示装置及びその製造方法
US6975455B1 (en) * 2000-04-18 2005-12-13 3M Innovative Properties Company Transflective layer for displays
JP2002108248A (ja) * 2000-07-26 2002-04-10 Seiko Epson Corp 電気光学装置、電気光学装置用基板及び投射型表示装置
US7027109B2 (en) * 2001-08-03 2006-04-11 Nec Corporation TFT array substrate and active-matrix addressing liquid-crystal display device
CN1190687C (zh) * 2002-02-07 2005-02-23 台湾积体电路制造股份有限公司 具有阻隔构件的反射式液晶光闸
US7411643B2 (en) * 2005-03-03 2008-08-12 Chunghwa Picture Tubes, Ltd. Liquid crystal display device and inspection method thereof
TWI559510B (zh) * 2014-06-23 2016-11-21 群創光電股份有限公司 顯示裝置
CN104330917B (zh) * 2014-11-26 2017-05-10 重庆京东方光电科技有限公司 一种彩膜基板及显示装置
US11086165B2 (en) * 2016-08-19 2021-08-10 Samsung Display Co., Ltd. Display apparatus and method of fabricating the same
CN107219685B (zh) * 2017-07-28 2020-07-31 京东方科技集团股份有限公司 显示装置及显示装置的显示方法
CN107632453B (zh) * 2017-10-31 2021-03-02 京东方科技集团股份有限公司 显示面板及制造方法和显示装置
CN108196400A (zh) * 2018-02-01 2018-06-22 广东欧珀移动通信有限公司 背光模组、显示装置及电子设备
CN109541850B (zh) * 2019-01-07 2021-10-29 京东方科技集团股份有限公司 显示装置及其驱动方法
CN111208675B (zh) * 2020-03-06 2022-06-21 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825802A (zh) * 2009-03-06 2010-09-08 北京京东方光电科技有限公司 彩膜基板及其制造方法
KR102093630B1 (ko) * 2013-12-05 2020-03-27 엘지디스플레이 주식회사 액정표시장치 및 이의 제조 방법
CN107255885A (zh) * 2017-08-16 2017-10-17 京东方科技集团股份有限公司 显示面板及其制造方法
CN110262119A (zh) * 2019-07-18 2019-09-20 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
CN110673388A (zh) * 2019-10-15 2020-01-10 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置
CN111190306A (zh) * 2020-02-27 2020-05-22 京东方科技集团股份有限公司 显示装置

Also Published As

Publication number Publication date
CN111190306B (zh) 2022-07-15
US20220155633A1 (en) 2022-05-19
US11598987B2 (en) 2023-03-07
CN111190306A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
TWI592722B (zh) 背光模組以及顯示裝置
JP7234121B2 (ja) 表示装置及びその制御方法
JP6575100B2 (ja) 導光部材、面光源装置及び表示装置
TWI266129B (en) Lighting device and reflection type liquid crystal display device using the same
KR100800932B1 (ko) 표시 장치
US8149495B2 (en) Reflective display having improved brightness and contrast
KR101167440B1 (ko) 액정표시장치
US20170023724A1 (en) Optical Module And Reflective Display Apparatus
US8237892B1 (en) Display device with a brightness enhancement structure
TWI646511B (zh) 拼接顯示裝置
CN112447931A (zh) 一种显示面板及显示装置
US20210231859A1 (en) Light guide plate, optical module and all-trans display device
US9528685B2 (en) Color conversion substrate, display device, and color conversion substrate fabricating method
TWI425262B (zh) 區域性點亮側光式導光板及區域性點亮側光式背光模組
JPWO2007148651A1 (ja) 照明装置、照明方法、及び表示装置
JP2006323302A (ja) 表示装置
CN109309108B (zh) 显示面板及显示装置
US20170052298A1 (en) Systems for and methods of ambient-light reduction in oled display systems and lcd systems
JP2006323303A (ja) 表示装置
WO2016169173A1 (zh) 导光板、背光源和显示装置
WO2021169981A1 (zh) 显示装置
US20170139116A1 (en) Light guide plate, backlight module and display device
JP2006154402A (ja) 反射型液晶表示装置
JP2006156751A (ja) 照明装置
US9964688B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21761244

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21761244

Country of ref document: EP

Kind code of ref document: A1