WO2021169782A1 - 电子雾化装置、雾化组件、雾化元件及其制作方法 - Google Patents

电子雾化装置、雾化组件、雾化元件及其制作方法 Download PDF

Info

Publication number
WO2021169782A1
WO2021169782A1 PCT/CN2021/075810 CN2021075810W WO2021169782A1 WO 2021169782 A1 WO2021169782 A1 WO 2021169782A1 CN 2021075810 W CN2021075810 W CN 2021075810W WO 2021169782 A1 WO2021169782 A1 WO 2021169782A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
layer
atomization
porous substrate
atomizing
Prior art date
Application number
PCT/CN2021/075810
Other languages
English (en)
French (fr)
Inventor
吕红霞
蒋振龙
李沛
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP21761685.3A priority Critical patent/EP4111888A4/en
Publication of WO2021169782A1 publication Critical patent/WO2021169782A1/zh
Priority to US17/822,218 priority patent/US20220408817A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the invention relates to the technical field of electronic atomization, in particular to an electronic atomization device, an atomization component, an atomization element and a manufacturing method thereof.
  • the electronic atomization device has a similar appearance and taste to cigarettes, but generally does not contain other harmful components such as tar and suspended particles in cigarettes, which greatly reduces the harm to the user's body. Therefore, it is mostly used as a substitute for cigarettes to quit smoking. .
  • the electronic atomization device is generally composed of an atomization component and a power supply component.
  • the heating body of the atomization component of the current electronic atomization device on the market includes a spring-shaped heating wire.
  • the production process is to wind the linear heating wire on a fixed shaft. When the heating wire is energized, it is stored in the storage The smoke liquid on the medium is adsorbed on the fixed shaft, and the smoke liquid is atomized by the heating action of the heating wire.
  • Another type of heating element includes a combination of ceramics and heating wires, but the atomization efficiency is low and the liquid is easy to fry.
  • the related technology of the heating element also includes the preparation of a thin-film heating element on a porous ceramic substrate. However, the resistance stability of the thin-film heating element is poor and the service life is low.
  • the invention provides an electronic atomization device, an atomization component, an atomization element and a manufacturing method thereof, so as to solve the problem that the resistance value of the conductive layer rises too fast.
  • the first technical solution provided by the present invention is to provide an atomizing element of an electronic atomizing device, comprising: a porous substrate and a heating layer, the porous substrate has an atomizing surface, and the heating layer Covering the atomized surface; wherein the heating layer includes a conductive layer and a stabilizing layer, the conductive layer covers the atomizing surface, and the stabilizing layer covers the surface of the conductive layer away from the porous substrate; wherein, The resistivity of the stabilizing layer is higher than that of the conductive layer and the oxidation resistance is lower than that of the conductive layer.
  • the material of the stabilizing layer is one or any combination of aluminum, zinc, tin, magnesium, and titanium; the material of the conductive layer is one or any combination of titanium, zirconium, niobium, tantalum, and 316 stainless steel.
  • the material of the stabilizing layer is not aluminum; the material of the conductive layer is titanium-zirconium alloy.
  • the thickness of the heating layer is 1.5-5um; wherein the thickness of the stabilizing layer is 0.5-2um, and the thickness of the conductive layer is 2-3um.
  • the atomizing element further includes: a first electrode and a second electrode located on the stabilizing layer away from the porous substrate and covering part of the stabilizing layer.
  • the material of the first electrode and the second electrode is silver.
  • the second technical solution provided by the present invention is to provide an atomization assembly of an electronic atomization device, the atomization assembly includes a liquid storage cavity for storing e-liquid and any of the foregoing According to the atomization element, the smoke liquid in the liquid storage cavity can be conducted to the atomization surface.
  • the third technical solution provided by the present invention is to provide an electronic atomization device, comprising a power supply assembly and the above-mentioned atomization assembly, the power supply assembly is electrically connected to the atomization assembly, It is used to provide power for the atomization element of the atomization assembly.
  • the fourth technical solution provided by the present invention is to provide a method for manufacturing an atomizing element of an electronic atomizing device, including providing a porous substrate, the porous substrate including an atomizing surface; A conductive layer is provided on the atomized surface of the substrate; a stabilizing layer is provided on a surface of the conductive layer away from the porous substrate; wherein the resistivity of the stabilizing layer is higher than that of the conductive layer and the oxidation resistance is lower than that of the conductive layer.
  • Floor a method for manufacturing an atomizing element of an electronic atomizing device, including providing a porous substrate, the porous substrate including an atomizing surface; A conductive layer is provided on the atomized surface of the substrate; a stabilizing layer is provided on a surface of the conductive layer away from the porous substrate; wherein the resistivity of the stabilizing layer is higher than that of the conductive layer and the oxidation resistance is lower than that of the conductive layer.
  • said disposing a conductive layer on the atomized surface of the porous substrate includes: adopting a direct current sputtering deposition process or a magnetron sputtering deposition process to dispose a conductive layer on the atomized surface of the porous substrate; and/or
  • the step of disposing a stabilizing layer on a surface of the conductive layer away from the porous substrate includes: forming a stabilizing layer on the side of the conductive layer away from the porous substrate using a DC sputtering deposition process or a magnetron sputtering deposition process .
  • the method further includes: arranging a first electrode and a second electrode covering part of the stabilizing layer on the side of the stabilizing layer away from the porous substrate by screen printing, and matching the first electrode to the first electrode. And the second electrode is sintered at low temperature.
  • the total thickness of the stabilizing layer and the conductive layer is 1.5-5um, the thickness of the stabilizing layer is 0.5-2um, and the thickness of the conductive layer is 2-3um; and/or the material of the stabilizing layer It is: one or any combination of aluminum, zinc, tin, magnesium, and titanium; the material of the conductive layer is one or any combination of titanium, zirconium, niobium, tantalum and 316 stainless steel.
  • the material of the stabilizing layer is not aluminum; the material of the conductive layer is titanium-zirconium alloy.
  • the beneficial effect of the present invention is: different from the prior art, the present invention forms a conductive layer and a stabilizing layer on the atomized surface of the porous substrate, the resistivity of the stabilizing layer is higher than that of the conductive layer and the oxidation resistance is lower than that of ⁇ conductive layer.
  • the stabilizing layer can make the resistance of the conductive layer relatively stable during the heating process without soaring, so as to solve the problem of the resistance of the conductive layer rising too fast, which can bring better and better stability to users. Stable taste.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an electronic atomization device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the exploded structure of the atomization component of the electronic atomization device in FIG. 1;
  • Figure 3 is a cross-sectional partial enlarged structural diagram of the atomization assembly in Figure 2;
  • Fig. 4 is a schematic plan view of an atomizing element in an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of the first embodiment of the manufacturing method of the atomizing element of the present invention.
  • Fig. 6 is a schematic flow chart of the second embodiment of the manufacturing method of the atomizing element of the present invention.
  • the existing ordinary ceramic heating wire generates uneven heating, which is prone to frying liquid during the atomization process; the nitride-type heating film has poor stability and short heating life; the precious metal-type heating wire is expensive, and particles are prone to agglomeration.
  • the present invention provides a new type of electronic atomization device, atomization assembly, atomization element and manufacturing method thereof, which are described below with reference to the drawings and specific embodiments.
  • the electronic atomization device of the present invention may include an atomization assembly 100 and a power supply assembly 200.
  • the power supply assembly 200 is electrically connected to the atomization assembly 100 to provide power for the atomization assembly 100.
  • the power supply assembly 200 and the atomization assembly 100 are detachably connected, so that when any one of the components is damaged, it can be replaced.
  • the power supply assembly 200 and the atomization assembly 100 may also share the same housing, so that the electronic atomization device is an integrated structure, which is more convenient to carry.
  • the embodiment of the present invention does not specifically limit the connection manner of the power supply assembly 200 and the atomization assembly 100.
  • the atomization assembly 100 includes a liquid storage cavity 10, an upper cover 20, an air flow channel 30 and an atomization element 40.
  • the atomizing element 40 is arranged in the upper cover 20, and the upper cover 20 is used to guide the e-liquid in the liquid storage cavity 10 into the atomizing element 40, and the air flow channel 30 and the atomizing surface of the atomizing element 40 Connected, used to send out the atomized smoke.
  • the upper cover 20 may include a guiding portion 22, a matching portion 24, and a receiving portion 26 that are sequentially connected.
  • the guiding portion 22 is provided with a liquid inlet hole 222 and an air outlet hole 224, the liquid inlet hole 222 is in communication with the liquid storage cavity 10, and the air outlet hole 224 is in communication with the air flow channel 30.
  • the accommodating part 26 is formed with a accommodating cavity 262 for accommodating the atomizing element 40, and the atomizing element 40 is accommodated in the accommodating cavity 262.
  • the mating portion 24 is used for communicating the guiding portion 22 with the receiving portion 26 so as to transport the smoke liquid in the liquid inlet 222 to the atomizing element 40.
  • the atomizing element 40 is used to convert the delivered smoke liquid into smoke by heating, the air outlet 224 is in communication with the atomizing surface of the atomizing element 40, and the smoke liquid is heated on the atomizing surface to be atomized into smoke, and The smoke is transmitted from the air outlet 224 through the air flow channel 30.
  • the upper cover 20 is an integrally formed part. Specifically, a liquid inlet hole 222 and an air outlet hole 224 are respectively provided on the end surface of the upper cover 20 close to the liquid storage cavity 10, and a containing cavity 262 is formed on the end surface of the containing portion 26 away from the liquid storage cavity 10, and finally in the matching portion 24 A through hole connecting the liquid inlet 222 and the receiving cavity 262 is opened on the upper side.
  • a liquid inlet hole 222 and an air outlet hole 224 are respectively provided on the end surface of the upper cover 20 close to the liquid storage cavity 10
  • a containing cavity 262 is formed on the end surface of the containing portion 26 away from the liquid storage cavity 10
  • in the matching portion 24 A through hole connecting the liquid inlet 222 and the receiving cavity 262 is opened on the upper side.
  • other processing sequences or processing methods can also be used to process the guiding portion 22, the matching portion 24, and the receiving portion 26 on the upper cover 20, which are not specifically limited here.
  • the number of components of the atomization assembly 100 can be reduced, making the installation more convenient and the related sealing performance better.
  • FIG. 4 is a schematic structural diagram of an embodiment of the atomizing element of the electronic atomizing device of the present invention.
  • the atomizing element 40 includes a porous base 42 and a heating layer, wherein the heating layer includes a conductive layer 44 and a stabilizing layer 46.
  • the porous substrate 42 has an atomizing surface 422, and the conductive layer 44 and the stabilizing layer 46 are sequentially formed on the atomizing surface 422.
  • the e-liquid in the liquid storage cavity 10 is transferred to the porous base 42 via the upper cover 20, and the porous base 42 further transmits the e-liquid to the atomizing surface 422. Therefore, when the conductive layer 44 and/or the stable layer 46 are energized and heated, they can The smoke liquid on the atomizing surface 422 is heated, so that the smoke liquid is atomized into smoke.
  • the porous base 42 is made of a porous structure material, which may specifically be porous ceramics, porous glass, porous plastics, porous metals, etc.
  • the material of the porous base 42 is not specifically limited in this application.
  • the porous base 42 may be made of a material with lower temperature resistance, for example, a porous plastic.
  • the porous base 42 may be made of a conductive material with a conductive function, for example, a porous metal.
  • Porous ceramics are chemically stable and will not chemically react with smoke liquid; porous ceramics can withstand high temperatures and will not be deformed due to excessive heating temperatures; porous ceramics are insulators and will not be electrically connected to the conductive layer 44 formed thereon. Short circuit occurs; porous ceramics are easy to manufacture and low in cost. Therefore, in this embodiment, porous ceramics are used to make the porous base 42.
  • the porosity of the porous ceramic may be 30% to 70%.
  • Porosity refers to the ratio of the total volume of microscopic voids in a porous medium to the total volume of the porous medium.
  • the size of the porosity can be adjusted according to the composition of the smoke liquid. For example, when the viscosity of the smoke liquid is relatively large, a higher porosity is selected to ensure the liquid guiding effect.
  • the porosity of the porous ceramic is 50-60%.
  • the porosity of the porous ceramic is 50-60%.
  • both the conductive layer 44 and the stabilizing layer 46 are porous films.
  • the conductive layer 44 can be disposed on the atomized surface 422 of the porous substrate 42 by a DC sputtering deposition process or a magnetron sputtering deposition process; the conductive layer 44 is far away from the porous substrate by a DC sputtering deposition process or a magnetron sputtering deposition process
  • a stabilizing layer 46 is formed on one side of 42.
  • the atomizing element further includes a first electrode 47 and a second electrode 48 that are located on the stabilizing layer 46 away from the porous substrate 42 and cover a part of the stabilizing layer 46.
  • the resistivity of the stabilizing layer 46 is higher than the resistivity of the conductive layer 44 and the oxidation resistance is lower than that of the conductive layer 44.
  • the material of the stabilizing layer 46 is one or any combination of aluminum, zinc, tin, magnesium, and titanium.
  • the material of the conductive layer 44 is one or any combination of titanium, zirconium, niobium, tantalum and 316 stainless steel.
  • the material of the first electrode 47 and the second electrode 48 is silver.
  • the material of the stabilizing layer 46 is aluminum.
  • the material of the conductive layer 44 is a titanium zirconium alloy.
  • Titanium and zirconium are metals with good biocompatibility, especially titanium is also a biophilic metal element, which has higher safety.
  • Titanium and zirconium have a larger electrical resistivity among metal materials. Under normal temperature conditions, they have three times the original electrical resistivity after being alloyed in a certain proportion, and they are more suitable for heating film materials.
  • Titanium and zirconium have small thermal expansion coefficients, and have lower thermal expansion coefficients after alloying, and have better thermal matching with porous ceramics. After alloying according to a certain proportion, the melting point of the alloy is lower, and the film forming property of magnetron sputtering coating is better.
  • Electron microscopy analysis after the metal coating shows that the microscopic particles are spherical, and the particles and particles come together to form a microscopic morphology similar to cauliflower, while the film formed by the titanium-zirconium alloy can be seen by the electron microscopy analysis that the microscopic particles are It is flaky, and part of the grain boundary between particles disappears, and the continuity is better.
  • Titanium and zirconium have good plasticity and elongation, and the titanium-zirconium alloy film has better resistance to thermal cycling and current shock.
  • Titanium is often used in the stress buffer layer of metals and ceramics and the activation element of ceramic metallization. Titanium will react with the ceramic interface to form a relatively strong chemical bond, which can improve the adhesion of the film.
  • the titanium-zirconium alloy film in the titanium-zirconium alloy film has poor stability in the air at high temperatures, zirconium easily absorbs hydrogen, nitrogen, and oxygen, and the zirconium-titanium alloy has better gas absorption properties. Therefore, the conductive layer 44 Later, it is necessary to cover the conductive layer 44 with a stabilizing layer 46, and the material of the stabilizing layer 46 is aluminum.
  • the first electrode 47 and the second electrode 48 are fabricated by screen printing, and then the first electrode 47 and the second electrode 48 are sintered at a low temperature.
  • the first electrode 47 and the second electrode 48 cover part of the stabilizing layer 46.
  • a relatively dense aluminum oxide layer is formed on the surface of the stable layer 46, which can isolate the air from contacting the conductive layer 44, thereby preventing the resistance of the conductive layer 44 from increasing. Solve the problem of taste change and stability caused by the increase in resistance of the heating layer.
  • the stabilizing layer 46 follows the sintering of the first electrode 47 and the second electrode 48 to stabilize the area covered by the first electrode 47 and the second electrode 48
  • the layer 46 is not oxidized, and the formation of contact resistance is avoided.
  • the stabilizing layer 46 can maintain its own stability and is not prone to agglomeration. Compared with the noble metal protective layer such as Au/Ag, it is easy to agglomerate during the atomization process. As the heating element fails, the choice of aluminum as the material of the stabilizing layer 46 can solve such problems.
  • alumina has the same main components as ceramics, has a low thermal expansion coefficient, and deforms less when current is impacted.
  • the stabilizing layer 46 is made of aluminum, and its overall resistance is higher than that of noble metals.
  • the resistance of the noble metal is between 0.8-1.2 ohms.
  • the minimum resistance of aluminum is about 1 ohm by adjusting the parameter, which is basically between 1.5-3 ohms.
  • the resistance between the conductive layer 44 and the stabilizing layer 46 is relatively close, which can prevent the current in one of the layers from being too large.
  • the thermal expansion coefficient of precious metal gold is 14.2
  • the thermal expansion coefficient of alumina formed after aluminum sintering is about half that of gold, which is 7.1.
  • the deformation rate of the conductive layer is lower, so the stability There will be improvement.
  • the thickness of the heating layer is 1.5-5 um, wherein the heating layer includes a conductive layer 44 and a stabilizing layer 46.
  • the thickness of the conductive layer 44 is 2-3 um, and the thickness of the stabilizing layer 46 is 0.5-2 um.
  • the present invention sets the material of the conductive layer 44 to one or any combination of titanium, zirconium, niobium, tantalum and 316 stainless steel, and sets the material of the stabilizing layer 46 to aluminum, zinc, tin, One or any combination of magnesium and titanium.
  • the first electrode 47 and the second electrode 48 are fabricated by a low-temperature sintering method to achieve the purpose of increasing the life of the heating element, reducing the resistance increase, and eliminating the contact resistance.
  • FIG. 5 is a schematic flowchart of the first embodiment of the method for manufacturing the atomizing element of the electronic atomizing device of the present invention.
  • Step S51 A porous substrate is provided, and the porous substrate includes an atomizing surface.
  • the porous matrix is made of a porous structure material, which can specifically be porous ceramics, porous glass, porous plastics, porous metals, etc.
  • the present application does not specifically limit the material of the porous matrix.
  • the porous substrate may be made of a material with lower temperature resistance, such as porous plastic.
  • the porous substrate may be made of a conductive material with a conductive function, for example, a porous metal.
  • the porous substrate includes an atomizing surface.
  • Step S52 providing a conductive layer on the atomized surface of the porous substrate.
  • the conductive layer is formed on the atomized surface of the porous substrate by magnetron sputtering deposition method or DC sputtering deposition method.
  • the material of the conductive layer is one or any combination of titanium, zirconium, niobium, tantalum and 316 stainless steel.
  • DC sputtering deposition the specific process is as follows: maintain the vacuum degree of 8 ⁇ 10 -4 Pa-2 ⁇ 10 -3 Pa; maintain the power of 1500W-2500W, the time is 70min-110min; the pressure is 0.3Pa-0.8Pa, keeping the temperature at room temperature-300°C, the particle diameter is about 200-400nm.
  • Step S53 providing a stabilizing layer on a surface of the conductive layer away from the porous substrate.
  • a magnetron sputtering deposition method or a direct current sputtering deposition method is used to provide a stabilizing layer on a surface of the conductive layer away from the porous substrate.
  • the material of the stabilizing layer is one or any combination of aluminum, zinc, tin, magnesium, and titanium.
  • the specific process is as follows: the time is 40min-60min, the power is 500W-1500W, the pressure is 1Pa-1.5, and the temperature is room temperature-300°C.
  • the particle size is about 100-200nm.
  • the conductive layer and the stabilizing layer are sequentially formed on the fogging surface.
  • the smoke liquid in the liquid storage cavity is transferred to the porous substrate through the upper cover, and the porous substrate further transmits the smoke liquid to the atomizing surface. Therefore, when the conductive layer and/or the stabilizing layer 46 are energized and heated, the smoke on the atomizing surface can be The liquid is heated, so that the smoke liquid is atomized into smoke.
  • the total thickness of the conductive layer and the stabilizing layer is 1.5 um, wherein the thickness of the conductive layer is 2-3 um, and the thickness of the stabilizing layer is 0.5-2 um.
  • the resistivity of the stabilizing layer is higher than that of the conductive layer and the oxidation resistance is lower than that of the conductive layer.
  • the material of the stabilizing layer is aluminum
  • the material of the conductive layer is titanium-zirconium alloy.
  • the material of the conductive layer in the present invention is one or any combination of titanium, zirconium, niobium, tantalum and 316 stainless steel, and the material of the stabilizing layer is one or any combination of aluminum, zinc, tin, magnesium, and titanium. It can make the stable layer form a dense aluminum oxide layer on the conductive layer, isolate the air from contacting the conductive layer, reduce the resistance increase of the conductive layer, and solve the problem of poor taste and mouthfeel caused by the increase in resistance of the conductive layer The problem of instability.
  • FIG. 6 is a schematic flowchart of the second embodiment of the method for manufacturing the atomizing element of the electronic atomizing device of the present invention.
  • Step S61, step S62, and step S63 are respectively the same as step S51, step S52, and step S53 in the first embodiment shown in FIG. 5.
  • step S64 screen printing is used to provide a first electrode and a second electrode covering a part of the stabilizing layer on the side of the stabilizing layer away from the porous substrate, and then aligning the first electrode and the second electrode Perform low-temperature sintering.
  • the material of the first electrode and the second electrode is silver.
  • the first electrode and the second electrode covering part of the stabilizing layer are arranged on the side of the stabilizing layer away from the porous substrate by means of screen printing.
  • the first electrode and the second electrode cover part of the stabilizing layer.
  • the first electrode and the second electrode are sintered at low temperature.
  • a relatively dense aluminum oxide layer is formed on the surface of the stable layer, which can isolate the contact between air and the conductive layer, thereby preventing the resistance of the conductive layer from increasing. In order to solve the problem of taste change and stability caused by the increase in resistance of the heating layer.
  • the stabilizing layer follows the sintering of the first electrode and the second electrode, so that the stabilizing layer in the area covered by the first electrode and the second electrode is not oxidized, thereby avoiding oxidation.
  • the formation of contact resistance when the first electrode and the second electrode are fabricated by low-temperature sintering, the stabilizing layer follows the sintering of the first electrode and the second electrode, so that the stabilizing layer in the area covered by the first electrode and the second electrode is not oxidized, thereby avoiding oxidation. The formation of contact resistance.

Landscapes

  • Physical Vapour Deposition (AREA)
  • Resistance Heating (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种电子雾化装置、雾化组件(100)、雾化元件(40)及其制作方法,其中雾化元件(40)包括多孔基体(42)及发热层,多孔基体(42)具有雾化面(422),发热层覆盖雾化面(422);发热层包括导电层(44)及稳定层(46),导电层(44)覆盖雾化面(422),稳定层(46)覆盖导电层(44)远离多孔基体(42)的表面;制备稳定层(46)的材料的电阻率低于导电层(44),且稳定层(46)的抗氧化性能高于导电层(44),以解决导电层(44)阻值上升过快的问题。

Description

电子雾化装置、雾化组件、雾化元件及其制作方法 技术领域
本发明涉及电子雾化技术领域,具体涉及一种电子雾化装置、雾化组件、雾化元件及其制作方法。
背景技术
随着人们对身体健康的关注度上升,人们都意识到了烟草对身体的危害,因此产生了电子雾化装置。电子雾化装置具有与香烟相似的外观和味道,但一般不含香烟中的焦油、悬浮微粒等其它有害成分,大大减少了对使用者身体的危害,因而多作为香烟的替代品,用于戒烟。
电子雾化装置一般由雾化组件和电源组件构成。目前市场上的电子雾化装置的雾化组件的加热体包括弹簧状的发热丝,其制作过程是将线状的发热丝缠绕在一固定轴上,当所述发热丝通电时,存储在存储介质上的烟液吸附在固定轴上,经发热丝的加热作用将烟液雾化。另一种发热体包括陶瓷与发热丝的组合嵌套,然而雾化效率低,容易炸液。发热体的相关技术还包括在多孔陶瓷基体上制备薄膜发热体,然而和这种薄膜发热体的阻值稳定性差,寿命低。
发明内容
本发明提供一种电子雾化装置、雾化组件、雾化元件及其制作方法,以解决导电层阻值上升过快的问题。
为解决上述技术问题,本发明提供的第一个技术方案为:提供一种电子雾化装置的雾化元件,包括:多孔基体及发热层,所述多孔基体具有雾化面,所述发热层覆盖所述雾化面;其中,所述发热层包括导电层及稳定层,所述导电层覆盖所述雾化面,所述稳定层覆盖所述导电层远离所述多孔基体的表面;其中,所述稳定层电阻率高于所述导电层且抗 氧化性能低于所述导电层。
其中,所述稳定层的材料为:铝、锌、锡、镁、钛中一种或任意组合;所述导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合。
其中,所述稳定层的材料未铝;所述导电层的材料为钛锆合金。
其中,所述发热层的厚度为1.5~5um;其中,所述稳定层的厚度为0.5~2um,所述导电层的厚度为2~3um。
其中,所述雾化元件还包括:位于所述稳定层远离所述多孔基体且覆盖部分所述稳定层的第一电极及第二电极。
其中,所述第一电极及所述第二电极的材料为银。
为解决上述技术问题,本发明提供的第二个技术方案为:提供一种电子雾化装置的雾化组件,所述雾化组件包括用于存储烟液的储液腔和上述任一项所述的雾化元件,所述储液腔中的烟液能够传导到所述雾化面上。
为解决上述技术问题,本发明提供的第三个技术方案为:提供一种电子雾化装置,包括电源组件和上述所述的雾化组件,所述电源组件与所述雾化组件电连接,用于为所述雾化组件的雾化元件提供电源。
为解决上述技术问题,本发明提供的第四个技术方案为:提供一种电子雾化装置的雾化元件的制作方法,包括提供多孔基体,所述多孔基体包括雾化面;在所述多孔基体的雾化面上设置导电层;在所述导电层远离所述多孔基体的一表面设置稳定层;其中,所述稳定层电阻率高于所述导电层且抗氧化性能低于所述导电层。
其中,所述在所述多孔基体的雾化面上设置导电层包括:采用直流溅射沉积工艺或磁控溅射沉积工艺在所述多孔基体的雾化面上设置导电层;和/或所述在所述导电层远离所述多孔基体的一表面设置稳定层的步骤包括:采用直流溅射沉积工艺或磁控溅射沉积工艺在所述导电层远离所述多孔基体的一侧形成稳定层。
其中,所述方法还包括:采用丝网印刷的方式在所述稳定层远离所述多孔基体的一侧设置覆盖部分所述稳定层的第一电极及第二电极,并 对所述第一电极及所述第二电极进行低温烧结。
其中,所述稳定层及所述导电层的总厚度为1.5~5um,所述稳定层的厚度为0.5~2um,所述导电层的厚度为2~3um;和/或所述稳定层的材料为:铝、锌、锡、镁、钛中一种或任意组合;所述导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合。
其中,所述稳定层的材料未铝;所述导电层的材料为钛锆合金。
本发明的有益效果是:区别于现有技术的情况,本发明通过在多孔基体的雾化面上形成导电层和稳定层,稳定层电阻率高于所述导电层且抗氧化性能低于所述导电层。选用此种材料作为稳定层,可使得导电层的阻值在发热过程中相对稳定,而不会出现飙升,从而解决导电层的阻值上升过快的问题,进而可给用户带来较佳和稳定的口感。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明一实施例中电子雾化装置的立体结构示意图;
图2是图1中电子雾化装置的雾化组件的分解结构示意图;
图3是图2中雾化组件的剖视局部放大结构示意图;
图4是本发明一实施例中雾化元件的平面结构示意图;
图5是本发明雾化元件的制作方法的第一实施例的流程示意图;
图6是本发明雾化元件的制作方法的第二实施例的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
现有的普通陶瓷发热丝发热不均,在雾化过程中容易发生炸液的情况;氮化物型发热膜稳定性差,发热寿命短;贵金属型发热丝成本高,且粒子容易发生团聚。为实现降低阻值增幅的目的,本发明提供一种新型的电子雾化装置、雾化组件、雾化元件及其制作方法,下面结合附图及具体实施例进行说明。
请参阅图1,本发明电子雾化装置可包括雾化组件100和电源组件200。其中,电源组件200与雾化组件100电连接,用于为雾化组件100提供电源。
在本实施例中,电源组件200与雾化组件100可拆卸连接,以便其中任一组件发生损坏时,可以对其进行更换。在其它实施例中,电源组件200和雾化组件100还可以共用同一壳体,使得电子雾化装置为一体结构,进而携带更加方便。本发明实施例对电源组件200和雾化组件100的连接方式不做具体限定。
如图2和图3所示,雾化组件100包括储液腔10、上盖20、气流通道30以及雾化元件40。其中,雾化元件40设置在上盖20内,上盖20用于将所述储液腔10中的烟液导引至雾化元件40内,气流通道30与雾化元件40的雾化面连通,用于将雾化后的烟雾送出。
具体地,在本实施例中,上盖20可包括顺次连接的导引部22、配合部24和容纳部26。其中,导引部22上开设有进液孔222和出气孔224,进液孔222与储液腔10连通,出气孔224与气流通道30连通。容纳部26上形成有收容雾化元件40的容纳腔262,雾化元件40容置在容纳腔262内。配合部24用于将导引部22与容纳部26连通,以将进液孔222中的烟液输送至雾化元件40。
雾化元件40用于通过发热而将输送而来的烟液转化为烟雾,出气孔224与雾化元件40的雾化面连通,烟液在雾化面上被加热而雾化为烟雾,且烟雾从出气孔224经由气流通道30进行传送。
在本实施例中,请参阅图2和图3,上盖20是一体成型的部件。具体地,在上盖20的靠近储液腔10的端面上分别开设进液孔222和出气孔224,而在容纳部26远离储液腔10的端面上形成容纳腔262,最后 在配合部24上开设将进液孔222与容纳腔262导通的通孔。当然还可以采用其他加工顺序或加工方式在上盖20上加工出导引部22、配合部24以及容纳部26,此处不做具体限定。
采用导引部22、配合部24和容纳部26一体的结构,可以减少雾化组件100的元件数量,使得安装更加便捷且相关的密封性能更好。
请参见图4,为本发明电子雾化装置的雾化元件的一实施例的结构示意图。雾化元件40包括多孔基体42及发热层,其中发热层包括导电层44以及稳定层46。其中,多孔基体42具有雾化面422,导电层44和稳定层46依次形成在雾化面422上。储液腔10中的烟液经由上盖20传输至多孔基体42,多孔基体42进一步将烟液传输至雾化面422上,故而在导电层44和/或稳定层46通电发热时,可以对雾化面422上的烟液进行加热,从而使烟液雾化成烟雾。
其中,多孔基体42由多孔结构的材料制成,具体可以为多孔陶瓷、多孔玻璃、多孔塑料、多孔金属等,本申请不对多孔基体42的材料进行具体的限定。在一具体实施例中,多孔基体42可以由耐温较低的材料制成,例如由多孔塑料制成。在另一实施例中,多孔基体42可以由具有导电功能的导电材料制成,例如由多孔金属制成。
由于多孔陶瓷具有化学性质稳定,不会与烟液发生化学反应;多孔陶瓷能够耐高温,不会由于加热温度过高发生形变;多孔陶瓷为绝缘体,不会与其上形成的导电层44电连接而发生短路;多孔陶瓷制造方便、成本低。因而,在本实施例中,选用多孔陶瓷来制作多孔基体42。
在一实施例中,多孔陶瓷的孔隙率可以为30%至70%。孔隙率是指多孔介质内的微小空隙的总体积与该多孔介质的总体积的比值。孔隙率的大小可以根据烟液的成分来调整,例如当烟液的粘稠度较大时,选用较高的孔隙率,以保证导液效果。
在另一实施例中,多孔陶瓷的孔隙率为50-60%。通过将多孔陶瓷的孔隙率控制在50-60%,一方面可以保障多孔陶瓷具有较好的导液效率,防止出现烟液流通不畅而发生干烧的现象,以提升雾化效果。另一方面,可以避免多孔陶瓷导液过快,难以锁液,导致漏液的概率大增。
进一步地,在本实施例中,导电层44和稳定层46均为多孔膜。可以通过直流溅射沉积工艺或磁控溅射沉积工艺将导电层44设置在多孔基体42的雾化面422上;通过直流溅射沉积工艺或磁控溅射沉积工艺在导电层44远离多孔基体42的一侧形成稳定层46。
进一步地,在本申请中,雾化元件还包括位于稳定层46远离多孔基体42且覆盖部分稳定层46的第一电极47及第二电极48。
在一具体实施方式中,稳定层46的电阻率高于导电层44的电阻率且抗氧化性能低于导电层44的抗氧化性能。具体的,稳定层46的材料为铝、锌、锡、镁、钛中一种或任意组合。导电层44的材料为:钛、锆、铌、钽和316不锈钢中一种或任意组合。第一电极47及第二电极48的材料为银。具体的,在一实施例中,稳定层46的材料为铝。导电层44的材料为钛锆合金。
钛和锆具有以下特点:
(1)钛、锆都是生物相容性好的金属,尤其钛还是亲生物金属元素,具有更高的安全性。
(2)钛、锆具有在金属材料中较大的电阻率,在常温状态下,按照一定的比例合金化后具有原来三倍的电阻率,更适合成为发热膜材料。
(3)钛、锆热膨胀系数小,合金化后具有更低的热膨胀系数,和多孔陶瓷热匹配更好。按照一定的比例合金化后,合金的熔点更低,磁控溅射镀膜成膜性更佳。
(4)金属镀膜后通过电镜分析可以看出其微观颗粒呈球形,且颗粒和颗粒凑在一起形成类似花菜的微观形貌,而钛锆合金形成的膜通过电镜分析可以看出其微观颗粒呈片状,且颗粒与颗粒之间部分晶界消失,连续性更好。
(5)钛、锆都具有很好的塑性和伸长率,钛锆合金膜的抗热循环以及电流冲击能力更好。
(6)钛常被用于金属和陶瓷的应力缓冲层以及陶瓷金属化的活化元素,钛会和陶瓷界面发生反应而形成比较强的化学键,可以提高膜的 附着力。
进一步地,由于钛锆合金膜中的钛锆高温时在空气中的稳定性较差,锆易吸收氢、氮、氧气,而锆钛合金化后吸气性更好,因此在制作导电层44后还需要在导电层44上覆盖稳定层46,稳定层46材料为铝。
在一实施例中,制作好稳定层46(铝层)后,采用丝网印刷的方式制作第一电极47及第二电极48,再对第一电极47及第二电极48进行低温烧结。第一电极47及第二电极48覆盖部分稳定层46。在低温烧结形成第一电极47及第二电极48时,稳定层46表面形成一层相对致密的氧化铝层,能够隔绝空气与导电层44的接触,进而防止导电层44的阻值上升,以解决发热层因阻值上升而带来的口感变化及稳定性的问题。另一方面,在低温烧结制作第一电极47及第二电极48时,稳定层46随着第一电极47及第二电极48的烧结,使得第一电极47及第二电极48覆盖区域的稳定层46不被氧化,避免了接触电阻的形成。
由于铝的熔点为660℃,氧化铝熔点是2054℃,在雾化过程中,稳定层46能保持自身稳定,不易发生团聚,相较于贵金属保护层如Au/Ag在雾化过程中易团聚而引起发热体失效,稳定层46的材料选用铝能够解决此类问题。另一方面,氧化铝与陶瓷主要成分一致,具有低热膨胀系数,在电流冲击时形变较小。
稳定层46采用铝,其整体电阻要比用贵金属的偏大,贵金属电阻在0.8-1.2欧之间,铝的电阻通过调节参数最小电阻在1欧左右,基本在1.5-3欧之间。且根据上述工艺,导电层44与稳定层46之间的电阻比较接近,可以防止其中一层的电流过大。理论上,贵金属金的热膨胀系数是14.2,而铝经过烧结之后形成的氧化铝的热膨胀系数约为金的一半,即7.1,在抽吸过程中,导电层的变形率要低一些,那么稳定性会有改善。
在一具体实施例中,发热层的厚度为1.5-5um,其中,发热层包括导电层44及稳定层46。具体的,导电层44的厚度为2-3um,稳定层46的厚度为0.5-2um。
综上,本发明实施例中,本发明将导电层44的材料设置为钛、锆、铌、钽和316不锈钢中一种或任意组合,将稳定层46的材料设备为铝、锌、锡、镁、钛中一种或任意组合。并且采用低温烧结的方式制作第一电极47及第二电极48,以实现提高发热体寿命,降低阻值增幅,消除接触电阻的目的。
请参见图5,为本发明电子雾化装置的雾化元件的制作方法的第一实施例的流程示意图。包括:
步骤S51:提供多孔基体,多孔基体包括雾化面。
其中,多孔基体由多孔结构的材料制成,具体可以为多孔陶瓷、多孔玻璃、多孔塑料、多孔金属等,本申请不对多孔基体的材料进行具体的限定。在一具体实施例中,多孔基体可以由耐温较低的材料制成,例如由多孔塑料制成。在另一实施例中,多孔基体可以由具有导电功能的导电材料制成,例如由多孔金属制成。多孔基体包括雾化面。
步骤S52:在多孔基体的雾化面上设置导电层。
采用磁控溅射沉积方式或直流溅射沉积方式在多孔基体的雾化面形成导电层。具体的,导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合。以直流溅射沉积的方式设置导电层为例,具体工艺如下:保持真空度为8×10 -4Pa-2×10 -3Pa;保持功率为1500W-2500W,时间为70min-110min;压强为0.3Pa-0.8Pa,保持温度为室温-300℃,粒子直径约为200-400nm。
步骤S53:在导电层远离多孔基体的一表面设置稳定层。
采用磁控溅射沉积方式或直流溅射沉积方式在导电层远离多孔基体的一表面设置稳定层。具体的,稳定层的材料为铝、锌、锡、镁、钛中一种或任意组合。以直流溅射沉积的方式设置稳定层为例,具体工艺如下:时间为40min-60min,功率为500W-1500W,压强为1Pa-1.5,温度为室温-300℃。粒径约100-200nm。
本实施例中导电层和稳定层依次形成在雾化面上。储液腔中的烟液经由上盖传输至多孔基体,多孔基体进一步将烟液传输至雾化面上,故而在导电层和/或稳定层46通电发热时,可以对雾化面上的烟液进行加 热,从而使烟液雾化成烟雾。
在一实施例中,导电层与稳定层的总厚度为1.5um,其中,导电层的厚度为2-3um,稳定层的厚度为0.5-2um。
在一实施例中,稳定层电阻率高于导电层且抗氧化性能低于导电层。具体的,稳定层的材料为铝,导电层的材料为钛锆合金。
本发明设置导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合,稳定层的材料为铝、锌、锡、镁、钛中一种或任意组合。能够使得稳定层在导电层上形成致密得氧化铝层,隔绝空气与导电层得接触,降低导电层的阻值上升幅度,以实现解决导电层因阻值上升而带来的口感不佳及口感不稳定的问题。
请参见图6,为本发明电子雾化装置的雾化元件的制作方法的第二实施例的流程示意图。其中步骤S61、步骤S62和步骤S63分别与图5所示的第一实施例中步骤S51、步骤S52和步骤S53相同。区别在于,本实施例中还包括步骤S64:采用丝网印刷的方式在稳定层远离多孔基体的一侧设置覆盖部分稳定层的第一电极及第二电极,再对第一电极及第二电极进行低温烧结。
具体的,第一电极及第二电极的材料为银。采用丝网印刷的方式在稳定层远离多孔基体的一侧设置覆盖部分稳定层的第一电极及第二电极。第一电极及第二电极覆盖部分稳定层。再对第一电极及第二电极进行低温烧结,在低温烧结过程中,稳定层表面形成一层相对致密的氧化铝层,能够隔绝空气与导电层的接触,进而防止导电层的阻值上升,以解决发热层因阻值上升而带来的口感变化及稳定性的问题。另一方面,在低温烧结制作第一电极及第二电极时,稳定层随着第一电极及第二电极的烧结,使得第一电极及第二电极覆盖区域的稳定层不被氧化,避免了接触电阻的形成。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种电子雾化装置的雾化元件,其中,包括:多孔基体及发热层,所述多孔基体具有雾化面,所述发热层覆盖所述雾化面;
    其中,所述发热层包括导电层及稳定层,所述导电层覆盖所述雾化面,所述稳定层覆盖所述导电层远离所述多孔基体的表面;
    其中,所述稳定层电阻率高于所述导电层且抗氧化性能低于所述导电层。
  2. 根据权利要求1所述的雾化元件,其中,所述稳定层的材料为:铝、锌、锡、镁、钛中一种或任意组合;所述导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合。
  3. 根据权利要求2所述的雾化元件,其中,所述稳定层的材料未铝;所述导电层的材料为钛锆合金。
  4. 根据权利要求1所述的雾化元件,其中,所述发热层的厚度为1.5~5um;
    其中,述稳定层的厚度为0.5~2um,所述导电层的厚度为2~3um。
  5. 根据权利要求1-4中任一项所述的雾化元件,其中,还包括:位于所述稳定层远离所述多孔基体且覆盖部分所述稳定层的第一电极及第二电极。
  6. 根据权利要求5所述的雾化组件,其中,所述第一电极及所述第二电极的材料为银。
  7. 一种电子雾化装置的雾化组件,其中,所述雾化组件包括用于存储烟液的储液腔和如权利要求1-6中任一项所述的雾化元件,所述储液腔中的烟液能够传导到所述雾化面上。
  8. 一种电子雾化装置,其中,所述电子雾化装置包括电源组件和如权利要求7所述的雾化组件,所述电源组件与所述雾化组件电连接,用于为所述雾化组件的雾化元件提供电源。
  9. 一种电子雾化装置的雾化元件的制作方法,其中,所述方法包括:
    提供多孔基体,所述多孔基体包括雾化面;
    在所述多孔基体的雾化面上设置导电层;
    在所述导电层远离所述多孔基体的一表面设置稳定层;
    其中,所述稳定层电阻率高于所述导电层且抗氧化性能低于所述导电层。
  10. 根据权利要求9所述的制作方法,其中,所述在所述多孔基体的雾化面上设置导电层包括:
    采用直流溅射沉积工艺或磁控溅射沉积工艺在所述多孔基体的雾化面上设置导电层;和/或
    所述在所述导电层远离所述多孔基体的一表面设置稳定层的步骤包括:
    采用直流溅射沉积工艺或磁控溅射沉积工艺在所述导电层远离所述多孔基体的一侧形成稳定层。
  11. 根据权利要求9所述的制作方法,其中,所述方法还包括:
    采用丝网印刷的方式在所述稳定层远离所述多孔基体的一侧设置覆盖部分所述稳定层的第一电极及第二电极,并对所述第一电极及所述第二电极进行低温烧结。
  12. 根据权利要求9-11中任一项所述的制作方法,其中,所述稳定层及所述导电层的总厚度为1.5~5um,所述稳定层的厚度为0.5~2um,所述导电层的厚度为2~3um;和/或
    所述稳定层的材料为:铝、锌、锡、镁、钛中一种或任意组合;
    所述导电层的材料为钛、锆、铌、钽和316不锈钢中一种或任意组合。
  13. 根据权利要求12所述的制作方法,其中,所述稳定层的材料为铝;所述导电层的材料为钛锆合金。
PCT/CN2021/075810 2020-02-27 2021-02-07 电子雾化装置、雾化组件、雾化元件及其制作方法 WO2021169782A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21761685.3A EP4111888A4 (en) 2020-02-27 2021-02-07 ELECTRONIC ATOMIZING DEVICE, ATOMIZING ASSEMBLY, ATOMIZING ELEMENT AND METHOD OF MANUFACTURING THEREOF
US17/822,218 US20220408817A1 (en) 2020-02-27 2022-08-25 Electronic atomization device, atomization assembly, atomization element and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010123152.6A CN111387555A (zh) 2020-02-27 2020-02-27 电子雾化装置、雾化组件、雾化元件及其制作方法
CN202010123152.6 2020-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/822,218 Continuation US20220408817A1 (en) 2020-02-27 2022-08-25 Electronic atomization device, atomization assembly, atomization element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2021169782A1 true WO2021169782A1 (zh) 2021-09-02

Family

ID=71410803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075810 WO2021169782A1 (zh) 2020-02-27 2021-02-07 电子雾化装置、雾化组件、雾化元件及其制作方法

Country Status (4)

Country Link
US (1) US20220408817A1 (zh)
EP (1) EP4111888A4 (zh)
CN (1) CN111387555A (zh)
WO (1) WO2021169782A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111387555A (zh) * 2020-02-27 2020-07-10 深圳麦克韦尔科技有限公司 电子雾化装置、雾化组件、雾化元件及其制作方法
WO2022165644A1 (zh) * 2021-02-02 2022-08-11 深圳麦克韦尔科技有限公司 发热组件及电子雾化装置
WO2023045598A1 (zh) * 2021-09-22 2023-03-30 东莞市维万特智能科技有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
USD1026305S1 (en) * 2021-10-27 2024-05-07 Tuanfang Liu Electronic cigarette

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN106579564A (zh) * 2016-12-23 2017-04-26 湘潭大学 一种多孔发热膜及其制备方法
GB2561959A (en) * 2017-04-25 2018-10-31 Nerudia Ltd Aerosol delivery system
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
CN109761640A (zh) * 2019-03-27 2019-05-17 新化县恒睿电子陶瓷科技有限公司 一种多孔陶瓷发热芯材料及制备方法
CN109875123A (zh) * 2019-02-27 2019-06-14 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
CN110447959A (zh) * 2019-07-23 2019-11-15 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
WO2019220372A1 (en) * 2018-05-16 2019-11-21 Rai Strategic Holdings, Inc. Atomizer and aerosol delivery device
CN209788491U (zh) * 2019-03-27 2019-12-17 新化县恒睿电子陶瓷科技有限公司 一种蚀刻片蜂窝陶瓷发热芯
CN111387555A (zh) * 2020-02-27 2020-07-10 深圳麦克韦尔科技有限公司 电子雾化装置、雾化组件、雾化元件及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822262A (zh) * 2006-03-24 2006-08-23 潘旭祥 抗氧化,耐高压多层金属化电容器用薄膜
US20170224021A1 (en) * 2014-10-27 2017-08-10 Huizhou Kimree Technology Co., Ltd. Forming method for heating element of electronic cigarette and manufacturing method for atomization assembly
NL2014079B1 (en) * 2014-12-31 2016-10-07 Metalmembranes Com B V Heater element, device provided therewith and method for manufacturing such element.
CN109087967A (zh) * 2018-08-10 2018-12-25 暨南大学 一种氧化亚铜薄膜及其制备方法与应用
CN109875125A (zh) * 2019-03-07 2019-06-14 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN205337599U (zh) * 2015-10-22 2016-06-29 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN106579564A (zh) * 2016-12-23 2017-04-26 湘潭大学 一种多孔发热膜及其制备方法
GB2561959A (en) * 2017-04-25 2018-10-31 Nerudia Ltd Aerosol delivery system
WO2019220372A1 (en) * 2018-05-16 2019-11-21 Rai Strategic Holdings, Inc. Atomizer and aerosol delivery device
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
CN109875123A (zh) * 2019-02-27 2019-06-14 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
CN109761640A (zh) * 2019-03-27 2019-05-17 新化县恒睿电子陶瓷科技有限公司 一种多孔陶瓷发热芯材料及制备方法
CN209788491U (zh) * 2019-03-27 2019-12-17 新化县恒睿电子陶瓷科技有限公司 一种蚀刻片蜂窝陶瓷发热芯
CN110447959A (zh) * 2019-07-23 2019-11-15 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
CN111387555A (zh) * 2020-02-27 2020-07-10 深圳麦克韦尔科技有限公司 电子雾化装置、雾化组件、雾化元件及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, SHOUZE ET AL.: "15. Resistivity of Conductors", COLLECTION OF PHYSICS QUESTIONS, 31 December 1992 (1992-12-31), CN, pages 448, XP009529975, ISBN: 978-7-04-004284-9 *
See also references of EP4111888A4 *

Also Published As

Publication number Publication date
EP4111888A4 (en) 2023-08-23
EP4111888A1 (en) 2023-01-04
US20220408817A1 (en) 2022-12-29
CN111387555A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021169782A1 (zh) 电子雾化装置、雾化组件、雾化元件及其制作方法
US11969013B2 (en) Electronic cigarette, atomizing assembly, and atomizing component for same
US20220192267A1 (en) Electronic baking cigarette device and heating apparatus thereof
TW407298B (en) The joint structure of the ceramic member and the manufacture method thereof
TWI247322B (en) Electronic parts and method for manufacture thereof
CN110200331A (zh) 一种电子烟加热器
EP4266825A1 (en) Atomization core, atomizer, and electronic atomization device
US20230337742A1 (en) Atomizing core, atomizer, aerosol generating device and method for manufacturing atomizing core
CN216059229U (zh) 雾化芯、雾化器及气溶胶发生装置
CN217791478U (zh) 雾化芯、雾化器及电子雾化装置
JP2003168321A (ja) 導電ペースト用銅合金粉
CN115721053A (zh) 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
WO2023045598A1 (zh) 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
CN204066918U (zh) 复合式铜电极陶瓷正温度系数热敏电阻
CN216059228U (zh) 雾化芯、雾化器及气溶胶发生装置
KR102335014B1 (ko) 고체 산화물 연료전지용 전극 재료 및 그의 제조방법
EP4266826A1 (en) Electronic atomization device, atomizer, atomization core, and preparation method therefor
WO2024103717A1 (zh) 雾化芯、雾化器及气溶胶发生装置
JP7514357B2 (ja) 電子霧化装置、霧化器、霧化コアおよびその製造方法
JP3894103B2 (ja) 固体酸化物形燃料電池用集電体材料
CN219422198U (zh) 雾化芯、雾化器及气溶胶发生装置
CN219069484U (zh) 一种复合加热膜层雾化芯及雾化装置
WO2023116924A1 (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
CN108922701A (zh) 一种热敏电阻双层电极及其制备方法
CN217771488U (zh) 雾化芯、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761685

Country of ref document: EP

Effective date: 20220927