WO2021169248A1 - 控制车辆的方法和装置 - Google Patents

控制车辆的方法和装置 Download PDF

Info

Publication number
WO2021169248A1
WO2021169248A1 PCT/CN2020/115115 CN2020115115W WO2021169248A1 WO 2021169248 A1 WO2021169248 A1 WO 2021169248A1 CN 2020115115 W CN2020115115 W CN 2020115115W WO 2021169248 A1 WO2021169248 A1 WO 2021169248A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving assistance
assistance system
speed range
parameter
Prior art date
Application number
PCT/CN2020/115115
Other languages
English (en)
French (fr)
Inventor
刘楠
刘航
李明超
隋琳琳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20921938.5A priority Critical patent/EP4095008A4/en
Priority to JP2022550994A priority patent/JP7462779B2/ja
Publication of WO2021169248A1 publication Critical patent/WO2021169248A1/zh
Priority to US17/895,491 priority patent/US20220402490A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • This application relates to the field of intelligent driving technology, and more specifically, to a method and device for controlling a vehicle.
  • the intelligent networked car helps to improve road traffic safety and realize safe, efficient and green travel.
  • the intelligent connected car refers to equipped with advanced on-board sensors, controllers, actuators and other devices, and integrates modern communication and network technologies to realize the vehicle to everything (V2X).
  • V2X vehicle to everything
  • the development direction of intelligent networked vehicles is to integrate autonomous driving technology and networked communication technology to give play to the greatest technical advantages of the two.
  • Autonomous driving technology is a general term for various systems that assist drivers in performing driving tasks or actively avoiding/mitigating collision hazards, such as adaptive cruise control (ACC) systems, traffic jam assist (TJA) systems, etc.
  • the driving assistance system has a corresponding operating speed range, and different driving assistance systems may correspond to different speed ranges. Once the vehicle speed exceeds the vehicle speed range corresponding to a certain driving assistance system, the driving assistance system will be deactivated and the control of the vehicle will be withdrawn. For safety or other considerations, when the vehicle speed required by the driving environment is not within the vehicle speed range corresponding to the driving assistance system, if the driving assistance system is still active and the vehicle is controlled to maintain its driving speed within the corresponding vehicle speed range If the driver takes over the driving task at this time, it will affect the continuity of the vehicle’s automatic driving and the user experience will be poor.
  • the present application provides a method for controlling a vehicle, which is applied in the field of intelligent driving technology, in order to improve the safety performance and user experience of automatic driving of the vehicle.
  • a method for controlling a vehicle may be executed by a first vehicle, or may also be executed by a chip, circuit, component, system, or mobile terminal provided in the first vehicle, and It can be executed by other devices in the Internet of Vehicles (such as a drive test unit RSU or an application server), which is not limited in this application.
  • the method for controlling a vehicle is applied to a first vehicle, the first vehicle is equipped with at least one driving assistance system, and when the at least one driving assistance system is in an activated state, it is applied to at least one vehicle speed range, and the method includes:
  • the first vehicle Acquiring first information of a moving object near the first vehicle; determining a first parameter based on the first information; terminating the activation state of a driving assistance system currently active in the at least one driving assistance system according to the first parameter; Further, according to the first parameter, the first vehicle is set to run at a first vehicle speed outside the at least one vehicle speed range.
  • the above-mentioned application to at least one vehicle speed range when at least one driving assistance system is activated can be understood as: when a certain driving assistance system is activated, the first vehicle is at a speed at which the driving assistance system can be activated. Scope; when a certain driving assistance system is activated, the driving assistance system controls the driving decision and driving actions of the first vehicle equipped with the driving assistance system.
  • the activation of a certain driving assistance system involved in the embodiments of this application refers to: the vehicle equipped with the driving assistance system is under the automatic control of the driving assistance system, and the vehicle can be controlled without the intervention of the driver, which can also be referred to as the The driving assistance system is working or running. It is easy to understand that when the driving assistance system does not control the vehicle equipped with the driving assistance system, it can be said that the driving assistance system is in a deactivated state, an inactive state, a non-working state or a non-operation state.
  • the above-mentioned moving object near the first vehicle may refer to a moving object in front of the first vehicle, or a moving object near the first vehicle may also refer to a moving object behind the first vehicle, or a moving object near the first vehicle The object may also refer to a moving object on the side of the first vehicle.
  • the number of moving objects near the first vehicle is not limited. For example, when there are multiple moving objects near the first vehicle, In this case, the first vehicle may separately obtain the first information of multiple moving objects.
  • the possible forms of the aforementioned moving objects include: pedestrians, vehicles, or other movable objects.
  • the application scenarios of the embodiments of this application include vehicle-to-vehicle (V2V) communication
  • the above-mentioned moving objects near the first vehicle may refer to other vehicles near the first vehicle (in order to distinguish, refer to Is the second vehicle).
  • the first parameter determined according to the acquired first information of the moving object near the first vehicle terminates the current The activation state of one driving assistance system in the active state, and based on the first parameter, the first vehicle is controlled to travel at a vehicle speed outside the vehicle speed range applied by the at least one driving assistance system that has been configured. Therefore, when the safe speed required by the driving environment is not within the speed range corresponding to the driving assistance system, the first vehicle can still achieve safe automatic driving without the intervention of the driver, which improves the safety performance and user experience of the automatic driving of the vehicle .
  • the foregoing determination of the first parameter based on the first information may be the direct determination of the first parameter based on the first information, or the indirect determination of the first parameter based on the first information.
  • directly determining the first parameter based on the first information may be calculating the first parameter based on the obtained first information, or it may also be obtaining the first parameter by looking up a table based on the obtained first information;
  • the indirect determination of the first parameter based on the first information may be a calculation and/or table look-up to obtain the second parameter based on the acquired first information, and the second parameter is used to determine the first parameter.
  • the above-mentioned terminating the activation state of one of the at least one driving assistance system currently in the active state according to the first parameter may be directly terminating the activation state according to the first parameter, or it may be based on the The first parameter indirectly terminates the activation state, for example, the activation state is terminated according to a result obtained after using the first parameter to perform other data processing.
  • the foregoing setting of the first vehicle according to the first parameter to run at a first vehicle speed outside the at least one vehicle speed range may be directly setting the first vehicle speed according to the first parameter, or may be based on the The first parameter indirectly sets the first vehicle speed, for example, the first vehicle speed is set according to a result obtained after using the first parameter to perform other data processing.
  • the method further includes: acquiring updated first information; updating the first parameter according to the updated first information, and according to the updated first parameter The first parameter sets the first vehicle to travel at a second vehicle speed within the at least one vehicle speed range; thereby activating one of the at least one driving assistance system according to the updated first parameter.
  • the vehicle speed of the first vehicle may be controlled based on the first parameter so that the first vehicle The vehicle speed reaches the vehicle speed range applied in the activated state of the other driving assistance system (for example, the second driving assistance system) in the configured at least one driving assistance system, and the other driving assistance system is activated so that the first vehicle is in the other driving assistance system.
  • the safety performance of the automatic driving of the vehicle is improved.
  • acquiring the first information of a moving object near the first vehicle includes: the first vehicle receives the first information from the moving object through a communication unit; or measuring through a sensor Obtain the first information of the moving object.
  • the above-mentioned acquiring of the first information may be through a communication unit provided on the first vehicle to receive the first information sent by the moving object, and may also be through a sensor provided on the first vehicle to acquire the first information of the moving object. Propose different ways to obtain the first information to increase the flexibility of the plan.
  • the above-mentioned first parameter includes the range of the traveling speed that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object.
  • the first parameter may be the range of the traveling speed that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object, so that setting the traveling speed of the first vehicle based on the first parameter can avoid a collision between the first vehicle and the moving object. Improve the safety of autonomous driving.
  • the above-mentioned first parameter includes a parameter for determining whether there is a risk of collision between the first vehicle and the moving object; when the first vehicle has no risk of collision with the moving object When the first vehicle travels, the speed range includes the required travel speed range.
  • the first parameter can be used to determine whether there is a risk of collision between the first vehicle and the moving object, and when there is no risk of collision between the first vehicle and the moving object, the first vehicle travels at a vehicle speed within the range of the travel speed that should be available, based on Setting the driving speed of the first vehicle by the first parameter can avoid a collision between the first vehicle and a moving object, and improve the safety of automatic driving.
  • the first information includes the speed information of the moving object and the position information of the moving object; the first parameter includes the prediction of the first vehicle and the moving object Time to collision TTC; determining the first parameter based on the first information includes: calculating the relative speed of the first vehicle and the moving object based on the speed of the moving object and the speed of the first vehicle; based on the position of the moving object and the speed of the first vehicle The position of the first vehicle calculates the inter-vehicle distance between the first vehicle and the moving object; the TTC is calculated based on the vehicle distance and the relative speed.
  • the first vehicle determines that there is no risk of collision between the first vehicle and the moving object;
  • the above-mentioned first preset threshold may be the value of the TTC of the risk of collision between the first vehicle and the moving object, that is, the above-mentioned first preset threshold may be used to determine the possibility of the first vehicle colliding with the moving object.
  • the first information includes location information of the moving object; the first parameter includes the time headway TI between the first vehicle and the moving object; and calculating the first parameter based on the first information includes: The position information and the position of the first vehicle are used to calculate the inter-vehicle distance between the first vehicle and the second vehicle; the TI is calculated based on the vehicle distance and the speed of the first vehicle.
  • the first vehicle determines that there is no risk of collision between the first vehicle and the moving object;
  • the aforementioned second preset threshold may be the value of TI for the risk of collision between the first vehicle and the moving object, that is, the aforementioned second preset threshold may be used to determine the possibility of the first vehicle colliding with the moving object.
  • the embodiments of the present application provide a variety of solutions for judging whether there is a risk of collision between the first vehicle and the moving object based on the first parameter, so as to improve the flexibility of the solution.
  • terminating the activation state of one of the at least one driving assistance system that is currently active in the at least one driving assistance system according to the first parameter includes: the first vehicle determines that the vehicle should have The driving speed range of and the vehicle speed range applied by the driving assistance system in the active state have no intersection; the first vehicle terminates the activation state of the driving assistance system in the active state.
  • the first vehicle speed is within the required driving speed range to meet the vehicle speed required by the driving environment.
  • the first parameter includes the range of the traveling speed that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object, and according to the updated
  • the first parameter setting the first vehicle to travel at a second vehicle speed within the at least one vehicle speed range includes: determining that the required travel speed range has an intersection with the at least one vehicle speed range; setting the first vehicle speed range according to the updated first parameter The first vehicle travels at the second vehicle speed within the intersection of the required travel speed range and the at least one vehicle speed range.
  • the driving speed of the first vehicle may be determined based on the intersection between the required driving speed range and the at least one speed range applied by the at least one driving assistance system configured for the first vehicle.
  • the driving speed of the first vehicle is made to be within the intersection between the required driving speed range and the at least one speed range, so as to ensure that the first vehicle can be automatically driven under the control of the configured driving assistance system for a longer time.
  • activating one of the at least one driving assistance system according to the updated first parameter includes: activating one of the at least one driving assistance system An auxiliary system, the vehicle speed range corresponding to the activation state of the one driving assistance system includes the second vehicle speed.
  • the activation of a certain driving assistance system (for example, the second driving assistance system) of the at least one driving assistance system of the first vehicle configuration can be understood as the driving assistance system of the first vehicle configuration is in an activated state
  • the vehicle speed range applied at time includes the second vehicle speed mentioned above.
  • the first vehicle is configured with at least one driving assistance system, and when the activation state of the at least one driving assistance system is in the activated state, being applied to at least one vehicle speed range includes:
  • the first vehicle is equipped with a first driving assistance system and a second driving assistance system.
  • the terminating the activation state of one of the at least one driving assistance system currently active in the at least one driving assistance system according to the first parameter includes: Terminating the activation state of the first driving assistance system currently in the active state according to the first parameter; activating one of the at least one driving assistance system according to the updated first parameter includes: according to the updated first The parameter activates the first driving assistance system or the second driving assistance system.
  • the first vehicle when the first vehicle is configured with the first driving assistance system and the second driving assistance system, and the first vehicle speed range applied by the first driving assistance system and the second driving assistance system applied by the second driving assistance system
  • the first vehicle can determine the first parameter based on the first information obtained, and determine and continue to control the first vehicle based on the first parameter. Accelerate or decelerate so that the speed of the first vehicle exceeds the first vehicle speed range and further reaches within the second vehicle speed range, thereby activating the second driving assistance system.
  • the first vehicle can automatically control the speed of the first vehicle and activate the second driving assistance system when the first driving assistance system is withdrawn; or,
  • the first vehicle can determine the first parameter based on the obtained first information, and determine and continue to control the vehicle speed of the first vehicle based on the first parameter, so that the vehicle speed of the first vehicle exceeds In the first vehicle speed range, and in the subsequent automatic control process, if the safe vehicle speed allowed by the driving environment is within the first vehicle speed range, control the vehicle speed to return to the first vehicle speed range, thereby reactivating the first driving assistance system.
  • the first vehicle can automatically control the speed of the first vehicle when the first driving assistance system is withdrawn, and reactivate the first driving assistance system when the driving environment permits.
  • the activation of the first driving assistance system or the second driving assistance system does not require the driver to take over, which improves the continuity of automatic driving of the first vehicle.
  • the vehicle speed of the first vehicle when the vehicle speed of the first vehicle reaches the upper or lower limit of the first vehicle speed range, the vehicle speed of the first vehicle is controlled based on the first parameter so that the The activation of one driving assistance system in at least one driving assistance system includes:
  • the first vehicle when the first vehicle is equipped with the above-mentioned first driving assistance system, after the first driving assistance system exits, the first vehicle can be controlled to accelerate and then decelerate or control the first vehicle to decelerate based on the first parameter.
  • Re-accelerating causes the first vehicle to return to the control of the first driving assistance system, which can increase the time for the driving assistance system to control the vehicle, thereby improving the performance of the vehicle's automatic driving.
  • the moving object includes a second vehicle.
  • the aforementioned moving object in front of the first vehicle may be a second vehicle in front of the first vehicle, and the first information includes the position and speed of the second vehicle.
  • the first information further includes type information of the moving object.
  • the above-mentioned first information may also include the type information of the moving object, for example, the model and size of the vehicle.
  • a device for controlling a vehicle is provided.
  • the device for controlling a vehicle is applied to a first vehicle.
  • the first vehicle is equipped with at least one driving assistance system, which is applied to at least one vehicle speed when the at least one driving assistance system is activated.
  • the device for controlling a vehicle includes a processor, configured to run computer program instructions to implement the above-mentioned first aspect and the method described in any possible implementation manner of the first aspect.
  • the device for controlling the vehicle may further include a memory for storing program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the foregoing first aspect and the method described in any possible implementation manner of the first aspect.
  • the device for controlling the vehicle may further include a communication interface, and the communication interface is used for the device for controlling the vehicle to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the device for controlling the vehicle includes a processor and a communication interface, and the processor communicates with the outside by using the communication interface;
  • the processor is configured to run a computer program, so that the device implements the foregoing first aspect and any method described in any possible implementation manner of the first aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the device for controlling the vehicle is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the device for controlling a vehicle realizes the first aspect and any possible implementation manner of the first aspect In the method.
  • a computer program product containing instructions, when the instructions are executed by a processor, the device for controlling a vehicle implements the first aspect and the method in any possible implementation manner of the first aspect.
  • a device for controlling a vehicle is provided.
  • the device for controlling a vehicle is applied to a first vehicle.
  • the first vehicle is equipped with at least one driving assistance system, which is applied to at least one vehicle speed when the at least one driving assistance system is activated.
  • the device for controlling the vehicle includes:
  • the acquiring unit is configured to acquire first information of a moving object near the first vehicle; the processing unit is configured to determine a first parameter based on the first information; the processing unit is also configured to terminate the at least one driving according to the first parameter The activation state of a driving assistance system currently in the activation state in the assistance system; the processing unit is further configured to set the first vehicle to run at a first vehicle speed outside the at least one vehicle speed range according to the first parameter.
  • the acquiring unit is further configured to acquire the updated first information; the processing unit is further configured to update the first information according to the updated first information A parameter; the processing unit is further configured to set the first vehicle to run at a second vehicle speed within the at least one vehicle speed range according to the updated first parameter; the processing unit is further configured to operate according to the updated first parameter Activate one of the at least one driving assistance system.
  • the moving object includes a second vehicle
  • the first information includes at least one of a position, speed, size, or model of the second vehicle.
  • the acquiring unit includes a receiving unit or a measuring unit; the receiving unit is configured to receive the first information from the moving object; or, the measuring unit is configured to The first information of the moving object is obtained by measurement.
  • the first parameter includes a traveling speed range that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object.
  • the processing unit terminating the activation state of one of the at least one driving assistance system that is currently active in the at least one driving assistance system according to the first parameter includes: the processing unit determines The required driving speed range has no intersection with the vehicle speed range corresponding to the activation state of the activated driving assistance system; the processing unit terminates the activation status of the activated driving assistance system.
  • the first vehicle speed is within the required traveling speed range.
  • the first parameter includes the range of the traveling speed that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object
  • the processing unit updates according to The following first parameter setting the first vehicle to travel at a second vehicle speed within the at least one vehicle speed range includes: the processing unit determines that the required travel speed range has an intersection with the at least one vehicle speed range; the processing unit according to The updated first parameter sets the first vehicle to travel at the second vehicle speed within the intersection of the required travel speed range and the at least one vehicle speed range.
  • the processing unit activating one of the at least one driving assistance system according to the updated first parameter includes: the processing unit activating the at least one driving assistance system A driving assistance system in the auxiliary system, and the vehicle speed range corresponding to the activation state of the driving assistance system includes the second vehicle speed.
  • the first vehicle is equipped with at least one driving assistance system, and when the at least one driving assistance system is in an activated state, it is applied to at least one speed range including: the first vehicle It is equipped with a first driving assistance system and a second driving assistance system.
  • the first driving assistance system is applied to the first vehicle speed range when the first driving assistance system is activated
  • the second driving assistance system is applied to the second vehicle speed range when the second driving assistance system is activated.
  • the first vehicle speed range and the second vehicle speed range have no intersection; the processing unit terminating the activation state of one of the at least one driving assistance system currently active in the at least one driving assistance system according to the first parameter includes: the processing unit according to the first parameter The parameter terminates the activation state of the first driving assistance system currently in the active state; the processing unit activating one of the at least one driving assistance system according to the updated first parameter includes: the processing unit according to the updated first parameter The first parameter activates the first driving assistance system or the second driving assistance system.
  • Fig. 1 is a schematic diagram of an intelligent driving scenario applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a vehicle movement direction provided by an embodiment of the present application.
  • Fig. 3 is a flowchart of a method for controlling a vehicle provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a scenario for calculating a first parameter provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of a method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 6 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 7 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 8 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 9 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 10 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 11 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • Fig. 12 is a flowchart of another method for controlling a first vehicle provided by an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a device 1300 for controlling a vehicle provided by the present application.
  • FIG. 14 is a structural block diagram of a first vehicle 1400 applicable to an embodiment of the present application.
  • FIG. 15 is a structural block diagram of a first vehicle 1500 applicable to an embodiment of the present application.
  • references described in this specification to "one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in combination with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • the technical solutions of the embodiments of the present application can be applied to a V2X communication system.
  • a V2X communication system With the continuous development of society, the popularity of automobiles has become higher and higher. While driving brings convenience to people’s travel, it also brings certain negative effects to human society. The rapid increase in the number of vehicles has caused urban traffic congestion, A series of problems such as frequent traffic accidents and deterioration of environmental quality. From the perspective of personal safety, transportation efficiency, environmental protection, and economic effects, a complete intelligent transportation system (ITS) is needed. At present, ITS has naturally become a focus of global attention.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • Fig. 1 is a schematic diagram of an intelligent driving scenario applied in an embodiment of the present application.
  • the scenario includes V2V communication, V2P communication, and V2I/N communication.
  • the vehicles communicate via V2V.
  • the vehicle can broadcast its own speed, driving direction, specific location, whether emergency brakes are stepped on, and other information to surrounding vehicles.
  • the vehicle and the roadside infrastructure communicate through V2I, and the roadside infrastructure can provide various types of service information and data network access for the vehicle.
  • non-stop charging, in-car entertainment and other functions have greatly improved traffic intelligence.
  • Roadside infrastructure for example, roadside unit (RSU) includes two types: one is a terminal equipment type RSU. Because RSUs are distributed on the roadside, the RSU of this terminal equipment type is in a non-mobile state, and there is no need to consider mobility; the other is the RSU of the network equipment type.
  • the RSU of this network device type can provide timing synchronization and resource scheduling for vehicles communicating with the network device.
  • Vehicles and people for example, vehicles and pedestrians, vehicles and cyclists, vehicles and drivers, or vehicles and passengers
  • V2N and the aforementioned V2I can be collectively referred to as V2I/N.
  • FIG. 1 is only an exemplary schematic diagram, which does not constitute any limitation to the application.
  • the number of vehicles, the number of pedestrians, and the number of infrastructure can be multiple, not the number shown in Figure 1.
  • FIG. 1 illustrates the applicable scenarios of the embodiments of the present application.
  • the following briefly introduces several basic concepts involved in the technical solutions of the present application.
  • Intelligent networked vehicles are equipped with advanced on-board sensors, controllers, actuators and other devices, and integrate modern communication and network technologies to realize V2X intelligent information exchange and sharing, and have functions such as complex environment perception, intelligent decision-making, and collaborative control. Realize "safe, efficient, comfortable and energy-saving” driving, and finally realize a new generation of cars that can replace humans.
  • the development direction of intelligent networked vehicles is to integrate autonomous driving technology and networked communication technology to give play to the greatest technical advantages of the two.
  • Autonomous driving technology has gradually evolved from a low-level advanced driving assistance system to a high-level autonomous driving system.
  • the advanced driving assistance system refers to the use of sensing, communication, decision-making and execution devices installed on the vehicle to monitor the driver and the vehicle in real time.
  • the networked communication technology uses the most common vehicle-to-vehicle communication.
  • the vehicle can broadcast its own vehicle speed, driving direction, specific location, vehicle information (wheelbase, vehicle size) and other information to surrounding vehicles, making
  • vehicle information wheelbase, vehicle size
  • the automatic driving system of surrounding vehicles can make corresponding driving action decisions based on V2V information, such as acceleration, deceleration, and lane change.
  • Car cruise refers to a car running at a constant speed, so the car cruise control system (CCS) is also called a constant speed control system.
  • the ACC system is an intelligent vehicle speed automatic control system developed based on cruise control technology. Since appropriate measures (for example, acceleration, deceleration, and braking) can be automatically taken according to the traffic situation, the adaptive cruise system can be well adapted to road driving with complex road conditions.
  • the ACC system has a fixed speed range, generally 65km/h-120km/h. Within this vehicle speed range, the ACC system controls the longitudinal motion of the vehicle (for example, acceleration, deceleration or driving at a constant speed) by continuously controlling the engine, transmission system, or braking system of the vehicle, and maintains an appropriate distance from the vehicle in front to reduce The driver’s labor intensity guarantees driving safety; outside the vehicle speed range (for example, when the vehicle speed is less than 65km/h or greater than 120km/h), the ACC system automatically exits and cannot be activated.
  • the ACC system controls the longitudinal motion of the vehicle (for example, acceleration, deceleration or driving at a constant speed) by continuously controlling the engine, transmission system, or braking system of the vehicle, and maintains an appropriate distance from the vehicle in front to reduce
  • the driver’s labor intensity guarantees driving safety; outside the vehicle speed range (for example, when the vehicle speed is less than 65km/h or greater than 120km/h), the ACC system automatically exits and cannot be activated.
  • the TJA system also has a fixed speed range, generally 0km/h-60km/h. Within this speed range, the TJA system continuously controls the lateral (steering system) and longitudinal movement of the vehicle to keep the vehicle in the same lane and follow the preceding vehicle to reduce the driver’s driving burden; Outside (for example, when the vehicle speed exceeds 60km/h), the TJA system automatically exits and cannot be activated.
  • ACC system and TJA system are only examples of driving assistance systems that the current vehicle may be equipped with, and do not constitute any limitation to the protection scope of this application.
  • the vehicle can also be equipped with other driving assistance systems to assist the driver in driving.
  • each driving assistance system has a fixed speed operating range, and the speed operating range corresponding to the driving assistance system of each vehicle depends on the sensor performance used by the vehicle manufacturer (for example, the detection distance of the sensor, the target recognition Resolution, etc.).
  • each driving assistance system has its own fixed speed operating range. Once the vehicle speed does not belong to its corresponding speed operating range, the driving assistance system will withdraw from the lateral and/or longitudinal control of the vehicle; or the vehicle speed will be different from the current speed. When the vehicle speed required by the traffic environment does not match, the driving assistance system cannot provide higher assistance services.
  • the traffic congestion condition is alleviated, and the preceding vehicle (the vehicle being followed by the self-car) has moved away from the self-vehicle at a speed higher than 60km/h, but the running TJA system of the self-vehicle still maintains a speed of 60km/h. , Easy to cause safety hazards (being rear-end collision).
  • the setting of the vehicle speed range in different driving assistance systems configured for the vehicle may be discontinuous.
  • the vehicle is equipped with the above-mentioned ACC system and TJA system at the same time.
  • the maximum operating speed of the TJA system is 60km/h, but the minimum active speed of the ACC system is 65km/h. Continuous operation between the ACC system and the TJA system is not possible.
  • the driver assistance system will be frequently exited, allowing the driver to take over the driving task, which will affect the continuity of the vehicle's automatic driving and poor experience.
  • a vehicle is equipped with a driving assistance system
  • the speed of the vehicle reaches the upper or lower limit of the vehicle speed range applied by the driving assistance system
  • whether further acceleration or deceleration is required, and how to further accelerate or decelerate requires the driver's judgment and Operation will also affect the performance of the vehicle's automatic driving.
  • the vehicle is equipped with the above-mentioned TJA system.
  • the maximum operating speed of the TJA system is 60km/h.
  • the vehicle speed reaches the maximum operating speed of the TJA system 60km/h, whether the vehicle can accelerate further is determined by the driver.
  • the surrounding environment of the vehicle is determined, and the vehicle cannot judge and control the speed of the vehicle by itself, which affects the performance of the vehicle's automatic driving, and the experience is poor.
  • this application proposes a method for controlling a vehicle.
  • different driving assistance systems can be effectively connected, thereby Solve the problem of system driving discontinuity caused by requiring the driver to take over when the speed range of a certain driving assistance system is exceeded; and when the speed of the vehicle reaches the upper or lower limit of the speed range of a certain driving assistance system, the vehicle will judge by itself And control the vehicle to accelerate or decelerate, so as to solve the problem of the driver taking over the vehicle.
  • the method for controlling a vehicle provided by an embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the method for controlling a vehicle provided in the present application is mainly applied to a vehicle equipped with at least one driving assistance system, and the vehicle has a V2V communication function.
  • the method for controlling a vehicle provided in the present application can be applied to the scenario shown in FIG. 1, and the V2X scenario can include at least two vehicles.
  • the driving assistance system of the vehicle has longitudinal and/or lateral control functions.
  • the vehicle lateral motion control refers to the real-time and continuous vehicle motion control along the Y axis (the Y direction in Figure 2).
  • the longitudinal motion control of the vehicle is Refers to real-time and continuous vehicle motion control along the X axis (X direction in Figure 2).
  • Fig. 2 is a schematic diagram of a vehicle movement direction provided by an embodiment of the present application.
  • the first vehicle involved in the embodiment shown in Figure 3(a) below is configured with a first driving assistance system (for example, the first vehicle is configured with the aforementioned ACC system or TJA system);
  • the first vehicle has a driving assistance system
  • it may be a driving assistance system known in the prior art.
  • the driving assistance system proposed in the future of the development of vehicle control technology.
  • the first vehicle when the vehicle speed required by the driving environment is not within the first vehicle speed range corresponding to the first driving assistance system, the first vehicle may be controlled so that the currently active first driving assistance system terminates the activation state. Further, in this implementation manner, the first vehicle can be controlled to travel at a vehicle speed outside the first vehicle speed range.
  • FIG. 3 is a flowchart of a method for controlling a vehicle provided by an embodiment of the present application.
  • Figure 3(a) relates to the first vehicle and the moving object.
  • the moving object may be a pedestrian near the first vehicle
  • the moving object may be a second vehicle near the first vehicle
  • the moving object may be other movable objects near the first vehicle.
  • the specific form of the moving object in the embodiment of the present application is not limited, and the number of moving objects near the first vehicle is also not limited (there may be one or more moving objects).
  • the vicinity of the first vehicle can be understood as the front, rear, or side of the first vehicle.
  • the specific orientation is not limited in this application, and the first vehicle can obtain relevant information of the moving object.
  • the following embodiment takes the moving object as the second vehicle as an example for description, that is, the above-mentioned Figure 3(a) relates to the first vehicle And the second vehicle.
  • the method for controlling a vehicle includes at least some of the following steps.
  • S310a The first vehicle obtains first information of the second vehicle.
  • the first information involved in the embodiments of the present application includes information related to a moving object in front obtained by the first vehicle when the speed of the first vehicle reaches the upper limit or the lower limit of the first vehicle speed range; or,
  • the first vehicle obtains information related to the moving object ahead in real time, whether the speed of the first vehicle reaches the upper limit or lower limit of the first speed range, or the speed of the first vehicle reaches the upper limit of the first speed range or When the lower limit is reached, all the information related to the moving object in front acquired by the first vehicle can become the first information.
  • the embodiments of the present application do not limit that the first vehicle must obtain real-time information related to the moving object ahead. It may be that the first vehicle only needs to obtain information about the moving object ahead when the speed of the first vehicle is close to the upper limit or lower limit of the first speed range. Start to obtain information about the moving object ahead, because when the speed of the first vehicle does not reach the upper limit or the lower limit of the first vehicle speed range, the first driving assistance system can control the first vehicle.
  • the following description of the embodiment may take the first vehicle to obtain real-time information related to the moving object in front as an example for description, but this application is not limited thereto.
  • the following embodiments are described by taking the moving object as the second vehicle as an example, and the above-mentioned first information may also be referred to as the information of the second vehicle.
  • the second vehicle sends the information of the second vehicle to the first vehicle.
  • both the first vehicle and the second vehicle have a V2V communication function, and the first vehicle and the second vehicle exchange their respective information through the V2V communication unit.
  • This implementation manner can be understood as the second vehicle sending the information of the second vehicle to the first vehicle, and the V2V communication unit in the first vehicle receives the information of the second vehicle.
  • a sensor provided on the first vehicle obtains information of the second vehicle.
  • the sensor may be a radar, and the first vehicle may obtain information of the second vehicle through the radar; for example, the sensor may be a camera, and the first vehicle may obtain information of the second vehicle through the camera.
  • This implementation can be understood as the first vehicle actively acquiring the information of the second vehicle.
  • the first vehicle may obtain the information of the second vehicle through other vehicles in the system.
  • the third vehicle can receive the information of the second vehicle and forward the information of the second vehicle to the first vehicle.
  • the first vehicle can also adopt other ways. Obtain the information of the second vehicle, which will not be repeated here.
  • the first vehicle when the first vehicle obtains the above-mentioned first information, the first vehicle is controlled by the first driving assistance system, which can be understood as the first driving assistance system being in an active state.
  • the first vehicle and the second vehicle can continue to communicate during driving.
  • the first vehicle receives the above-mentioned first information, the first vehicle is controlled by the ACC system to maintain a proper distance from the second vehicle to reduce driving The labor intensity of the staff.
  • the activation of a certain driving assistance system involved in the embodiments of the present application means that the vehicle equipped with the driving assistance system is under automatic control of the driving assistance system, and the driver does not need to intervene to control the vehicle.
  • the second vehicle can send the information of the second vehicle to the first vehicle because the second vehicle has the V2V communication function.
  • the first vehicle may also send the information of the first vehicle to the second vehicle.
  • the embodiment of the present application mainly takes the control of the first vehicle as an example for description, so whether the first vehicle sends the first vehicle to the second vehicle.
  • the related information and how to send the information related to the first vehicle to the second vehicle are not limited.
  • the vehicle involved in the embodiments of the present application with V2V communication function may be equipped with a communication module with V2V communication function on the vehicle.
  • the communication module may be integrated in the V2X control system, or the communication module may also be integrated in the V2X control system.
  • the system terminal for vehicle-mounted information interaction for example, in vehicle-mounted equipment such as T-BoX
  • the communication module provided in the second vehicle in the present application is used to send (or broadcast to other vehicles) related information of the second vehicle (for example, vehicle speed, location, model information, etc.) to the first vehicle; the first vehicle The communication module provided in is used to receive the information of the second vehicle sent by the second vehicle.
  • the second vehicle is a vehicle in front of the first vehicle in the same lane;
  • the second vehicle is a vehicle that is about to change lanes to the lane where the first vehicle is located and is located in front of the first vehicle.
  • the second vehicle is a vehicle that is about to change lanes to an adjacent lane of the lane where the first vehicle is located and located in front of the first vehicle.
  • the specific positional relationship between the first vehicle and the second vehicle in the embodiment of the present application is not limited, and the second vehicle is a vehicle that may have a risk of collision in front of the first vehicle or a vehicle that does not have a risk of collision.
  • the first vehicle can determine the first parameter based on the first information. Then, the method flow shown in FIG. 3(a) further includes S320a: the first vehicle determines the first parameter.
  • the activation state of the first driving assistance system currently in the active state can be terminated based on the first parameter, and the method flow shown in FIG. 3(a) further includes S330a: the first vehicle Terminate the first driving assistance system.
  • terminating the activation state of the first driving assistance system currently in the activated state by the first vehicle based on the first parameter includes: the first vehicle determines based on the first parameter that the range of the driving speed that the first vehicle can possess is the same as the aforementioned first parameter. If there is no intersection between a vehicle speed range, the first vehicle may terminate the first driving assistance system in the activated state, that is, the first driving assistance system exits the active state and is in the inactive state.
  • the travel speed range that the first vehicle can have indicates the speed range to which the first vehicle travels under the condition that there is no risk of collision between the first vehicle and the second vehicle.
  • the first vehicle can set the first vehicle to run at a first vehicle speed outside the first vehicle speed range according to the first parameter, and the method flow shown in Figure 3(a) also includes S340a: Set the first vehicle to run at the first vehicle speed.
  • setting the first vehicle to travel at a first vehicle speed outside the first vehicle speed range according to the first parameter includes: setting the first vehicle to travel at a vehicle speed within the available travel speed range according to the first parameter .
  • the first parameter indicates the range of the traveling speed that the first vehicle can have when there is no risk of collision between the first vehicle and the second vehicle.
  • the range of driving speed that the first vehicle can have can be determined by whether there is a risk of collision between the first vehicle and the second vehicle, and whether there is a risk of collision between the first vehicle and the second vehicle can be determined based on the first vehicle and the second vehicle.
  • the information is OK.
  • the first driving assistance system is the aforementioned ACC system
  • the applied first vehicle speed range is 65km/h-120km/h.
  • the first vehicle determines based on the first information that there is no risk of collision between the first vehicle and the second vehicle, and the speed of the first vehicle should be less than 65km/h. It can be understood that the first vehicle obtains the first information when the speed of the first vehicle reaches 65km/h. Based on the first information, it is determined that if the first vehicle is traveling at 65km/h, the first vehicle may collide with the second vehicle. Then, the first vehicle further determines based on the first information that the first vehicle needs to continue to decelerate, so that the first vehicle travels at the first vehicle speed within the speed range of less than 65 km/h to avoid collision. In this case, the first vehicle terminates the activation state of the currently active ACC system based on the first parameter, and sets the first vehicle to travel at a vehicle speed of less than 65 km/h according to the first parameter.
  • the first parameter includes a parameter used to determine whether there is a risk of collision between the first vehicle and the moving object; when the first vehicle has no risk of collision with the moving object, the speed range of the first vehicle includes The range of driving speed that should be available.
  • determining the first parameter based on the first information may be that the first vehicle calculates the first parameter based on the acquired first information, or it may also be that the first vehicle passes a table lookup based on the acquired first information. Get the first parameter. The following briefly introduces how to calculate the first parameter based on the first information.
  • the first parameter calculated by the first vehicle includes the following two possibilities:
  • the first information includes the speed information of the second vehicle and the position information of the second vehicle.
  • the first parameter includes the estimated time to collision (TTC) of the first vehicle and the second vehicle. It should be understood that the TTC parameter will vary with It changes with time, that is, the first vehicle is calculating TTC continuously. In order to reflect the nature of TTC changing with time, the parameter TTC is recorded as TTC(t) in this application.
  • FIG. 4 is a schematic diagram of a scenario for calculating a first parameter provided by an embodiment of the present application. Specifically, based on the scenario shown in Figure 4(a), the calculation of the first parameter by the first vehicle includes the following process:
  • the first vehicle learns the vehicle speed of the second vehicle based on the vehicle speed information of the second vehicle included in the first information.
  • the first vehicle calculates the relative speed (V1(t)-V2(t)) of the first vehicle and the second vehicle based on the speed of the second vehicle and the speed of the first vehicle itself;
  • the first vehicle may also learn the location of the second vehicle based on the location information of the second vehicle included in the first information.
  • the first vehicle calculates the inter-vehicle distance (X(t)) between the first vehicle and the second vehicle based on the position of the second vehicle and the position of the first vehicle itself.
  • the first vehicle After the first vehicle obtains the above-mentioned relative vehicle speeds of the first vehicle and the second vehicle and the inter-vehicle distance between the first vehicle and the second vehicle, it can be based on the relative vehicle speed of the first vehicle and the second vehicle and the first vehicle and the second vehicle. Calculate the above-mentioned TTC(t) for the inter-vehicle distance between vehicles:
  • TTC(t) X(t)/V1(t)-V2(t).
  • the first information includes the location information of the second vehicle, and the first parameter includes the time interval (TI) of the first vehicle and the second vehicle.
  • TI time interval
  • the TI parameter will change with time. , That is, the first vehicle is continuously calculating TI.
  • the parameter TI is recorded as TI(t) in this application.
  • the calculation of the first parameter by the first vehicle includes the following process:
  • the first vehicle may also learn the location of the second vehicle based on the location information of the second vehicle included in the first information.
  • the first vehicle calculates the inter-vehicle distance between the first vehicle and the second vehicle based on the position of the second vehicle and the position of the first vehicle itself.
  • the first vehicle After the first vehicle obtains the above-mentioned inter-vehicle distance between the first vehicle and the second vehicle, it can be based on the inter-vehicle distance between the first vehicle and the second vehicle (X(t)) and the speed of the first vehicle itself (V1( t)) Calculate the above TI(t):
  • the first information in the above possible one and/or two may also include other information.
  • the above description only indicates that when the first information includes the position information of the second vehicle and the speed information of the second vehicle, the calculation can be performed.
  • the information of the second vehicle includes the position information of the second vehicle
  • TI(t) can be calculated.
  • the first parameter in Possibility One may also be TI(t); for example, the information of the second vehicle described above may also include the model information of the second vehicle (vehicle size, etc.).
  • the first vehicle when the first vehicle is traveling at a first vehicle speed outside the first vehicle speed range, the first vehicle can obtain the updated first information, and determine the updated first parameter based on the updated first information. That is, the method flow shown in FIG. 3(a) further includes S350a: the first vehicle obtains the updated first information; S360a: the first vehicle determines the updated first parameter.
  • the first vehicle sets the first vehicle to drive at a second speed within the first speed range according to the updated first parameter, as shown in Figure 3(a)
  • the illustrated method flow also includes S370a: setting the first vehicle to travel at the second speed;
  • the first vehicle to set the first vehicle to travel at a second speed within the first speed range according to the updated first parameter includes:
  • the driving speed range determined by the first vehicle has an intersection with the first vehicle speed range
  • the first vehicle sets the first vehicle to travel at a second vehicle speed within the intersection of the required travel speed range and the first vehicle speed range.
  • the first vehicle traveling at a second vehicle speed within the first vehicle speed range means that the first vehicle can reactivate the above-mentioned first driving assistance system according to the updated first parameter, that is, the method shown in FIG. 3(a)
  • the process also includes S380a: the first vehicle reactivates the first driving assistance system.
  • the reactivation of the first driving assistance system by the first vehicle includes the following possible ways:
  • the first parameter is TTC(t)
  • the above-mentioned first driving assistance system is configured in the first vehicle.
  • the first driving assistance system controls the first vehicle to accelerate, and when the vehicle speed reaches the upper limit of the first vehicle speed range, The first vehicle judges that there is no risk of collision between the first vehicle and the second vehicle based on the TTC(t), and the first vehicle determines that the travel speed range of the first vehicle exceeds the first vehicle speed range, then the first vehicle instructs The first driving assistance system exits and controls the first vehicle to continue to accelerate and drive at a first vehicle speed exceeding the first vehicle speed range.
  • the first vehicle may Obtain updated first information, the updated first information can determine the updated first parameter, and then based on the updated first parameter (for example, the updated first parameter indicates that the first vehicle and the second vehicle exist Risk of collision, the first vehicle determines that the speed of the first vehicle can be within the first speed range) controls the first vehicle to decelerate so that the speed of the first vehicle returns to the first speed range, the first driving assistance system It is running again.
  • the updated first parameter indicates that the first vehicle and the second vehicle exist Risk of collision
  • the first driving assistance system is the aforementioned TJA system (applicable vehicle speed range is 0km/h-60km/h).
  • the first vehicle judges that there is no risk of collision based on the first parameter, determines that the vehicle speed range in which the first vehicle can run is greater than 60km/h, instructs the first driving assistance system to exit, and controls the first vehicle to continue Accelerate, set the first vehicle to travel at a speed other than 0km/h-60km/h, and when the first vehicle travels at a speed other than 0km/h-60km/h, the first vehicle can obtain the updated first vehicle Information, based on the updated first information to determine the updated first parameter, the updated first parameter shows that there is a risk of collision between the first vehicle and the second vehicle, the first vehicle should be 0km/h-60km/h If the speed of the first vehicle is moving at the speed of the first vehicle, the speed of the first vehicle will return to 60km/h, and the TJA system will be reactivated.
  • the first preset threshold includes a value of TTC(t) of the risk of collision between the first vehicle and the second vehicle;
  • the first preset threshold includes a value greater than TTC(t) of the risk of collision between the first vehicle and the second vehicle;
  • the first preset threshold includes other preset values, which will not be described as examples here. It only needs to limit that when the calculated TTC is greater than the first preset threshold, there is no collision between the first vehicle and the second vehicle. Just risk.
  • the first parameter is TTC(t)
  • the above-mentioned first driving assistance system is configured in the first vehicle.
  • the first driving assistance system controls the first vehicle to decelerate, and when the vehicle speed reaches the lower limit of the first vehicle speed range , The first vehicle judges that there is a risk of collision between the first vehicle and the second vehicle based on the TTC(t), and the first vehicle determines that the driving speed range of the first vehicle is lower than the first vehicle speed range, then the first The vehicle instructs the first driving assistance system to exit, and controls the first vehicle to continue to decelerate and drive at a first vehicle speed lower than the first vehicle speed range.
  • the first vehicle may obtain the updated first information, the updated first information may determine the updated first parameter, and then based on the updated first parameter (for example, the updated first parameter indicates that the first vehicle and the The second vehicle has no risk of collision.
  • the first vehicle determines that the speed of the first vehicle can be within the first speed range) and controls the first vehicle to accelerate so that the speed of the first vehicle returns to the first speed range. -The driving assistance system is in operation again.
  • the first driving assistance system is the aforementioned ACC system (applicable vehicle speed range is 65km/h-120km/h).
  • the first vehicle judges that there is a risk of collision based on the first parameter, determines that the speed range in which the first vehicle can run is less than 65km/h, instructs the first driving assistance system to exit, and controls the first vehicle to continue Deceleration setting
  • the first vehicle is traveling at a speed other than 65km/h-120km/h.
  • the first vehicle can obtain the updated first information , Determine the updated first parameter based on the updated first information.
  • the updated first parameter shows that there is no risk of collision between the first vehicle and the second vehicle.
  • the first vehicle should be within 65km/h-120km/h If the first vehicle is traveling at a speed of 65km/h, the first vehicle will reactivate the ACC system.
  • the first parameter is TI(t), and the above-mentioned first driving assistance system is configured in the first vehicle.
  • the first driving assistance system controls the first vehicle to accelerate, and when the vehicle speed reaches the upper limit of the first vehicle speed range, the first vehicle is based on the TI (t) It is judged that there is no risk of collision between the first vehicle and the second vehicle.
  • the first vehicle determines that the driving speed range of the first vehicle exceeds the first speed range, then the first vehicle instructs the first driving assistance system to exit and control
  • the first vehicle continues to accelerate and travels at a first vehicle speed exceeding the first vehicle speed range, and while the first vehicle is traveling at a first vehicle speed lower than the first vehicle speed range, the first vehicle may obtain updated first information ,
  • the updated first information can determine the updated first parameter, and then based on the updated first parameter (for example, the first parameter indicates that the first vehicle and the second vehicle are at risk of collision, and the first vehicle determines that the first vehicle The vehicle speed may be within the first vehicle speed range) to control the first vehicle to decelerate, so that the vehicle speed of the first vehicle returns to the first vehicle speed range, and the first driving assistance system is in operation again.
  • the second preset threshold includes the value of TI(t) for the risk of collision between the first vehicle and the second vehicle;
  • the second preset threshold includes a value greater than TI(t) of the risk of collision between the first vehicle and the second vehicle;
  • the second preset threshold includes other preset values, which will not be described as examples here. It is only necessary to limit that when the calculated TI is greater than the second preset threshold, there is no collision between the first vehicle and the second vehicle. Just risk.
  • the first parameter is TI(t), and the above-mentioned first driving assistance system is configured in the first vehicle.
  • the first driving assistance system controls the first vehicle to decelerate, and when the vehicle speed reaches the lower limit of the first vehicle speed range, the first driving assistance system A vehicle judges that there is a risk of collision between the first vehicle and the second vehicle based on the TI(t).
  • the first vehicle determines that the travel speed range of the first vehicle is lower than the first vehicle speed range, then the first vehicle instructs the first vehicle
  • the driving assistance system exits and controls the first vehicle to continue to decelerate and drive at a first vehicle speed lower than the first vehicle speed range.
  • the first vehicle While the first vehicle is running at a first vehicle speed lower than the first vehicle speed range, the first vehicle The updated first information can be obtained, the updated first information can determine the updated first parameter, and then based on the updated first parameter (for example, the first parameter indicates that the first vehicle and the second vehicle have no risk of collision , The first vehicle determines that the speed of the first vehicle can be within the first speed range) controls the first vehicle to accelerate so that the speed of the first vehicle returns to the first speed range, and the first driving assistance system is again in the first speed range Operating status.
  • the above method 1-method 4 illustrate that when the first vehicle is equipped with the first driving assistance system, when the speed of the first vehicle reaches the upper limit or the lower limit of the first vehicle speed range applied by the first driving assistance system, The first vehicle may terminate the first driving assistance system based on the first parameter, and set the first vehicle to travel at a first vehicle speed outside the first vehicle speed range. Further, the first vehicle may obtain the updated first parameter while driving at the first vehicle speed outside the first vehicle speed range, reactivate the first driving assistance system based on the updated first parameter, and set the first driving assistance system. The vehicle travels at a second vehicle speed within the first vehicle speed range. This process does not require the driver to take over, which improves the performance of the vehicle's automatic driving.
  • Manner 1-Manner 4 illustrates that the first vehicle can reactivate the configured first driving assistance system based on the updated first parameter.
  • the first vehicle may activate a certain driving assistance system of the configured multiple driving assistance systems based on the updated first parameter.
  • the first vehicle involved in the embodiment shown in FIG. 3(b) below is configured with two or more driving assistance systems.
  • the first vehicle is equipped with a first driving assistance system and a second driving assistance system (for example, the first vehicle is equipped with the above-mentioned ACC system and TJA system), and the first vehicle speed range and the second driving assistance system applied by the first driving assistance system
  • the second vehicle speed range applied by the driving assistance system has no intersection.
  • the first driving assistance system is the above-mentioned ACC system
  • the second driving assistance system is the above-mentioned TJA system
  • 0km/h ⁇ the second vehicle speed range ⁇ 60km/ h if the first driving assistance system is the above-mentioned TJA system, then 0km/h ⁇ the first vehicle speed range ⁇ 60km/h, and the second driving assistance system is the above-mentioned ACC system, then 65km/h ⁇ the second vehicle speed range ⁇ 120km/h.
  • the vehicle speed ranges to which the first driving assistance system and the second driving assistance system are respectively applied there is no limitation on the vehicle speed ranges to which the first driving assistance system and the second driving assistance system are respectively applied. It is only required that the vehicle speed ranges respectively applied to the first driving assistance system and the second driving assistance system There is no intersection, that is, the two driving assistance systems cannot operate directly and continuously. It can be understood that when there is an intersection between the vehicle speed ranges applied by the first driving assistance system and the second driving assistance system, when the vehicle speed falls within the vehicle speed range covered by the intersection, it may cause conflicts between different driving assistance systems. , Resulting in safety issues.
  • the embodiments of the present application are not limited to the specific configuration of several driving assistance systems in the first vehicle, and there may be two or more than two types of driving assistance systems.
  • the embodiments of the present application are described as Two driving assistance systems (first driving assistance system and second driving assistance system) are configured in the first vehicle as an example for description.
  • first driving assistance system and second driving assistance system are configured in the first vehicle as an example for description.
  • Figure 3(b) relates to the first vehicle and the moving object.
  • the moving object in the embodiment corresponding to FIG. 3(b) is similar to the moving object in the embodiment corresponding to FIG. 3(a), and will not be repeated here, and the embodiment corresponding to FIG. 3(a) is The moving object in the embodiment corresponding to FIG. 3(b) is illustrated by taking the second vehicle in front of the first vehicle as an example.
  • the method for controlling a vehicle includes at least some of the following steps.
  • S310b The first vehicle obtains the first information of the second vehicle. Similar to the above-mentioned S310a, it will not be repeated here.
  • the first vehicle can determine the first parameter based on the first information. Then, the method flow shown in FIG. 3(b) further includes S320b: the first vehicle determines the first parameter. Similar to the above-mentioned S320a, it will not be repeated here.
  • the first vehicle can terminate the activation state of the first driving assistance system currently in the active state based on the first parameter, and set the first vehicle to be the first vehicle outside the first vehicle speed range according to the first parameter. Drive at one speed.
  • the activation state of the first driving assistance system currently in the active state can be terminated based on the first parameter, and the method flow shown in FIG. 3(b) further includes S330b: The first vehicle terminates the first driving assistance system. Similar to the above-mentioned S330a, it will not be repeated here.
  • the first vehicle can set the first vehicle to travel at a first speed outside the first speed range according to the first parameter, and the method flow shown in FIG. 3(b) also includes S340b: Set the first vehicle to run at the first speed. Similar to the above-mentioned S340a, it will not be repeated here.
  • the first vehicle can maintain the activated state of the first driving assistance system currently in the activated state based on the first parameter, and set the first vehicle to be within the first vehicle speed range according to the first parameter. Driving at speed.
  • the first vehicle can maintain the active state of the first driving assistance system currently in the active state based on the first parameter.
  • the first vehicle when the first vehicle is traveling at a first vehicle speed outside the first vehicle speed range, the first vehicle can obtain the updated first information, and determine the updated first parameter based on the updated first information. That is, the method flow shown in FIG. 3(b) further includes S350b: the first vehicle obtains the updated first information; S360b: the first vehicle determines the updated first parameter.
  • the first vehicle sets the first vehicle to drive at a second speed within the second speed range according to the updated first parameter, as shown in Figure 3(b)
  • the illustrated method flow also includes S370a: setting the first vehicle to travel at the second speed;
  • the first vehicle to set the first vehicle to travel at a second vehicle speed within the second vehicle speed range according to the updated first parameter includes:
  • the driving speed range determined by the first vehicle has an intersection with the second vehicle speed range
  • the first vehicle sets the first vehicle to travel at a second vehicle speed within the intersection of the required travel speed range and the second vehicle speed range.
  • the first vehicle traveling at the second vehicle speed within the second vehicle speed range means that the first vehicle can activate the above-mentioned second driving assistance system according to the updated first parameter, that is, the method flow shown in FIG. 3(b) It also includes S380b: the first vehicle activates the second driving assistance system.
  • the first vehicle may control the first driving assistance system to maintain the operating state based on the first parameter, or, when the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range or the first vehicle speed range At the lower limit, the first vehicle can also determine whether there is a risk of collision between the first vehicle and the second vehicle based on the first parameter.
  • the first vehicle determines that the travel speed range that the first vehicle should have does not belong to the first vehicle speed range, and the first vehicle terminates The activation state of the first driving assistance system, and controls the first vehicle to accelerate or decelerate at a first speed outside the first speed range, and make the speed of the first vehicle reach the second speed range according to the updated first parameter
  • the upper limit of the second vehicle speed range or the lower limit of the second vehicle speed range activates the second driving assistance system.
  • the method of controlling the vehicle shown in Figure 3(b) does not require the driver to frequently take over controlling the vehicle.
  • the first vehicle itself can terminate the activation state of the first driving assistance system and automatically control the speed of the first vehicle so that the first vehicle The vehicle speed reaches the upper limit of the second vehicle speed range or the lower limit of the second vehicle speed range corresponding to the second driving assistance system, so that the second driving assistance system takes over the control of the first vehicle.
  • the driver’s intervention is not required to improve The continuity of autonomous driving.
  • the first vehicle controls the first vehicle in the following ways:
  • the first parameter is TTC(t).
  • the first vehicle controls the first driving assistance system based on TTC(t) Maintain the active state.
  • TTC(t) is a non-positive number (for example, V1(t)-V2(t) is 0 or a negative number)
  • V1(t)-V2(t) is 0 or a negative number
  • the speed of the first vehicle is less than or equal to the speed of the second vehicle. Since there is no collision at present, When the speed of the first vehicle is less than or equal to the speed of the second vehicle, a collision usually does not occur, and it is considered that there is no risk of collision between the first vehicle and the second vehicle when TTC(t) is a non-positive number.
  • TTC(t) is a non-positive number or TTC(t) is greater than the first preset threshold, there is no risk of collision between the first vehicle and the second vehicle.
  • the lower limit of the first vehicle speed range is greater than the upper limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the lower limit of the first vehicle speed range applied by the system is greater than the upper limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned ACC system (the first applied speed range is 65km/h-120km/h), and the second driving assistance system is the aforementioned TJA system (the second applied speed range is It is 0km/h-60km/h).
  • the first driving assistance system is the aforementioned ACC system and the second driving assistance system is the aforementioned TJA system as an example for description.
  • FIG. 5 is a flow chart of controlling the first vehicle according to an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle based on the first parameter in the first manner includes:
  • S510 The first vehicle obtains information of the second vehicle.
  • the information of the second vehicle includes the speed information of the second vehicle and the position information of the second vehicle.
  • the first vehicle calculates the relative speed v#1(t) between the first vehicle and the second vehicle based on the vehicle speed of the second vehicle and the vehicle speed of the first vehicle, and the first vehicle is based on the position of the second vehicle and the first vehicle.
  • S530 The first vehicle determines whether TTC#1(t) is a non-positive number.
  • TTC#1(t) can be a non-positive number.
  • S540 The first vehicle determines whether TTC#1(t) is greater than a first preset threshold.
  • TTC#1(t) may be a value greater than the first preset threshold.
  • S540 may be executed after S520 is executed; or, S540 may be executed after S530 is executed (for example, when the judgment result in S530 is no), this embodiment is not limited thereto.
  • the operating speed of the first vehicle is maintained within the first vehicle speed range of the ACC application.
  • the first vehicle can accelerate, but the speed range is not greater than 120km/h.
  • the updated information of the second vehicle may be obtained, and based on the obtained updated information of the second vehicle, it may be judged whether a collision will occur, and the first vehicle may be controlled based on the judgment result.
  • the first parameter is TTC(t).
  • the first driving assistance system controls the first vehicle to perform Accelerate, when the vehicle speed reaches the upper limit of the first vehicle speed range, the first vehicle determines that there is no risk of collision between the first vehicle and the second vehicle based on the TTC(t), and the first vehicle determines that the first vehicle If the required traveling speed range exceeds the first vehicle speed range, the first vehicle instructs the first driving assistance system to exit, and controls the first vehicle to continue to accelerate to travel at the first vehicle speed exceeding the first vehicle speed range.
  • the first vehicle While the first vehicle is running at a first vehicle speed that exceeds the first vehicle speed range, the first vehicle may obtain updated first information, and the updated first information may determine the updated first parameter, which is then based on the updated first parameter.
  • the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range
  • controls the first vehicle to accelerate The vehicle speed of the first vehicle reaches the lower limit of the second vehicle speed range, and the second driving assistance system is activated.
  • TTC(t) is a non-positive number or TTC(t) is greater than the first preset threshold
  • TTC(t) is a non-positive number or TTC(t) is greater than the first preset threshold
  • the upper limit of the first vehicle speed range is less than the lower limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the upper limit of the first vehicle speed range applied by the system is greater than the lower limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned TJA system (the first applied speed range is 0km/h-60km/h), and the second driving assistance system is the aforementioned ACC system (the second applied speed range is 65km/h-120km/h).
  • the first driving assistance system is the aforementioned TJA system
  • the second driving assistance system is the aforementioned ACC system as an example for description.
  • Fig. 6 is another flow chart for controlling the first vehicle provided by an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle in the second manner includes:
  • S610 The first vehicle obtains information about the second vehicle.
  • the information of the second vehicle includes the speed information of the second vehicle and the position information of the second vehicle.
  • the first vehicle calculates the relative speed v#2(t) between the first vehicle and the second vehicle based on the vehicle speed of the second vehicle and the vehicle speed of the first vehicle, and the first vehicle is based on the position of the second vehicle and the first vehicle.
  • S630 The first vehicle determines whether TTC#2(t) is a non-positive number.
  • TTC#2(t) can be a non-positive number.
  • S640 The first vehicle determines whether TTC#2(t) is greater than a first preset threshold.
  • TTC#2(t) may be a value greater than the first preset threshold.
  • S640 may be executed after S620 is executed; or, S640 may be executed after S630 is executed (for example, when the judgment result in S630 is no), this embodiment is not limited thereto.
  • TJA controls the first vehicle to accelerate, that is, the process shown in FIG. 6 further includes: S650, maintaining TJA.
  • S660 Determine whether the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range.
  • the first vehicle accelerates and the speed reaches the upper limit of the first vehicle speed range, the first vehicle judges that there is still no risk of collision based on TTC#2 (t), and the first driving assistance system will exit, according to the current vehicle control system design , When the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range and the driver judges that there is no risk of collision, the driver will take over the first vehicle and accelerate.
  • the first vehicle judges that there is still no risk of collision based on TTC#2(t)
  • the first driving assistance system exits the running state, and the vehicle
  • the control system in (for example, it may be called the V2X control system) takes over the continued acceleration of the first vehicle, so that the speed of the first vehicle reaches the lower limit of the second vehicle speed range, and the second driving assistance system is activated.
  • the second driving assistance system is activated, and the second driving assistance system takes over the first vehicle.
  • the first driving assistance system controls the first vehicle to accelerate, and continues to monitor whether there is a risk of collision with the second vehicle during acceleration.
  • the first driving assistance system controls the first vehicle to accelerate to the upper limit of the first vehicle speed range applied by the first driving assistance system, if the first vehicle and the second vehicle still have no risk of collision, the first driving assistance system will exit and the first vehicle
  • the control system (for example, it can be called the V2X control system) controls the first vehicle to continue to accelerate.
  • the second driving assistance system is activated. Take over the first vehicle.
  • the control system controls the first vehicle to continue to accelerate, the first vehicle continues to monitor whether there is a risk of collision with the second vehicle.
  • the control system controls the first vehicle to decelerate so that the speed of the first vehicle reaches the upper limit of the first vehicle speed range, and the first driving assistance system is reactivated.
  • control system improves the continuity of switching between the first driving assistance system and the second driving assistance system.
  • the specific function of the control system to control the speed of the vehicle is not described in detail. What needs to be explained is the control The system can continuously control the vehicle speed based on the first parameter.
  • the first parameter is TTC(t).
  • the first driving assistance system controls the first vehicle to decelerate
  • the first vehicle judges that there is a risk of collision between the first vehicle and the second vehicle based on the TTC(t), and the first vehicle determines that the first vehicle should If the available travel speed range is lower than the first vehicle speed range, the first vehicle instructs the first driving assistance system to exit, and controls the first vehicle to continue to decelerate and travel at a first vehicle speed lower than the first vehicle speed range.
  • the first vehicle While the first vehicle is running at a first vehicle speed lower than the first vehicle speed range, the first vehicle may obtain updated first information, and the updated first information may determine the updated first parameter, and then based on the updated The latter first parameter (for example, the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range) controls the first vehicle to continue Decelerate so that the speed of the first vehicle reaches the lower limit of the second speed range, and activate the second driving assistance system.
  • the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range
  • TTC(t) when TTC(t) is greater than the first preset threshold, there is no risk of collision between the first vehicle and the second vehicle.
  • TTC(t) When TTC(t) is less than or equal to the first preset threshold, it is proved There is a risk of collision between the first vehicle and the second vehicle. Therefore, in the third mode, in order to avoid a collision, the first vehicle needs to reduce its speed.
  • the lower limit of the first vehicle speed range is greater than the upper limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the lower limit of the first vehicle speed range applied by the system is greater than the upper limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned ACC system (the first applied speed range is 65km/h-120km/h), and the second driving assistance system is the aforementioned TJA system (the second applied speed range is It is 0km/h-60km/h).
  • the first driving assistance system is the aforementioned ACC system
  • the second driving assistance system is the aforementioned TJA system as an example for description.
  • Fig. 7 is another flow chart for controlling the first vehicle provided by an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle in the third manner includes:
  • S710 The first vehicle obtains information about the second vehicle.
  • the information of the second vehicle includes the speed information of the second vehicle and the position information of the second vehicle.
  • the first vehicle calculates the relative speed v#3(t) between the first vehicle and the second vehicle based on the vehicle speed of the second vehicle and the vehicle speed of the first vehicle, and the first vehicle is based on the position of the second vehicle and the first vehicle.
  • S730 The first vehicle determines whether TTC#3(t) is a non-positive number.
  • TTC#3(t) is a positive number.
  • S740 The first vehicle determines whether TTC#3(t) is greater than a first preset threshold.
  • TTC#3(t) is a value less than or equal to the first preset threshold.
  • S740 can be executed after S730 is executed, that is, after determining that TTC#3(t) is a positive number, it is determined that TTC#3(t) is less than or equal to the first preset threshold; or, S740 and S730 can be combined
  • One step that is, directly after S720, it is determined whether TTC#3(t) is a value greater than 0 and less than or equal to the first preset threshold, which is not limited in this embodiment.
  • ACC controls the first vehicle to decelerate, that is, the process shown in FIG. 7 further includes: S750, maintaining ACC.
  • S760 Determine whether the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range.
  • S770 When the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range, the first vehicle determines that there is a risk of collision based on TTC#3(t), and instructs the first driving assistance system to exit the operating state, and the first vehicle The vehicle controls the first vehicle to continue to decelerate based on TTC#3(t), so that the speed of the first vehicle reaches the upper limit of the second vehicle speed range, and activates the second driving assistance system to be in operation. That is, the process shown in Figure 7 also includes : S780, activate TJA.
  • the first vehicle when the first vehicle decelerates and the speed reaches the lower limit of the first vehicle speed range, the first vehicle judges that there is a risk of collision based on TTC#3(t), and the first driving assistance system will exit.
  • the driver When the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range and the driver judges that there is a risk of collision, the driver will take over the first vehicle and decelerate.
  • the first driving assistance system controls the first vehicle to decelerate to the lower limit of the first vehicle speed range
  • the first vehicle judges that there is a risk of collision based on TTC#3(t)
  • the first driving assistance system exits the running state, and the vehicle is in
  • the control system (for example, it may be called the V2X control system) takes over the first vehicle to continue to decelerate, so that the speed of the first vehicle reaches the upper limit of the second speed range, and the second driving assistance system is activated.
  • the second driving assistance system when the vehicle speed of the first vehicle reaches the upper limit of the second vehicle speed range, the second driving assistance system is activated, and the second driving assistance system takes over the first vehicle.
  • the first driving assistance system controls the first vehicle to decelerate, and continues to monitor whether it is with the second vehicle during the deceleration process. There is a risk of collision.
  • the first driving assistance system controls the first vehicle to decelerate to the lower limit of the first vehicle speed range applied by the first driving assistance system, if the first vehicle and the second vehicle are still at risk of collision, the first driving assistance system will exit ,
  • the control system in the first vehicle (for example, it can be called the V2X control system) controls the first vehicle to continue to decelerate.
  • the second driving assistance system is activated.
  • the second driving assistance system takes over the first vehicle.
  • the control system controls the first vehicle to continue to decelerate, the first vehicle continues to monitor whether there is a risk of collision with the second vehicle.
  • the control system controls the acceleration of the first vehicle so that the speed of the first vehicle reaches the lower limit of the first vehicle speed range, and the first driving assistance system is reactivated.
  • the third mode when the first vehicle speed range applied by the second driving assistance system does not include 0km/h.
  • the second vehicle speed range applied by the second driving assistance system is 10km/h-60km/h. If the speed of the first vehicle reaches 10km/h, it is judged that a collision risk may still occur based on the updated TTC#3(t).
  • the process shown in FIG. 7 also includes S790, judging whether the vehicle speed of the first vehicle reaches the lower limit of the second vehicle speed range.
  • the first vehicle judges that there is a risk of collision based on the updated TTC#3(t), the second driving assistance system exits the running state, and the first vehicle is based on The updated TTC#3(t) controls the first vehicle to continue to decelerate until the speed of the first vehicle is 0 km/h.
  • the first parameter is TTC(t).
  • the first vehicle is based on the TTC (t) controlling the first driving assistance system to maintain an operating state;
  • TTC(t) when TTC(t) is greater than the first preset threshold, there is no risk of collision between the first vehicle and the second vehicle.
  • TTC(t) When TTC(t) is less than or equal to the first preset threshold, it is proved There is a risk of collision between the first vehicle and the second vehicle. Therefore, in the fourth mode, in order to avoid a collision, the first vehicle needs to reduce its speed.
  • the upper limit of the first vehicle speed range is less than the lower limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the upper limit of the first vehicle speed range applied by the system is greater than the lower limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned TJA system (the first applied speed range is 0km/h-60km/h), and the second driving assistance system is the aforementioned ACC system (the second applied speed range is 65km/h-120km/h).
  • the first driving assistance system is the aforementioned TJA system
  • the second driving assistance system is the aforementioned ACC system as an example for description.
  • FIG. 8 is another flow chart for controlling the first vehicle according to an embodiment of the present application.
  • the specific process of controlling the first vehicle by the first vehicle in the fourth manner includes:
  • S810 The first vehicle obtains information about the second vehicle.
  • the information of the second vehicle includes speed information of the second vehicle and position information of the second vehicle.
  • S820 The first vehicle calculates TTC#4(t).
  • the first vehicle calculates the relative speed v#4(t) between the first vehicle and the second vehicle based on the vehicle speed of the second vehicle and the vehicle speed of the first vehicle, and the first vehicle is based on the position of the second vehicle and the first vehicle.
  • S830 The first vehicle determines whether TTC#4(t) is a non-positive number.
  • TTC#4(t) is a positive number.
  • S840 The first vehicle determines whether TTC#4(t) is greater than a first preset threshold.
  • TTC#4(t) is a value less than or equal to the first preset threshold.
  • S840 can be executed after S830 is executed, that is, after determining that TTC#4(t) is a positive number, it is determined that TTC#4(t) is a value less than or equal to the first preset threshold; or, S840 and S830 can be combined
  • One step is to directly determine after S820 whether TTC#4(t) is a value greater than 0 and less than or equal to the first preset threshold, which is not limited in this embodiment.
  • the first driving assistance system of the first vehicle controls the deceleration of the first vehicle.
  • the process shown in Figure 8 also includes: S850, TJA maintains an active state.
  • TJA controls the first vehicle to decelerate.
  • the updated information of the second vehicle is obtained, and based on the obtained updated information of the second vehicle, it is judged whether a collision will occur, and based on the judgment result Control the first vehicle. If the risk of collision is continuously determined based on the updated TTC#4(t), the TJA can control the first vehicle to decelerate until the speed of the first vehicle is 0km/h.
  • the first vehicle speed range applied by the first driving assistance system when the first vehicle speed range applied by the first driving assistance system does not include 0km/h.
  • the first vehicle speed range applied by the first driving assistance system is 10km/h-60km/h. If the speed of the first vehicle reaches 10km/h, it is judged that a collision risk may still occur based on the updated TTC#4(t).
  • the process shown in FIG. 8 also includes S860, judging whether the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range.
  • the first vehicle judges that there is a risk of collision based on the updated TTC#4(t), the first driving assistance system exits the running state, and the first vehicle is based on The updated TTC#4(t) controls the first vehicle to continue to decelerate until the speed of the first vehicle is 0 km/h.
  • the information of the second vehicle involved in the above-mentioned mode 1 to mode 4 may include other information besides the speed information of the second vehicle and the position information of the second vehicle, for example, also include the information of the second vehicle. Size information or model information, etc. The information of the second vehicle will not be described in detail here.
  • the first parameter is TI(t).
  • the first vehicle controls the first driving based on the TI(t)
  • the auxiliary system remains active.
  • TI(t) When TI(t) is greater than the second preset threshold, there is no risk of collision between the first vehicle and the second vehicle.
  • the lower limit of the first vehicle speed range is greater than the upper limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the lower limit of the first vehicle speed range applied by the system is greater than the upper limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned ACC system (the first applied speed range is 65km/h-120km/h), and the second driving assistance system is the aforementioned TJA system (the second applied speed range is It is 0km/h-60km/h).
  • the first driving assistance system is the aforementioned ACC system and the second driving assistance system is the aforementioned TJA system as an example for description.
  • FIG. 9 is another flow chart of controlling the first vehicle provided by an embodiment of the present application.
  • the specific process of controlling the first vehicle by the first vehicle based on the first parameter in the fifth manner includes:
  • S910 The first vehicle obtains information about the second vehicle.
  • the information of the second vehicle includes location information of the second vehicle.
  • S930 The first vehicle determines whether TI#1(t) is greater than a second preset threshold.
  • TI#1(t) is a value greater than the second preset threshold.
  • the operating speed of the first vehicle is maintained within the first vehicle speed range of the ACC application.
  • the first vehicle can accelerate, but the speed range is not greater than 120km/h.
  • the updated information of the second vehicle may be obtained, and based on the obtained updated information of the second vehicle, it may be determined whether a collision will occur, and the first vehicle may be controlled based on the determination result.
  • the first parameter is TI(t).
  • the first driving assistance system controls the first vehicle to accelerate, and when When the vehicle speed is greater than the upper limit of the first vehicle speed range, the first vehicle determines that there is no risk of collision between the first vehicle and the second vehicle based on the TI(t), and the first vehicle determines that the first vehicle should have If the driving speed range exceeds the first vehicle speed range, the first vehicle instructs the first driving assistance system to exit, and controls the first vehicle to continue to accelerate and travel at the first vehicle speed exceeding the first vehicle speed range.
  • the first vehicle While the first vehicle is running at a first vehicle speed that exceeds the first vehicle speed range, the first vehicle may obtain updated first information, and the updated first information may determine the updated first parameter, which is then based on the updated first parameter.
  • the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range
  • controls the first vehicle to accelerate The vehicle speed of the first vehicle reaches the lower limit of the second vehicle speed range, and the second driving assistance system is activated.
  • the first driving assistance system is the aforementioned TJA system (the first applied speed range is 0km/h-60km/h), and the second driving assistance system is the aforementioned ACC system (the second applied speed range is 65km/h-120km/h).
  • the first driving assistance system is the aforementioned TJA system
  • the second driving assistance system is the aforementioned ACC system as an example for description.
  • FIG. 10 is another flow chart for controlling the first vehicle provided by an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle in the sixth mode includes:
  • S1010 The first vehicle obtains information of the second vehicle.
  • the information of the second vehicle includes location information of the second vehicle.
  • S1020 The first vehicle calculates TI#2(t).
  • S1030 The first vehicle determines whether TI#1(t) is greater than a second preset threshold.
  • TI#2(t) is a value greater than the second preset threshold.
  • TJA controls the first vehicle to accelerate, that is, the process shown in FIG. 10 further includes: S1040, maintaining TJA.
  • S1050 Determine whether the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range.
  • S1060 When the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range, the first vehicle determines that there is no risk of collision based on TI#2(t), and instructs the first driving assistance system to exit the operating state, and the first vehicle The vehicle controls the first vehicle to continue accelerating based on TI#2(t) so that the speed of the first vehicle reaches the lower limit of the second vehicle speed range, and the second driving assistance system is activated. That is, the process shown in FIG. 10 also includes: S1070, Activate ACC.
  • the first vehicle accelerates and the speed reaches the upper limit of the first vehicle speed range, the first vehicle judges that there is still no risk of collision based on TI#2(t), and the first driving assistance system will exit according to the current design of the vehicle control system , When the vehicle speed of the first vehicle reaches the upper limit of the first vehicle speed range and the driver judges that there is no risk of collision, the driver will take over the first vehicle and accelerate.
  • the first vehicle controlled by the first driving assistance system when the acceleration speed of the first vehicle controlled by the first driving assistance system reaches the upper limit of the first vehicle speed range, the first vehicle judges that there is still no risk of collision based on TI#2(t), the first driving assistance system exits the running state, and the vehicle
  • the control system in (for example, it may be called the V2X control system) takes over the continued acceleration of the first vehicle, so that the speed of the first vehicle reaches the lower limit of the second vehicle speed range, and the second driving assistance system is activated.
  • the second driving assistance system is activated, and the second driving assistance system takes over the first vehicle.
  • the first driving assistance system controls the first vehicle to accelerate, and continues to monitor whether there is a risk of collision with the second vehicle during acceleration.
  • the first driving assistance system controls the first vehicle to accelerate to the upper limit of the first vehicle speed range applied by the first driving assistance system, if the first vehicle and the second vehicle still have no risk of collision, the first driving assistance system will exit and the first vehicle
  • the control system (for example, it can be called the V2X control system) controls the first vehicle to continue to accelerate.
  • the second driving assistance system is activated and the second driving assistance system takes over The first vehicle.
  • the first parameter is TI(t).
  • the first driving assistance system controls the first vehicle to decelerate
  • the vehicle speed reaches the lower limit of the first vehicle speed range
  • the first vehicle determines that there is a risk of collision between the first vehicle and the second vehicle based on the TI(t)
  • the first vehicle determines that the first vehicle should If the available travel speed range is lower than the first vehicle speed range, the first vehicle instructs the first driving assistance system to exit, and controls the first vehicle to continue to decelerate and travel at a first vehicle speed lower than the first vehicle speed range.
  • the first vehicle When the first vehicle is traveling at a first vehicle speed lower than the first vehicle speed range, the first vehicle may obtain updated first information, and the updated first information may determine the updated first parameter, and then based on the updated The latter first parameter (for example, the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range) controls the first vehicle to continue Decelerate so that the speed of the first vehicle reaches the lower limit of the second speed range, and activate the second driving assistance system.
  • the updated first parameter for example, the updated first parameter indicates that there is no risk of collision between the first vehicle and the second vehicle, and the first vehicle determines that the speed of the first vehicle can be within the second speed range
  • the first vehicle needs to reduce its speed.
  • the lower limit of the first vehicle speed range is greater than the upper limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the lower limit of the first vehicle speed range applied by the system is greater than the upper limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned ACC system (the first vehicle speed range applied is
  • the second driving assistance system is the aforementioned TJA system (the applied second vehicle speed range is 0km/h-60km/h).
  • the first driving assistance system is the aforementioned ACC system
  • the second driving assistance system is the aforementioned TJA system as an example for description.
  • FIG. 11 is another flow chart for controlling the first vehicle according to an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle in the seventh manner includes:
  • S1110 The first vehicle obtains information of the second vehicle.
  • the information of the second vehicle includes location information of the second vehicle.
  • S1120 The first vehicle calculates TI#3(t).
  • S1130 The first vehicle determines whether TI#3(t) is greater than a second preset threshold.
  • TI#3(t) is a value less than or equal to the second preset threshold.
  • the ACC controls the first vehicle to decelerate, that is, the process shown in FIG. 11 further includes: S1140, maintaining ACC.
  • S1150 Determine whether the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range.
  • S1160 When the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range, the first vehicle judges that there is a risk of collision based on TI#3(t), and instructs the first driving assistance system to exit the operating state, and the first vehicle The vehicle controls the first vehicle to continue decelerating based on TI#3(t) so that the speed of the first vehicle reaches the upper limit of the second vehicle speed range, and the second driving assistance system is activated. That is, the process shown in FIG. 11 also includes: S1170, Activate TJA.
  • the first vehicle when the first vehicle decelerates and the speed reaches the lower limit of the first vehicle speed range, the first vehicle judges that there is a risk of collision based on TI#3(t), and the first driving assistance system will exit.
  • the driver When the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range and the driver judges that there is a risk of collision, the driver will take over the first vehicle and decelerate.
  • the first driving assistance system controls the deceleration speed of the first vehicle to reach the lower limit of the first speed range
  • the first vehicle judges that there is a risk of collision based on TI#3(t)
  • the first driving assistance system exits the running state, and the vehicle is in
  • the control system (for example, it may be called the V2X control system) takes over the first vehicle to continue to decelerate, so that the speed of the first vehicle reaches the upper limit of the second speed range, and the second driving assistance system is activated.
  • the second driving assistance system when the vehicle speed of the first vehicle reaches the upper limit of the second vehicle speed range, the second driving assistance system is activated, and the second driving assistance system takes over the first vehicle.
  • the first driving assistance system controls the first vehicle to decelerate, and continues to monitor whether it is with the second vehicle during the deceleration process. There is a risk of collision.
  • the first driving assistance system controls the first vehicle to decelerate to the lower limit of the first vehicle speed range applied by the first driving assistance system, if the first vehicle and the second vehicle are still at risk of collision, the first driving assistance system will exit.
  • the control system in the first vehicle (for example, may be called the V2X control system) controls the first vehicle to continue to decelerate.
  • the second driving assistance system is activated, and the second The driving assistance system takes over the first vehicle.
  • the seventh mode when the first vehicle speed range applied by the second driving assistance system does not include 0km/h.
  • the second vehicle speed range applied by the second driving assistance system is 10km/h-60km/h. If the speed of the first vehicle reaches 10km/h, it is judged that a collision risk may still occur based on the updated TI#3(t).
  • the process shown in FIG. 11 also includes S1180, determining whether the vehicle speed of the first vehicle reaches the lower limit of the second vehicle speed range.
  • the first vehicle judges that there is a risk of collision based on the updated TI#3(t), the second driving assistance system exits the running state, and the first vehicle is based on The updated TTC controls the first vehicle to continue to decelerate until the speed of the first vehicle is 0 km/h.
  • the first parameter is TI(t).
  • the first vehicle controls the vehicle based on the TI(t)
  • the first driving assistance system maintains an operating state.
  • the first vehicle needs to reduce its speed.
  • the upper limit of the first vehicle speed range is less than the lower limit of the second vehicle speed range, that is, the first vehicle speed range applied by the first driving assistance system and the second vehicle speed range applied by the second driving assistance system have no intersection, and the first driving assistance system
  • the upper limit of the first vehicle speed range applied by the system is greater than the lower limit of the second vehicle speed range applied by the second driving assistance system.
  • the first driving assistance system is the aforementioned TJA system (the first applied speed range is 0km/h-60km/h), and the second driving assistance system is the aforementioned ACC system (the second applied speed range is 65km/h-120km/h).
  • the first driving assistance system is the aforementioned TJA system
  • the second driving assistance system is the aforementioned ACC system as an example for description.
  • FIG. 12 is another flow chart for controlling the first vehicle provided by an embodiment of the present application. Specifically, the specific process of controlling the first vehicle by the first vehicle in Mode 8 includes:
  • S1210 The first vehicle obtains information of the second vehicle.
  • the information of the second vehicle includes location information of the second vehicle.
  • S1220 The first vehicle calculates TI#4(t).
  • S1230 The first vehicle determines whether TI#4(t) is greater than a second preset threshold.
  • TI#4(t) is a value less than or equal to the second preset threshold.
  • the first driving assistance system of the first vehicle controls the deceleration of the first vehicle.
  • the process shown in Figure 12 also includes: S1240, TJA maintains an active state.
  • TJA controls the first vehicle to decelerate.
  • the updated information of the second vehicle is obtained, and based on the obtained updated information of the second vehicle, it is judged whether a collision will occur, and based on the judgment result Control the first vehicle. If the risk of collision is continuously determined based on the determination result, the TJA can control the first vehicle to decelerate until the speed of the first vehicle is 0km/h.
  • the first vehicle speed range applied by the first driving assistance system when the first vehicle speed range applied by the first driving assistance system does not include 0km/h.
  • the first vehicle speed range applied by the first driving assistance system is 10km/h-60km/h. If the speed of the first vehicle reaches 10km/h, the risk of collision may still occur based on TI#4(t) judgment.
  • the process shown in FIG. 12 also includes S1250, judging whether the vehicle speed of the first vehicle reaches the lower limit of the first vehicle speed range. When the speed of the first vehicle reaches the lower limit of the first speed range, the first vehicle judges that there is a risk of collision based on TI#4(t), the first driving assistance system exits the running state, and the first vehicle is based on the TI#4(t). #4(t) Control the first vehicle to continue to decelerate until the speed of the first vehicle is 0km/h.
  • the information of the second vehicle involved in the above-mentioned mode five to mode eight may include other information in addition to the above-mentioned position information of the second vehicle, for example, also include the speed information of the second vehicle and/or the second vehicle. The size information of the vehicle. The information of the second vehicle will not be described in detail here.
  • the mode 1 to mode 4 can also calculate TI and control based on TI(t)
  • the first vehicle is similar to Mode 5-Mode 8 and will not be repeated here.
  • the first vehicle in this application can also control the steering of the first vehicle based on the above-mentioned first parameters.
  • the driving lane of the first vehicle can be changed by controlling the steering of the first vehicle to avoid the collision. Since this application mainly relates to how to improve the continuity of switching between different driving assistance systems and how to increase the performance of automatic driving, how to avoid collisions will not be repeated here.
  • the first vehicle controls the first vehicle based on the first parameter in accordance with the manner one to the eighth manner shown in FIG. 3(b).
  • the first vehicle can accelerate to avoid the risk.
  • the size of the sequence numbers of the foregoing processes does not imply the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not constitute any limitation to the implementation process of the embodiments of this application. . And it may not be necessary to perform all operations in the foregoing method embodiments.
  • FIG. 13 is a structural block diagram of a device 1300 for controlling a vehicle provided by the present application.
  • the apparatus 1300 includes an acquiring unit 1310 and a processing unit 1320.
  • the acquiring unit 1310 is configured to acquire first information of moving objects near the first vehicle;
  • the processing unit 1320 is configured to determine a first parameter based on the first information
  • the processing unit 1320 is further configured to terminate the activation state of a driving assistance system currently active in the at least one driving assistance system according to the first parameter, and to set the first vehicle to operate in the at least one speed range according to the first parameter Outside the first speed.
  • the obtaining unit 1310 is further configured to obtain the updated first information
  • the processing unit 1320 is further configured to update the first parameter according to the updated first information
  • the processing unit 1320 is further configured to set the first vehicle to run at a second vehicle speed within the at least one vehicle speed range according to the updated first parameter;
  • the processing unit 1320 is further configured to activate one of the at least one driving assistance system according to the updated first parameter.
  • the acquiring unit 1310 includes a receiving unit or a measuring unit;
  • the acquiring unit 1310 acquiring first information of a moving object near the first vehicle includes:
  • the receiving unit is configured to receive the first information from the moving object; or, the measuring unit is configured to obtain the first information of the moving object through measurement.
  • the processing unit 1320 terminating the activation state of a driving assistance system currently in the active state of the at least one driving assistance system according to the first parameter includes:
  • the processing unit 1320 determines that the required driving speed range has no intersection with the vehicle speed range corresponding to the activation state of the driving assistance system in the activated state;
  • the processing unit 1320 terminates the activation state of the driving assistance system in the activated state.
  • the processing unit 1320 setting the first vehicle to travel at a first vehicle speed outside the at least one vehicle speed range according to the first parameter includes: the processing unit 1320 setting the first vehicle to travel at the required travel speed range Within the first speed.
  • the first parameter includes a driving speed range that the first vehicle should have when there is no risk of collision between the first vehicle and the moving object
  • the processing unit 1320 sets the first vehicle according to the updated first parameter Driving at a second vehicle speed within the at least one vehicle speed range includes:
  • the processing unit 1320 determines that the required driving speed range and the at least one vehicle speed range have an intersection
  • the processing unit 1320 sets the second vehicle speed to be within the intersection of the required travel speed range and the at least one vehicle speed range.
  • the processing unit 1320 activating one of the at least one driving assistance system according to the updated first parameter includes:
  • the processing unit 1320 activates one driving assistance system in the at least one driving assistance system, and the vehicle speed range corresponding to the activation state of the one driving assistance system includes the second vehicle speed.
  • the first vehicle is configured with at least one driving assistance system
  • the activation state of the at least one driving assistance system corresponds to at least one vehicle speed range including: the first vehicle is configured with a first driving assistance system and a second driving assistance system , The activation state of the first driving assistance system corresponds to a first vehicle speed range, the activation state of the second driving assistance system corresponds to a second vehicle speed range, and the first vehicle speed range and the second vehicle speed range have no intersection;
  • the processing unit 1320 terminating the activation state of a driving assistance system currently in the active state of the at least one driving assistance system according to the first parameter includes:
  • the processing unit 1320 terminates the activation state of the first driving assistance system that is currently active according to the first parameter
  • the processing unit 1320 activating one of the at least one driving assistance system according to the updated first parameter includes:
  • the processing unit 1320 activates the first driving assistance system or the second driving assistance system according to the updated first parameter.
  • the device 1300 corresponds to the execution subject of the method embodiment shown in FIGS. 3-12.
  • the device 1300 may be the first vehicle in the method embodiment, or the chip, circuit, component, system, or internal chip of the first vehicle in the method embodiment.
  • the functional module can also be other devices in the Internet of Vehicles (such as a drive test unit RSU or an application server).
  • the corresponding units of the device 1300 are used to execute corresponding steps in the method embodiments shown in FIGS. 3-12.
  • the obtaining unit 1310 in the device 1300 is configured to execute steps related to obtaining corresponding to the first vehicle in the method embodiment. For example, perform step S310a of obtaining first information in FIG. 3(a), perform step S350a of obtaining updated first information in FIG. 3(a), perform step S310b of obtaining first information in FIG. 3(b), Step S350b of obtaining the updated first information in FIG. 3(b) is performed, and the steps of obtaining the information of the second vehicle in FIGS. 5-12 are performed.
  • the processing unit 1320 in the device 1300 is configured to execute the steps related to the processing corresponding to the first vehicle in the method embodiment. For example, execute step S320a in Figure 3(a) to determine the first parameter, execute step S330a in Figure 3(a) to terminate the first driving assistance system, execute Figure 3(a) to set the first vehicle to travel at the first speed Step S330a of Figure 3(a), step S360a of the first parameter after confirming the update, step S370a of Figure 3(a) to set the first vehicle to travel at the second speed, and perform step S370a of Figure 3(a).
  • Step S380a of activating the first driving assistance system step S320b of determining the first parameter in Figure 3(b), step S330b of terminating the first driving assistance system in Figure 3(b), and setting in Figure 3(b) Step S330b in which the first vehicle travels at the first speed, execute step S360b in Figure 3(b) to confirm the updated first parameter, execute step S370b in Figure 3(b) to set the first vehicle to travel at the second speed, Perform step S380b of activating the second driving assistance system in Figure 3(b), perform the steps of calculating TTC in Figures 4-8, and perform the steps of judging TTC and 0 and TTC and the first threshold in Figure 4-8. Perform step S330a of reactivating the first driving assistance system in FIG. 3(a), perform step S330b of controlling the first vehicle in FIG. 3(b), and perform the steps of controlling the first vehicle in FIGS. 4-8.
  • the software or firmware includes but is not limited to computer program instructions or codes, and can be executed by a hardware processor.
  • the hardware includes, but is not limited to, various integrated circuits, such as a central processing unit (CPU), a digital signal processor (DSP), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • FIG. 14 is a structural block diagram of a first vehicle 1400 applicable to an embodiment of the present application.
  • the first vehicle 1400 can be applied to the system shown in FIG. 1.
  • FIG. 14 only shows the main components of the first vehicle.
  • the first vehicle 1400 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the memory stores computer program instructions
  • the processor runs the computer program instructions to execute the method of controlling the vehicle described in the method embodiments shown in FIG. 3 to FIG. 12, and the antenna and the input/output device can be used to obtain the first information
  • the control circuit can be used to control the power unit of the vehicle to make the vehicle run at the speed set by the processor.
  • FIG. 14 only shows a memory and a processor. In the actual first vehicle, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a first vehicle 1500 applicable to an embodiment of the present application.
  • the first vehicle 1500 can be applied to the system shown in FIG. 1.
  • FIG. 15 only shows the main components of the first vehicle.
  • the first vehicle 1500 includes a processor 1510, a memory 1520, and a sensor 1530.
  • the memory 1520 stores computer program instructions
  • the processor 1510 runs the computer program instructions to execute the method of controlling the vehicle described in the method embodiments shown in FIGS. 3-12
  • the sensor 1530 may be used to obtain the first information.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium. When the instructions are run on a computer, the device for controlling a vehicle executes the foregoing as shown in Figs. 3-12. Steps in the method.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the device for controlling a vehicle executes the steps in the method shown in FIGS. 3-12.
  • the application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the first vehicle in the method for controlling a vehicle provided in the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the above-mentioned chip can also be replaced with a chip system, which will not be repeated here.
  • the aforementioned processors include, but are not limited to, various types of CPUs, DSPs, microcontrollers, microprocessors or artificial intelligence processors.
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed system, device, and method can be implemented in other ways without exceeding the scope of this application.
  • the above-described embodiments are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. .
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the described systems, devices and methods, and schematic diagrams of different embodiments can be combined or integrated with other systems, modules, technologies, or methods without departing from the scope of the present application.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electronic, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种控制车辆的方法和装置。该控制车辆的方法应用于配置有至少一个驾驶辅助系统的第一车辆,该至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,该方法包括:获取第一车辆附近的移动物体的第一信息,并基于该第一信息确定第一参数,进一步地基于该第一参数终止当前处于激活状态的某个驾驶辅助系统,并使得第一车辆以上述的至少一个车速范围之外的第一车速行驶。所述控制车辆的方法能够在驾驶环境所要求的车速不在驾驶辅助系统对应的车速范围内的情况下,解决要求驾驶员接管造成的系统驾驶不连续的问题,从而提高车辆自动驾驶的安全性能和用户体验。

Description

控制车辆的方法和装置
本申请要求于2020年2月25日提交中国专利局、申请号为202010116095.9、申请名称为“控制车辆的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能驾驶技术领域,并且更具体地,涉及一种控制车辆的方法和装置。
背景技术
随着社会的不断发展,汽车的普及程度也越来越高,由汽车所引起的交通拥堵、道路安全和环境污染等问题日益严峻。为了解决这些问题提出智能网联汽车,智能网联汽车作为汽车智能化和网联化发展的高级形态,有助于提升道路交通安全,实现安全、高效和绿色出行。
其中,智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车联网(vehicle to everything,V2X)。智能网联汽车的发展方向是融合自动驾驶技术和网联通信技术,发挥出两者的最大技术优势。自动驾驶技术辅助驾驶员执行驾驶任务或主动避免/减轻碰撞危害的各类系统的总称,比如自适应巡航控制(adaptive cruise control,ACC)系统、交通拥堵辅助(traffic jam assist,TJA)系统等。
驾驶辅助系统有对应运行车速范围,不同的驾驶辅助系统对应的车速范围可能不同。一旦车速超过某个驾驶辅助系统对应的车速范围,则该驾驶辅助系统将去激活,退出对车辆的控制。出于安全性或其他考虑,当驾驶环境所要求的车速不在所述驾驶辅助系统对应的车速范围内,如果所述驾驶辅助系统仍处于激活状态并控制车辆行驶速度保持在所述对应的车速范围内,则会导致安全隐患;如果此时驾驶员接管驾驶任务,这会影响到车辆自动驾驶的连续性,用户体验差。
发明内容
本申请提供一种控制车辆的方法,应用在智能驾驶技术领域,以期提高车辆自动驾驶的安全性能和用户体验。
第一方面,提供了一种控制车辆的方法,该控制车辆的方法可以由第一车辆执行,或者,也可以由设置于第一车辆中的芯片、电路、部件、系统或移动终端执行,还可以由车联网中的其他设备(例如路测单元RSU或应用服务器)执行,本申请对此不作限定。该控制车辆的方法应用于第一车辆,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,该方法包括:
获取该第一车辆附近的移动物体的第一信息;基于该第一信息确定第一参数;根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活 状态;进一步地,根据该第一参数设置该第一车辆以该至少一个车速范围之外的第一车速行驶。
需要说明的是,上述的至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围可以理解为:某个驾驶辅助系统处于激活状态时,第一车辆处于该能够使得该驾驶辅助系统激活的车速范围;当某个驾驶辅助系统处于激活状态时,该驾驶辅助系统控制配置有该驾驶辅助系统的第一车辆的行驶决策和行驶动作。
本申请实施例中所涉及的某个驾驶辅助系统处于激活状态指的是:配置有该驾驶辅助系统的车辆处于该驾驶辅助系统的自动控制,可以无需驾驶员介入控制车辆,也可以称为该驾驶辅助系统处于工作状态或者运行状态。容易理解的是,驾驶辅助系统不对配置有该驾驶辅助系统的车辆进行控制时,可以称为该驾驶辅助系统处于去激活状态、非激活状态、非工作状态或非运行状态。
上述第一车辆附近的移动物体可以指的是第一车辆前方的移动物体,或者,第一车辆附近的移动物体还可以指的是第一车辆后方的移动物体,或者,第一车辆附近的移动物体还可以指的是第一车辆侧方的移动物体。另外,第一车辆附近的移动物体可以是一个或者多个,本申请实施例中对于第一车辆附近的移动物体的个数并不限定,例如,当第一车辆附近的移动物体为多个的情况下,第一车辆可以分别获取多个移动物体的第一信息。
示例性地,上述的移动物体可能的形式包括:行人、车辆、或其他可移动的物体。考虑到本申请实施例应用的场景包括车辆与车辆(vehicle to vehicle,V2V)之间的通信,上述的第一车辆附近的移动物体可以指的是第一车辆附近的其他车辆(为了区分,称为第二车辆)。
本申请实施例提供的控制车辆的方法,当第一车辆配置了至少一个驾驶辅助系统的情况下,根据获取到的第一车辆附近的移动物体的第一信息确定的第一参数,终止当前处于激活状态的一个驾驶辅助系统的激活状态,并基于该第一参数控制第一车辆行驶在已配置的至少一个驾驶辅助系统应用的车速范围之外的车速。从而在驾驶环境所要求的安全车速不在驾驶辅助系统对应的车速范围内的情况下,第一车辆仍然可以实现安全的自动驾驶,无需驾驶员的介入,提高了车辆自动驾驶的安全性能和用户体验。
上述的基于第一信息确定第一参数可以是,基于第一信息直接确定第一参数,还可以是基于第一信息间接确定第一参数。例如,基于第一信息直接确定第一参数可以是基于获取的第一信息计算得到该第一参数,或者,还可以是基于获取的第一信息通过查表的方式得到该第一参数;还例如,基于第一信息间接确定第一参数可以是基于获取的第一信息计算和/或查表得到第二参数,第二参数用于确定该第一参数。
上述根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态,可以是根据所述第一参数直接地终止所述激活状态,也可以是根据所述第一参数间接地终止所述激活状态,例如根据利用所述第一参数进行其他数据处理后得到的结果终止所述激活状态。
上述根据所述第一参数设置所述第一车辆以所述至少一个车速范围之外的第一车速行驶,可以是根据所述第一参数直接地设置所述第一车速,也可以是根据所述第一参数间接地设置所述第一车速,例如根据利用所述第一参数进行其他数据处理后得到的结果设置所述第一车速。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取更新后的第一信息;根据该更新后的该第一信息更新该第一参数,并且根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶;从而根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统。
进一步地,在驾驶环境所要求的车速不在当前驾驶辅助系统(例如,第一驾驶辅助系统)对应的车速范围内的情况下,可以基于第一参数控制第一车辆的车速,使得该第一车辆的车速达到已配置的至少一个驾驶辅助系统中另一个驾驶辅助系统(例如,第二驾驶辅助系统)激活状态下应用的车速范围,激活另一个驾驶辅助系统,使得第一车辆处于该另一个驾驶辅助系统的控制下,提高车辆自动驾驶的安全性能。
结合第一方面,在第一方面的某些实现方式中,获取该第一车辆附近的移动物体第一信息包括:第一车辆通过通信单元从该移动物体接收该第一信息;或者通过传感器测量得到该移动物体的第一信息。
上述的获取第一信息可以通过第一车辆上设置的通信单元,接收移动物体发出的第一信息,还可以通过第一车辆上设置的传感器获取移动物体的第一信息。提出不同的获取第一信息的方式,增加方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,上述的第一参数包括使第一车辆与移动物体无碰撞风险时第一车辆应具备的行驶速度范围。
第一参数可以为第一车辆与移动物体无碰撞风险时第一车辆应具备的行驶速度范围,从而基于第一参数设置第一车辆的行驶速度可以避免第一车辆和移动物体之间发生碰撞,提高自动驾驶的安全性。
结合第一方面,在第一方面的某些实现方式中,上述的第一参数包括用于确定第一车辆与移动物体之间是否存在碰撞风险的参数;当第一车辆与移动物体无碰撞风险时第一车辆行驶的车速范围包括应具备的行驶速度范围。
第一参数可以用于判断第一车辆与移动物体之间是否存在碰撞风险,并且当第一车辆与移动物体无碰撞风险时第一车辆以应具备的行驶速度范围之内的车速行驶,从而基于第一参数设置第一车辆的行驶速度可以避免第一车辆和移动物体之间发生碰撞,提高自动驾驶的安全性。
结合第一方面,在第一方面的某些实现方式中,该第一信息包括该移动物体的速度信息和该移动物体的位置信息;该第一参数包括该第一车辆和该移动物体的预计碰撞时间TTC;基于该第一信息确定该第一参数包括:基于该移动物体的速度和该第一车辆的车速计算该第一车辆和该移动物体的相对速度;基于该移动物体的位置和该第一车辆的位置计算该第一车辆和该移动物体的车间距离;基于该车辆距离和该相对速度计算该TTC。
当TTC为非正数或该TTC大于第一预设阈值时,第一车辆确定第一车辆与移动物体无碰撞风险;
上述的第一预设阈值可以是第一车辆与该移动物体发生碰撞风险的该TTC的取值,即上述的第一预设阈值可以用于判断第一车辆与移动物体发生碰撞的可能。
或者,
该第一信息包括该移动物体的位置信息;该第一参数包括该第一车辆和该移动物体之间的车间时距TI;基于该第一信息计算该第一参数包括:基于该移动物体的位置息和该第 一车辆的位置计算该第一车辆和该第二车辆的车间距离;基于该车辆距离和该第一车辆的速度计算该TI。
当该TI大于第二预设阈值时,第一车辆确定第一车辆与移动物体无碰撞风险;
上述的第二预设阈值可以是第一车辆与该移动物体发生碰撞风险的TI的取值,即上述的第二预设阈值可以用于判断第一车辆与移动物体发生碰撞的可能。
本申请实施例中提供了多种基于第一参数判断第一车辆与移动物体是否有碰撞风险的方案,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:第一车辆确定该应具备的行驶速度范围与该处于激活状态的一个驾驶辅助系统应用的车速范围无交集;第一车辆终止该处于激活状态的一个驾驶辅助系统的激活状态。
本申请实施例中,可以根据应具备的行驶速度范围和处于激活状态的第一驾驶辅助系统应用的车速范围之间是否存在交集,确定是否终止该第一驾驶辅助系统的激活状态,提供终止某个驾驶辅助系统的激活状态的具体实现方式。
结合第一方面,在第一方面的某些实现方式中,所述第一车速在所述应具备的行驶速度范围之内,以满足驾驶环境所要求的车速。
结合第一方面,在第一方面的某些实现方式中,该第一参数包括使该第一车辆与该移动物体无碰撞风险时该第一车辆应具备的行驶速度范围,根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶包括:确定该应具备的行驶速度范围与该至少一个车速范围有交集;根据更新后的该第一参数设置该第一车辆以该应具备的行驶速度范围与该至少一个车速范围的交集之内的该第二车速行驶。
本申请实施例中,可以根据应具备的行驶速度范围和第一车辆配置的至少一个驾驶辅助系统应用的至少一个车速范围之间的交集,确定设置第一车辆的行驶车速。使得第一车辆的行驶车速在应具备的行驶速度范围和至少一个车速范围之间的交集之内,保证第一车辆可以更长时间地在配置的驾驶辅助系统控制下自动驾驶。
结合第一方面,在第一方面的某些实现方式中,根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:激活该至少一个驾驶辅助系统中的一个驾驶辅助系统,该一个驾驶辅助系统的激活状态所对应的车速范围包括该第二车速。
具体地,激活了上述的第一车辆配置的至少一个驾驶辅助系统中的某个驾驶辅助系统(例如,第二驾驶辅助系统),可以是理解为第一车辆配置的该驾驶辅助系统处于激活状态时应用的车速范围包括了上述的第二车速。
结合第一方面,在第一方面的某些实现方式中,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统的激活状态处于激活状态时应用于至少一个车速范围包括:该第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统,该第一驾驶辅助系统的激活状态处于激活状态时应用于第一车速范围,该第二驾驶辅助系统的激活状态处于激活状态时应用于第二车速范围,并且该第一车速范围和该第二车速范围无交集;该根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:根据该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态;根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:根据更新后的 该第一参数激活该第一驾驶辅助系统或者该第二驾驶辅助系统。
本申请实施例提供的控制车辆的方法,当第一车辆配置了第一驾驶辅助系统和第二驾驶辅助系统,且第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集的情况下:车速达到第一车速范围的上限或者下限时,第一车辆能够基于获得的第一信息确定第一参数,并且基于该第一参数判断并继续控制第一车辆进行加速或者减速,使得第一车辆的车速超出第一车速范围并进一步达到第二车速范围之内,从而激活第二驾驶辅助系统。在该过程中第一车辆能够在第一驾驶辅助系统退出的情况下,自动控制第一车辆的速度并且激活第二驾驶辅助系统;或者,
车速达到第一车速范围的上限或者下限时,第一车辆能够基于获得的第一信息确定第一参数,并且基于该第一参数判断并继续控制第一车辆的车速,使得第一车辆的车速超出第一车速范围,并在后续的自动控制过程中,如果驾驶环境允许的安全车速在第一车速范围之内,则控制车速回到第一车速范围之内,从而重新激活第一驾驶辅助系统。在该过程中第一车辆能够在第一驾驶辅助系统退出的情况下,自动控制第一车辆的速度,并在驾驶环境允许时重新激活第一驾驶辅助系统。
上述激活第一驾驶辅助系统或者该第二驾驶辅助系统无需驾驶员接管,提高第一车辆自动驾驶连续性。
结合第一方面,在第一方面的某些实现方式中,在该第一车辆的车速达到该第一车速范围的上限或者下限时,基于该第一参数控制该第一车辆的车速,使得该至少一个驾驶辅助系统中的一个驾驶辅助系统处于激活状态包括:
在该第一车辆的车速达到该第一车速范围的上限时,基于该第一参数控制该第一车辆进行加速,终止第一驾驶辅助系统的激活状态,再基于更新后的第一参数控制该第一车辆进行减速,使得该第一驾驶辅助系统重新处于激活状态;或者,
在该第一车辆的车速达到该第一车速范围的下限时,基于该第一参数控制该第一车辆进行减速,终止第一驾驶辅助系统的激活状态,再基于更新后的第一参数控制该第一车辆进行加速,使得该第一驾驶辅助系统重新处于激活状态。
本申请实施例中,当第一车辆配置有上述的第一驾驶辅助系统的情况下,当第一驾驶辅助系统退出之后,可以基于第一参数控制第一车辆加速再减速或控制第一车辆减速再加速,使得第一车辆回到第一驾驶辅助系统控制的下,能够提高驾驶辅助系统控制车辆的时间,从而提高车辆自动驾驶的性能。
结合第一方面,在第一方面的某些实现方式中,该移动物体包括第二车辆。
作为一种可能的实现方式,上述的第一车辆前方的移动物体,可以是第一车辆前方的第二车辆,该第一信息包括该第二车辆的位置和速度。
结合第一方面,在第一方面的某些实现方式中,该第一信息还包括该移动物体的类型信息。
上述第一信息还可以包括移动物体的类型信息,例如,车辆的车型、尺寸等。
第二方面,提供一种控制车辆的装置,该控制车辆的装置应用于第一车辆,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,该控制车辆的装置包括处理器,用于运行计算机程序指令以实现上述第一方面以及第一方面的任一可能的实现方式描述的方法。
可选地,该控制车辆的装置还可以包括存储器,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面以及第一方面的任一可能的实现方式描述的方法。
可选地,该控制车辆的装置还可以包括通信接口,该通信接口用于该控制车辆的装置与其它设备进行通信。当该控制车辆的装置为网络设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该控制车辆的装置包括:处理器和通信接口,该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第一方面以及第一方面的任一可能的实现方式描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该控制车辆的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第三方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,使得该控制车辆的装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第四方面,提供一种包含指令的计算机程序产品,该指令被处理器执行时使得该控制车辆的装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第五方面,提供一种控制车辆的装置,该控制车辆的装置应用于第一车辆,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,该控制车辆的装置包括:
获取单元,用于获取该第一车辆附近的移动物体的第一信息;处理单元,用于基于该第一信息确定第一参数;该处理单元还用于根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态;该处理单元还用于根据该第一参数设置该第一车辆以该至少一个车速范围之外的第一车速行驶。
结合第五方面,在第五方面的某些实现方式中,该获取单元,还用于获取更新后的该第一信息;该处理单元还用于根据该更新后的该第一信息更新该第一参数;该处理单元还用于根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶;该处理单元还用于根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统。
结合第五方面,在第五方面的某些实现方式中,该移动物体包括第二车辆,该第一信息包括该第二车辆的位置、速度、尺寸或车型中的至少一项。
结合第五方面,在第五方面的某些实现方式中,该获取单元包括接收单元或测量单元;该接收单元,用于从该移动物体接收该第一信息;或者,该测量单元,用于测量得到该移动物体的第一信息。
结合第五方面,在第五方面的某些实现方式中,该第一参数包括使该第一车辆与该移动物体无碰撞风险时该第一车辆应具备的行驶速度范围。
结合第五方面,在第五方面的某些实现方式中,该处理单元根据该第一参数终止该至 少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:该处理单元确定该应具备的行驶速度范围与该处于激活状态的一个驾驶辅助系统的激活状态对应的车速范围无交集;该处理单元终止该处于激活状态的一个驾驶辅助系统的激活状态。
结合第五方面,在第五方面的某些实现方式中,所述第一车速在所述应具备的行驶速度范围之内。
结合第五方面,在第五方面的某些实现方式中,该第一参数包括使该第一车辆与该移动物体无碰撞风险时该第一车辆应具备的行驶速度范围,该处理单元根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶包括:该处理单元确定该应具备的行驶速度范围与该至少一个车速范围有交集;该处理单元根据更新后的该第一参数设置该第一车辆以该应具备的行驶速度范围与该至少一个车速范围的交集之内的该第二车速行驶。
结合第五方面,在第五方面的某些实现方式中,该处理单元根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:该处理单元激活该至少一个驾驶辅助系统中的一个驾驶辅助系统,该一个驾驶辅助系统的激活状态所对应的车速范围包括该第二车速。
结合第五方面,在第五方面的某些实现方式中,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围包括:该第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统,该第一驾驶辅助系统处于激活状态时应用于第一车速范围,该第二驾驶辅助系统处于激活状态时应用于第二车速范围,并且该第一车速范围和该第二车速范围无交集;该处理单元根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:该处理单元根据该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态;该处理单元根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:该处理单元根据更新后的该第一参数激活该第一驾驶辅助系统或者该第二驾驶辅助系统。
附图说明
图1是本申请实施例所应用的智能驾驶场景的示意图。
图2是本申请实施例提供的一种车辆运动方向示意图。
图3是本申请实施例提供的控制车辆的方法的流程图。
图4是本申请实施例提供的计算第一参数的场景示意图。
图5是本申请实施例提供的一种控制第一车辆的方法的流程图。
图6是本申请实施例提供的另一种控制第一车辆的方法的流程图。
图7是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图8是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图9是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图10是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图11是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图12是本申请实施例提供的又一种控制第一车辆的方法的流程图。
图13是本申请提供的控制车辆的装置1300的结构框图。
图14是适用于本申请实施例的第一车辆1400的结构框图。
图15是适用于本申请实施例的第一车辆1500的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括。例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例的技术方案可以应用于V2X通信系统。随着社会的不断发展,汽车的普及程度也越来越高,驾驶出行在给人们的出行带来便利的同时,也给人类社会带来一定负面影响,车辆数量迅速增加引起了城市交通拥堵、交通事故频发、环境质量变差等一系列问题。从人身安全、交通出行效率、环境保护以及经济效应等多方面来看,都需要一套完善的智能交通系统(intelligent transportation system,ITS)。而当前,ITS也理所当然的成为了全球关注热点。
目前,车辆可以通过车辆与车辆(vehicle to vehicle,V2V)、车辆与路边基础设施(vehicle to infrastructure,V2I)、车辆与行人之间(vehicle to pedestrian,V2P)或者车辆与网络(vehicle to network,V2N)通信方式,及时获取路况信息或接收服务信息,这些通信方式可以统称为V2X通信(X代表任何事物)。
图1是本申请实施例所应用的智能驾驶场景的示意图。所述场景中包括V2V通信、V2P通信以及V2I/N通信。如图1所示,车辆之间通过V2V通信。车辆可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况做出提前预判进而做出避让;车辆与路侧基础设施通过V2I通信,路边基础设施,可以为车辆提供各类服务信息和数据网络的接入。其中,不停车收费、车内娱乐等功能都极大的提高了交通智能化。路边基础设施,例如,路侧单元(road side unit,RSU)包括两种类型:一种是终端设备类型的RSU。由于RSU分布在路边,该终端设备类型的RSU处于非移动状态,不需要考虑移动性;另一种是网络设备类型的RSU。该网络设备类型的RSU可以给与网络设备通信的车辆提供定时同步及资源调度。车辆与人(例如,车辆与行人、车辆与骑自行车的人、车辆与司机或车辆与乘客)通过V2P通信;车辆与网络通过V2N通信,V2N可以与上述的V2I统称为V2I/N。
应理解,图1只是一种示例性的示意图,不对本申请构成任何限定。例如,车辆数量、 行人数量以及基础设施的数量可以为多个,并不是图1中所示的数量。
图1介绍了本申请实施例能够应用的场景,为了便于对本申请技术方案的理解,下面简单介绍本申请技术方案中涉及的几个基本概念。
1、智能网联汽车。
智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现V2X智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。
智能网联汽车的发展方向是融合自动驾驶技术和网联通信技术,发挥出两者的最大技术优势。自动驾驶技术从低级别的先进驾驶辅助系统逐步演进到高级别自动驾驶系统,其中先进驾驶辅助系统是指利用安装在车辆上的传感、通信、决策及执行等装置,实时监测驾驶员、车辆及其行驶环境,并通过信息和/或运动控制等方式辅助驾驶员执行驾驶任务或主动避免/减轻碰撞危害的各类系统的总称,比如ACC系统。网联通信技术以最常见的车与车之间通信,车辆通过V2V通信,可以将自车的车速、行驶方向、具体位置、车辆信息(轴距,车辆尺寸)等信息广播给周围车辆,使得周围车辆的自动驾驶系统可以依据V2V信息进行相应的驾驶动作决策,比如加速、减速、变道等。
2、自巡航系统。
汽车巡航是指汽车以一定的速度匀速行驶,因此汽车巡航控制系统(cruise control system,CCS)又称为恒速控制系统。ACC系统是基于巡航控制技术发展而来的一种智能化的车速自动控制系统。由于可以视交通情况自动采取适宜的措施(例如,加速、减速、制动),使得自适应巡航系统能很好地适应路况复杂的道路行驶。
ACC系统有其固定的车速运行范围,一般为65km/h-120km/h。在该车速运行范围内,ACC系统通过持续控制本车辆发动机、传动系统或制动系统等实现对车辆纵向运动的控制(例如,加速、减速或匀速行驶),与前车保持适当的距离以减轻驾驶员的劳动强度,保障行车安全;在该车速运行范围之外(例如,在车速小于65km/h或大于120km/h)则ACC系统自动退出并且无法激活。
3、交通拥堵驾驶辅助系统。
TJA系统也有其固定的车速运行范围,一般为0km/h-60km/h。在该车速运行范围内,TJA系统持续对车辆横向(转向系统)和纵向运动进行控制,使本车保持在同一车道内并跟随前车行驶,以减轻驾驶员驾驶负担;在该车速运行范围之外(例如,在车速超出60km/h)TJA系统自动退出并且无法激活。
上述ACC系统和TJA系统只是举例说明了目前车辆可能配置的驾驶辅助系统,对本申请的保护范围不构成任何限定,车辆还可以配置其他的驾驶辅助系统,已达到辅助驾驶员驾驶的目的。
应理解,每个驾驶辅助系统有其固定的车速运行范围,每辆车的驾驶辅助系统对应的车速运行范围取决于该车辆生产厂商所采用的传感器性能(例如,传感器的探测距离、对目标识别的分辨率等)决定。
由上述可知,每个驾驶辅助系统都有自身固定的车速运行范围,一旦车速不属于其对应的车速运行范围,则该驾驶辅助系统将退出对车辆的横向和/或者纵向控制;或者车速 与当前交通环境需要的车速不匹配时,该驾驶辅助系统也无法提供较高的辅助服务。
例如,交通拥堵状况缓解,前车辆(被自车跟随的车辆)已经以高于60km/h的车速拉开与自车的距离,但自车正在运行的TJA系统依然保持60km/h的车速行驶,容易造成安全隐患(被追尾)。
进一步地,如果一个车辆配备多种驾驶辅助系统,该车辆配置的不同的驾驶辅助系统中对车速范围的设定可能会出现不连续的情况。例如,该车辆同时配备了上述ACC系统和TJA系统,其中,TJA系统的最高运行车速是60km/h,但ACC系统最低激活车速是65km/h,ACC系统和TJA系统之间无法连续运行,在环路或者高速公路行驶时,会频繁退出驾驶辅助系统,让驾驶员接管驾驶任务,这会影响到车辆自动驾驶的连续性,体验性差。
另外,如果一个车辆配置了一种驾驶辅助系统,当该车辆的车速达到该驾驶辅助系统应用的车速范围的上限或者下限时,是否需要进一步加速或减速,如何进一步加速或减速需要驾驶员判断和操作,也会影响到车辆自动驾驶的性能。例如,该车辆配备了上述TJA系统,其中,TJA系统的最高运行车速是60km/h,当车辆的车速到达TJA系统的最高运行车速是60km/h时,车辆是否能够进一步加速,由驾驶员基于车辆周围环境确定,车辆不能自行判断和控制车辆的车速,影响到车辆自动驾驶的性能,体验性差。
为了解决上述驾驶辅助系统之间无法连续运行以及驾驶员接管车辆的问题,本申请提出一种控制车辆的方法,通过对不同驾驶辅助系统之间增加车速控制,使得不同驾驶辅助系统有效衔接,从而解决当超出某一驾驶辅助系统车速运行范围时要求驾驶员接管所造成的系统驾驶不连续的问题;以及在车辆的车速到达某个驾驶辅助系统应用的车速范围的上限或者下限时,车辆自行判断和控制车辆加速或减速,从而解决驾驶员接管车辆的问题。
下面结合附图详细介绍本申请实施例提供的控制车辆的方法。本申请提供的控制车辆的方法主要应用于配备至少一个驾驶辅助系统的车辆,该车辆具备V2V通信功能。另外,应理解本申请提供的控制车辆的方法可以应用于图1所示的场景中,该V2X场景中可以至少包含两个车辆。
车辆配置的驾驶辅助系统具备纵向和/或横向控制功能,其中,车辆横向运动控制是指对车辆进行沿Y轴(如图2中Y方向)实时、持续的车辆运动控制、车辆纵向运动控制是指对车辆进行沿X轴(如图2中X方向)实时、持续的车辆运动控制。图2是本申请实施例提供的一种车辆运动方向示意图。
作为一种可能的实现方式,下面图3(a)所示的实施例中涉及的第一车辆配置有第一驾驶辅助系统(例如,第一车辆配置有上述的ACC系统或TJA系统);
应理解,在可能以中本申请实施例中对于第一车辆具有一种驾驶辅助系统具体为哪种类型的驾驶辅助系统并不限制,可以为现有技术中已知的驾驶辅助系统也可以为车辆控制技术发展的未来提出的驾驶辅助系统。
该实现方式下,当驾驶环境所要求的车速不在所述第一驾驶辅助系统对应的第一车速范围内,可以控制第一车辆使得当前处于激活状态的第一驾驶辅助系统终止激活状态。进一步地,在该实现方式下,可以控制第一车辆以第一车速范围之外的车速行驶。
下面结合图3(a)详细说明在该实现方式下,如何控制第一车辆。图3是本申请实施例提供的一种控制车辆的方法的流程图。图3(a)涉及第一车辆和移动物体。
作为一种可能的实现方式,该移动物体可以是第一车辆附近的行人;
作为另一种可能的实现方式,该移动物体可以是第一车辆附近的第二车辆;
作为又一种可能的实现方式,该移动物体可以是第一车辆附近的其他可移动的物体。
应理解,本申请实施例中对于移动物体的具体形式并不限制,以及第一车辆附近的移动物体的数量也不限制(可以存在一个或者多个移动物体)。
本申请实施例中,第一车辆的附近可以理解为第一车辆的前方、后方或者侧方,具体方位本申请不做限制,以第一车辆能够获取到移动物体的相关信息为准。
为了便于理解,以及考虑到本申请提供的实施例大概率下应用的场景(V2V),下面实施例中以移动物体为第二车辆为例进行说明,即上述图3(a)涉及第一车辆和第二车辆。
还应理解,本申请以两辆车辆之间的信息交互为例进行说明的,两辆车辆以上的场景中的车辆控制方法可以与下述实施例提供的第一车辆的控制方法类似,本申请对于该控制车辆的方法的应用场景不赘述。
该控制车辆的方法至少包括以下部分步骤。
S310a,第一车辆获取第二车辆的第一信息。
本申请实施例中涉及的第一信息包括第一车辆的车速到达第一车速范围的上限或者下限时,第一车辆获取到的前方移动物体相关的信息;或者,
本申请实施例中第一车辆实时地获取前方移动物体相关的信息,不论是第一车辆的车速到达第一车速范围的上限或者下限之前,还是第一车辆的车速到达第一车速范围的上限或者下限时,第一车辆获取到的前方移动物体相关的信息都可以成为第一信息。
应理解,本申请实施例中并不限定第一车辆一定需要实时获取到前方移动物体的相关的信息,可以是在第一车辆的车速临近第一车速范围的上限或者下限时,第一车辆才开始获取前方移动物体的相关的信息,因为第一车辆的车速未到达第一车速范围的上限或者下限时,由第一驾驶辅助系统控制第一车辆即可。
为了结合现有车辆之间信息交互的设计,下面实施例描述中可以以第一车辆实时获取前方移动物体的相关的信息为例进行说明,但本申请对此不限定。
另外,下述实施例以移动物体为第二车辆为例进行说明,则上述的第一信息也可以称为第二车辆的信息。
作为一种可能的实现方式,第二车辆向第一车辆发送第二车辆的信息。例如,第一车辆和第二车辆均具备V2V通信功能,第一车辆和第二车辆通过V2V通信单元交互各自的信息。该实现方式可以理解为第二车辆向第一车辆发送第二车辆的信息,第一车辆中V2V通信单元接收该第二车辆的信息。
作为另一种可能的实现方式,第一车辆上设置的传感器获取第二车辆的信息。例如,该传感器可以是雷达,第一车辆可以通过雷达获取第二车辆的信息;还例如,该传感器可以是摄像头,第一车辆可以通过摄像头获取第二车辆的信息。该实现方式可以理解为第一车辆主动获取第二车辆的信息。
作为又一种可能的实现方式,第一车辆可以通过系统中其他的车辆获取第二车辆的信息。例如,系统中还存在第三车辆,第三车辆能够接收到第二车辆的信息,并将该第二车辆的信息转发给第一车辆。
应理解,上述的几种可能的实现方式,只是举例说明第一车辆获取第二车辆的信息的 一些可能的方式,对本申请的保护范围不构成任何的限定,第一车辆还可以通过其他的方式获取第二车辆的信息,这里不再赘述。
示例性地,在第一车辆获取到上述的第一信息时,第一车辆由第一驾驶辅助系统控制,可以理解为第一驾驶辅助系统处于激活状态。例如,第一车辆和第二车辆在行驶的过程中能够持续进行通信,在第一车辆接收到上述的第一信息时,第一车辆由ACC系统控制与第二车辆保持适当的距离以减轻驾驶员的劳动强度。
应理解,本申请实施例中所涉及的某个驾驶辅助系统处于激活状态指的是配置有该驾驶辅助系统的车辆处于该驾驶辅助系统的自动控制,无需驾驶员介入控制车辆。
第二车辆能够向第一车辆发送第二车辆的信息是因为该第二车辆具备V2V通信功能。可选地,该第一车辆也可以向第二车辆发送第一车辆的信息,本申请实施例主要以控制第一车辆为例进行说明,因此对第一车辆是否向第二车辆发送第一车辆相关的信息、如何向第二车辆发送第一车辆相关的信息并不限定。
可选地,本申请实施例中涉及的车辆具备V2V通信功能可以是在车辆上配备具有V2V通信功能的通信模块,该通信模块可以集成在V2X控制系统中,或者,该通信模块也可以集成在车辆进行车载信息交互的系统终端中(例如,T-BoX等车载设备中),可以参考目前具备V2V功能的车辆的设计,本申请对此不做限制。
具体来说,本申请中第二车辆中设置的通信模块用于向第一车辆发送(或者向其他车辆广播)第二车辆的相关信息(例如,车速、位置、车型信息等);第一车辆中设置的通信模块用于接收第二车辆发送的第二车辆的信息。
作为一种可能的实现方式,该第二车辆为第一车辆同车道的前方车辆;
作为另一种可能的实现方式,该第二车辆为即将变道至该第一车辆所在车道且位于该第一车辆前方的车辆。
作为又一种可能的实现方式,该第二车辆为即将变道至该第一车辆所在车道的相邻车道且位于该第一车辆前方的车辆。
应理解,本申请实施例中对于第一车辆和第二车辆之间的具体位置关系并不限定,第二车辆为第一车辆前方可能会发生碰撞风险的车辆或者不会发生碰撞风险的车辆。
进一步地,第一车辆获取到第一信息之后,能够基于该第一信息确定第一参数。则图3(a)所示的方法流程还包括S320a:第一车辆确定第一参数。
进一步地,第一车辆确定第一参数之后能够基于该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态,则图3(a)所示的方法流程还包括S330a:第一车辆终止第一驾驶辅助系统。
示例性地,第一车辆基于该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态包括:第一车辆基于该第一参数确定第一车辆可以具备的行驶速度范围与上述的第一车速范围之间无交集,则第一车辆可以终止处于激活状态的第一驾驶辅助系统,即第一驾驶辅助系统退出激活状态,处于非激活状态。其中,第一车辆可以具备的行驶速度范围表示第一车辆与第二车辆无碰撞风险的情况下第一车辆行驶的速度所属的速度范围。
在终止了上述的第一驾驶辅助系统之后,第一车辆能够根据第一参数设置第一车辆以第一车速范围之外的第一车速行驶,则图3(a)所示的方法流程还包括S340a:设置第一车辆以第一车速行驶。
进一步地,第一车辆根据第一参数设置第一车辆以第一车速范围之外的第一车速行驶包括:第一车辆根据第一参数设置第一车辆以可以具备的行驶速度范围内的车速行驶。
作为一种可能的实现方式,第一参数表示第一车辆与第二车辆无碰撞风险的情况下,第一车辆可以具备的行驶速度范围。在该实现方式下,第一车辆可以具备的行驶速度范围可以通过第一车辆与第二车辆之间是否存在碰撞风险确定,而第一车辆与第二车辆之间是否存在碰撞风险可以基于第一信息确定。
例如,第一驾驶辅助系统为前文所述的ACC系统,应用的第一车速范围为65km/h-120km/h。
当第一车辆的车速到达65km/h时,第一车辆基于第一信息确定要使得第一车辆与第二车辆之间无碰撞风险,第一车辆的行驶速度应该小于65km/h。可以理解为,第一车辆在第一车辆的车速到达65km/h时获取到第一信息,基于第一信息确定如果第一车辆以65km/h行驶,第一车辆与第二车辆可能发生碰撞,则第一车辆基于第一信息进一步判断第一车辆需继续减速行驶,使得第一车辆以低于65km/h的速度范围内的第一车速行驶,避免发生碰撞。在该情况下,第一车辆基于第一参数终止当前处于激活状态的ACC系统的激活状态,并且根据第一参数设置第一车辆以小于65km/h的车速行驶。
作为另一种可能的实现方式,第一参数包括用于确定第一车辆与移动物体之间是否存在碰撞风险的参数;当第一车辆与移动物体无碰撞风险时第一车辆行驶的车速范围包括应具备的行驶速度范围。
在该实现方式下,基于第一信息确定第一参数可以是第一车辆基于获取到的第一信息计算得到第一参数,或者,还可以是第一车辆基于获取到的第一信息通过查表得到第一参数。下面简单介绍如何基于第一信息计算得到第一参数。
具体地,基于第一信息中包括的第二车辆的信息不同,第一车辆计算得到的第一参数包括以下两种可能:
可能一:
第一信息中包括第二车辆的车速信息和第二车辆的位置信息,则第一参数包括第一车辆和第二车辆的预计碰撞时间(time to collision,TTC),应理解该TTC参数会随着时间变化而有所变化,即第一车辆是不间断地在计算TTC的,为了体现TTC随时间变化的性质,本申请中将参数TTC记为TTC(t)。
如图4所示,图4是本申请实施例提供的一种计算第一参数的场景示意图。具体地,基于如图4(a)所示的场景,第一车辆计算第一参数包括以下流程:
第一车辆基于第一信息中包括的第二车辆的车速信息获知第二车辆的车速。第一车辆基于第二车辆的车速以及第一车辆自身的车速计算第一车辆和第二车辆的相对车速(V1(t)-V2(t));
第一车辆还可以基于第一信息中包括的第二车辆的位置信息获知第二车辆的位置。第一车辆基于第二车辆的位置以及第一车辆自身的位置计算第一车辆和第二车辆之间的车间距离(X(t))。
第一车辆获得上述的第一车辆和第二车辆的相对车速以及第一车辆和第二车辆之间的车间距离之后,能够基于第一车辆和第二车辆的相对车速和第一车辆和第二车辆之间的车间距离计算上述的TTC(t):
TTC(t)=X(t)/V1(t)-V2(t)。
可能二:
第一信息中包括第二车辆的位置信息,则第一参数包括第一车辆和第二车辆的车间时距时间(time interval,TI),应理解该TI参数会随着时间变化而有所变化,即第一车辆是不间断地在计算TI的,为了体现TI随时间变化的性质,本申请中将参数TI记为TI(t)。具体地,基于如图4(b)所示的场景,第一车辆计算第一参数包括以下流程:
第一车辆还可以基于第一信息中包括的第二车辆的位置信息获知第二车辆的位置。第一车辆基于第二车辆的位置以及第一车辆自身的位置计算第一车辆和第二车辆之间的车间距离。
第一车辆获得上述的第一车辆和第二车辆之间的车间距离之后,能够基于第一车辆和第二车辆之间的车间距离(X(t))以及第一车辆自身的车速(V1(t))计算上述的TI(t):
TI(t)=V1(t)/X(t)。
应理解,上述可能一和/或可能二中第一信息中还可以包括其他的信息,上述描述只是表明当第一信息中包括第二车辆的位置信息和第二车辆的车速信息时,可以计算得到TTC(t)、当第二车辆的信息中包括第二车辆的位置信息时,可以计算得到TI(t),至于第二车辆的信息是否包括其他信息,或者,第一参数是否可以为其他形式本申请不做限定。例如,在可能一中第一参数也可以为TI(t);还例如,上述的第二车辆的信息中还可以包括第二车辆的车型信息(车辆尺寸等)。
应理解,当第一车辆以第一车速范围之外的第一车速行驶过程中,第一车辆能够获取更新后的第一信息,并基于更新后的第一信息确定更新后的第一参数。即图3(a)所示的方法流程还包括S350a:第一车辆获取更新后的第一信息;S360a:第一车辆确定更新后的第一参数。
示例性地,第一车辆确定更新后的第一参数之后,第一车辆根据更新后的第一参数设置第一车辆以第一车速范围之内的第二车速行驶,即图3(a)所示的方法流程还包括S370a:设置第一车辆以第二车速行驶;
第一车辆根据更新后的第一参数设置第一车辆以第一车速范围之内的第二车速行驶包括:
第一车辆确定应具备的行驶速度范围与第一车速范围有交集;
第一车辆设置第一车辆以应具备的行驶速度范围与第一车速范围的交集之内的第二车速行驶。
应理解,第一车辆以第一车速范围之内的第二车速行驶表示第一车辆能够根据更新后的第一参数重新激活上述的第一驾驶辅助系统,即图3(a)所示的方法流程还包括S380a:第一车辆重新激活第一驾驶辅助系统。
具体地,第一车辆重新激活第一驾驶辅助系统包括以下几种可能的方式:
方式一:
对应S320a中的可能一,第一参数为TTC(t),且第一车辆中配置了上述的第一驾驶辅助系统。
当TTC(t)为非正数或TTC(t)大于第一预设阈值,第一驾驶辅助系统控制所述第 一车辆进行加速,当所述车速达到所述第一车速范围的上限时,所述第一车辆基于所述TTC(t)判断第一车辆和第二车辆之间无碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围超过第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续加速以超过第一车速范围的第一车速行驶,在第一车辆以超过第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,更新后的第一参数指示第一车辆和第二车辆存在碰撞风险,第一车辆确定第一车辆的车速可以在第一车速范围内)控制所述第一车辆进行减速,使得第一车辆的车速重新回到第一车速范围内,该第一驾驶辅助系统重新处于运行状态。
例如,第一驾驶辅助系统为前文所述的TJA系统(应用的车速范围为0km/h-60km/h)。当车速达到60km/h时,第一车辆基于第一参数判断无碰撞风险,确定第一车辆可以运行的车速范围大于60km/h,指示第一驾驶辅助系统退出,并控制所述第一车辆继续加速,设置第一车辆以0km/h-60km/h之外的车速行驶,在第一车辆以0km/h-60km/h之外的车速行驶过程中,第一车辆可以获取更新后的第一信息,基于更新后的第一信息确定更新后的第一参数,更新后的第一参数显示第一车辆和第二车辆之间存在碰撞风险了,第一车辆应该以0km/h-60km/h内的车速行驶,则第一车辆使得第一车辆的车速回到60km/h,重新激活TJA系统。
可选地,第一预设阈值包括第一车辆与第二车辆发生碰撞风险的TTC(t)的取值;
可选地,第一预设阈值包括大于第一车辆与第二车辆发生碰撞风险的TTC(t)的值;
可选地,第一预设阈值包括其他预设的值,这里不再举例说明,只需限定当计算得到的TTC大于该第一预设阈值的情况下,第一车辆和第二车辆没有碰撞风险即可。
方式二:
对应S320中的可能一,第一参数为TTC(t),且第一车辆中配置了上述的第一驾驶辅助系统。
当所述TTC(t)为小于或者等于所述第一预设阈值的正数,第一驾驶辅助系统控制所述第一车辆进行减速,当所述车速达到所述第一车速范围的下限时,所述第一车辆基于所述TTC(t)判断第一车辆和第二车辆之间有碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围低于第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续减速以低于第一车速范围的第一车速行驶,在第一车辆以低于第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,更新后的第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第一车速范围内)控制所述第一车辆进行加速,使得第一车辆的车速重新回到第一车速范围内,该第一驾驶辅助系统重新处于运行状态。
例如,第一驾驶辅助系统为前文所述的ACC系统(应用的车速范围为65km/h-120km/h)。当车速达到65km/h时,第一车辆基于第一参数判断有碰撞风险,确定第一车辆可以运行的车速范围小于65km/h,指示第一驾驶辅助系统退出,并控制所述第一车辆继续减速设置第一车辆以65km/h-120km/h之外的车速行驶,在第一车辆以65km/h-120km/h之外的车速行驶过程中,第一车辆可以获取更新后的第一信息,基于更新 后的第一信息确定更新后的第一参数,更新后的第一参数显示第一车辆和第二车辆之间无碰撞风险了,第一车辆应该以65km/h-120km/h内的车速行驶,则第一车辆使得第一车辆的车速回到65km/h,重新激活ACC系统。
方式三:
对应S320a中的可能二,第一参数为TI(t),且第一车辆中配置了上述的第一驾驶辅助系统。
当TI(t)大于第二预设阈值,第一驾驶辅助系统控制所述第一车辆进行加速,当所述车速达到所述第一车速范围的上限时,所述第一车辆基于所述TI(t)判断第一车辆和第二车辆之间无碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围超过第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续加速以超过第一车速范围的第一车速行驶,在第一车辆以以低于第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,第一参数指示第一车辆和第二车辆存在碰撞风险,第一车辆确定第一车辆的车速可以在第一车速范围内)控制所述第一车辆进行减速,使得第一车辆的车速重新回到第一车速范围内,该第一驾驶辅助系统重新处于运行状态。
可选地,第二预设阈值包括第一车辆与第二车辆发生碰撞风险的TI(t)的取值;
可选地,第二预设阈值包括大于第一车辆与第二车辆发生碰撞风险的TI(t)的值;
可选地,第二预设阈值包括其他预设的值,这里不再举例说明,只需限定当计算得到的TI大于该第二预设阈值的情况下,第一车辆和第二车辆没有碰撞风险即可。
方式四:
对应S320a中的可能二,第一参数为TI(t),且第一车辆中配置了上述的第一驾驶辅助系统。
当所述TI(t)小于或者等于所述第二预设阈值,第一驾驶辅助系统控制所述第一车辆进行减速,当所述车速达到所述第一车速范围的下限时,所述第一车辆基于所述TI(t)判断第一车辆和第二车辆之间有碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围低于第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续减速以低于第一车速范围的第一车速行驶,在第一车辆以以低于第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第一车速范围内)控制所述第一车辆进行加速,使得第一车辆的车速重新回到第一车速范围内,该第一驾驶辅助系统重新处于运行状态。
上述的方式一-方式四说明了当第一车辆配置了第一驾驶辅助系统的情况下,当该第一车辆的车速达到该第一驾驶辅助系统应用的第一车速范围的上限或者下限时,第一车辆可以基于第一参数终止该第一驾驶辅助系统,并设置该第一车辆以第一车速范围之外的第一车速行驶。进一步地,第一车辆以第一车速范围之外的第一车速行驶过程中可以获取更新后的第一参数,基于更新后的第一参数重新激活该第一驾驶辅助系统,并设置该第一车辆以第一车速范围之内的第二车速行驶。该过程中不需要驾驶员的接管,提高了车辆自动驾驶的性能。
应理解,上述的方式一-方式四说明了第一车辆可以基于更新后的第一参数重新激活 配置的第一驾驶辅助系统。当第一车辆配置了多个驾驶辅助系统的情况下,第一车辆可以基于更新后的第一参数激活配置的多个驾驶辅助系统的中的某个驾驶辅助系统。下面结合图3(b)进行说明。
作为另一种可能的实现方式,下面图3(b)所示的实施例中涉及的第一车辆配置有两种或两种以上的驾驶辅助系统。假设该第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统(例如,第一车辆配置有上述的ACC系统和TJA系统),且第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集。
例如,第一驾驶辅助系统为上述的ACC系统,则65km/h≤第一车速范围≤120km/h、第二驾驶辅助系统为上述的TJA系统,则0km/h≤第二车速范围≤60km/h;或者,第一驾驶辅助系统为上述的TJA系统,则0km/h≤第一车速范围≤60km/h、第二驾驶辅助系统为上述的ACC系统,则65km/h≤第二车速范围≤120km/h。
应理解,在该实现方式下本申请实施例中对于第一车辆具有的两种驾驶辅助系统具体为哪种类型的驾驶辅助系统并不限制,可以为现有技术中已知的驾驶辅助系统也可以为车辆控制技术发展的未来提出的驾驶辅助系统。
并且,在该实现方式下对于上述第一驾驶辅助系统和第二驾驶辅助系统分别应用的车速范围并不限制,只要求该第一驾驶辅助系统和第二驾驶辅助系统分别应用的车速范围之间无交集,即两种驾驶辅助系统之间无法直接连续运行。可以理解,第一驾驶辅助系统和第二驾驶辅助系统分别应用的车速范围之间有交集的情况下,当车辆的车速属于该交集覆盖的车速范围时可能会导致不同驾驶辅助系统之间的冲突,产生安全问题。
还应理解,在该实现方式下本申请实施例中对于第一车辆中具体配置有几种驾驶辅助系统并不限制,可以为两种或者两种以上,为了便于描述,本申请实施例中以第一车辆中配置有两种驾驶辅助系统(第一驾驶辅助系统和第二驾驶辅助系统)为例进行说明。在第一车辆中配置有两种以上的驾驶辅助系统的情况下,不同驾驶辅助系统之间如何实现连续性,可以参考下文中针对第一驾驶辅助系统和第二驾驶辅助系统之间实现连续性的方案,本申请对于第一车辆中配置有两种以上的驾驶辅助系统的情况不进行赘述。
下面结合图3(b)详细说明在该实现方式下,如何控制第一车辆。图3(b)涉及第一车辆和移动物体。
应理解,图3(b)对应的实施例中的移动物体与上述图3(a)对应的实施例中的移动物体类似,这里不再赘述,与上述的图3(a)对应的实施例类似图3(b)对应的实施例中的移动物体以第一车辆前方的第二车辆为例说明。
该控制车辆的方法至少包括以下部分步骤。
S310b,第一车辆获取第二车辆的第一信息。与上述的S310a类似,这里不再赘述。
进一步地,第一车辆获取到第一信息之后,能够基于该第一信息确定第一参数。则图3(b)所示的方法流程还包括S320b:第一车辆确定第一参数。与上述的S320a类似,这里不再赘述。
作为一种可能的实现方式,第一车辆能够基于该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态,并且根据第一参数设置第一车辆以第一车速范围之外的第一车速行驶。在该实现方式下,第一车辆确定第一参数之后能够基于该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态,则图3(b)所示的方法流程还包括S330b: 第一车辆终止第一驾驶辅助系统。与上述的S330a类似,这里不再赘述。
在终止了上述的第一驾驶辅助系统之后,第一车辆能够根据第一参数设置第一车辆以第一车速范围之外的第一车速行驶,则图3(b)所示的方法流程还包括S340b:设置第一车辆以第一车速行驶。与上述的S340a类似,这里不再赘述。
作为另一种可能的实现方式,第一车辆能够基于该第一参数维持当前处于激活状态的第一驾驶辅助系统的激活状态,并且根据第一参数设置第一车辆以第一车速范围之内的车速行驶。在该实现方式下,第一车辆确定第一参数之后能够基于该第一参数维持当前处于激活状态的第一驾驶辅助系统的激活状态。
应理解,当第一车辆以第一车速范围之外的第一车速行驶过程中,第一车辆能够获取更新后的第一信息,并基于更新后的第一信息确定更新后的第一参数。即图3(b)所示的方法流程还包括S350b:第一车辆获取更新后的第一信息;S360b:第一车辆确定更新后的第一参数。
示例性地,第一车辆确定更新后的第一参数之后,第一车辆根据更新后的第一参数设置第一车辆以第二车速范围之内的第二车速行驶,即图3(b)所示的方法流程还包括S370a:设置第一车辆以第二车速行驶;
第一车辆根据更新后的第一参数设置第一车辆以第二车速范围之内的第二车速行驶包括:
第一车辆确定应具备的行驶速度范围与第二车速范围有交集;
第一车辆设置第一车辆以应具备的行驶速度范围与第二车速范围的交集之内的第二车速行驶。
应理解,第一车辆以第二车速范围之内的第二车速行驶表示第一车辆能够根据更新后的第一参数激活上述的第二驾驶辅助系统,即图3(b)所示的方法流程还包括S380b:第一车辆激活第二驾驶辅助系统。
图3(b)所示的实施例中第一车辆可以基于第一参数控制第一驾驶辅助系统维持运行状态,或者,在第一车辆的车速达到第一车速范围的上限或第一车速范围的下限时,第一车辆还可以基于第一参数判断第一车辆和第二车辆是否存在碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围不属于第一车速范围,则第一车辆终止第一驾驶辅助系统的激活状态,并控制第一车辆进行加速或者减速以第一车速范围之外的第一车速行驶,并根据更新后的第一参数使得第一车辆的车速达到第二车速范围的上限或第二车速范围的下限激活第二驾驶辅助系统。
即图3(b)所示的控制车辆的方法,无需驾驶员频繁接管控制车辆,第一车辆自身能够终止第一驾驶辅助系统的激活状态,并自动控制第一车辆的车速,使得第一车辆的车速达到第二驾驶辅助系统对应的第二车速范围的上限或第二车速范围的下限,从而由第二驾驶辅助系统接管对第一车辆的控制,在该流程中无需驾驶员的介入,提高了自动驾驶的连续性。
具体地,对应于上述的第一参数可能的形式,第一车辆控制第一车辆包括以下几种方式:
方式一:
对应S320中的可能一,第一参数为TTC(t)。
当TTC(t)为非正数或TTC(t)大于第一预设阈值,第一车速范围的下限大于第二车速范围的上限时,第一车辆基于TTC(t)控制第一驾驶辅助系统维持激活状态。
应理解,当TTC(t)为非正数(例如,V1(t)-V2(t)为0或负数)说明第一车辆的车速小于或者等于第二车辆的车速,当前既然未发生碰撞,在第一车辆的车速小于或者等于第二车辆的车速的情况下,通常不会发生碰撞,认为在TTC(t)为非正数的情况下第一车辆和第二车辆没有碰撞风险。
由上述可知,当TTC(t)为非正数或TTC(t)大于第一预设阈值的情况下,第一车辆和第二车辆没有碰撞风险。当第一车速范围的下限大于第二车速范围的上限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的下限大于第二驾驶辅助系统应用的第二车速范围的上限。
例如,第一驾驶辅助系统为前文所述的ACC系统(应用的第一车速范围为65km/h-120km/h),第二驾驶辅助系统为前文所述的TJA系统(应用的第二车速范围为0km/h-60km/h)。为了便于描述,方式一中以第一驾驶辅助系统为前文所述的ACC系统、第二驾驶辅助系统为前文所述的TJA系统为例进行说明。
如图5所示,图5是本申请实施例提供的一种控制第一车辆流程图。具体地,方式一中第一车辆基于所述第一参数控制第一车辆具体流程包括:
S510,第一车辆获取第二车辆的信息。
该第二车辆的信息中包括第二车辆的车速信息和第二车辆的位置信息。
S520,第一车辆计算TTC#1(t)。
第一车辆基于第二车辆的车速和第一车辆的车速计算所述第一车辆和所述第二车辆的相对速度v#1(t)、第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#1(t),其中,TTC#1(t)=x#1(t)/v#1(t)。
S530,第一车辆判断TTC#1(t)是否为非正数。
在方式一中,TTC#1(t)可以为非正数。
S540,第一车辆判断TTC#1(t)是否大于第一预设阈值。
在方式一中,TTC#1(t)可以为大于第一预设阈值的值。
应理解,S540可以在S520执行之后执行;或者,S540可以在S530执行之后执行(例如,S530中判断结果为否的时候),该实施例对此并不限制。
S550,ACC维持激活状态。
在方式一下,第一车辆的运行速度维持在ACC应用的第一车速范围内。
例如,第一车辆可以进行加速,但是速度范围不大于120km/h。
应理解,第一车辆在运行的过程中,可以获取更新后的第二车辆的信息,并基于取到的更新后的第二车辆的信息判断是否会发生碰撞,基于判断结果控制第一车辆。
方式二:
对应S320中的可能一,第一参数为TTC(t)。
当TTC(t)为非正数或TTC(t)大于第一预设阈值,第一车速范围的上限小于所述第二车速范围的下限时,第一驾驶辅助系统控制所述第一车辆进行加速,当所述车速达到所述第一车速范围的上限时,所述第一车辆基于所述TTC(t)判断第一车辆和第二车辆 之间无碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围超过第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续加速以超过第一车速范围的第一车速行驶。
在第一车辆以超过第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,更新后的第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第二车速范围内)控制所述第一车辆进行加速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
与方式一中所述的类似,当TTC(t)为非正数或TTC(t)大于第一预设阈值的情况下,第一车辆和第二车辆没有碰撞风险。当第一车速范围的上限小于第二车速范围的下限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的上限大于第二驾驶辅助系统应用的第二车速范围的下限。
例如,第一驾驶辅助系统为前文所述的TJA系统(应用的第一车速范围为0km/h-60km/h),第二驾驶辅助系统为前文所述的ACC系统(应用的第二车速范围为65km/h-120km/h)。为了便于描述,方式二中以第一驾驶辅助系统为前文所述的TJA系统、第二驾驶辅助系统为前文所述的ACC系统为例进行说明。
如图6所示,图6是本申请实施例提供的另一种控制第一车辆流程图。具体地,方式二中第一车辆控制第一车辆具体流程包括:
S610,第一车辆获取第二车辆的信息。
该第二车辆的信息中包括第二车辆的车速信息和第二车辆的位置信息。
S620,第一车辆计算TTC#2(t)。
第一车辆基于第二车辆的车速和第一车辆的车速计算所述第一车辆和所述第二车辆的相对速度v#2(t)、第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#2(t),其中,TTC#2(t)=x#2(t)/v#2(t)。
S630,第一车辆判断TTC#2(t)是否为非正数。
在方式二中,TTC#2(t)可以为非正数。
S640,第一车辆判断TTC#2(t)是否大于第一预设阈值。
在方式二中,TTC#2(t)可以为大于第一预设阈值的值。
应理解,S640可以在S620执行之后执行;或者,S640可以在S630执行之后执行(例如,S630中判断结果为否的时候),该实施例对此并不限制。
当上述的TTC#2(t)为非正数或大于第一预设阈值的情况下,TJA控制第一车辆进行加速,即图6所示的流程还包括:S650,维持TJA。
S660,判断第一车辆的车速是否达到第一车速范围的上限。
S670,当第一车辆的车速达到所述第一车速范围的上限时,所述第一车辆基于TTC#2(t)判断无碰撞风险,指示第一驾驶辅助系统退出运行状态,所述第一车辆基于TTC#2(t)控制所述第一车辆继续加速,使得第一车辆的车速达到第二车速范围的下限,激活所述第二驾驶辅助系统,即图6所示的流程还包括:S680,激活ACC。
应理解,当第一车辆加速且速度达到第一车速范围的上限时,第一车辆基于TTC#2 (t)判断仍无碰撞风险,第一驾驶辅助系统会退出,按照目前车辆控制系统的设计,第一车辆的车速达到第一车速范围的上限,且驾驶员判断无碰撞风险时,会由驾驶员接管第一车辆,进行加速。
方式二中当第一驾驶辅助系统控制第一车辆加速速度达到第一车速范围的上限时,第一车辆基于TTC#2(t)判断仍无碰撞风险,第一驾驶辅助系统退出运行状态,车辆中的控制系统(例如,可以称为V2X控制系统)接管第一车辆继续加速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
具体地,当第一车辆的车速达到第二车速范围的下限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
上述流程中无需驾驶员接管第一车辆,当第一车辆确定无碰撞风险时,第一驾驶辅助系统控制第一车辆进行加速,并在加速的过程中继续监测是否和第二车辆有碰撞风险。当第一驾驶辅助系统控制第一车辆加速到达第一驾驶辅助系统应用的第一车速范围上限时,若第一车辆和第二车辆还是无碰撞风险,第一驾驶辅助系统会退出,第一车辆中的控制系统(例如,可以称为V2X控制系统)控制第一车辆继续加速,当第一车辆的车速达到第二车速范围的下限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
可选地,由控制系统控制第一车辆继续加速的过程中,第一车辆继续监测是否和第二车辆有碰撞风险。当第一车辆和第二车辆有碰撞风险的情况下,控制系统控制第一车辆减速,使得第一车辆的车速达到第一车速范围的上限,重新激活第一驾驶辅助系统。
应理解,本申请实施例中主要介绍控制系统如何提高第一驾驶辅助系统和第二驾驶辅助系统之间切换的连续性,对于控制系统具体的控制车速功能不做详细说明,需要说明的是控制系统能够不间断地基于第一参数控制车速。
方式三:
对应S320中的可能一,第一参数为TTC(t)。
当所述TTC(t)小于或者等于所述第一预设阈值,所述第一车速范围的下限大于所述第二车速范围的上限时,第一驾驶辅助系统控制所述第一车辆进行减速,当所述车速达到所述第一车速范围的下限时,所述第一车辆基于所述TTC(t)判断第一车辆和第二车辆之间有碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围低于第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续减速以低于第一车速范围的第一车速行驶。
在第一车辆以低于第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,更新后的第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第二车速范围内)控制所述第一车辆继续减速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
与方式一中所述的类似,TTC(t)大于所述第一预设阈值时第一车辆和第二车辆没有碰撞风险,当TTC(t)小于或者等于所述第一预设阈值时证明第一车辆和第二车辆存在碰撞风险。所以方式三中为了避免发生碰撞,第一车辆需要降低车速。当第一车速范围的下限大于第二车速范围的上限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的下 限大于第二驾驶辅助系统应用的第二车速范围的上限。
例如,第一驾驶辅助系统为前文所述的ACC系统(应用的第一车速范围为65km/h-120km/h),第二驾驶辅助系统为前文所述的TJA系统(应用的第二车速范围为0km/h-60km/h)。为了便于描述,方式三中以第一驾驶辅助系统为前文所述的ACC系统、第二驾驶辅助系统为前文所述的TJA系统为例进行说明。
如图7所示,图7是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式三中第一车辆控制第一车辆具体流程包括:
S710,第一车辆获取第二车辆的信息。
该第二车辆的信息中包括第二车辆的车速信息和第二车辆的位置信息。
S720,第一车辆计算TTC#3(t)。
第一车辆基于第二车辆的车速和第一车辆的车速计算所述第一车辆和所述第二车辆的相对速度v#3(t)、第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#3(t),其中,TTC#3(t)=x#3(t)/v#3(t)。
S730,第一车辆判断TTC#3(t)是否为非正数。
在方式三中,TTC#3(t)为正数。
S740,第一车辆判断TTC#3(t)是否大于第一预设阈值。
在方式三中,TTC#3(t)为小于或者等于第一预设阈值的值。
应理解,S740可以在S730执行之后执行,即判断TTC#3(t)为正数之后再确定TTC#3(t)为小于或者等于第一预设阈值的值;或者,S740和S730可以合成一个步骤,即S720之后直接判断TTC#3(t)是否为大于0且小于或者等于第一预设阈值的值,该实施例对此并不限制。
当上述的TTC#3(t)为小于或者等于第一预设阈值的正数的情况下,ACC控制第一车辆进行减速,即图7所示的流程还包括:S750,维持ACC。
S760,判断第一车辆的车速是否达到第一车速范围的下限。
S770,当第一车辆的车速达到所述第一车速范围的下限时,所述第一车辆基于TTC#3(t)判断有碰撞风险,指示第一驾驶辅助系统退出运行状态,所述第一车辆基于TTC#3(t)控制所述第一车辆继续减速,使得第一车辆的车速达到第二车速范围的上限,激活第二驾驶辅助系统处于运行状态,即图7所示的流程还包括:S780,激活TJA。
应理解,当第一车辆减速且速度达到第一车速范围的下限时,第一车辆基于TTC#3(t)判断有碰撞风险,第一驾驶辅助系统会退出,按照目前车辆控制系统的设计,第一车辆的车速达到第一车速范围的下限,且驾驶员判断有碰撞风险时,会由驾驶员接管第一车辆,进行减速。
方式三中当第一驾驶辅助系统控制第一车辆减速速度达到第一车速范围的下限时,第一车辆基于TTC#3(t)判断有碰撞风险,第一驾驶辅助系统退出运行状态,车辆中的控制系统(例如,可以称为V2X控制系统)接管第一车辆继续减速,使得第一车辆的车速达到第二车速范围的上限,激活第二驾驶辅助系统。
具体地,当第一车辆的车速达到第二车速范围的上限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
上述流程中无需驾驶员接管第一车辆,当第一车辆确定和第二车辆有碰撞风险时,第 一驾驶辅助系统控制第一车辆进行减速,并在减速的过程中继续监测是否和第二车辆有碰撞风险,当第一驾驶辅助系统控制第一车辆减速到达第一驾驶辅助系统应用的第一车速范围下限时,若第一车辆和第二车辆还是有碰撞风险,第一驾驶辅助系统会退出,第一车辆中的控制系统(例如,可以称为V2X控制系统)控制第一车辆继续减速,当第一车辆的车速达到第二车速范围的上限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
可选地,由控制系统控制第一车辆继续减速的过程中,第一车辆继续监测是否和第二车辆有碰撞风险。当第一车辆和第二车辆无碰撞风险的情况下,控制系统控制第一车辆加速,使得第一车辆的车速达到第一车速范围的下限,重新激活第一驾驶辅助系统。
进一步地,方式三下当第二驾驶辅助系统应用的第一车速范围不包括0km/h的情况下。例如,第二驾驶辅助系统应用的第二车速范围为10km/h-60km/h。如果在第一车辆的车速达到10km/h基于更新后的TTC#3(t)判断还可能发生碰撞风险。图7所示的流程还包括S790,判断第一车辆的车速是否达到第二车速范围的下限。当第一车辆的车速达到所述第二车速范围的下限时,第一车辆基于更新后的TTC#3(t)判断有碰撞风险,第二驾驶辅助系统退出运行状态,所述第一车辆基于所述更新后的TTC#3(t)控制所述第一车辆继续减速直至第一车辆的速度为0km/h。
方式四:
对应S320中的可能一,第一参数为TTC(t)。
当所述TTC(t)为小于或者等于所述第一预设阈值的正数,所述第一车速范围的上限小于所述第二车速范围的下限时,所述第一车辆基于所述TTC(t)控制所述第一驾驶辅助系统维持运行状态;
与方式一中所述的类似,TTC(t)大于所述第一预设阈值时第一车辆和第二车辆没有碰撞风险,当TTC(t)小于或者等于所述第一预设阈值时证明第一车辆和第二车辆存在碰撞风险。所以方式四中为了避免发生碰撞,第一车辆需要降低车速。当第一车速范围的上限小于第二车速范围的下限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的上限大于第二驾驶辅助系统应用的第二车速范围的下限。
例如,第一驾驶辅助系统为前文所述的TJA系统(应用的第一车速范围为0km/h-60km/h),第二驾驶辅助系统为前文所述的ACC系统(应用的第二车速范围为65km/h-120km/h)。为了便于描述,方式四中以第一驾驶辅助系统为前文所述的TJA系统、第二驾驶辅助系统为前文所述的ACC系统为例进行说明。
如图8所示,图8是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式四中第一车辆控制第一车辆具体流程包括:
S810,第一车辆获取第二车辆的信息。
该第二车辆的信息包括第二车辆的车速信息和第二车辆的位置信息。
S820,第一车辆计算TTC#4(t)。
第一车辆基于第二车辆的车速和第一车辆的车速计算所述第一车辆和所述第二车辆的相对速度v#4(t)、第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#4(t),其中,TTC#4(t)=v#4(t)/x#4(t)。
S830,第一车辆判断TTC#4(t)是否为非正数。
在方式四中,TTC#4(t)为正数。
S840,第一车辆判断TTC#4(t)是否大于第一预设阈值。
在方式四中,TTC#4(t)为小于或者等于第一预设阈值的值。
应理解,S840可以在S830执行之后执行,即判断TTC#4(t)为正数之后再确定TTC#4(t)为小于或者等于第一预设阈值的值;或者,S840和S830可以合成一个步骤,即S820之后直接判断TTC#4(t)是否为大于0且小于或者等于第一预设阈值的值,该实施例对此并不限制。
当上述的TTC#4(t)为小于或者等于第一预设阈值的正数的情况下,第一车辆需要进行减速,由于第一车速范围的上限小于第二车速范围的下限,即当前控制第一车辆的第一驾驶辅助系统控制第一车辆减速。图8所示的流程还包括:S850,TJA维持激活状态。
例如,TJA控制第一车辆减速,第一车辆在运行的过程中,获取更新后的第二车辆的信息,并基于获取到的更新后的第二车辆的信息判断是否会发生碰撞,基于判断结果控制第一车辆,如果基于更新后的TTC#4(t)持续判断可能发生碰撞风险,则TJA可以控制第一车辆减速直至第一车辆的速度为0km/h。
进一步地,方式四下当第一驾驶辅助系统应用的第一车速范围不包括0km/h的情况下。例如,第一驾驶辅助系统应用的第一车速范围为10km/h-60km/h。如果在第一车辆的车速达到10km/h基于更新后的TTC#4(t)判断还可能发生碰撞风险。图8所示的流程还包括S860,判断第一车辆的车速是否达到第一车速范围的下限。当第一车辆的车速达到所述第一车速范围的下限时,第一车辆基于更新后的TTC#4(t)判断有碰撞风险,第一驾驶辅助系统退出运行状态,所述第一车辆基于所述更新后的TTC#4(t)控制所述第一车辆继续减速直至第一车辆的速度为0km/h。
应理解,在上述方式一-方式四中涉及的第二车辆的信息可以包括除上述的第二车辆的车速信息和第二车辆的位置信息之外的其他信息,例如,还包括第二车辆的尺寸信息或车型信息等。这里不再对第二车辆的信息进行详细说明。
方式五:
对应S320中的可能二,第一参数为TI(t)。
所述TI(t)大于第二预设阈值,所述第一车速范围的下限大于所述第二车速范围的上限时,所述第一车辆基于所述TI(t)控制所述第一驾驶辅助系统维持激活状态。
当TI(t)大于第二预设阈值的情况下,第一车辆和第二车辆没有碰撞风险。当第一车速范围的下限大于第二车速范围的上限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的下限大于第二驾驶辅助系统应用的第二车速范围的上限。
例如,第一驾驶辅助系统为前文所述的ACC系统(应用的第一车速范围为65km/h-120km/h),第二驾驶辅助系统为前文所述的TJA系统(应用的第二车速范围为0km/h-60km/h)。为了便于描述,方式一中以第一驾驶辅助系统为前文所述的ACC系统、第二驾驶辅助系统为前文所述的TJA系统为例进行说明。
如图9所示,图9是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式五中第一车辆基于所述第一参数控制第一车辆具体流程包括:
S910,第一车辆获取第二车辆的信息。
该第二车辆的信息中包括第二车辆的位置信息。
S920,第一车辆计算TI#1(t)。
第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#1(t),第一车辆自身的车速为VS#1(t),其中,TI#1(t)=VS#1(t)/x#1(t)。
S930,第一车辆判断TI#1(t)是否大于第二预设阈值。
在方式一中,TI#1(t)为大于第二预设阈值的值。
S940,ACC维持激活状态。
在方式一下,第一车辆的运行速度维持在ACC应用的第一车速范围内。
例如,第一车辆可以进行加速,但是速度范围不大于120km/h。
应理解,第一车辆在运行的过程中,可以获取更新后的第二车辆的信息,并基于获取到的更新后的第二车辆的信息判断是否会发生碰撞,基于判断结果控制第一车辆。
方式六:
对应S320中的可能二,第一参数为TI(t)。
当所述TI(t)大于所述第二预设阈值,所述第一车速范围的上限小于所述第二车速范围的下限时,第一驾驶辅助系统控制所述第一车辆进行加速,当所述车速大于所述第一车速范围的上限时,所述第一车辆基于所述TI(t)判断第一车辆和第二车辆之间无碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围超过第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续加速以超过第一车速范围的第一车速行驶。
在第一车辆以超过第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例如,更新后的第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第二车速范围内)控制所述第一车辆进行加速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
与方式五中所述的类似,当TI(t)大于第二预设阈值的情况下,第一车辆和第二车辆没有碰撞风险。当第一车速范围的上限小于第二车速范围的下限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的上限大于第二驾驶辅助系统应用的第二车速范围的下限。
例如,第一驾驶辅助系统为前文所述的TJA系统(应用的第一车速范围为0km/h-60km/h),第二驾驶辅助系统为前文所述的ACC系统(应用的第二车速范围为65km/h-120km/h)。为了便于描述,方式六中以第一驾驶辅助系统为前文所述的TJA系统、第二驾驶辅助系统为前文所述的ACC系统为例进行说明。
如图10所示,图10是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式六中第一车辆控制第一车辆具体流程包括:
S1010,第一车辆获取第二车辆的信息。
该第二车辆的信息包括第二车辆的位置信息。
S1020,第一车辆计算TI#2(t)。
第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#2(t),第一车辆自身的车速为VS#2(t),其中,TI#2(t)=VS#2(t)/x#2(t)。
S1030,第一车辆判断TI#1(t)是否大于第二预设阈值。
在方式六中,TI#2(t)为大于第二预设阈值的值。
当上述的TI#2(t)大于第二预设阈值的情况下,TJA控制第一车辆进行加速,即图10所示的流程还包括:S1040,维持TJA。
S1050,判断第一车辆的车速是否达到第一车速范围的上限。
S1060,当第一车辆的车速达到所述第一车速范围的上限时,所述第一车辆基于TI#2(t)判断无碰撞风险,指示第一驾驶辅助系统退出运行状态,所述第一车辆基于TI#2(t)控制所述第一车辆继续加速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统,即图10所示的流程还包括:S1070,激活ACC。
应理解,当第一车辆加速且速度达到第一车速范围的上限时,第一车辆基于TI#2(t)判断仍无碰撞风险,第一驾驶辅助系统会退出,按照目前车辆控制系统的设计,第一车辆的车速达到第一车速范围的上限,且驾驶员判断无碰撞风险时,会由驾驶员接管第一车辆,进行加速。
方式六中当第一驾驶辅助系统控制第一车辆加速速度达到第一车速范围的上限时,第一车辆基于TI#2(t)判断仍无碰撞风险,第一驾驶辅助系统退出运行状态,车辆中的控制系统(例如,可以称为V2X控制系统)接管第一车辆继续加速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
具体地,当第一车辆的车速达到第二车速范围的下限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
上述流程中无需驾驶员接管第一车辆,当第一车辆确定无碰撞风险时,第一驾驶辅助系统控制第一车辆进行加速,并在加速的过程中继续监测是否和第二车辆有碰撞风险,当第一驾驶辅助系统控制第一车辆加速到达第一驾驶辅助系统应用的第一车速范围上限时,若第一车辆和第二车辆还是无碰撞风险第一驾驶辅助系统会退出,第一车辆中的控制系统(例如,可以称为V2X控制系统)控制第一车辆继续加速,当第一车辆的车速达到第二车速范围的下限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
方式七:
对应S320中的可能二,第一参数为TI(t)。
当所述TI(t)小于或者等于所述第二预设阈值,所述第一车速范围的下限大于所述第二车速范围的上限时,第一驾驶辅助系统控制所述第一车辆进行减速,当所述车速达到所述第一车速范围的下限时,所述第一车辆基于所述TI(t)判断第一车辆和第二车辆之间有碰撞风险,第一车辆确定第一车辆应具备的行驶速度范围低于第一车速范围,则第一车辆指示第一驾驶辅助系统退出,并控制所述第一车辆继续减速以低于第一车速范围的第一车速行驶。
在第一车辆以低于第一车速范围的第一车速行驶过程中,第一车辆可以获取更新后的第一信息,该更新后的第一信息可以确定更新后的第一参数,再基于更新后的第一参数(例 如,更新后的第一参数指示第一车辆和第二车辆无碰撞风险,第一车辆确定第一车辆的车速可以在第二车速范围内)控制所述第一车辆继续减速,使得第一车辆的车速达到第二车速范围的下限,激活第二驾驶辅助系统。
与方式五中所述的类似,TI(t)大于所述第二预设阈值时第一车辆和第二车辆没有碰撞风险,当TI(t)小于或者等于所述第二预设阈值时证明第一车辆和第二车辆存在碰撞风险。所以方式七中为了避免发生碰撞,第一车辆需要降低车速。当第一车速范围的下限大于第二车速范围的上限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的下限大于第二驾驶辅助系统应用的第二车速范围的上限。
例如,第一驾驶辅助系统为前文所述的ACC系统(应用的第一车速范围为
65km/h-120km/h),第二驾驶辅助系统为前文所述的TJA系统(应用的第二车速范围为0km/h-60km/h)。为了便于描述,方式七中以第一驾驶辅助系统为前文所述的ACC系统、第二驾驶辅助系统为前文所述的TJA系统为例进行说明。
如图11所示,图11是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式七中第一车辆控制第一车辆具体流程包括:
S1110,第一车辆获取第二车辆的信息。
该第二车辆的信息中包括第二车辆的位置信息。
S1120,第一车辆计算TI#3(t)。
第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#3(t),第一车辆自身的车速为VS#3(t),其中,TI#3(t)=VS#3(t)/x#3(t)。
S1130,第一车辆判断TI#3(t)是否大于第二预设阈值。
在方式七中,TI#3(t)为小于或者等于第二预设阈值的值。
当上述的TI#3(t)为小于或者等于第二预设阈值的正数的情况下,ACC控制第一车辆进行减速,即图11所示的流程还包括:S1140,维持ACC。
S1150,判断第一车辆的车速是否达到第一车速范围的下限。
S1160,当第一车辆的车速达到所述第一车速范围的下限时,所述第一车辆基于TI#3(t)判断有碰撞风险,指示第一驾驶辅助系统退出运行状态,所述第一车辆基于TI#3(t)控制所述第一车辆继续减速,使得第一车辆的车速达到第二车速范围的上限,激活第二驾驶辅助系统,即图11所示的流程还包括:S1170,激活TJA。
应理解,当第一车辆减速且速度达到第一车速范围的下限时,第一车辆基于TI#3(t)判断有碰撞风险,第一驾驶辅助系统会退出,按照目前车辆控制系统的设计,第一车辆的车速达到第一车速范围的下限,且驾驶员判断有碰撞风险时,会由驾驶员接管第一车辆,进行减速。
方式七中当第一驾驶辅助系统控制第一车辆减速速度达到第一车速范围的下限时,第一车辆基于TI#3(t)判断有碰撞风险,第一驾驶辅助系统退出运行状态,车辆中的控制系统(例如,可以称为V2X控制系统)接管第一车辆继续减速,使得第一车辆的车速达到第二车速范围的上限,激活第二驾驶辅助系统。
具体地,当第一车辆的车速达到第二车速范围的上限时,第二驾驶辅助系统激活,由 该第二驾驶辅助系统接管第一车辆。
上述流程中无需驾驶员接管第一车辆,当第一车辆确定和第二车辆有碰撞风险时,第一驾驶辅助系统控制第一车辆进行减速,并在减速的过程中继续监测是否和第二车辆有碰撞风险,当第一驾驶辅助系统控制第一车辆减速到达第一驾驶辅助系统应用的第一车速范围下限时,若第一车辆和第二车辆还是有碰撞风险第一驾驶辅助系统会退出,第一车辆中的控制系统(例如,可以称为V2X控制系统)控制第一车辆继续减速,当第一车辆的车速达到第二车速范围的上限时,第二驾驶辅助系统激活,由该第二驾驶辅助系统接管第一车辆。
进一步地,方式七下当第二驾驶辅助系统应用的第一车速范围不包括0km/h的情况下。例如,第二驾驶辅助系统应用的第二车速范围为10km/h-60km/h。如果在第一车辆的车速达到10km/h基于更新后的TI#3(t)判断还可能发生碰撞风险。图11所示的流程还包括S1180,判断第一车辆的车速是否达到第二车速范围的下限。当第一车辆的车速达到所述第二车速范围的下限时,第一车辆基于更新后的TI#3(t)判断有碰撞风险,第二驾驶辅助系统退出运行状态,所述第一车辆基于更新后的TTC控制所述第一车辆继续减速直至第一车辆的速度为0km/h。
方式八:
对应S320中的可能二,第一参数为TI(t)。
当所述TI(t)小于或者等于所述第二预设阈值,所述第一车速范围的上限小于所述第二车速范围的下限时,所述第一车辆基于所述TI(t)控制所述第一驾驶辅助系统维持运行状态。
与方式五中所述的类似,TI(t)大于所述第二预设阈值时第一车辆和第二车辆没有碰撞风险,当TI(t)小于或者等于所述第二预设阈值时证明第一车辆和第二车辆存在碰撞风险。所以方式十中为了避免发生碰撞,第一车辆需要降低车速。当第一车速范围的上限小于第二车速范围的下限时,即上述的第一驾驶辅助系统应用的第一车速范围和第二驾驶辅助系统应用的第二车速范围无交集,且第一驾驶辅助系统应用的第一车速范围的上限大于第二驾驶辅助系统应用的第二车速范围的下限。
例如,第一驾驶辅助系统为前文所述的TJA系统(应用的第一车速范围为0km/h-60km/h),第二驾驶辅助系统为前文所述的ACC系统(应用的第二车速范围为65km/h-120km/h)。为了便于描述,方式八中以第一驾驶辅助系统为前文所述的TJA系统、第二驾驶辅助系统为前文所述的ACC系统为例进行说明。
如图12所示,图12是本申请实施例提供的又一种控制第一车辆流程图。具体地,方式八中第一车辆控制第一车辆具体流程包括:
S1210,第一车辆获取第二车辆的信息。
该第二车辆的信息包括第二车辆的位置信息。
S1220,第一车辆计算TI#4(t)。
第一车辆基于第二车辆的位置和所述第一车辆的位置计算所述第一车辆和所述第二车辆的车间距离x#4(t),第一车辆自身的车速为VS#4(t),其中,TI#4(t)=VS#4(t)/x#4(t)。
S1230,第一车辆判断TI#4(t)是否大于第二预设阈值。
在方式八中,TI#4(t)为小于或者等于第二预设阈值的值。
当上述的TI#4(t)为小于或者等于第二预设阈值的正数的情况下,第一车辆需要进行减速,由于第一车速范围的上限小于第二车速范围的下限,即当前控制第一车辆的第一驾驶辅助系统控制第一车辆减速。图12所示的流程还包括:S1240,TJA维持激活状态。
例如,TJA控制第一车辆减速,第一车辆在运行的过程中,获取更新后的第二车辆的信息,并基于获取到的更新后的第二车辆的信息判断是否会发生碰撞,基于判断结果控制第一车辆,如果基于判断结果持续判断可能发生碰撞风险,则TJA可以控制第一车辆减速直至第一车辆的速度为0km/h。
进一步地,方式八下当第一驾驶辅助系统应用的第一车速范围不包括0km/h的情况下。例如,第一驾驶辅助系统应用的第一车速范围为10km/h-60km/h。如果在第一车辆的车速达到10km/h基于TI#4(t)判断还可能发生碰撞风险。图12所示的流程还包括S1250,判断第一车辆的车速是否达到第一车速范围的下限。当第一车辆的车速达到所述第一车速范围的下限时,第一车辆基于TI#4(t)判断有碰撞风险,第一驾驶辅助系统退出运行状态,所述第一车辆基于所述TI#4(t)控制所述第一车辆继续减速直至第一车辆的速度为0km/h。
应理解,在上述方式五-方式八中涉及的第二车辆的信息可以包括除上述的第二车辆的位置信息之外的其他信息,例如,还包括第二车辆的车速信息和/或第二车辆的尺寸信息。这里不再对第二车辆的信息进行详细说明。
还应理解,在上述方式一-方式四中第二车辆的信息包括第二车辆的车速信息和第二车辆的位置信息时,方式一-方式四也可以计算TI,并基于TI(t)控制第一车辆与方式五-方式八类似,这里不再赘述。
作为一种可能的实现方式,本申请中第一车辆基于上述的第一参数还可以控制第一车辆的转向,例如,当第一车辆确定得到第一参数并且判断第一车辆和第二车辆之间存在碰撞风险的时候,可以通过控制第一车辆的转向改变第一车辆的行驶车道,避免碰撞。由于本申请主要涉及如何提高不同驾驶辅助系统之间切换的连续性,以及如何增加自动驾驶的性能,对于如何避免碰撞这里不再赘述。
作为一种可能的实现方式,在第二车辆为第一车辆后方的车辆的情况下,第一车辆基于第一参数控制第一车辆与上述图3(b)中所示的方式一-方式八不同的是:当第一车辆计算得到第一参数并且判断第一车辆和第二车辆之间存在碰撞风险的时候,第一车辆可以加速避免风险。
上述方法实施例中,上述各过程的序列号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。并且有可能并非要执行上述方法实施例中的全部操作。
应理解,上述方法实施例中第一车辆可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图3-图12详细介绍了本申请实施例提供的控制车辆的方法,下面结合图13- 图15详细介绍本申请实施例提供的控制车辆的装置。
参见图13,图13是本申请提供的控制车辆的装置1300的结构框图。如图13所示,装置1300包括获取单元1310和处理单元1320。
获取单元1310,用于获取该第一车辆附近的移动物体的第一信息;
处理单元1320,用于基于该第一信息确定第一参数;
处理单元1320,还用于根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态,以及根据该第一参数设置该第一车辆以该至少一个车速范围之外的第一车速行驶。
示例性地,该获取单元1310,还用于获取更新后的该第一信息;
该处理单元1320还用于根据该更新后的该第一信息更新该第一参数;
该处理单元1320还用于根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶;
该处理单元1320还用于根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统。
示例性地,该获取单元1310包括接收单元或测量单元;
该获取单元1310获取该第一车辆附近的移动物体的第一信息包括:
该接收单元,用于从该移动物体接收该第一信息;或者,该测量单元,用于测量得到该移动物体的第一信息。
示例性地,该处理单元1320根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
该处理单元1320确定该应具备的行驶速度范围与该处于激活状态的一个驾驶辅助系统的激活状态对应的车速范围无交集;
该处理单元1320终止该处于激活状态的一个驾驶辅助系统的激活状态。
示例性地,该处理单元1320根据该第一参数设置该第一车辆以该至少一个车速范围之外的第一车速行驶包括:该处理单元1320设置该第一车辆以该应具备的行驶速度范围之内的第一车速行驶。
示例性地,该第一参数包括使该第一车辆与该移动物体无碰撞风险时该第一车辆应具备的行驶速度范围,该处理单元1320根据更新后的该第一参数设置该第一车辆以该至少一个车速范围之内的第二车速行驶包括:
该处理单元1320确定该应具备的行驶速度范围与该至少一个车速范围有交集;
该处理单元1320设置该第二车速在该应具备的行驶速度范围与该至少一个车速范围的交集之内。
示例性地,该处理单元1320根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
该处理单元1320激活该至少一个驾驶辅助系统中的一个驾驶辅助系统,该一个驾驶辅助系统的激活状态所对应的车速范围包括该第二车速。
示例性地,该第一车辆配置有至少一个驾驶辅助系统,该至少一个驾驶辅助系统的激活状态对应于至少一个车速范围包括:该第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统,该第一驾驶辅助系统的激活状态对应于第一车速范围,该第二驾驶辅助系统的激 活状态对应于第二车速范围,并且该第一车速范围和该第二车速范围无交集;
该处理单元1320根据该第一参数终止该至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
该处理单元1320根据该第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态;
该处理单元1320根据更新后的该第一参数激活该至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
该处理单元1320根据更新后的该第一参数激活该第一驾驶辅助系统或者该第二驾驶辅助系统。
装置1300和图3-图12所示方法实施例的执行主体对应,装置1300可以是方法实施例中的第一车辆,或者方法实施例中的第一车辆内部的芯片、电路、部件、系统或功能模块还可以是车联网中的其他设备(例如路测单元RSU或应用服务器)。装置1300的相应单元用于执行图3-图12所示的方法实施例中的相应步骤。
其中,装置1300中的获取单元1310,用于执行方法实施例中第一车辆对应与获取相关的步骤。例如,执行图3(a)中获取第一信息的步骤S310a、执行图3(a)中获取更新后的第一信息的步骤S350a、执行图3(b)中获取第一信息的步骤S310b、执行图3(b)中获取更新后的第一信息的步骤S350b、执行图5-图12中获取第二车辆的信息的步骤。
装置1300中的处理单元1320用于执行方法实施例中第一车辆对应与处理相关的步骤。例如,执行图3(a)中确定第一参数的步骤S320a、执行图3(a)中终止第一驾驶辅助系统的步骤S330a、执行图3(a)中设置第一车辆以第一车速行驶的步骤S330a、执行图3(a)中确更新后的第一参数的步骤S360a、执行图3(a)中设置第一车辆以第二车速行驶的步骤S370a、执行图3(a)中重新激活第一驾驶辅助系统的步骤S380a、执行图3(b)中确定第一参数的步骤S320b、执行图3(b)中终止第一驾驶辅助系统的步骤S330b、执行图3(b)中设置第一车辆以第一车速行驶的步骤S330b、执行图3(b)中确更新后的第一参数的步骤S360b、执行图3(b)中设置第一车辆以第二车速行驶的步骤S370b、执行图3(b)中激活第二驾驶辅助系统的步骤S380b、执行图4-图8中计算TTC的步骤、执行图4-图8中判断TTC与0以及TTC与第一阈值大小的步骤、执行图3(a)中重新激活第一驾驶辅助系统的步骤S330a、执行图3(b)中控制第一车辆的步骤S330b、执行图4-图8中控制第一车辆的步骤。
图13中的各个单元的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或专用集成电路(ASIC)。以上各个单元可以独立存在,也可以全部或者部分集成。
参见图14,图14是适用于本申请实施例的第一车辆1400的结构框图。该第一车辆1400可应用于图1所示出的系统中。为了便于说明,图14仅示出了第一车辆的主要部件。如图14所示,第一车辆1400包括处理器、存储器、控制电路、天线以及输入输出装置。
其中,存储器存储有计算机程序指令,处理器运行所述计算机程序指令以执行图3-图12所示方法实施例描述的控制车辆的方法,天线以及输入输出装置可用于获取所述第 一信息,控制电路可用于控制车辆动力装置以使车辆按照处理器设置的车速行驶。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和处理器。在实际的第一车辆中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
图15是适用于本申请实施例的第一车辆1500的结构示意图。该第一车辆1500可应用于图1所示出的系统中。为了便于说明,图15仅示出了第一车辆的主要部件。如图15所示,第一车辆1500包括处理器1510,存储器1520与传感器1530。
其中,存储器1520存储有计算机程序指令,处理器1510运行所述计算机程序指令以执行图3-图12所示方法实施例描述的控制车辆的方法,传感器1530可用于获取所述第一信息。本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得所述控制车辆的装置执行上述如图3-图12所示的方法中的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得所述控制车辆的装置执行如图3-图12所示的方法中的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的控制车辆的方法中由第一车辆执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。上述处理器包括但不限于各类CPU、DSP、微控制器、微处理器或人工智能处理器。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参照。
本领域技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指 令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的全部或部分步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述系统、装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (25)

  1. 一种控制车辆的方法,其特征在于,应用于第一车辆,所述第一车辆配置有至少一个驾驶辅助系统,所述至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,所述方法包括:
    获取所述第一车辆附近的移动物体的第一信息;
    根据所述第一信息确定第一参数;
    根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态;
    根据所述第一参数设置所述第一车辆以所述至少一个车速范围之外的第一车速行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取更新后的所述第一信息;
    根据所述更新后的所述第一信息更新所述第一参数;
    根据更新后的所述第一参数设置所述第一车辆以所述至少一个车速范围之内的第二车速行驶;
    根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统。
  3. 根据权利要求1或2所述的方法,其特征在于,所述移动物体包括第二车辆,所述第一信息包括所述第二车辆的位置、速度、尺寸或车型中的至少一项。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述获取所述第一车辆附近的移动物体的第一信息包括:
    通过接收单元从所述移动物体接收所述第一信息;
    或者,通过传感器测量得到所述移动物体的第一信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一参数包括使所述第一车辆与所述移动物体无碰撞风险时所述第一车辆应具备的行驶速度范围。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
    确定所述应具备的行驶速度范围与所述处于激活状态的一个驾驶辅助系统应用的车速范围无交集;
    终止所述处于激活状态的一个驾驶辅助系统的激活状态。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一车速在所述应具备的行驶速度范围之内。
  8. 根据权利要求2所述的方法,其特征在于,所述第一参数包括使所述第一车辆与所述移动物体无碰撞风险时所述第一车辆应具备的行驶速度范围,所述第二车速在所述应具备的行驶速度范围之内。
  9. 根据权利要求2或8所述的方法,其特征在于,所述根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
    激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统,所述一个驾驶辅助系统处于激活状态时应用的车速范围包括所述第二车速。
  10. 根据权利要求2或8或9所述的方法,其特征在于,所述第一车辆配置有至少一个驾驶辅助系统,所述至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围包括:
    所述第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统,所述第一驾驶辅助系统处于激活状态时应用于第一车速范围,所述第二驾驶辅助系统处于激活状态时应用于第二车速范围,并且所述第一车速范围和所述第二车速范围无交集;
    所述根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
    根据所述第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态;
    所述根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
    根据更新后的所述第一参数激活所述第一驾驶辅助系统或者所述第二驾驶辅助系统。
  11. 一种控制车辆的装置,其特征在于,应用于第一车辆,所述第一车辆配置有至少一个驾驶辅助系统,所述至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围,所述装置包括:
    获取单元,用于获取所述第一车辆附近的移动物体的第一信息;
    处理单元,用于基于所述第一信息确定第一参数;
    所述处理单元还用于根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态;
    所述处理单元还用于根据所述第一参数设置所述第一车辆以所述至少一个车速范围之外的第一车速行驶。
  12. 根据权利要求11所述的装置,其特征在于,所述获取单元,还用于获取更新后的所述第一信息;
    所述处理单元还用于根据所述更新后的所述第一信息更新所述第一参数;
    所述处理单元还用于根据更新后的所述第一参数设置所述第一车辆以所述至少一个车速范围之内的第二车速行驶;
    所述处理单元还用于根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统。
  13. 根据权利要求11或12所述的装置,其特征在于,所述移动物体包括第二车辆,所述第一信息包括所述第二车辆的位置、速度、尺寸或车型中的至少一项。
  14. 根据权利要求11-13中任一项所述的装置,其特征在于,所述获取单元包括接收单元或测量单元;
    所述接收单元,用于从所述移动物体接收所述第一信息;
    所述测量单元,用于测量得到所述移动物体的第一信息。
  15. 根据权利要求11-14中任一项所述的装置,其特征在于,所述第一参数包括使所述第一车辆与所述移动物体无碰撞风险时所述第一车辆应具备的行驶速度范围。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
    所述处理单元确定所述应具备的行驶速度范围与所述处于激活状态的一个驾驶辅助 系统的激活状态对应的车速范围无交集;
    所述处理单元终止所述处于激活状态的一个驾驶辅助系统的激活状态。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第一车速在所述应具备的行驶速度范围之内。
  18. 根据权利要求12所述的装置,其特征在于,所述第一参数包括使所述第一车辆与所述移动物体无碰撞风险时所述第一车辆应具备的行驶速度范围,所述第二车速在所述应具备的行驶速度范围之内。
  19. 根据权利要求12或18所述的装置,其特征在于,所述处理单元根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
    所述处理单元激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统,所述一个驾驶辅助系统的激活状态所对应的车速范围包括所述第二车速。
  20. 根据权利要求12或18或19所述的装置,其特征在于,所述第一车辆配置有至少一个驾驶辅助系统,所述至少一个驾驶辅助系统处于激活状态时应用于至少一个车速范围包括:
    所述第一车辆配置有第一驾驶辅助系统和第二驾驶辅助系统,所述第一驾驶辅助系统处于激活状态时应用于第一车速范围,所述第二驾驶辅助系统处于激活状态时应用于第二车速范围,并且所述第一车速范围和所述第二车速范围无交集;
    所述处理单元根据所述第一参数终止所述至少一个驾驶辅助系统中当前处于激活状态的一个驾驶辅助系统的激活状态包括:
    所述处理单元根据所述第一参数终止当前处于激活状态的第一驾驶辅助系统的激活状态;
    所述处理单元根据更新后的所述第一参数激活所述至少一个驾驶辅助系统中的一个驾驶辅助系统包括:
    所述处理单元根据更新后的所述第一参数激活所述第一驾驶辅助系统或者所述第二驾驶辅助系统。
  21. 一种控制车辆的装置,其特征在于,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求1-10任一项所述的操作。
  22. 根据权利要求21所述的装置,其特征在于,所述装置还包括接收器或者传感器中的至少一个,其中,所述接收器用于从所述移动物体接收所述第一信息,所述传感器用于测量得到所述移动物体的第一信息。
  23. 一种控制车辆的装置,其特征在于,包括:
    处理器和接口电路;
    其中,所述处理器通过所述接口电路与存储器耦合,所述处理器用于执行所述存储器中的程序代码,以实现如权利要求1-10中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述控制车辆的装置执行如权利要求1-10任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,使得所述控制车辆的装置执行如权利要求1-10任一项所述的方法。
PCT/CN2020/115115 2020-02-25 2020-09-14 控制车辆的方法和装置 WO2021169248A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20921938.5A EP4095008A4 (en) 2020-02-25 2020-09-14 Method and device for controlling vehicle
JP2022550994A JP7462779B2 (ja) 2020-02-25 2020-09-14 車両制御方法および装置
US17/895,491 US20220402490A1 (en) 2020-02-25 2022-08-25 Vehicle Control Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010116095.9 2020-02-25
CN202010116095.9A CN113370986A (zh) 2020-02-25 2020-02-25 控制车辆的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/895,491 Continuation US20220402490A1 (en) 2020-02-25 2022-08-25 Vehicle Control Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021169248A1 true WO2021169248A1 (zh) 2021-09-02

Family

ID=77490635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115115 WO2021169248A1 (zh) 2020-02-25 2020-09-14 控制车辆的方法和装置

Country Status (5)

Country Link
US (1) US20220402490A1 (zh)
EP (1) EP4095008A4 (zh)
JP (1) JP7462779B2 (zh)
CN (1) CN113370986A (zh)
WO (1) WO2021169248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213351B2 (ja) * 2019-07-05 2023-01-26 本田技研工業株式会社 車両の制御システム、車両の制御方法、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123851A (zh) * 2014-08-06 2014-10-29 清华大学 一种基于车路通讯的交叉口车辆快速通行辅助方法及装置
CN105035071A (zh) * 2015-05-29 2015-11-11 武汉理工大学 一种面向城市环境下汽车低速走停工况的自动跟车系统及其控制方法
CN105946620A (zh) * 2016-06-07 2016-09-21 北京新能源汽车股份有限公司 电动汽车及其主动限速控制方法和系统
CN106080600A (zh) * 2016-06-30 2016-11-09 深圳市赛格导航科技股份有限公司 一种基于v2v的汽车距离控制系统及方法
US20180208195A1 (en) * 2017-01-20 2018-07-26 Pcms Holdings, Inc. Collaborative risk controller for vehicles using v2v
CN109195847A (zh) * 2016-03-09 2019-01-11 法雷奥离合器公司 用于车辆的驾驶辅助方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031608A1 (de) * 2005-07-06 2007-02-08 Robert Bosch Gmbh Fahrerassistenzsystem mit Einrichtung zur Reaktion auf stehende Ziele
WO2012085611A1 (en) * 2010-12-22 2012-06-28 Toyota Jidosha Kabushiki Kaisha Vehicular driving assist apparatus, method, and vehicle
GB201202878D0 (en) * 2012-02-20 2012-04-04 Jaguar Cars Improvements in vehicle autonomous cruise control
CN108569282B (zh) * 2017-03-15 2021-11-19 奥迪股份公司 用于车辆的辅助驾驶设备和方法
CN109878535B (zh) * 2017-12-01 2022-04-15 奥迪股份公司 驾驶辅助系统和方法
CN110316192B (zh) * 2019-07-01 2021-03-16 百度在线网络技术(北京)有限公司 自动驾驶方法、装置、车辆及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123851A (zh) * 2014-08-06 2014-10-29 清华大学 一种基于车路通讯的交叉口车辆快速通行辅助方法及装置
CN105035071A (zh) * 2015-05-29 2015-11-11 武汉理工大学 一种面向城市环境下汽车低速走停工况的自动跟车系统及其控制方法
CN109195847A (zh) * 2016-03-09 2019-01-11 法雷奥离合器公司 用于车辆的驾驶辅助方法
CN105946620A (zh) * 2016-06-07 2016-09-21 北京新能源汽车股份有限公司 电动汽车及其主动限速控制方法和系统
CN106080600A (zh) * 2016-06-30 2016-11-09 深圳市赛格导航科技股份有限公司 一种基于v2v的汽车距离控制系统及方法
US20180208195A1 (en) * 2017-01-20 2018-07-26 Pcms Holdings, Inc. Collaborative risk controller for vehicles using v2v

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095008A4

Also Published As

Publication number Publication date
CN113370986A (zh) 2021-09-10
JP7462779B2 (ja) 2024-04-05
US20220402490A1 (en) 2022-12-22
EP4095008A4 (en) 2023-06-28
JP2023515155A (ja) 2023-04-12
EP4095008A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
CN109562760B (zh) 对于自主车辆测试预测
CN108885826B (zh) 车辆控制系统、车辆控制方法及存储介质
US10676101B2 (en) Vehicle control system, vehicle control method, and vehicle control program
US11402844B2 (en) Vehicle control apparatus, vehicle control method, and storage medium
CN103269935A (zh) 车辆驾驶辅助装置、方法和车辆
US11661057B2 (en) Vehicle control device, vehicle control method, and storage medium
WO2021038741A1 (ja) 車線変更経路指示装置及び車線変更経路指示システム
JP7225043B2 (ja) 車両制御システム、車両制御方法、及びプログラム
US11679762B2 (en) Active rear collision avoidance apparatus and method
KR20170119063A (ko) 협력 주행 제어 장치 및 방법
WO2021191995A1 (ja) 経路調停装置、自動運転制御装置、及び自動運転及び経路調停システム
WO2022052872A1 (zh) 自动驾驶方法及装置
CN117184109A (zh) 基于车联网的车辆控制方法及控制系统
CN206115719U (zh) 车辆防撞装置、可穿戴设备和防撞系统
WO2021169248A1 (zh) 控制车辆的方法和装置
US20220080967A1 (en) Vehicle control device, vehicle control method, and non-transitory computer readable storage medium
CN113386788A (zh) 控制装置以及车辆
CN115331461B (zh) 一种无信号交叉口混合交通通行控制方法、装置及车辆
US11396303B2 (en) Vehicle control system and vehicle control method
US11772653B2 (en) Vehicle control device, vehicle control method, and non-transitory computer readable storage medium
US20220289247A1 (en) Vehicle control system and vehicle control method
WO2021229671A1 (ja) 走行支援装置および走行支援方法
JP2023520806A (ja) 遠隔操作運転セッションを呼び出すための方法、コンピュータプログラムおよび装置
CN114596727A (zh) 用于车辆的辅助方法、系统、相应的车辆和存储介质
JP7019768B1 (ja) 走行経路指示装置及び走行経路指示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550994

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020921938

Country of ref document: EP

Effective date: 20220824

NENP Non-entry into the national phase

Ref country code: DE