WO2021166950A1 - 熱流スイッチング素子 - Google Patents

熱流スイッチング素子 Download PDF

Info

Publication number
WO2021166950A1
WO2021166950A1 PCT/JP2021/005893 JP2021005893W WO2021166950A1 WO 2021166950 A1 WO2021166950 A1 WO 2021166950A1 JP 2021005893 W JP2021005893 W JP 2021005893W WO 2021166950 A1 WO2021166950 A1 WO 2021166950A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat flow
switching element
type semiconductor
flow switching
semiconductor layer
Prior art date
Application number
PCT/JP2021/005893
Other languages
English (en)
French (fr)
Inventor
利晃 藤田
皓也 新井
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020194862A external-priority patent/JP2021136436A/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020227028188A priority Critical patent/KR20220140743A/ko
Priority to CN202180011357.8A priority patent/CN115023595A/zh
Priority to US17/799,005 priority patent/US20230109145A1/en
Priority to EP21756947.4A priority patent/EP4109062A4/en
Publication of WO2021166950A1 publication Critical patent/WO2021166950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a heat flow switching element capable of actively controlling heat conduction by a bias voltage and directly detecting a temperature change.
  • Patent Document 1 describes a thermal diode in which two thermal conductors having different thermal expansion rates are lightly brought into contact with each other and the heat flow differs depending on the direction of the temperature gradient.
  • Patent Document 2 also describes a heat radiating device which is a heat switch using physical thermal contact by thermal expansion.
  • Patent Document 3 describes a heat conduction variable device in which the thermal conductivity is changed by a reversible redox reaction caused by applying a voltage to a compound.
  • Non-Patent Document 1 proposes a heat flow switching element in which a polyimide tape is sandwiched between two Ag 2S 0.6 Se 0.4 and an electric field is applied to change the thermal conductivity.
  • Non-Patent Document 1 by applying a voltage, a charge capable of heat conduction is generated at the material interface, and heat can be carried by the charge, so that the heat conduction is changed. It can be immediately transferred to and a relatively good thermal responsiveness can be obtained.
  • a heat flow switching element that increases the amount of electric charge generated and has a larger change in thermal conductivity is desired.
  • a heat flow switching element capable of directly detecting how the temperature changes with the change in thermal conductivity is desired. That is, a heat flow switching element to which a temperature sensing function is provided is desired.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a heat flow switching element capable of directly detecting a temperature change while having a larger change in thermal conductivity and excellent thermal responsiveness. do.
  • the heat flow switching element according to the first invention includes an N-type semiconductor layer, an insulator layer laminated on the N-type semiconductor layer, and a P-type semiconductor layer laminated on the insulator layer. It is characterized by including a heat flow control element unit and a temperature sensitive element unit joined to the heat flow control element unit.
  • a heat flow control element unit including an N-type semiconductor layer, an insulator layer laminated on the N-type semiconductor layer, and a P-type semiconductor layer laminated on the insulator layer, and heat flow control. Since it is provided with a temperature-sensitive element portion bonded to the element portion, when a voltage is applied to the P-type semiconductor layer and the N-type semiconductor layer, the P-type semiconductor layer, the N-type semiconductor layer, and the insulator layer are mainly provided. A charge is induced at the interface, and the charge carries heat to change the thermal conductivity.
  • the electric charge induced by the external voltage is generated at both the interface between the N-type semiconductor layer and the insulator layer and its vicinity and the interface between the P-type semiconductor layer and the insulator layer and its vicinity.
  • the amount of electric charge generated is large, and a large change in thermal conductivity and high thermal responsiveness can be obtained.
  • it is a mechanism that physically changes the thermal conductivity without using a chemical reaction mechanism it is possible to immediately shift to a state in which the thermal conductivity is changed, and good thermal responsiveness can be obtained.
  • the amount of electric charge induced at the interface changes by multiplying the magnitude of the external voltage, it is possible to adjust the thermal conductivity by adjusting the external voltage. The heat flow can be actively controlled.
  • the heat flow switching element is provided with a temperature sensitive element unit bonded to the heat flow control element unit and is composited, the temperature change when the thermal conductivity is changed by the heat flow control element unit is caused by the temperature sensitive element unit. It can be detected directly. That is, the heat flow can be adjusted with high responsiveness by the voltage application type heat flow control element unit capable of high-speed heat response while directly monitoring the temperature by the temperature sensitive element unit.
  • the temperature sensitive element portion faces at least one of a thin film thermistor portion formed of a thermistor material and above and below the thin film thermistor portion.
  • the thin film thermistor portion is provided with a pair of formed counter electrodes, and is characterized in that the thin film thermistor portion is laminated on at least one of the upper side and the lower side of the heat flow control element portion. That is, in this heat flow switching element, the thin film thermistor portion is laminated on at least one of the upper side and the lower side of the heat flow control element portion. It is possible to detect the temperature with high accuracy and to reduce the thickness.
  • the heat flow switching element according to the third invention is characterized in that, in the first or second invention, the temperature sensitive element portion is provided on both the high temperature side and the low temperature side of the heat flow control element portion, respectively. And. That is, in this heat flow switching element, since the temperature sensitive element section is provided on both the high temperature side and the low temperature side of the heat flow control element section, the temperature is set on both the high temperature side and the low temperature side of the heat flow control element section. Can be detected, and the state of heat conduction that changes with time and time can be detected with higher accuracy according to the heat flow direction.
  • the heat flow can be adjusted by an external voltage in the heat flow control element unit according to the temperature detected on both the high temperature side and the low temperature side, the temperature of the object in thermal contact with the heat flow switching element is time. Even if it changes, heat flow switching with extremely high thermal responsiveness becomes possible depending on the state of heat conduction at that time.
  • the heat flow switching element according to the fourth invention is such that the heat flow control element unit sandwiches the insulator layer between the N-type semiconductor layer and the P-type semiconductor layer. It is characterized in that a plurality of layers are alternately laminated. That is, in this heat flow switching element, since a plurality of N-type semiconductor layers and P-type semiconductor layers are alternately laminated with the insulator layer interposed therebetween, the interface between the P-type semiconductor layer and the N-type semiconductor layer and the insulator layer. A large number of charges are induced by the formation of a plurality of these, and the thermal conductivity can be significantly changed.
  • the heat flow switching element according to the fifth invention is the heat flow switching element according to any one of the first to fourth inventions, in the upper high heat conduction portion provided at the uppermost portion of the heat flow control element portion and at the lowermost portion of the heat flow control element portion.
  • the lower high thermal conductive portion provided and the outer peripheral heat insulating portion provided so as to cover the outer peripheral edges of the N-type semiconductor layer, the insulator layer, and the P-type semiconductor layer are provided, and the upper high thermal conductive portion and the lower high heat are provided.
  • the conductive portion is formed of a material having higher thermal conductivity than the outer peripheral heat insulating portion, and the temperature sensitive element portion is joined to at least one of the upper high thermal conductive portion and the lower high thermal conductive portion. do.
  • the upper high heat conductive part and the lower high heat conductive part are formed of a material having higher heat conductivity than the outer peripheral heat insulating part, the heat flow in the in-plane direction can be suppressed and the heat flow in the in-plane direction can be suppressed. Thermal switchability can be obtained.
  • the N-side electrode and the P-side electrode are arranged on the outer periphery of each layer, the inflow of heat to these electrodes can be suppressed as much as possible by the outer peripheral heat insulating portion having low thermal conductivity.
  • the temperature sensitive element portion is bonded to at least one of the upper high heat conductive portion and the lower high heat conductive portion, it is bonded to the high heat conductive portion which is on the heat flow path and has high thermal conductivity.
  • the temperature-sensitive element unit can detect temperature changes with higher accuracy and higher responsiveness.
  • the heat flow switching element is characterized in that, in any one of the first to fifth inventions, the heat flow sensor unit is joined to the heat flow control element unit and can detect the direction of the heat flow. .. That is, since this heat flow switching element is provided with a heat flow sensor unit that is joined to the heat flow control element unit and can detect the direction of the heat flow, it is possible to control the thermal conductivity while checking the direction of the heat flow by the heat flow sensor unit. can. Therefore, even if the heat flux input / output from the object in thermal contact with the heat flow switching element changes with time, heat flow switching with extremely high thermal responsiveness is possible according to the state of heat conduction at that time. It becomes.
  • the heat flow switching element according to the seventh invention has an abnormal Nernst effect in which the heat flow sensor unit extends in the same direction and is arranged parallel to each other in the plane direction of the heat flow control element unit.
  • the abnormal Nernst material film is provided with a plurality of abnormal Nernst material films for electrically connecting the plurality of abnormal Nernst material films in series, and the abnormal Nernst material film is laminated on the heat flow control element portion. It is characterized by that.
  • the abnormal Nernst material film since the abnormal Nernst material film is laminated on the heat flow control element portion, the abnormal Nernst material film comes into surface contact with the heat flow control element portion, so that the thermal resistance is lowered and the heat flow is highly accurate.
  • the direction of the heat flow can be detected and the thickness can be reduced.
  • the abnormal Nernst material films can be arranged with a large number of wires. Therefore, the voltage can be amplified without increasing the thickness.
  • the temperature sensitive element portion faces at least one of a thin film thermistor portion formed of a thermistor material and above and below the thin film thermistor portion.
  • a pair of formed counter electrodes are provided, and the thin film thermistor portion and the abnormal Nernst material film are laminated with each other. That is, in this heat flow switching element, since the thin film thermistor portion and the abnormal Nernst material film are laminated with each other, the thin film thermistor portion and the abnormal Nernst material film come into surface contact with each other, so that the thermal resistance is lowered and the temperature is detected. It is possible to detect the heat flow direction with high accuracy and to reduce the thickness.
  • the thin film thermistor portion has higher electric resistance than the abnormal Nernst material film and has high insulating property
  • the voltage detection for detecting the heat flow of the laminated abnormal Nernst material film is a thin film. It is not easily affected by the conductivity of the thermistor.
  • the heat flow switching element since the temperature sensitive element portion joined to the heat flow control element portion is provided and composited, a high-speed thermal response can be obtained while directly monitoring the temperature by the temperature sensitive element portion.
  • the heat flow can be adjusted with high responsiveness by the possible voltage application type heat flow control element unit.
  • the N-type semiconductor layer, the insulator layer laminated on the N-type semiconductor layer, and the P-type semiconductor layer laminated on the insulator layer are provided, the amount of electric charge generated by applying an external voltage is provided. It is possible to obtain a large change in thermal conductivity and high thermal responsiveness.
  • the third embodiment it is a top view of the state where the protective film on the upper surface showing the heat flow switching element is removed. It is a conceptual sectional view which shows the 4th Embodiment of the heat flow switching element which concerns on this invention. It is a top view which shows the heat flow switching element in 4th Embodiment.
  • FIGS. 1 to 4 the first embodiment of the heat flow switching element according to the present invention will be described with reference to FIGS. 1 to 4.
  • the scale is appropriately changed as necessary in order to make each part recognizable or easily recognizable.
  • the heat flow switching element 1 of the present embodiment is laminated on the N-type semiconductor layer 3, the insulator layer 4 laminated on the N-type semiconductor layer 3, and the insulator layer 4.
  • the heat flow control element unit 10 including the P-type semiconductor layer 5 and the temperature sensitive element units 11A and 11B joined to the heat flow control element unit 10 are provided.
  • the temperature sensitive element portions 11A and 11B are formed so as to face at least one of the thin film thermistor portion 11a formed of the thermistor material and the thin film thermistor portion 11a above and below. It includes a pair of counter electrodes 11b. An insulating protective film 11c is laminated on the thin film thermistor portion 11a and the counter electrode 11b. In this embodiment, as shown in FIG. 3, a pair of counter electrodes 11b are arranged to face each other on the thin film thermistor portion 11a. A pair of lead wires 8a are connected to the pair of counter electrodes 11b.
  • the thin film thermistor portion 11a is laminated on at least one of the upper and lower parts of the heat flow control element portion 10.
  • the temperature sensitive element units 11A and 11B are provided on both the high temperature side and the low temperature side of the heat flow control element unit 10, respectively. That is, in the present embodiment, the heat flow direction is set to the stacking direction, and the temperature sensitive element portions 11A and 11B are provided on both the upper portion and the lower portion of the heat flow control element portion 10, respectively.
  • the upper high heat conduction portion 18 provided at the uppermost portion of the heat flow control element portion 10 and the lower high heat conduction portion 2 (base) provided at the lowermost portion of the heat flow control element portion 10.
  • a material) and an outer peripheral heat insulating portion 19 provided so as to cover the outer peripheral edges of the N-type semiconductor layer 3, the insulator layer 4, and the P-type semiconductor layer 5.
  • the upper high thermal conductive portion 18 and the lower high thermal conductive portion 2 are formed of a material having higher thermal conductivity than the outer peripheral heat insulating portion 19.
  • the temperature sensitive element portions 11A and 11B are joined to at least one of the upper high thermal conductive portion 18 and the lower high thermal conductive portion 2.
  • the temperature sensitive element portion 11B is joined on the upper high thermal conductive portion 18.
  • the temperature sensitive element portion 11A is formed on the lower high heat conductive portion 2, and the heat flow control element portion 10 is formed on the temperature sensitive element portion 11A with the protective film 11c interposed therebetween, so that the protective film 11c is formed. It is joined to the heat flow control element unit 10 via the heat flow control element unit 10.
  • the heat flow switching element 1 of the present embodiment includes an N-side electrode 6 connected to the N-type semiconductor layer 3 and a P-side electrode 7 connected to the P-type semiconductor layer 5.
  • various film forming methods such as a sputtering method and a molecular beam epitaxy method (MBE method) are adopted.
  • MBE method molecular beam epitaxy method
  • lead wires 6a and 7a are connected to the N-side electrode 6 and the P-side electrode 7, respectively.
  • An external power supply V is connected to the N-side electrode 6 and the P-side electrode 7, and a voltage is applied.
  • the lower high heat conductive portion 2 is an insulating base material, and on the base material (lower high heat conductive portion 2), a lower temperature sensitive element portion 11A, a heat flow control element portion 10, and an upper temperature sensitive element portion are used. 11B are laminated in this order.
  • the upper high thermal conductive portion 18 is formed of a high thermal conductive material such as a silicon-based resin (silicone), and the lower high thermal conductive portion 2 which is a base material adopts a high thermal conductive substrate formed of alumina or the like. ..
  • the outer peripheral heat insulating portion 19 is formed of a low thermal conductive material such as an epoxy resin.
  • the outer peripheral heat insulating portion 19 covers the outermost insulating layer 4 in an exposed state, and the upper high thermal conductive portion 18 is placed in contact with the exposed uppermost insulating layer 4. Is formed in.
  • the outer peripheral heat insulating portion 19 is formed so as to cover the N-side electrodes 6 and the P-side electrodes 7 arranged on the outer periphery of each layer and connected to the lead wires 26a and 27a.
  • a plurality of N-type semiconductor layers 3 and P-type semiconductor layers 5 are alternately laminated with the insulator layer 4 interposed therebetween. That is, the insulator layer 4 is first formed on the lower temperature-sensitive element portion 11A, and the N-type semiconductor layer 3 and the P-type semiconductor layer 5 are placed on the insulator layer 4 in this order with the insulator layer 4 interposed therebetween. A laminate of three layers of N-type semiconductor layer 3, three layers of P-type semiconductor layer 5, and seven layers of insulator layer 4 is formed.
  • Each N-type semiconductor layer 3 is connected to an N-side connecting portion 3a provided at a base end portion, and an N-side electrode 6 is further formed in a part of the N-side connecting portion 3a.
  • each P-type semiconductor layer 5 is connected to a P-side connecting portion 5a provided at a base end portion, and a P-side electrode 7 is further formed in a part of the P-side connecting portion 5a.
  • Each of the above layers is patterned using a metal mask. By shifting the position of the metal mask to form a film, a plurality of N-type semiconductor layers 3, P-type semiconductor layers 5, and insulator layers 4 are laminated.
  • the N-type semiconductor layer 3 and the P-type semiconductor layer 5 are formed of a thin film having a thickness of less than 1 ⁇ m.
  • the N-type semiconductor layer 3 and the P-type semiconductor layer 5 are films of 100 nm or less. It is more preferably formed in thickness.
  • the N-type semiconductor layer 3 and the P-type semiconductor layer 5 preferably have a film thickness of 5 nm or more.
  • the insulator layer 4 preferably has a film thickness of 40 nm or more, and is set to a thickness that does not cause dielectric breakdown.
  • the thickness of the insulator layer 4 is preferably less than 1 ⁇ m.
  • the type of electric charge e generated at and near the interface between the N-type semiconductor layer 3 and the insulator layer 4 in FIG. 4 is an electron and is represented by a white circle.
  • the type of electric charge e generated at and near the interface between the P-type semiconductor layer 5 and the insulator layer 4 is a hole, which is indicated by a black circle. (Hole holes are holes created by the lack of electrons in the valence band of a semiconductor and appear to have a relatively positive charge.)
  • the N-type semiconductor layer 3 and the P-type semiconductor layer 5 are preferably degenerate semiconductor materials having low lattice heat conduction, and for example, thermoelectric materials such as SiGe, nitride semiconductors such as CrN, and oxide semiconductors such as VO 2 can be adopted. Is.
  • the conductivity of N-type and P-type is set by adding N-type and P-type dopants to the semiconductor material.
  • the insulator layer 4 is preferably an insulating material having a low thermal conductivity, and an insulator such as SiO 2, a dielectric such as HfO 2 and BiFeO 3 , an organic material such as polyimide (PI), and the like can be adopted. be. In particular, a dielectric material having a high dielectric constant is preferable.
  • the N-side electrode 6 and the P-side electrode 7 are made of a metal such as Mo or Al.
  • the heat flow switching element 1 of the present embodiment generates a heat conductive charge e at and near the interface between the N-type semiconductor layer 3 and the insulator layer 4 by applying an electric field (voltage). As a result, the generated electric charge e carries heat and the thermal conductivity changes.
  • the one that changes according to the amount of electric charge generated by applying an electric field (voltage) is the electron thermal conductivity. Therefore, in the present embodiment, a material having a small lattice thermal conductivity is suitable for obtaining a larger change in thermal conductivity. Therefore, in any of the N-type semiconductor layer 3, the insulator layer 4, and the P-type semiconductor layer 5, a material having a small lattice thermal conductivity, that is, a material having a low thermal conductivity is selected.
  • the thermal conductivity of the material constituting each layer of the present embodiment is preferably as low as 5 W / mK or less, more preferably 1 W / mK or less, and the above-mentioned material can be adopted. Further, the electron thermal conductivity increases according to the amount of electric charge e generated according to the applied external electric field (voltage). Since the electric charge e is generated at the interface between the N-type semiconductor layer 3 and the P-type semiconductor layer 5 and the insulator layer 4, the amount of the electric charge e generated can be increased by increasing the total area of the interface. can.
  • the method for measuring thermal conductivity is, for example, to instantaneously heat a thin film sample formed on a substrate with a pulse laser and measure the rate of decrease in surface temperature or the rate of increase in surface temperature due to heat diffusion inside the thin film.
  • This is performed by the pulsed light heating thermoreflectance method, which is a method for obtaining the thermal diffusivity or the thermal effusivity in the film pressure direction of the thin film.
  • the pulsed light heating thermoreflectance methods the method of directly measuring heat diffusion (backside heating / front surface temperature measurement (RF) method) requires the use of a transparent substrate capable of transmitting a pulsed laser, and is therefore transparent.
  • the thermal conductivity is measured by the surface heating / temperature measurement (FF) method, which is a method of measuring the thermal conductivity and converting it into the thermal conductivity.
  • FF surface heating / temperature measurement
  • the temperature-sensitive element portions 11A and 11B have a comb shape in which a pair of counter electrodes 11b have a plurality of comb portions 11d protruding in opposite directions to each other, and the temperature sensitive element portions 11A and 11B have a comb shape with one of the counter electrodes 11b.
  • the comb portions 11d of the other counter electrode 11b are arranged side by side alternately.
  • various metal films such as a single layer of Cr film and a laminated metal film of Cr film and Au film can be adopted.
  • an NTC thermistor an element that exhibits negative temperature characteristics and whose electric resistance value exponentially decreases as the temperature rises
  • abnormal temperature detection can be performed quickly.
  • a PTC thermistor an element that exhibits positive temperature characteristics and whose electrical resistance value increases as the temperature rises, or an element that exhibits positive temperature characteristics and exceeds a certain temperature
  • the electrical resistance value increases as the temperature rises.
  • a CTR thermistor an element that has a negative temperature coefficient, but the electric resistance value suddenly decreases when a certain temperature range is exceeded may be adopted.
  • the NTC thermistor material As the NTC thermistor material, the generally known oxide materials, for example, having a spinel type crystal structure (Mn, Co, Ni) 3 O 4 and has a perovskite crystal structure (La, Ca) ( Oxides such as Cr, Mn) O 3 are used, but the thin film thermistor portion 11a in this embodiment has a general formula: M x A y N z (where M is Ti, V, Cr, Mn, Fe). , Co, Ni and Cu, and A represents Al or (Al and Si).
  • Ti—Al—N for example, the thin film thermistor portion 11a is formed by performing reactive sputtering in a nitrogen-containing atmosphere using a Ti—Al alloy sputtering target.
  • Wurtzite crystal structure is a hexagonal space group P6 3 mc (No.186), and M and A belong to the same atom site (M is Ti, V, Cr, Mn, Fe, Co, It indicates at least one of Ni and Cu, and A indicates Al or (Al and Si)), which is in a so-called solid solution state.
  • Wurtzite takes the (M, A) N 4 tetrahedron vertices connecting structure, (M, A) nearest the site of the site is N (nitrogen), and (M, A) is a nitrogen tetracoordinate Take.
  • V vanadium
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Co cobalt
  • Ni nickel
  • Cu copper
  • the effective ionic radius is a physical property value often used to grasp the distance between atoms, and using the well-known document value of Shannon's ionic radius, logically, the Ulz ore type M x A It can be inferred that y N z (where M indicates at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and A indicates Al or (Al and Si)) can be obtained. ..
  • Table 1 shows the effective ionic radii of each ion species of Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Si (reference paper RDShannon, Acta Crystallogr., Sect.A, 32, 751). (1976)).
  • Ti-Al-N is carrier-doped by partially substituting the Al site of Al-N, which is a nitride insulator having a wurtzite type crystal structure, with Ti, thereby increasing electrical conduction.
  • thermista characteristics can be obtained, since V, Cr, Mn, Fe, Co, Ni and Cu belong to the same 3d transition metal element as Ti, the Wurtz ore type M x A y N z (however, however) M represents at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and A represents Al or (Al and Si)), and it is possible to obtain thermistor properties.
  • an NTC thermistor, a PTC thermistor, a CTR thermistor, and various thermistor materials are applied to the thin film thermistor portion 11a.
  • NTC thermistors that decrease continuously are adopted.
  • the thin film thermistor portion 11a when the temperature exceeds a certain temperature, the electric resistance value sharply increases as the temperature rises, or when the temperature exceeds a certain temperature, the electric resistance value sharply increases as the temperature rises.
  • the abnormal temperature can be detected more quickly, and the heat flow of the heat flow control element unit can be adjusted with high responsiveness.
  • the material the electrical resistance value sharply increases with increasing temperature is employed, for example, BaTiO 3, SrTiO 3, and their A system in which a small amount of a metal element such as Pb is partially substituted in a material system, or a conductive polymer (a system in which conductive particles are dispersed in a polymer. When the polymer melts, contact with the conductive powder is cut off and electrical resistance is increased. (Increase) etc. will be adopted.
  • a metal-insulator transition material in which the electric resistance value sharply decreases as the temperature rises when a certain temperature is exceeded is adopted.
  • VO 2 and a metal element in the material system are used.
  • a system with a small amount of partial substitution is adopted.
  • Various film forming methods such as a sputtering method, a sol-gel method, and a printing method are applied to the thin film production made of the PTC thermistor material and the CTR thermistor material.
  • the electric charge e induced by the external voltage is generated at both the interface between the N-type semiconductor layer 3 and the insulator layer 4 and its vicinity and the interface between the P-type semiconductor layer 5 and the insulator layer 4 and its vicinity. Since it is generated, a large amount of electric charge is generated, and a large change in thermal conductivity and high thermal responsiveness can be obtained. Further, since it is a mechanism that physically changes the thermal conductivity without using a chemical reaction mechanism, it is possible to immediately shift to a state in which the thermal conductivity is changed, and good thermal responsiveness can be obtained. In addition, since the amount of electric charge induced at the interface changes by multiplying the magnitude of the external voltage, it is possible to adjust the thermal conductivity by adjusting the external voltage. The heat flow can be actively controlled. Since the lower high heat conductive portion 2 which is the base material is an insulator and no current is generated when a voltage is applied, Joule heat is not generated. Therefore, the heat flow can be actively controlled without self-heating.
  • the heat flow switching element 1 includes the temperature sensitive element units 11A and 11B joined to the heat flow control element unit 10 and is composited, the temperature change when the thermal conductivity is changed by the heat flow control element unit 10. Can be directly detected by the temperature sensitive element units 11A and 11B. That is, while the temperature is directly monitored by the temperature sensitive element units 11A and 11B, the heat flow can be adjusted with high responsiveness by the voltage application type heat flow control element unit 10 capable of high-speed heat response.
  • the thin film thermistor portion 11a since the thin film thermistor portion 11a is laminated on at least one of the upper and lower parts of the heat flow control element portion 10, the thin film thermistor portion 11a comes into surface contact with the heat flow control element portion 10, so that the thermal resistance is lowered and the temperature is high. The temperature can be detected accurately and the thickness can be reduced. Further, since the temperature sensitive element units 11A and 11B are provided on both the high temperature side and the low temperature side of the heat flow control element unit 10, the temperature can be adjusted on both the high temperature side and the low temperature side of the heat flow control element unit 10. It can be detected, and the state of heat conduction that changes with time and time can be detected with higher accuracy according to the heat flow direction.
  • the heat flow can be adjusted by an external voltage in the heat flow control element unit according to the temperature detected on both the high temperature side and the low temperature side, the temperature of the object in thermal contact with the heat flow switching element is time. Even if it changes, heat flow switching with extremely high thermal responsiveness becomes possible depending on the state of heat conduction at that time. Further, since a plurality of N-type semiconductor layers 3 and P-type semiconductor layers 5 are alternately laminated with the insulator layer 4 interposed therebetween, the interface between the N-type semiconductor layer 3 and the P-type semiconductor layer 5 and the insulator layer 4 A large number of charges e are induced by the formation of a plurality of these, and the thermal conductivity can be significantly changed.
  • the difference between the second embodiment and the first embodiment is that in the first embodiment, the temperature sensitive element units 11A and 11B are provided above and below the heat flow control element unit 10, whereas in the second embodiment, the heat flow control element units 10 are provided above and below.
  • the heat flow switching element 21 as shown in FIG. 5, a pair of temperature sensitive element portions 21A and 21B are provided on the upper surface of the heat flow control element unit 20 so as to be separated from each other. That is, in the second embodiment, the heat flow direction is the in-plane direction (planar direction) of the heat flow control element unit 20, the temperature sensitive element unit 21A is installed on the end on the high temperature side, and the end on the low temperature side. A temperature sensitive element portion 21B is installed on the portion.
  • the heat flow control element unit 20 of the second embodiment is provided in a strip shape longer along the heat flow direction than that of the first embodiment.
  • the temperature sensitive element units 21A and 21B are provided on both the high temperature side and the low temperature side of the heat flow control element unit 20, respectively. The temperature can be detected on both the high temperature side and the low temperature side, and the state of heat conduction can be detected with higher accuracy corresponding to the heat flow direction.
  • the difference between the third embodiment and the first embodiment is that in the first embodiment, the temperature sensitive element units 11A and 11B are provided above and below the heat flow control element unit 10, respectively.
  • the temperature sensitive element unit 11A is provided only under the heat flow control element unit 10, and the heat flow flows over the heat flow control element unit 10. The point is that the heat flow sensor unit 32 capable of detecting the direction is provided.
  • the heat flow switching element 31 of the third embodiment includes a heat flow sensor unit 32 that is joined to the heat flow control element unit 10 and can detect the direction and / and heat flux of the heat flow.
  • the heat flow sensor unit 32 includes a plurality of abnormal Nernst material films 32a extending in the same direction and arranging in parallel with each other in the plane direction of the heat flow control element unit 10, and a plurality of abnormal Nernst materials. It includes a connection wiring 32b that electrically connects the material film 32a in series. Electrode wirings 32c are connected to both ends of the abnormal Nernst material film 32a connected in series.
  • As the connection wiring 32b and the electrode wiring 32c an Au film having a small electromotive force is preferable, but a laminated metal film of a Cr film and an Au film or the like can also be adopted.
  • the abnormal Nernst material film 32a is laminated on the heat flow control element portion 10. That is, the abnormal Nernst material film 32a, the connection wiring 32b, and the electrode wiring 32c are formed on the upper high heat conduction portion 18 formed on the upper portion of the heat flow control element portion 10.
  • the plurality of abnormal Nernst material films 32a are formed in a band shape or a linear shape arranged parallel to each other in the voltage direction generated with respect to the heat flow in the thickness direction. By increasing the number and length of the abnormal Nernst material films 32a connected in series, the obtained voltage can be increased.
  • the abnormal Nernst material film 32a is a ferromagnetic material having a large spontaneous magnetization such as a material such as Fe-Al, Fe-Pt, Co-Pt, or a Whistler alloy material such as Co 2 MnGa, Co 2 MnAl, Co 2 MnSi. Materials, antiferromagnetic materials such as Mn 2 Sn, and the like can be adopted.
  • sputtering is performed using a Fe—Al alloy sputtering target to form an abnormal Nernst material film 32a.
  • the abnormal Nernst material film 32a since the abnormal Nernst material film 32a is laminated on the heat flow control element section 10, the abnormal Nernst material film 32a comes into surface contact with the heat flow control element section 10. Therefore, the thermal resistance is lowered, the direction of the heat flow can be detected with high accuracy, and the thickness can be reduced.
  • the abnormal Nernst material film 32a can be formed with a large number of wires. By arranging them side by side, the voltage can be amplified without increasing the thickness.
  • the difference between the fourth embodiment and the third embodiment is that in the first embodiment, only the heat flow sensor unit 32 is provided on the heat flow control element unit 10, whereas in the fourth embodiment, only the heat flow sensor unit 32 is provided.
  • a composite element unit 42 having a temperature sensing function and a heat flow measuring function is provided on the heat flow control element unit 10. That is, in the fourth embodiment, the thin film thermistor portion 11a and the abnormal Nernst material film 32a are laminated in this order on the upper high heat conductive portion 18 formed on the upper portion of the heat flow control element portion 10 to form the composite element portion 42. doing.
  • the thin film thermistor portion 11a and the abnormal Nernst material film 32a are laminated with each other, the thin film thermistor portion 11a and the abnormal Nernst material film 32a are in surface contact with each other. As a result, the thermal resistance is lowered, and temperature detection and heat flow direction detection can be performed with high accuracy, and the thickness can be reduced.
  • the thin film thermistor portion 11a has a higher electrical resistance than the abnormal Nernst material film 32a.
  • a metal nitride thin film not only a high B constant and high thermal conductivity can be obtained, but also it has a relatively high insulating property, so that voltage detection for detecting the heat flow of the laminated anomalous Nernst material film 32a Is not easily affected by the conductivity of the thin film thermistor portion 11a.
  • thermocouple a temperature sensitive element unit provided with a thermocouple
  • resistance temperature detector a resistance temperature detector
  • chip thermistor a temperature sensitive element unit provided with a thermocouple
  • thermocouple a temperature sensitive element unit provided with a thermocouple
  • resistance temperature detector a resistance temperature detector
  • chip thermistor or the like
  • the thin film thermistor portion various metal oxide materials and various metal nitride materials can be adopted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Thermistors And Varistors (AREA)

Abstract

熱伝導率の変化がより大きく、優れた熱応答性を有すると共に、温度変化を直接検出可能な熱流スイッチング素子を提供する。本発明に係る熱流スイッチング素子は、N型半導体層3と、N型半導体層上に積層された絶縁体層4と、絶縁体層上に積層されたP型半導体層5とを備えた熱流制御素子部10と、熱流制御素子部に接合された感温素子部11A,11Bとを備えている。また、感温素子部が、サーミスタ材料で形成された薄膜サーミスタ部と、薄膜サーミスタ部の上及び下の少なくとも一方に対向して形成された一対の対向電極とを備え、薄膜サーミスタ部が、熱流制御素子部の上及び下の少なくとも一方に積層されている。

Description

熱流スイッチング素子
 本発明は、バイアス電圧で熱伝導を能動的に制御可能であると共に、温度変化を直接検出可能な熱流スイッチング素子に関する。
 従来、熱伝導率を変化させる熱スイッチとして、例えば特許文献1には、熱膨張率の異なる2つの熱伝導体を軽く接触させて温度勾配の方向によって熱の流れ方が異なるサーマルダイオードが記載されている。また、特許文献2にも、熱膨張による物理的熱接触を使った熱スイッチである放熱装置が記載されている。
 また、特許文献3には、化合物に電圧を印加させることで起こる可逆的な酸化還元反応により熱伝導率が変化する熱伝導可変デバイスが記載されている。
 さらに、非特許文献1には、ポリイミドテープを2枚のAg0.6Se0.4で挟み込んで電場を印加することで熱伝導度を変化させる熱流スイッチング素子が提案されている。
特許第2781892号公報 特許第5402346号公報 特開2016-216688号公報
松永卓也、他4名、「バイアス電圧で動作する熱流スイッチング素子の作製」、第15回日本熱電学会学術講演会、2018年9月13日
 上記従来の技術には、以下の課題が残されている。
 すなわち、特許文献1及び2に記載の技術では、熱膨張による物理的熱接触を使うため、再現性が得られず、特に微小変化であるためサイズ設計が困難であると共に、機械接触圧による塑性変形を回避することができない。また、材料間の対流熱伝達の影響が大き過ぎる問題があった。
 また、特許文献3に記載の技術では、化学反応である酸化還元反応を用いており、熱応答性に劣り、熱伝導が安定しないという不都合があった。
 これらに対して非特許文献1に記載の技術では、電圧を印加することで、材料界面に熱伝導可能な電荷を生成し、その電荷によって熱を運ぶことができるため、熱伝導が変化した状態に直ちに移行でき、比較的良好な熱応答性を得ることができる。しかしながら、生成される電荷の量が少ないため、より生成される電荷の量を増大させ、熱伝導率の変化がさらに大きい熱流スイッチング素子が望まれている。
 さらに、熱伝導率の変化に伴い温度がどのように変化したかを直接検出することが可能な熱流スイッチング素子が望まれている。すなわち、感温機能が付与された熱流スイッチング素子が望まれている。
 本発明は、前述の課題に鑑みてなされたもので、熱伝導率の変化がより大きく、優れた熱応答性を有すると共に、温度変化を直接検出可能な熱流スイッチング素子を提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る熱流スイッチング素子は、N型半導体層と、前記N型半導体層上に積層された絶縁体層と、前記絶縁体層上に積層されたP型半導体層とを備えた熱流制御素子部と、前記熱流制御素子部に接合された感温素子部とを備えていることを特徴とする。
 この熱流スイッチング素子では、N型半導体層と、N型半導体層上に積層された絶縁体層と、絶縁体層上に積層されたP型半導体層とを備えた熱流制御素子部と、熱流制御素子部に接合された感温素子部とを備えているので、P型半導体層とN型半導体層とに電圧を印加すると、P型半導体層及びN型半導体層と絶縁体層との主に界面に電荷が誘起され、この電荷が熱を運ぶことで熱伝導率が変化する。特に、N型半導体層と絶縁体層との界面及びその近傍と、P型半導体層と絶縁体層との界面及びその近傍との両方で、外部電圧により誘起された電荷が生成されるため、生成される電荷量が多く、熱伝導率の大きな変化と高い熱応答性とを得ることができる。また、化学反応機構を用いない、物理的に熱伝導率を変化させる機構であるので、熱伝導が変化した状態に直ちに移行でき、良好な熱応答性を得ることができる。
 また、外部電圧の大きさに乗じて、界面に誘起される電荷量が変化するので、外部電圧を調整することで、熱伝導率を調整することが可能となるので、本素子を介して、熱流を能動的に制御可能となる。
 なお、絶縁体層が絶縁体であり、電圧印加に伴う電流が発生しないため、ジュール熱は生じない。そのため、自己発熱することなく、熱流を能動的に制御可能となる。
 さらに、この熱流スイッチング素子では、熱流制御素子部に接合された感温素子部を備えて複合化しているので、熱流制御素子部により熱伝導率が変化した際の温度変化を感温素子部によって直接、検出することができる。すなわち、感温素子部によって温度を直接モニタリングしながら、高速熱応答が可能な電圧印加型の熱流制御素子部により熱流を高い応答性で調整することができる。
 第2の発明に係る熱流スイッチング素子は、第1の発明において、前記感温素子部が、サーミスタ材料で形成された薄膜サーミスタ部と、前記薄膜サーミスタ部の上及び下の少なくとも一方に対向して形成された一対の対向電極とを備え、前記薄膜サーミスタ部が、前記熱流制御素子部の上及び下の少なくとも一方に積層されていることを特徴とする。
 すなわち、この熱流スイッチング素子では、薄膜サーミスタ部が、熱流制御素子部の上及び下の少なくとも一方に積層されているので、薄膜サーミスタ部が熱流制御素子部に面接触することで、熱抵抗が下がり、高精度に温度検出が可能になると共に薄型化を図ることができる。
 第3の発明に係る熱流スイッチング素子は、第1又は第2の発明において、前記感温素子部が、前記熱流制御素子部の高温側と低温側との両方にそれぞれ設けられていることを特徴とする。
 すなわち、この熱流スイッチング素子では、感温素子部が、熱流制御素子部の高温側と低温側との両方にそれぞれ設けられているので、熱流制御素子部の高温側と低温側との両方で温度を検出することができ、熱流方向に対応して、時時刻刻と変化する熱伝導の状態をより高精度に検出することができる。また、高温側と低温側との両方で検出された温度に応じて、熱流制御素子部で外部電圧により熱流を調整することが可能なので、熱流スイッチング素子と熱接触している物体の温度が時間変化しても、その時々の熱伝導の状態に応じて、非常に高い熱応答性をもった熱流スイッチングが可能となる。
 第4の発明に係る熱流スイッチング素子は、第1から第3の発明のいずれかにおいて、前記熱流制御素子部が、前記N型半導体層と前記P型半導体層とが前記絶縁体層を挟んで交互に複数積層されていることを特徴とする。
 すなわち、この熱流スイッチング素子では、N型半導体層とP型半導体層とが絶縁体層を挟んで交互に複数積層されているので、P型半導体層及びN型半導体層と絶縁体層との界面が複数形成されることで多くの電荷が誘起され、熱伝導率を大きく変化させることができる。
 第5の発明に係る熱流スイッチング素子は、第1から第4の発明のいずれかにおいて、前記熱流制御素子部の最上部に設けられた上部高熱伝導部と、前記熱流制御素子部の最下部に設けられた下部高熱伝導部と、前記N型半導体層,前記絶縁体層及び前記P型半導体層の外周縁を覆って設けられた外周断熱部とを備え、前記上部高熱伝導部及び前記下部高熱伝導部が、前記外周断熱部よりも熱伝導性の高い材料で形成され、前記感温素子部が、前記上部高熱伝導部及び前記下部高熱伝導部の少なくとも一方に接合されていることを特徴とする。
 すなわち、この熱流スイッチング素子では、上部高熱伝導部及び下部高熱伝導部が、外周断熱部よりも熱伝導性の高い材料で形成されているので、面内方向への熱流を抑制でき、積層方向に熱スイッチ性を得ることができる。特に、各層の外周にN側電極及びP側電極が配されている場合、これら電極への熱の流入を熱伝導性の低い外周断熱部により極力抑えることができる。
 さらに、この熱流スイッチング素子では、感温素子部が、上部高熱伝導部及び下部高熱伝導部の少なくとも一方に接合されているので、熱流の経路上にあり熱伝導性の高い高熱伝導部に接合された感温素子部によって温度変化をより高精度かつ高い応答性で検出することができる。
 第6の発明に係る熱流スイッチング素子は、第1から第5の発明のいずれかにおいて、前記熱流制御素子部に接合され熱流の方向を検出可能な熱流センサ部を備えていることを特徴とする。
 すなわち、この熱流スイッチング素子では、熱流制御素子部に接合され熱流の方向を検出可能な熱流センサ部を備えているので、熱流センサ部により熱流の方向を確認しながら熱伝導率を制御することができる。したがって、熱流スイッチング素子と熱接触している物体から入出力される熱流束が時間変化しても、その時々の熱伝導の状態に応じて、非常に高い熱応答性をもった熱流スイッチングが可能となる。
 第7の発明に係る熱流スイッチング素子は、第6の発明において、前記熱流センサ部が、同一方向に延在していると共に前記熱流制御素子部の平面方向に互いに平行に並んでいる異常ネルンスト効果が得られる複数の異常ネルンスト材料膜と、複数の前記異常ネルンスト材料膜を電気的に直列に接続する接続配線とを備え、前記異常ネルンスト材料膜が、前記熱流制御素子部上に積層されていることを特徴とする。
 すなわち、この熱流スイッチング素子では、異常ネルンスト材料膜が、熱流制御素子部上に積層されているので、異常ネルンスト材料膜が熱流制御素子部に面接触することで、熱抵抗が下がり、高精度に熱流の方向を検出可能になると共に薄型化を図ることができる。
 特に、熱流の方向に対して直交する方向に電圧が生じる複数の異常ネルンスト材料膜を平面方向に並べて電気的に直列に接続していることで、多くの配線数で異常ネルンスト材料膜を並べることで、厚さを増やさずに電圧を増幅することができる。
 第8の発明に係る熱流スイッチング素子は、第7の発明において、前記感温素子部が、サーミスタ材料で形成された薄膜サーミスタ部と、前記薄膜サーミスタ部の上及び下の少なくとも一方に対向して形成された一対の対向電極とを備え、前記薄膜サーミスタ部と前記異常ネルンスト材料膜とが互いに積層されていることを特徴とする。
 すなわち、この熱流スイッチング素子では、薄膜サーミスタ部と異常ネルンスト材料膜とが互いに積層されているので、薄膜サーミスタ部と異常ネルンスト材料膜とが互いに面接触することで、熱抵抗が下がり、温度検出と熱流方向の検出とが高精度に可能になると共に薄型化を図ることができる。また、薄膜サーミスタ部は、異常ネルンスト材料膜よりも高い電気抵抗を有しており、高い絶縁性を有しているため、積層される異常ネルンスト材料膜の熱流検知のための電圧検出は、薄膜サーミスタ部の導電性の影響を受け難い。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係る熱流スイッチング素子によれば、熱流制御素子部に接合された感温素子部を備えて複合化しているので、感温素子部によって温度を直接モニタリングしながら、高速熱応答が可能な電圧印加型の熱流制御素子部により熱流を高い応答性で調整することができる。
 また、N型半導体層と、N型半導体層上に積層された絶縁体層と、絶縁体層上に積層されたP型半導体層とを備えているので、外部電圧印加により生成される電荷量が多く、熱伝導率の大きな変化と高い熱応答性とを得ることができる。
本発明に係る熱流スイッチング素子の第1実施形態を示す斜視図である。 第1実施形態において、熱流スイッチング素子を示す概念的な断面図である。 第1実施形態において、熱流スイッチング素子を示す上面の保護膜を除いた状態の平面図である。 第1実施形態において、原理を説明するための概念図である。 本発明に係る熱流スイッチング素子の第2実施形態を示す斜視図である。 本発明に係る熱流スイッチング素子の第3実施形態を示す概念的な断面図である。 第3実施形態において、熱流スイッチング素子を示す上面の保護膜を除いた状態の平面図である。 本発明に係る熱流スイッチング素子の第4実施形態を示す概念的な断面図である。 第4実施形態において、熱流スイッチング素子を示す平面図である。
 以下、本発明に係る熱流スイッチング素子における第1実施形態を、図1から図4を参照しながら説明する。なお、以下の説明に用いる図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
 本実施形態の熱流スイッチング素子1は、図1及び図2に示すように、N型半導体層3と、N型半導体層3上に積層された絶縁体層4と、絶縁体層4上に積層されたP型半導体層5とを備えた熱流制御素子部10と、熱流制御素子部10に接合された感温素子部11A,11Bとを備えている。
 上記感温素子部11A,11Bは、図2及び図3に示すように、サーミスタ材料で形成された薄膜サーミスタ部11aと、薄膜サーミスタ部11aの上及び下の少なくとも一方に対向して形成された一対の対向電極11bとを備えている。なお、薄膜サーミスタ部11a及び対向電極11bの上には、絶縁性の保護膜11cが積層されている。
 なお、本実施形態では、図3に示すように、一対の対向電極11bが、薄膜サーミスタ部11aの上に対向配置されている。なお、一対の対向電極11bには、一対のリード線8aが接続されている。
 上記薄膜サーミスタ部11aは、熱流制御素子部10の上及び下の少なくとも一方に積層されている。
 本実施形態では、感温素子部11A,11Bが、熱流制御素子部10の高温側と低温側との両方にそれぞれ設けられている。
 すなわち、本実施形態では、熱流方向が積層方向に設定されており、感温素子部11A,11Bが、熱流制御素子部10の上部と下部との両方にそれぞれ設けられている。
 また、本実施形態の熱流スイッチング素子1では、熱流制御素子部10の最上部に設けられた上部高熱伝導部18と、熱流制御素子部10の最下部に設けられた下部高熱伝導部2(基材)と、N型半導体層3,絶縁体層4及びP型半導体層5の外周縁を覆って設けられた外周断熱部19とを備えている。
 上記上部高熱伝導部18及び下部高熱伝導部2は、外周断熱部19よりも熱伝導性の高い材料で形成されている。
 また、感温素子部11A,11Bは、上部高熱伝導部18及び下部高熱伝導部2の少なくとも一方に接合されている。
 本実施形態では、感温素子部11Bが上部高熱伝導部18上に接合されている。また、感温素子部11Aは、下部高熱伝導部2上に形成されていると共に保護膜11cを挟んで感温素子部11A上に熱流制御素子部10が形成されることで、保護膜11cを介して熱流制御素子部10に接合されている。
 さらに、本実施形態の熱流スイッチング素子1は、図2に示すように、N型半導体層3に接続されたN側電極6と、P型半導体層5に接続されたP側電極7とを備えている。
 成膜方法は、スパッタリング法、分子線エピタキシー法(MBE法)等、各種成膜手法が採用される。
 なお、N型半導体層3及びP型半導体層5に直接電圧を印加可能な場合は、N側電極6及びP側電極7が不要である。
 また、N側電極6及びP側電極7には、それぞれリード線6a,7aが接続されている。
 上記N側電極6及びP側電極7には、外部電源Vが接続され、電圧が印加される。
 上記下部高熱伝導部2は、絶縁性の基材であって、この基材(下部高熱伝導部2)上に、下部の感温素子部11A,熱流制御素子部10,上部の感温素子部11Bが、この順で積層されている。
 例えば、上部高熱伝導部18は、シリコン系樹脂(シリコーン)等の高熱伝導材料で形成されていると共に、基材である下部高熱伝導部2はアルミナ等で形成された高熱伝導基板が採用される。
 また、上記外周断熱部19は、エポキシ樹脂等の低熱伝導材料で形成されている。
 外周断熱部19は、最上部の絶縁体層4の部分を露出させた状態でその周りを覆っており、上部高熱伝導部18は、露出した最上部の絶縁体層4に接触するように上部に形成されている。
 なお、外周断熱部19は、各層の外周に配されリード線26a,27aに接続されたN側電極6及びP側電極7も覆って形成されている。
 熱流制御素子部10は、N型半導体層3とP型半導体層5とが絶縁体層4を挟んで交互に複数積層されている。
 すなわち、下部の感温素子部11A上に絶縁体層4をまず成膜し、その上にN型半導体層3とP型半導体層5とを、間に絶縁体層4を介在させながらこの順で繰り返し積層し、3層のN型半導体層3と3層のP型半導体層5と7層の絶縁体層4との積層体を構成している。
 各N型半導体層3は、それぞれ基端部に設けられたN側連結部3aに接続され、さらにN側連結部3aの一部にN側電極6が形成されている。また、各P型半導体層5は、それぞれ基端部に設けられたP側連結部5aに接続され、さらにP側連結部5aの一部にP側電極7が形成されている。
 上記各層は、メタルマスクを用いてパターン形成されている。なお、メタルマスクの位置をずらして成膜することで、N型半導体層3とP型半導体層5と絶縁体層4を複数積層している。
 N型半導体層3及びP型半導体層5は、厚さ1μm未満の薄膜で形成されている。特に、絶縁体層4との界面及びその近傍に生成される電荷eは、5~10nmの厚さ範囲で主に溜まるため、N型半導体層3及びP型半導体層5は、100nm以下の膜厚で形成されることがより好ましい。なお、N型半導体層3及びP型半導体層5は、5nm以上の膜厚が好ましい。
 また、絶縁体層4は、40nm以上の膜厚が好ましく、絶縁破壊が生じない厚さに設定される。なお、絶縁体層4は、厚すぎると電荷eを運び難くなるため、1μm未満の膜厚とすることが好ましい。なお、図4中の、N型半導体層3と絶縁体層4との界面及びその近傍に生成される電荷eの種類は、電子であり、白丸で表記されている。また、P型半導体層5と絶縁体層4との界面及びその近傍に生成される電荷eの種類は、正孔であり、黒丸で表記されている。(正孔は、半導体の価電子帯の電子の不足によってできた孔であり、相対的に正の電荷を持っているように見える。)
 N型半導体層3及びP型半導体層5は、低い格子熱伝導を持つ縮退半導体材料が好ましく、例えばSiGe等の熱電材料、CrN等の窒化物半導体、VO等の酸化物半導体などが採用可能である。なお、N型,P型の導電性は、半導体材料にN型,P型のドーパントを添加すること等で設定している。
 絶縁体層4は、熱伝導率が小さい絶縁性材料であることが好ましく、SiO等の絶縁体、HfO,BiFeO等の誘電体、ポリイミド(PI)等の有機材料などが採用可能である。特に、誘電率の高い誘電体材料が好ましい。
 上記N側電極6及び上記P側電極7は、例えばMo,Al等の金属で形成される。
 本実施形態の熱流スイッチング素子1は、図4に示すように、電場(電圧)印加により、N型半導体層3と絶縁体層4との界面及びその近傍に熱伝導可能な電荷eを生成することで、生成した電荷eが熱を運んで熱伝導率が変化する。
 なお、熱伝導率は以下の式で得られる。
 熱伝導率=格子熱伝導率+電子熱伝導率
 この2種類の熱伝導率のうち、電場(電圧)印加により生成した電荷量に応じて変化するのは、電子熱伝導率である。したがって、本実施形態において、より大きな熱伝導率変化を得るには、格子熱伝導率が小さい材料が適している。したがって、N型半導体層3,絶縁体層4及びP型半導体層5のいずれにおいても、格子熱伝導率が小さい、すなわち熱伝導率が小さい材料が選択される。
 本実施形態の各層を構成する材料の熱伝導率は、5W/mK以下、より好ましくは1W/mK以下の低いものであることが良く、上述した材料が採用可能である。
 また、上記電子熱伝導率は、印加する外部電場(電圧)に応じて生成される電荷eの量に応じて増大する。
 なお、N型半導体層3及びP型半導体層5と絶縁体層4との界面で電荷eが生成されることから、界面の総面積を増やすことで、生成する電荷eの量も増やすことができる。
 上記熱伝導率の測定方法は、例えば基板上に形成された薄膜試料をパルスレーザーで瞬間的に加熱し、薄膜内部への熱拡散による表面温度の低下速度あるいは表面温度の上昇速度を測定することにより、薄膜の膜圧方向の熱拡散率又は熱浸透率を求める方法であるパルス光加熱サーモリフレクタンス法により行う。なお、上記パルス光加熱サーモリフレクタンス法のうち、熱拡散を直接測定する方法(裏面加熱/表面測温(RF)方式)では、パルスレーザーが透過可能な透明基板を用いる必要があるため、透明基板でない場合は、熱浸透率を測定し、熱伝導率に換算する方式である表面加熱/測温(FF)方式で熱伝導率を測定する。なお、この測定には、金属膜が必要であり、Mo,Al等が採用される。
 上記感温素子部11A,11Bは、図3に示すように、一対の対向電極11bが、互いに対向方向に突出した複数の櫛部11dを有した櫛形とされ、一方の対向電極11bの櫛部11dと他方の対向電極11bの櫛部11dとが、交互に並んで配されている。
 対向電極11bは、例えばCr膜の単層や、Cr膜とAu膜との積層金属膜等の種々の金属膜が採用可能である。
 なお、薄膜サーミスタ部11aとしては、一般的に、NTCサーミスタ(負の温度特性を示し、温度の上昇により電気抵抗値が指数関数的に減少する素子)が採用されるが、異常温度検知を素早く検出するため、PTCサーミスタ(正の温度特性を示し、温度の上昇により電気抵抗値が増加する素子。または、正の温度特性を示し、ある温度を超えると、温度の上昇に伴って電気抵抗値が急激に大きくなる素子)、CTRサーミスタ(負の温度係数を持つところはNTCと同様だが、ある温度範囲を超えると急激に電気抵抗値が減少する素子)を採用しても構わない。
 上記NTCサーミスタ材料としては、一般的には酸化物材料が知られ、例えば、スピネル型結晶構造をもつ(Mn,Co,Ni)や、ペロブスカイト型結晶構造をもつ(La,Ca)(Cr,Mn)Oのような酸化物が用いられるが、本実施形態における薄膜サーミスタ部11aとしては、一般式:M(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示され、六方晶系のウルツ鉱型の単相である金属窒化物からなる材料が好ましい。本実施形態では、薄膜サーミスタ部11aとして、一般式:TiAl(但し、0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示され、六方晶系のウルツ鉱型の単相である金属窒化物を採用している。
 上記薄膜サーミスタ部11aは、例えばTi-Al-Nの場合、Ti-Al合金スパッタリングターゲットを用いて窒素含有雰囲気中で反応性スパッタを行って成膜する。
 ウルツ鉱型の結晶構造は、六方晶系の空間群P6mc(No.186)であり、MとAとは同じ原子サイトに属し(MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、いわゆる固溶状態にある。ウルツ鉱型は、(M,A)N四面体の頂点連結構造をとり、(M,A)サイトの最近接サイトがN(窒素)であり、(M,A)は窒素4配位をとる。
 なお、Ti以外に、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)が同様に上記結晶構造においてTiと同じ原子サイトに存在することができ、Mの元素となり得る。有効イオン半径は、原子間の距離を把握することによく使われる物性値であり、特によく知られているShannonのイオン半径の文献値を用いると、論理的にもウルツ鉱型のM(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)が得られると推測できる。
 以下の表1にAl,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Siの各イオン種における有効イオン半径を示す(参照論文 R.D.Shannon, Acta Crystallogr., Sect.A, 32, 751(1976))。
 なお、Ti-Al-Nは、ウルツ鉱型の結晶構造をもつ窒化物絶縁体であるAl-NのAlサイトをTiで部分置換することにより、キャリアドーピングし、電気伝導が増加することで、サーミスタ特性が得られるものであるが、V,Cr,Mn,Fe,Co,Ni及びCuは、Tiと同じ3d遷移金属元素に属することから、ウルツ鉱型のM(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)において、サーミスタ特性を得ることが可能である。
Figure JPOXMLDOC01-appb-T000001
 上記薄膜サーミスタ部11aには、上述したように、NTCサーミスタ、PTCサーミスタ、CTRサーミスタ、種々のサーミスタ材料が適用され、一般的には、負の温度特性を示し、温度の上昇により電気抵抗値が連続的に減少するNTCサーミスタが採用される。なお、薄膜サーミスタ部11aとして、ある温度を超えると、温度の上昇に伴って電気抵抗値が急激に大きくなるPTCサーミスタ、又はある温度を超えると、温度の上昇に伴って電気抵抗値が急激に小さくなるCTRサーミスタを用いると、異常温度をより素早く検知することができ、熱流制御素子部の熱流を高い応答性で調整することが可能となる。
 上記PTCサーミスタ材料としては、正の温度特性を示し、ある温度を超えると、温度の上昇に伴って電気抵抗値が急激に大きくなる材料が採用され、例えば、BaTiO、SrTiO、および、それら材料系にPb等の金属元素を微量部分置換した系や、導電性ポリマー(ポリマー中に導電性粒子を分散させたもので、ポリマーが溶融することで導電性粉末の接触が絶たれ電気抵抗が増大する)などが採用される。
 上記CTRサーミスタ材料としては、ある温度を超えると、温度の上昇に伴って電気抵抗値が急激に減少する金属絶縁体転移材料が採用され、例えば、VO、および、その材料系に金属元素を微量部分置換した系などが採用される。
 上記PTCサーミスタ材料、CTRサーミスタ材料からなる薄膜作製は、スパッタリング法、ゾルゲル法、印刷法など、種々の成膜手法が適用される。
 このように本実施形態の熱流スイッチング素子1では、N型半導体層3と、N型半導体層3上に積層された絶縁体層4と、絶縁体層4上に積層されたP型半導体層5とを備えた熱流制御素子部10と、熱流制御素子部10に接合された感温素子部11A,11Bとを備えているので、P型半導体層5とN型半導体層3とに電圧を印加すると、P型半導体層5及びN型半導体層3と絶縁体層4との主に界面に電荷eが誘起され、この電荷eが熱を運ぶことで熱伝導率が変化する。
 特に、N型半導体層3と絶縁体層4との界面及びその近傍と、P型半導体層5と絶縁体層4との界面及びその近傍との両方で、外部電圧により誘起された電荷eが生成されるため、生成される電荷量が多く、熱伝導率の大きな変化と高い熱応答性とを得ることができる。また、化学反応機構を用いない、物理的に熱伝導率を変化させる機構であるので、熱伝導が変化した状態に直ちに移行でき、良好な熱応答性を得ることができる。
 また、外部電圧の大きさに乗じて、界面に誘起される電荷量が変化するので、外部電圧を調整することで、熱伝導率を調整することが可能となるので、本素子を介して、熱流を能動的に制御可能となる。
 なお、基材である下部高熱伝導部2が絶縁体であり、電圧印加に伴う電流が発生しないため、ジュール熱は生じない。そのため、自己発熱することなく、熱流を能動的に制御可能となる。
 さらに、この熱流スイッチング素子1では、熱流制御素子部10に接合された感温素子部11A,11Bを備えて複合化しているので、熱流制御素子部10により熱伝導率が変化した際の温度変化を感温素子部11A,11Bによって直接、検出することができる。すなわち、感温素子部11A,11Bによって温度を直接モニタリングしながら、高速熱応答が可能な電圧印加型の熱流制御素子部10により熱流を高い応答性で調整することができる。
 特に、薄膜サーミスタ部11aが、熱流制御素子部10の上及び下の少なくとも一方に積層されているので、薄膜サーミスタ部11aが熱流制御素子部10に面接触することで、熱抵抗が下がり、高精度に温度検出が可能になると共に薄型化を図ることができる。
 また、感温素子部11A,11Bが、熱流制御素子部10の高温側と低温側との両方にそれぞれ設けられているので、熱流制御素子部10の高温側と低温側との両方で温度を検出することができ、熱流方向に対応して、時時刻刻と変化する熱伝導の状態をより高精度に検出することができる。また、高温側と低温側との両方で検出された温度に応じて、熱流制御素子部で外部電圧により熱流を調整することが可能なので、熱流スイッチング素子と熱接触している物体の温度が時間変化しても、その時々の熱伝導の状態に応じて、非常に高い熱応答性をもった熱流スイッチングが可能となる。
 さらに、N型半導体層3とP型半導体層5とが絶縁体層4を挟んで交互に複数積層されているので、N型半導体層3及びP型半導体層5と絶縁体層4との界面が複数形成されることで多くの電荷eが誘起され、熱伝導率を大きく変化させることができる。
 次に、本発明に係る熱流スイッチング素子の第2~第4実施形態について、図5から図8を参照して以下に説明する。なお、以下の各実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。
 第2実施形態と第1実施形態との異なる点は、第1実施形態では、感温素子部11A,11Bが熱流制御素子部10の上下に設けられているのに対し、第2実施形態の熱流スイッチング素子21では、図5に示すように、一対の感温素子部21A,21Bが熱流制御素子部20の上面に互いに離間して設けられている点である。
 すなわち、第2実施形態では、熱流方向が熱流制御素子部20の面内方向(平面方向)であって、高温側の端部上に感温素子部21Aが設置されていると共に低温側の端部上に感温素子部21Bが設置されている。
 なお、第2実施形態の熱流制御素子部20は、第1実施形態のものよりも熱流方向に沿って長い帯状に設けられている。
 このように本実施形態の熱流スイッチング素子21でも、感温素子部21A,21Bが、熱流制御素子部20の高温側と低温側との両方にそれぞれ設けられているので、熱流制御素子部20の高温側と低温側との両方で温度を検出することができ、熱流方向に対応して熱伝導の状態をより高精度に検出することができる。
 次に、第3実施形態と第1実施形態との異なる点は、第1実施形態では、熱流制御素子部10の上下にそれぞれ感温素子部11A,11Bが設けられているのに対し、第3実施形態の熱流スイッチング素子31では、図6及び図7に示すように、熱流制御素子部10の下だけに感温素子部11Aが設けられていると共に熱流制御素子部10の上に熱流の方向を検出可能な熱流センサ部32が設けられている点である。
 すなわち、第3実施形態の熱流スイッチング素子31は、熱流制御素子部10に接合され熱流の方向または/および熱流束を検出可能な熱流センサ部32を備えている。
 上記熱流センサ部32は、同一方向に延在していると共に熱流制御素子部10の平面方向に互いに平行に並んでいる異常ネルンスト効果が得られる複数の異常ネルンスト材料膜32aと、複数の異常ネルンスト材料膜32aを電気的に直列に接続する接続配線32bとを備えている。
 直列接続された異常ネルンスト材料膜32aの両端には、それぞれ電極配線32cが接続されている。
 上記接続配線32b及び電極配線32cは、起電力が小さいAu膜が好ましいが、Cr膜とAu膜との積層金属膜等も採用可能である。
 上記異常ネルンスト材料膜32aは、熱流制御素子部10上に積層されている。
 すなわち、熱流制御素子部10の上部に形成された上部高熱伝導部18上に異常ネルンスト材料膜32aと接続配線32bと電極配線32cとが成膜されている。
 複数の異常ネルンスト材料膜32aは、厚さ方向の熱流に対して発生する電圧方向に対して互いに平行に配列された帯状又は線状に形成されている。
 なお、直列接続される異常ネルンスト材料膜32aの数や長さを増やすことで、得られる電圧も大きくできる。
 上記異常ネルンスト材料膜32aは、Fe-Al,Fe-Pt,Co-Pt等の材料や、CoMnGa,CoMnAl,CoMnSi等のホイスラー系合金材料等の自発磁化が大きい強磁性体材料や、MnSn等の反強磁性材料などが採用可能である。
 上記異常ネルンスト材料膜形成工程では、例えばFe-Al合金スパッタリングターゲットを用いてスパッタを行って異常ネルンスト材料膜32aを成膜する。
 このように第3実施形態の熱流スイッチング素子31では、異常ネルンスト材料膜32aが、熱流制御素子部10上に積層されているので、異常ネルンスト材料膜32aが熱流制御素子部10に面接触することで、熱抵抗が下がり、高精度に熱流の方向を検出可能になると共に薄型化を図ることができる。
 特に、熱流の方向に対して直交する方向に電圧が生じる複数の異常ネルンスト材料膜32aを平面方向に並べて電気的に直列に接続していることで、多くの配線数で異常ネルンスト材料膜32aを並べることで、厚さを増やさずに電圧を増幅することができる。
 次に、第4実施形態と第3実施形態の異なる点は、第1実施形態では、熱流制御素子部10の上に熱流センサ部32だけが設けられているのに対し、第4実施形態の熱流スイッチング素子41では、図8及び図9に示すように、熱流制御素子部10の上に感温機能と熱流測定機能とを有する複合素子部42が設けられている点である。
 すなわち、第4実施形態では、熱流制御素子部10の上部に形成された上部高熱伝導部18上に薄膜サーミスタ部11aと異常ネルンスト材料膜32aとがこの順で積層されて複合素子部42を構成している。
 このように第4実施形態の熱流スイッチング素子41では、薄膜サーミスタ部11aと異常ネルンスト材料膜32aとが互いに積層されているので、薄膜サーミスタ部11aと異常ネルンスト材料膜32aとが互いに面接触することで、熱抵抗が下がり、温度検出と熱流方向の検出とが高精度に可能になると共に薄型化を図ることができる。
 なお、薄膜サーミスタ部11aは、異常ネルンスト材料膜32aよりも高い電気抵抗を有している。特に、薄膜サーミスタ部が、一般式:TiAl(但し、0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物薄膜からなる場合、高いB定数及び高熱伝導度が得られるだけでなく、比較的高い絶縁性を有しているため、積層される異常ネルンスト材料膜32aの熱流検知のための電圧検出は、薄膜サーミスタ部11aの導電性の影響を受け難い。
 なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、熱抵抗を下げるために薄膜サーミスタ部を備えた感温素子部を採用することが好ましいが、熱電対,測温抵抗体,チップサーミスタ等を備えた感温素子部を採用しても構わない。また、薄膜サーミスタ部としては、各種金属酸化物材料や各種金属窒化物材料が採用可能である。
 1,21,31,41…熱流スイッチング素子、2…下部高熱伝導部(基材)、3…N型半導体層、4…絶縁体層、5…P型半導体層、6…N側電極、7…P側電極、10…熱流制御素子部、11A,11B…感温素子部、11a…薄膜サーミスタ部、11b…対向電極、18…上部高熱伝導部、19…外周断熱部、32…熱流センサ部、32a…異常ネルンスト材料膜、32b…接続配線

 

Claims (8)

  1.  N型半導体層と、
     前記N型半導体層上に積層された絶縁体層と、
     前記絶縁体層上に積層されたP型半導体層とを備えた熱流制御素子部と、
     前記熱流制御素子部に接合された感温素子部とを備えていることを特徴とする熱流スイッチング素子。
  2.  請求項1に記載の熱流スイッチング素子において、
     前記感温素子部が、サーミスタ材料で形成された薄膜サーミスタ部と、
     前記薄膜サーミスタ部の上及び下の少なくとも一方に対向して形成された一対の対向電極とを備え、
     前記薄膜サーミスタ部が、前記熱流制御素子部の上及び下の少なくとも一方に積層されていることを特徴とする熱流スイッチング素子。
  3.  請求項1に記載の熱流スイッチング素子において、
     前記感温素子部が、前記熱流制御素子部の高温側と低温側との両方にそれぞれ設けられていることを特徴とする熱流スイッチング素子。
  4.  請求項1に記載の熱流スイッチング素子において、
     前記熱流制御素子部が、前記N型半導体層と前記P型半導体層とが前記絶縁体層を挟んで交互に複数積層されていることを特徴とする熱流スイッチング素子。
  5.  請求項1に記載の熱流スイッチング素子において、
     前記熱流制御素子部の最上部に設けられた上部高熱伝導部と、
     前記熱流制御素子部の最下部に設けられた下部高熱伝導部と、
     前記N型半導体層,前記絶縁体層及び前記P型半導体層の外周縁を覆って設けられた外周断熱部とを備え、
     前記上部高熱伝導部及び前記下部高熱伝導部が、前記外周断熱部よりも熱伝導性の高い材料で形成され、
     前記感温素子部が、前記上部高熱伝導部及び前記下部高熱伝導部の少なくとも一方に接合されていることを特徴とする熱流スイッチング素子。
  6.  請求項1に記載の熱流スイッチング素子において、
     前記熱流制御素子部に接合され熱流の方向を検出可能な熱流センサ部を備えていることを特徴とする熱流スイッチング素子。
  7.  請求項6に記載の熱流スイッチング素子において、
     前記熱流センサ部が、同一方向に延在していると共に前記熱流制御素子部の平面方向に互いに平行に並んでいる異常ネルンスト効果が得られる複数の異常ネルンスト材料膜と、
     複数の前記異常ネルンスト材料膜を電気的に直列に接続する接続配線とを備え、
     前記異常ネルンスト材料膜が、前記熱流制御素子部上に積層されていることを特徴とする熱流スイッチング素子。
  8.  請求項7に記載の熱流スイッチング素子において、
     前記感温素子部が、サーミスタ材料で形成された薄膜サーミスタ部と、
     前記薄膜サーミスタ部の上及び下の少なくとも一方に対向して形成された一対の対向電極とを備え、
     前記薄膜サーミスタ部と前記異常ネルンスト材料膜とが互いに積層されていることを特徴とする熱流スイッチング素子。

     
PCT/JP2021/005893 2020-02-21 2021-02-17 熱流スイッチング素子 WO2021166950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227028188A KR20220140743A (ko) 2020-02-21 2021-02-17 열류 스위칭 소자
CN202180011357.8A CN115023595A (zh) 2020-02-21 2021-02-17 热流开关元件
US17/799,005 US20230109145A1 (en) 2020-02-21 2021-02-17 Heat flow switching element
EP21756947.4A EP4109062A4 (en) 2020-02-21 2021-02-17 HEAT CURRENT SWITCHING ELEMENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020027859 2020-02-21
JP2020-027859 2020-02-21
JP2020194862A JP2021136436A (ja) 2020-02-21 2020-11-25 熱流スイッチング素子
JP2020-194862 2020-11-25

Publications (1)

Publication Number Publication Date
WO2021166950A1 true WO2021166950A1 (ja) 2021-08-26

Family

ID=77391276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005893 WO2021166950A1 (ja) 2020-02-21 2021-02-17 熱流スイッチング素子

Country Status (5)

Country Link
US (1) US20230109145A1 (ja)
EP (1) EP4109062A4 (ja)
KR (1) KR20220140743A (ja)
CN (1) CN115023595A (ja)
WO (1) WO2021166950A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435972B2 (ja) * 2020-02-06 2024-02-21 三菱マテリアル株式会社 熱流スイッチング素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781892B2 (ja) 1989-07-06 1998-07-30 石川島播磨重工業株式会社 サーマルダイオード
WO2004068604A1 (ja) * 2003-01-30 2004-08-12 Matsushita Electric Industrial Co., Ltd. 熱スイッチ素子およびその製造方法
JP5402346B2 (ja) 2009-07-17 2014-01-29 トヨタ自動車株式会社 放熱装置
JP2014133852A (ja) * 2013-01-11 2014-07-24 Fujikura Kasei Co Ltd 電気レオロジーゲル、および熱伝導率可変成形体
JP2016037913A (ja) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 熱伝導率可変装置及び電圧制御装置
JP2016216688A (ja) 2015-05-26 2016-12-22 国立大学法人名古屋大学 熱伝導率可変デバイス
JP2019138798A (ja) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 温度センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542346B1 (ja) 1970-10-23 1979-02-06

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781892B2 (ja) 1989-07-06 1998-07-30 石川島播磨重工業株式会社 サーマルダイオード
WO2004068604A1 (ja) * 2003-01-30 2004-08-12 Matsushita Electric Industrial Co., Ltd. 熱スイッチ素子およびその製造方法
JP5402346B2 (ja) 2009-07-17 2014-01-29 トヨタ自動車株式会社 放熱装置
JP2014133852A (ja) * 2013-01-11 2014-07-24 Fujikura Kasei Co Ltd 電気レオロジーゲル、および熱伝導率可変成形体
JP2016037913A (ja) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 熱伝導率可変装置及び電圧制御装置
JP2016216688A (ja) 2015-05-26 2016-12-22 国立大学法人名古屋大学 熱伝導率可変デバイス
JP2019138798A (ja) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 温度センサ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA, TAKUYA ET AL.: "A field effect heat flow switching device", THE 38TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS AND THE 4TH ASIAN CONFERENCE ON THERMOELECTRICS, ABSTRACT BOOK, 30 November 2018 (2018-11-30), JP, pages 73 - 76, XP009530728 *
R. D. SHANNON, ACTA CRYSTALLOGR., SECT. A, vol. 32, 1976, pages 751
See also references of EP4109062A4
TAKUYA MATSUNAGA: "Preparation of Heat Flow Switching Element Operated with Bias Voltage", 15TH MEETING OF THE THERMOELECTRICS SOCIETY OF JAPAN, 13 September 2018 (2018-09-13)

Also Published As

Publication number Publication date
EP4109062A1 (en) 2022-12-28
KR20220140743A (ko) 2022-10-18
EP4109062A4 (en) 2024-03-06
CN115023595A (zh) 2022-09-06
US20230109145A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
Kar-Narayan et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging
US7944360B2 (en) Temperature sensor using abrupt metal-insulator transition (MIT) and alarm comprising the temperature sensor
US8106740B2 (en) Resistance thermometer
WO2021166950A1 (ja) 熱流スイッチング素子
JP2021136436A (ja) 熱流スイッチング素子
CN109133201A (zh) 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法
EP0873500B1 (en) Structures for temperature sensors and infrared detectors
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
Lok et al. Fabrication and characterization of resistance temperature detector by smart mask design
KR20000035231A (ko) Ntc 써미스터 및 칩형의 ntc 써미스터
Heremans et al. Geometrical magnetothermopower in semiconductors
US9970802B2 (en) Thermal-type flow-rate sensor
JP7412702B2 (ja) 熱流スイッチング素子
JP2022140704A (ja) 熱流スイッチング装置
JP7435972B2 (ja) 熱流スイッチング素子
JP2014178137A (ja) 湿度センサ
Markowski et al. Mixed thick/thin-film thermocouples for thermoelectric microgenerators and laser power sensor
Kanno Transverse thermoelectric effect and its applications using synthetically or naturally anisotropic materials
EP4299516A1 (en) Nitride insulator material, method for manufacturing same, heat flow switching element and thermoelectric conversion element
JP2020153668A (ja) 複合センサ
JP7421164B2 (ja) 熱流スイッチング素子
CN115096935A (zh) 银基硫族金属绝缘体相变柔性半导体热敏传器与应用技术
JP2023123164A (ja) 酸窒化物絶縁体材料及び熱流スイッチング素子と熱電変換素子
JP2022132081A (ja) 窒化物絶縁体材料及びその製造方法並びに熱流スイッチング素子と熱電変換素子
WO2023054416A1 (ja) 熱電変換素子及びセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021756947

Country of ref document: EP

Effective date: 20220921