WO2023054416A1 - 熱電変換素子及びセンサ - Google Patents

熱電変換素子及びセンサ Download PDF

Info

Publication number
WO2023054416A1
WO2023054416A1 PCT/JP2022/036045 JP2022036045W WO2023054416A1 WO 2023054416 A1 WO2023054416 A1 WO 2023054416A1 JP 2022036045 W JP2022036045 W JP 2022036045W WO 2023054416 A1 WO2023054416 A1 WO 2023054416A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
wiring
less
element according
Prior art date
Application number
PCT/JP2022/036045
Other languages
English (en)
French (fr)
Inventor
愛美 黒瀬
陽介 中西
宏和 田中
広宣 待永
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280065515.2A priority Critical patent/CN118044356A/zh
Publication of WO2023054416A1 publication Critical patent/WO2023054416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/20Thermomagnetic devices using thermal change of the magnetic permeability, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Definitions

  • the present invention relates to thermoelectric conversion elements and sensors.
  • Patent Document 1 describes a thermoelectric power generation device that utilizes the anomalous Nernst effect.
  • the anomalous Nernst effect is a phenomenon in which a voltage is generated in a direction orthogonal to both the magnetization direction and the temperature gradient when a heat flow is applied to a magnetic material and a temperature difference is generated.
  • thermoelectric power generation device has a substrate, a power generation body, and a connection body.
  • the power generating body consists of a plurality of thin wires arranged parallel to each other along the surface of the substrate.
  • the power generator is configured to generate power with a temperature difference in the direction perpendicular to the magnetization direction due to the anomalous Nernst effect.
  • the connector consists of a plurality of thin wires arranged parallel to and between the thin wires of the power generator along the surface of the substrate. Each thin wire of the connector electrically connects one end of each thin wire of the power generating body and the other end of the adjacent thin wire on one side of each thin wire.
  • the connection body electrically connects each thin wire of the power generation body in series.
  • the connector is made of, for example, non-magnetic Cr.
  • thermoelectric conversion elements for heat sensing.
  • thermoelectric conversion elements using magnetic thermoelectric conversion such as the thermoelectric conversion device described in Patent Document 1
  • thermoelectric power generation devices using the Seebeck effect thermoelectric conversion elements using the Seebeck effect
  • thermoelectric conversion device In the thermoelectric conversion device described in Patent Document 1, the power generator is configured to generate power by the temperature difference in the direction perpendicular to the direction of magnetization.
  • a thermoelectric conversion element using magnetic thermoelectric conversion it is assumed that an electromotive force is generated by a mechanism different from that of magnetic thermoelectric conversion.
  • the thermoelectric conversion device described in Patent Document 1 if a temperature gradient occurs in the longitudinal direction of the thin wire of the power generator made of the FePt thin film and the thin wire of the connecting member made of non-magnetic Cr, the Seebeck coefficient of FePt and the Cr Due to the difference from the Seebeck coefficient, a thermoelectromotive force associated with the Seebeck effect may occur in the longitudinal direction.
  • thermoelectromotive force is advantageous from the viewpoint of the accuracy of heat sensing. This is because the electromotive force due to the Seebeck effect is superimposed on the electromotive force due to magneto-thermoelectric conversion.
  • a connection body made up of a plurality of fine wires is electrically connected in series with a power generation body made up of a plurality of fine wires. ing. In such a configuration, the electromotive force associated with the Seebeck effect tends to increase, which may greatly affect the accuracy of heat sensing.
  • the present invention provides a thermoelectric conversion element that is advantageous from the viewpoint of improving the accuracy of heat sensing while using magnetic thermoelectric conversion.
  • the present invention a linearly extending magnetic thermoelectric conversion body; and a wiring electrically connected to the magnetic thermoelectric conversion body,
  • the absolute value of the difference between the Seebeck coefficient Sm in the longitudinal direction of the magnetic thermoelectric converter and the Seebeck coefficient Sc in the longitudinal direction of the wiring is 10 ⁇ V/K or less.
  • a thermoelectric conversion element is provided.
  • thermoelectric conversion element is advantageous from the viewpoint of improving the accuracy of heat sensing while using magnetic thermoelectric conversion.
  • FIG. 1 is a perspective view showing an example of an embodiment of a thermoelectric conversion element.
  • FIG. 2 is a cross-sectional view of the thermoelectric conversion element taken along plane II shown in FIG.
  • FIG. 3 is a cross-sectional view showing another example of the thermoelectric conversion element.
  • FIG. 4 is a cross-sectional view showing still another example of the thermoelectric conversion element.
  • the thermoelectric conversion element 1 a includes a magnetic thermoelectric conversion body 11 and wiring 12 .
  • the magnetic thermoelectric converter 11 extends linearly.
  • the wiring 12 is electrically connected to the magneto-thermoelectric converter 11 .
  • of the difference between the Seebeck coefficient Sm in the longitudinal direction of the magnetic thermoelectric converter 11 and the Seebeck coefficient Sc in the longitudinal direction of the wiring 12 is 10 ⁇ V/K or less.
  • the Seebeck coefficient Sm and the Seebeck coefficient Sc are, for example, values at 25 to 40° C., and can be measured according to the method described in Examples.
  • the X, Y and Z axes are orthogonal to each other.
  • the magneto-thermoelectric converters 11 and the wirings 12 are arranged, for example, along a plane parallel to the XY plane.
  • thermoelectric conversion element 1a when a temperature gradient occurs in the longitudinal direction (Y-axis direction) of the magnetic thermoelectric conversion body 11, the difference between the Seebeck coefficient Sm and the Seebeck coefficient Sc results in a thermoelectric rise due to the Seebeck effect in the longitudinal direction. Electricity can be generated.
  • is 10 ⁇ V/K or less. tends to be small. Therefore, in sensing using the thermoelectric conversion element 1a, the electromotive force due to the Seebeck effect superimposed on the electromotive force due to magnetic thermoelectric conversion tends to be small. As a result, the thermoelectric conversion element 1a is advantageous from the viewpoint of realizing highly accurate heat sensing using magnetic thermoelectric conversion.
  • may be 9.5 ⁇ V/K or less, 9.0 ⁇ V/K or less, 8.5 ⁇ V/K or less, or 8.0 ⁇ V/K or less. It may be less than or equal to 7.5 ⁇ V/K, or less than or equal to 7.0 ⁇ V/K.
  • may be 6.5 ⁇ V/K or less, 6.0 ⁇ V/K or less, 5.5 ⁇ V/K or less, or 5.0 ⁇ V/K or less. There may be.
  • may be 4.5 ⁇ V/K or less, 4.0 ⁇ V/K or less, 3.5 ⁇ V/K or less, or 3.0 ⁇ V/K or less.
  • may be 1.5 ⁇ V/K or less, 1.0 ⁇ V/K or less, 0.8 ⁇ V/K or less, or 0.5 ⁇ V/K or less. 0.3 ⁇ V/K or less, or 0.2 ⁇ V/K or less.
  • is not limited to a specific value.
  • is, for example, 0.01 ⁇ V/K or more, may be 0.05 ⁇ V/K or more, may be 0.1 ⁇ V/K or more, or may be 0.2 ⁇ V/K or more may be 0.5 ⁇ V/K or more, or 1.0 ⁇ V/K or more.
  • the relationship between the signs of the Seebeck coefficient Sm and the Seebeck coefficient Sc is not limited to a specific relationship as long as the absolute value
  • the Seebeck coefficient Sm and the Seebeck coefficient Sc for example, have values of the same sign. This tends to reduce the absolute value
  • the Seebeck coefficient Sm and the Seebeck coefficient Sc may have values of different signs.
  • the Seebeck coefficient Sc is not limited to a specific value.
  • the Seebeck coefficient Sc has a value of 0 or less, for example.
  • the Seebeck coefficient Sc is, for example, 0 ⁇ V/K or less, may be ⁇ 5 ⁇ V/K or less, may be ⁇ 10 ⁇ V/K or less, may be ⁇ 15 ⁇ V/K or less, may be ⁇ 20 ⁇ V/K or less. It may be K or less.
  • the Seebeck coefficient Sc is, for example, -50 ⁇ V/K or more.
  • the Seebeck coefficient Sc may be a positive value, for example, 1 ⁇ V/K or more, 3 ⁇ V/K or more, 5 ⁇ V/K or more, or 10 ⁇ V/K or more. There may be.
  • the Seebeck coefficient Sm is not limited to a specific value.
  • the Seebeck coefficient Sm is, for example, 0 ⁇ V/K or less, may be ⁇ 5 ⁇ V/K or less, may be ⁇ 10 ⁇ V/K or less, or may be ⁇ 15 ⁇ V/K or less.
  • the Seebeck coefficient Sm is -50 ⁇ V/K or more, for example.
  • the Seebeck coefficient Sm may be a positive value, for example, 1 ⁇ V/K or more, 3 ⁇ V/K or more, 5 ⁇ V/K or more, or 10 ⁇ V/K or more. There may be.
  • of the Seebeck coefficient Sm is desirably 10 ⁇ V or more.
  • the magnetic thermoelectric coefficient tends to increase, and the thermoelectric conversion performance of the thermoelectric conversion element 1a tends to increase.
  • may be 15 ⁇ V or more, or may be 20 ⁇ V or more.
  • the resistivity of the wiring 12 is not limited to a specific value.
  • the wiring 12 has a specific resistance of 8 to 200 ⁇ cm, for example. This facilitates adjustment of the Seebeck coefficient Sc to a desired range. In addition, even if the wiring 12 is made thin, it is easy to reduce the resistance.
  • the specific resistance of the wiring 12 may be 10 ⁇ cm or more, 15 ⁇ cm or more, 20 ⁇ cm or more, 25 ⁇ cm or more, or 30 ⁇ cm. or more.
  • the specific resistance of the wiring 12 may be 180 ⁇ -cm or less, 150 ⁇ -cm or less, 140 ⁇ -cm or less, 130 ⁇ -cm or less, or 120 ⁇ -cm. or less, 110 ⁇ cm or less, or 100 ⁇ cm or less.
  • the material forming the wiring 12 is not limited to a specific material.
  • the wiring 12 contains at least one metal selected from the group consisting of Cu, Ag, Au, Al, Ni, and Co, for example.
  • the content of these metals in the wiring 12 is 50% or more based on the number of atoms.
  • the total content of Cu, Ag, Au, Al, Ni, and Co in the wiring 12 is 50% or more based on the number of atoms.
  • the wiring 12 may be made of a single metal, or may be made of an alloy.
  • the wiring 12 is composed of at least one metal selected from the group consisting of Cu, Ag, Au, and Al, and at least one metal selected from the group consisting of Group 8 elements, Group 9 elements, and Group 10 elements. element.
  • the Seebeck coefficient Sc of the alloy tends to fluctuate over a wide range from positive values to negative values depending on the composition, and the Seebeck coefficient Sc is easily adjusted to a desired value.
  • the Group 8 element is, for example, Fe.
  • a group 9 element is Co, for example.
  • Group 10 elements are, for example, Ni or Pt.
  • the content of at least one element selected from the group consisting of Group 8 elements, Group 9 elements, and Group 10 elements in the wiring 12 is not limited to a specific value. The content may be 1% or more, 3% or more, 5% or more, 10% or more, or 20% or more based on the number of atoms. may be 30% or more, 40% or more, or 50% or more.
  • the magnetic thermoelectric converter 11 is not limited to a specific material.
  • the magneto-thermoelectric converter 11 generates an electromotive force by the magneto-thermoelectric effect.
  • the magneto-thermoelectric effect is, for example, the anomalous Nernst effect or the spin Seebeck effect.
  • the magneto-thermoelectric converter 11 contains, for example, a material exhibiting the anomalous Nernst effect. Substances exhibiting the anomalous Nernst effect are not limited to specific substances. A material exhibiting the anomalous Nernst effect is, for example, a magnetic material having a saturation magnetic susceptibility of 5 ⁇ 10 ⁇ 3 T or more or a material having a band structure having a Weyl point near the Fermi energy.
  • the magneto-thermoelectric converter 11 includes at least one substance selected from the group consisting of the following (i), (ii), (iii), (iv), and (v) as the substance exhibiting the anomalous Nernst effect. contains.
  • a stoichiometric substance having a composition represented by Fe 3 X (ii) an off-stoichiometric substance in which the composition ratio of Fe and X deviates from the substance (i) above (iii) the above ( A substance (iv) Fe 3 M1 1-x M2 x (iv) in which a part of the Fe site of the substance i) or part of the Fe site of the substance (ii) is replaced with a typical metal element other than X or a transition element (v) a substance having a composition represented by 0 ⁇ x ⁇ 1), wherein M1 and M2 are different representative elements; , a substance in which a part of the X site of the substance (i) above is replaced with a main group metal element other than X
  • X is a typical element or a transition element.
  • X is, for example, Al, Ga, Ge, Sn, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Sc, Ni, Mn, or Co.
  • the combination of M1 and M2 is not limited to a specific combination as long as M1 and M2 are representative elements different from each other.
  • the combination of M1 and M2 is Ga and Al, Si and Al, or Ga and B, for example.
  • the magneto-thermoelectric converter 11 may contain Co 2 MnGa as a substance exhibiting the anomalous Nernst effect, and may contain Mn 3 Sn, which is an antiferromagnetic substance.
  • the magneto-thermoelectric converter 11 may be an alloy containing Fe and having a body-centered cubic crystal structure. In this case, the magneto-thermoelectric converter 11 tends to generate a large electromotive force based on the anomalous Nernst effect.
  • the magneto-thermoelectric converter 11 is an alloy containing Fe and having a body-centered cubic lattice crystal structure
  • the content of Fe and the content of elements other than Fe in the alloy are not limited to specific values.
  • the content of Fe in the alloy is, for example, 50% or more based on the number of atoms
  • the content of elements other than Fe in the alloy is, for example, 10% or more based on the number of atoms.
  • the magneto-thermoelectric converter 11 tends to generate a large electromotive force based on the anomalous Nernst effect.
  • the content of Fe in the above alloy may be 55% or more, 60% or more, 65% or more, or 70% or more, based on the number of atoms. .
  • the content of Fe in the above alloy is 90% or less, may be 85% or less, or may be 80% or less, based on the number of atoms.
  • the content of elements other than Fe in the above alloy may be 15% or more, or 20% or more, based on the number of atoms.
  • the content of elements other than Fe in the above alloy is 50% or less, may be 40% or less, or may be 30% or less, based on the number of atoms.
  • the magnetic thermoelectric coefficient S NE of the magnetic thermoelectric converter 11 is not limited to a specific value.
  • the absolute value of the magnetic thermoelectric coefficient S NE of the magnetic thermoelectric converter 11 is, for example, 0.5 ⁇ V/K or more. As a result, a large electromotive force is likely to be generated by the magnetic thermoelectric conversion in the magnetic thermoelectric converter 11, and the accuracy of sensing using the thermoelectric conversion element 1a is likely to be improved. Therefore, minute heat is easily detected.
  • the absolute value of the magnetic thermoelectric coefficient S NE of the magnetic thermoelectric converter 11 is preferably 1.0 ⁇ V/K or more, more preferably 1.5 ⁇ V/K or more, and still more preferably 2.0 ⁇ V/K or more. .
  • the absolute value of the magnetic thermoelectric coefficient S NE of the magnetic thermoelectric converter 11 may be 3.0 ⁇ V/K or more, 4.0 ⁇ V/K or more, or 5.0 ⁇ V/K or more. It may be 6.0 ⁇ V/K or more, 7.0 ⁇ V/K or more, or 8.0 ⁇ V/K or more.
  • the magnetic thermoelectric converter 11 has a plurality of first thin wires 11a.
  • the wiring 12 has a plurality of second thin wires 12a.
  • the thermoelectric conversion element 1a the plurality of first fine wires 11a and the plurality of second fine wires 12a are electrically connected in series. According to such a configuration, the electromotive forces accompanying the magnetic thermoelectric conversion generated in the plurality of first fine wires 11a are synthesized, and a large output can be easily obtained from the thermoelectric conversion element 1a.
  • thermoelectric conversion element 1a the plurality of first thin wires 11a and the plurality of second thin wires 12a form, for example, a plurality of thin wire pairs 15.
  • Each thin line pair 15 consists of a first thin line 11a and a second thin line 12a.
  • each thin wire pair 15 consists of one first thin wire 11a and one second thin wire 12a.
  • the number of thin wire pairs 15 in thermoelectric conversion element 1a is not limited to a specific value.
  • the plurality of first fine wires 11a and the plurality of second fine wires 12a form 50 or more fine wire pairs 15, for example.
  • the electromotive force due to the Seebeck effect increases as the number of pairs of joined dissimilar materials increases.
  • thermoelectric conversion element 1a the absolute value
  • the plurality of first fine lines 11a and the plurality of second fine lines 12a form a meander pattern. According to such a configuration, even if the area of the plane on which the plurality of first fine wires 11a and the plurality of second fine wires 12a are arranged is small, it is easy to obtain a large output from the thermoelectric conversion element 1a.
  • the plurality of first thin wires 11a are, for example, separated at predetermined intervals in the X-axis direction and arranged parallel to each other.
  • the plurality of first thin wires 11a are arranged at regular intervals in the X-axis direction.
  • the plurality of second thin wires 12a electrically connect, for example, first thin wires 11a adjacent to each other in the X-axis direction.
  • the second thin line 12a electrically connects, for example, one end of the first thin line 11a in the Y-axis direction and the other end in the Y-axis direction of another first thin line 11a adjacent to the first thin line 11a. ing.
  • One end of the plurality of first fine lines 11a in the Y-axis direction is located at the end of the first fine line 11a on the same side in the Y-axis direction, and the other end of the plurality of first fine lines 11a in the Y-axis direction is located at , at the end opposite to the one end in the Y-axis direction of the first thin wire 11a.
  • the thickness of the first fine wire 11a is not limited to a specific value.
  • the first thin wire 11a has a thickness of 1000 nm or less, for example. This makes it possible to reduce the amount of material used for forming the magnetic thermoelectric converter in the thermoelectric conversion element 1a, thereby easily reducing the manufacturing cost of the thermoelectric conversion element 1a. In addition, disconnection of the conductive paths formed by the plurality of first fine wires 11a and the plurality of second fine wires 12a in the thermoelectric conversion element 1a is less likely to occur.
  • the thickness of the first fine wire 11a may be 750 nm or less, 500 nm or less, 400 nm or less, 300 nm or less, or 200 nm or less.
  • the thickness of the first thin wire 11a is, for example, 5 nm or more. This makes it easy for the thermoelectric conversion element 1a to exhibit high durability.
  • the thickness of the first thin wire 11a may be 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more.
  • the width which is the dimension of the first thin wire 11a in the X-axis direction, is not limited to a specific value.
  • the width of the first thin wire 11a is, for example, 500 ⁇ m or less. This makes it possible to reduce the amount of material used for forming the magnetic thermoelectric converter in the thermoelectric conversion element 1a, thereby easily reducing the manufacturing cost of the thermoelectric conversion element 1a. In addition, it is easy to arrange a large number of first thin wires 11a in the X-axis direction, and the electromotive force generated by magneto-thermoelectric conversion in the thermoelectric conversion element 1a tends to increase.
  • the width of the first thin wire 11a may be 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the width of the first thin wire 11a is, for example, 0.1 ⁇ m or more.
  • the width of the first fine line 11a may be 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more, It may be 20 ⁇ m or more, or may be 30 ⁇ m or more.
  • the thickness of the second fine wire 12a is not limited to a specific value.
  • the thickness of the second thin wire 12a is, for example, 1000 nm or less.
  • the thickness of the second thin wire 12a may be 750 nm or less, 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less. may be
  • the thickness of the second fine wire 12a is, for example, 5 nm or more. This makes it easy for the thermoelectric conversion element 1a to exhibit high durability.
  • the thickness of the second thin wire 12a may be 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more.
  • the width which is the maximum dimension in the X-axis direction of the second thin wire 12a, is not limited to a specific value.
  • the width of the second fine line 12a is, for example, 500 ⁇ m or less.
  • the amount of material used for forming the wiring 12 in the thermoelectric conversion element 1a can be reduced, and the manufacturing cost of the thermoelectric conversion element 1a can be easily reduced.
  • the width of the second thin wire 12a may be 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the width of the second fine line 12a is, for example, 0.1 ⁇ m or more. As a result, disconnection of the conductive path is less likely to occur in the thermoelectric conversion element 1a, and the thermoelectric conversion element 1a tends to exhibit high durability.
  • the width of the second fine line 12a may be 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more, It may be 20 ⁇ m or more, or may be 30 ⁇ m or more.
  • thermoelectric conversion element 1a further includes a substrate 20 as shown in FIG.
  • the magneto-thermoelectric converter 11 and the wiring 12 are arranged on the substrate 20 .
  • the material forming the base material 20 is not limited to a specific material.
  • the base material 20 does not contain MgO in the surface layer, for example. As a result, it is not necessary to add MgO to the surface layer of the base material 20, so the production of the thermoelectric conversion element 1a is less complicated, and acid resistance is easily obtained.
  • the base material 20 has flexibility, for example. In this case, the shape of the object to which the thermoelectric conversion element 1a can be attached is less likely to be restricted.
  • the substrate 20 contains at least an organic polymer, for example. Thereby, it is easy to reduce the manufacturing cost of the thermoelectric conversion element 1a.
  • organic polymers are polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin (PMMA), polycarbonate (PC), polyimide (PI) or cycloolefin polymer (COP).
  • Substrate 20 may be ultra-thin glass.
  • An example of ultra-thin glass is G-Leaf (registered trademark) manufactured by Nippon Electric Glass Co., Ltd.
  • thermoelectric conversion element 1a An example of a method for manufacturing the thermoelectric conversion element 1a will be described.
  • a precursor of the magnetic thermoelectric converter 11 is applied to one main surface of the base material 20 by a method such as sputtering, chemical vapor deposition (CVD), pulsed laser deposition (PLD), ion plating, and plating.
  • CVD chemical vapor deposition
  • PLD pulsed laser deposition
  • ion plating ion plating
  • a thin film of a precursor of the wiring 12 is formed on one main surface of the substrate 20 by sputtering, CVD, PLD, ion plating, plating, or the like.
  • a photoresist is applied on the thin film of the precursor of the wiring 12, a photomask is placed on the thin film of the precursor of the wiring 12, exposure is performed, and then wet etching is performed.
  • the wiring 12 is obtained, and the linear patterns of the precursor of the magnetic thermoelectric converter 11 are electrically connected to each other.
  • the magnetic thermoelectric converter 11 is formed by magnetizing the precursor of the magnetic thermoelectric converter 11 .
  • the thermoelectric conversion element 1a is obtained.
  • the precursor of wiring 12 may be magnetized to form wiring 12 .
  • the thermoelectric conversion element 1a may be provided with, for example, an adhesive layer.
  • the substrate 20 is arranged between the magnetic thermoelectric converter 11 and the adhesive layer in the thickness direction of the substrate 20 .
  • the thermoelectric conversion element 1a can be attached to the article by pressing the adhesive layer against the article.
  • the adhesive layer contains, for example, a rubber-based adhesive, an acrylic adhesive, a silicone-based adhesive, or a urethane-based adhesive.
  • Thermoelectric conversion element 1a may be provided with an adhesive layer and a release liner.
  • the release liner covers the adhesive layer.
  • a release liner is typically a film that can retain the adhesive strength of the adhesive layer when covering the adhesive layer and that can be easily peeled from the adhesive layer.
  • the release liner is, for example, a film made of polyester resin such as PET. By peeling off the release liner, the adhesive layer is exposed, and the thermoelectric conversion element 1a can be attached to the article.
  • thermoelectric conversion element 1a A sensor equipped with the thermoelectric conversion element 1a can be provided.
  • this sensor for example, when a temperature gradient occurs in the thickness direction of the base material 20, an electromotive force is generated in the longitudinal direction of the magneto-thermoelectric converter 11 due to the magneto-thermoelectric effect.
  • the sensor can sense heat by processing the electric signal output to the outside of the thermoelectric conversion element 1a based on this electromotive force.
  • thermoelectric conversion element 1a can be changed from various points of view.
  • the thermoelectric conversion element 1a may be changed, for example, into a thermoelectric conversion element 1b shown in FIG. 3 or a thermoelectric conversion element 1c shown in FIG.
  • the thermoelectric conversion elements 1b and 1c are constructed in the same manner as the thermoelectric conversion element 1a, except for the parts that are particularly described.
  • Components of the thermoelectric conversion elements 1b and 1c that are the same as or correspond to the components of the thermoelectric conversion element 1a are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the description regarding the thermoelectric conversion element 1a also applies to the thermoelectric conversion elements 1b and 1c unless technically contradictory.
  • the magnetic thermoelectric conversion body 11 extends continuously on the same plane, for example.
  • the wiring 12 is arranged on part of the magneto-thermoelectric converter 11 .
  • the plurality of second fine wires 12a are arranged on the magnetic thermoelectric converter 11 at predetermined intervals.
  • the magnetic thermoelectric conversion body 11 has, for example, a meander pattern.
  • the thermoelectric conversion element 1b is configured such that a single layer of the magnetic thermoelectric conversion body 11 and a laminated body including the magnetic thermoelectric conversion body 11 and the second fine wire 12a appear alternately in the X-axis direction.
  • the wiring 12 extends continuously on the same plane, for example.
  • the magneto-thermoelectric converter 11 is arranged on part of the wiring 12 .
  • the plurality of first thin wires 11a are arranged on the wiring 12 at predetermined intervals from each other. With such a configuration, the thermoelectromotive force associated with the Seebeck effect tends to be small. Moreover, it is easy to reduce the manufacturing cost.
  • the wiring 12 forms, for example, a meander pattern.
  • the thermoelectric conversion element 1c is configured such that a single layer of the wiring 12 and a laminated body including the wiring 12 and the first thin wires 11a appear alternately in the X-axis direction.
  • thermoelectric conversion element A thermoelectric conversion element according to each example and each comparative example was fixed between a pair of Cu plates having dimensions of 30 mm, 30 mm, and 5 mm using Shin-Etsu Chemical Co., Ltd.'s silicone grease KS609, and the thermoelectric properties were measured. A sample for evaluation was produced. The sample was placed on the cooling plate SCP-125 from AS ONE. A film heater manufactured by Shinwa Kiseki Co., Ltd. was fixed on the upper Cu plate with double-sided tape No. 5000NS manufactured by Nitto Denko. The heater had dimensions of 30 mm square and an electrical resistance of 20 ohms.
  • thermoelectric conversion element In the plane of the thermoelectric conversion element according to each example and each comparative example, one longitudinal end of the thermoelectric conversion thin wire and wiring was heated by a heater, and the temperature between both ends of the thermoelectric conversion thin wire and wiring in the longitudinal direction was 1°C. of temperature difference. In this state, the electromotive force Vs associated with the Seebeck effect was measured. In this measurement, the temperature of both surfaces of the thermoelectric conversion element was kept constant so as not to generate a temperature gradient in the thickness direction of the thermoelectric conversion element except at one end in the longitudinal direction of the thermoelectric conversion fine wire and wiring. Table 1 shows the results.
  • PET polyethylene terephthalate
  • a CuNi thin film having a thickness of 100 nm was formed by DC magnetron sputtering using a target material containing Cu and Ni.
  • the atomic ratio of Cu content:Ni content was 95:5.
  • a photoresist was applied on the CuNi thin film, a photomask was placed on the CuNi thin film, exposure was performed, and then wet etching was performed. Thereby, a wiring having a width of 40 ⁇ m was formed.
  • a plurality of thin wires for magnetic thermoelectric conversion were electrically connected in series.
  • the plurality of thin wires for magneto-thermoelectric conversion and this wiring formed a meander pattern.
  • thermoelectric conversion element according to Example 1 was obtained by magnetizing the thin wire for magnetic thermoelectric conversion in a direction parallel to the plane of the PET film and perpendicular to the longitudinal direction of the thin wire for magnetic thermoelectric conversion. This thermoelectric conversion element generated an electromotive force based on the anomalous Nernst effect.
  • thermoelectric conversion element according to Example 5 was produced in the same manner as in Example 1, except that the wiring was formed using Ni as a target material.
  • a thermoelectric conversion element according to Example 12 was produced in the same manner as in Example 1 except for the above.
  • a thermoelectric conversion element according to Example 13 was produced in the same manner as in Example 1 except for the above.
  • thermoelectric conversion element according to Comparative Example 1 was produced in the same manner as in Example 1, except that the wiring was formed using Cu as a target material.
  • thermoelectric conversion element according to Comparative Example 2 was produced in the same manner as in Example 1, except that a thin wire for thermoelectric conversion was formed using a target material containing Fe and Pt, and wiring was formed using Cr as a target material. .
  • This thermoelectric conversion element generated an electromotive force based on the anomalous Nernst effect.
  • thermoelectric conversion element according to Comparative Example 3 was produced in the same manner as in Example 1, except that the wiring was formed using Au as a target material.
  • thermoelectric conversion element according to Comparative Example 4 was fabricated in the same manner as in Example 1, except that a Co 2 MnGa target was used instead of the target material containing Fe and Ga, and the wiring was formed using Au as the target material. made.
  • the Seebeck electromotive force Vs in the thermoelectric conversion element according to each example was lower than the Seebeck electromotive force Vs in the thermoelectric conversion element according to each comparative example. Since the absolute value of the difference between the Seebeck coefficient Sm in the longitudinal direction of the thin wire for magnetic thermoelectric conversion and the Seebeck coefficient Sc in the longitudinal direction of the wiring is 10 ⁇ V/K or less, the Seebeck electromotive force Vs can be reduced, and the thickness direction of the thermoelectric conversion element can be reduced. It is understood to be advantageous from the point of view of increasing the accuracy of the measurement of the temperature difference in .
  • a first aspect of the present invention is a linearly extending magnetic thermoelectric conversion body; and a wiring electrically connected to the magnetic thermoelectric conversion body,
  • the absolute value of the difference between the Seebeck coefficient Sm in the longitudinal direction of the magnetic thermoelectric converter and the Seebeck coefficient Sc in the longitudinal direction of the wiring is 10 ⁇ V/K or less.
  • a thermoelectric conversion element is provided.
  • a second aspect of the present invention is The absolute value of the Seebeck coefficient Sm is 10 ⁇ V / K or more, A thermoelectric conversion element according to the first aspect is provided.
  • a third aspect of the present invention is The Seebeck coefficient Sm and the Seebeck coefficient Sc have values of the same sign, A thermoelectric conversion element according to the first aspect or the second aspect is provided.
  • a fourth aspect of the present invention is The Seebeck coefficient Sc has a value of 0 or less, A thermoelectric conversion element according to any one of the first side to the third side is provided.
  • a fifth aspect of the present invention is The wiring has a specific resistance of 8 to 200 ⁇ cm, A thermoelectric conversion element according to any one of the first side to the fourth side is provided.
  • a sixth aspect of the present invention is the wiring contains at least one metal selected from the group consisting of Cu, Ag, Au, Al, Ni, and Co;
  • the content of the metal in the wiring is 50% or more based on the number of atoms,
  • a thermoelectric conversion element according to any one of the first side to the fifth side is provided.
  • a seventh aspect of the present invention is The wiring includes at least one metal selected from the group consisting of Cu, Ag, Au, and Al, and at least one metal selected from the group consisting of Group 8 elements, Group 9 elements, and Group 10 elements. including elements and A thermoelectric conversion element according to any one of the first side to the sixth side is provided.
  • the eighth aspect of the present invention is
  • the magneto-thermoelectric converter is an alloy containing Fe and having a body-centered cubic lattice crystal structure, A thermoelectric conversion element according to any one of the first side to the seventh side is provided.
  • a ninth aspect of the present invention is The content of Fe in the alloy is 50% or more based on the number of atoms, The content of elements other than Fe in the alloy is 10% or more based on the number of atoms.
  • a thermoelectric conversion element according to the eighth aspect is provided.
  • a tenth aspect of the present invention is
  • the magnetic thermoelectric conversion body has a plurality of first thin wires
  • the wiring has a plurality of second thin wires
  • the plurality of first thin wires and the plurality of second thin wires are electrically connected in series
  • a thermoelectric conversion element according to any one of the first side to the ninth side is provided.
  • the eleventh aspect of the present invention is The plurality of first thin wires and the plurality of second thin wires form 50 or more thin wire pairs, Each of the 50 or more thin wire pairs consists of the first thin wire and the second thin wire, A thermoelectric conversion element according to the tenth aspect is provided.
  • a twelfth aspect of the present invention is The plurality of first fine lines and the plurality of second fine lines form a meander pattern, A thermoelectric conversion element according to the tenth or eleventh aspect is provided.
  • thermoelectric conversion element according to any one of the first to twelfth sides.

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

熱電変換素子1aは、磁気熱電変換体11と、配線12とを備える。磁気熱電変換体11は、線状に延びている。配線12は、磁気熱電変換体11に電気的に接続されている。熱電変換素子1aにおいて、磁気熱電変換体11の長手方向におけるゼーベック係数Smと配線12の長手方向におけるゼーベック係数Scとの差の絶対値|ΔS|は、10μV/K以下である。

Description

熱電変換素子及びセンサ
 本発明は、熱電変換素子及びセンサに関する。
 従来、磁気熱電変換に関する技術が知られている。
 例えば、特許文献1には、異常ネルンスト効果を利用した熱電発電デバイスが記載されている。異常ネルンスト効果とは、磁性体に熱流を流して温度差が生じたときに、磁化方向と温度勾配の双方に直交する方向に電圧が生じる現象である。
 この熱電発電デバイスは、基板と、発電体と、接続体とを有する。発電体は、基板の表面に沿って互いに平行に配置された複数の細線からなり、各細線は、基板上に成膜されたFePt薄膜を細線化することによって形成され、幅方向に磁化されている。発電体は、異常ネルンスト効果により、磁化の方向に対して垂直の方向の温度差で発電するよう構成されている。接続体は、基板の表面に沿って、発電体の各細線に平行に、各細線の間に配置された複数の細線からなっている。接続体の各細線は、発電体の各細線の一端部と、各細線の一方の側で隣り合う細線の他端部とを電気的に接続している。これにより、接続体は、発電体の各細線を電気的に直列に接続している。接続体は、例えば、非磁性体のCrからなっている。
特開2014-072256号公報
 Internet of Things(IoT)社会における体調のモニタリング、又は、電気自動車(EV)のバッテリー及び高速データ処理用チップ等の技術分野における熱マネジメントにおいて、熱に関するモニタリングのニーズが高まりつつある。このようなニーズに応えるべく、熱センシングのために熱電変換素子を用いることが考えられる。
 特許文献1に記載の熱電変換デバイス等の磁気熱電変換を利用した熱電変換素子は、ゼーベック効果を利用した熱電発電デバイスに比べて容易に作製できると理解される。このような利点を踏まえ、熱センシングのために磁気熱電変換を利用した熱電変換素子を用いることが考えられる。
 特許文献1に記載の熱電変換デバイスでは、発電体は、磁化の方向に対して垂直な方向の温度差で発電するよう構成されている。一方、磁気熱電変換を利用した熱電変換素子において、磁気熱電変換とは異なるメカニズムで起電力を生じることが想定される。例えば、特許文献1に記載の熱電変換デバイスでは、FePt薄膜からなる発電体の細線及び非磁性体のCrからなる接続体の細線の長手方向に温度勾配が生じると、FePtのゼーベック係数とCrのゼーベック係数との差に起因して、その長手方向においてゼーベック効果に伴う熱起電力が生じる可能性がある。このような熱起電力の発生は、熱センシングの精度の観点から有利であるとは言い難い。なぜなら、磁気熱電変換に伴う起電力にゼーベック効果に伴う起電力が重畳されるからである。また、特許文献1に記載の熱電変換デバイスでは、磁気熱電効果に伴う熱起電力を大きくするために、複数の細線からなる接続体が複数の細線からなる発電体と電気的に直列に接続されている。このような構成においては、ゼーベック効果に伴う起電力も大きくなりやすく、熱センシングの精度に多大な影響を及ぼす可能性がある。
 磁気熱電係数Sneは、電気抵抗率ρxx、横磁気熱電係数αxy、ゼーベック係数Sse、並びにホール伝導率σxy及びσxxを用いて、Sne=ρxxαxy-Sse・σxy/σxxの関係式で表される。このため、磁気熱電変換の性能向上の観点から、ゼーベック係数Sseの絶対値が大きい材料が有利であると理解される。ゼーベック係数Sseが大きい材料を用いることにより、磁気熱電係数Sneが大きくなり、熱電変換性能が向上する。一方、ゼーベック係数Sseが大きい材料では、面内方向の温度差による起電力が発生しやすくなり、熱センシングの精度に影響が及びやすい。Co2MnGa等に代表される大きなゼーベックSse係数を有するホイスラー合金等を磁気熱電変換素子に応用することが試みられているが、このような課題への対処については検討されていない。
 このような事情に鑑み、本発明は、磁気熱電変換を利用しつつ熱センシングの精度を高める観点から有利な熱電変換素子を提供する。
 本発明は、
 線状に延びる磁気熱電変換体と、
 前記磁気熱電変換体に電気的に接続された配線と、を備え、
 前記磁気熱電変換体の長手方向におけるゼーベック係数Smと前記配線の長手方向におけるゼーベック係数Scとの差の絶対値は、10μV/K以下である、
 熱電変換素子を提供する。
 上記の熱電変換素子は、磁気熱電変換を利用しつつ熱センシングの精度を高める観点から有利である。
図1は、熱電変換素子の実施形態の一例を示す斜視図である。 図2は、図1に示す平面IIを切断面とする熱電変換素子の断面図である。 図3は、熱電変換素子の別の一例を示す断面図である。 図4は、熱電変換素子のさらに別の一例を示す断面図である。
 本発明の実施形態について、図面を参照しつつ説明する。なお、本発明は、以下の実施形態には限定されない。
 図1に示す通り、熱電変換素子1aは、磁気熱電変換体11と、配線12とを備えている。磁気熱電変換体11は、線状に延びている。配線12は、磁気熱電変換体11に電気的に接続されている。熱電変換素子1aにおいて、磁気熱電変換体11の長手方向におけるゼーベック係数Smと配線12の長手方向におけるゼーベック係数Scとの差の絶対値|ΔS|は、10μV/K以下である。ゼーベック係数Sm及びゼーベック係数Scは、例えば、25~40℃における値であり、実施例に記載の方法に従って測定できる。添付の図面において、X軸、Y軸、及びZ軸は互いに直交している。磁気熱電変換体11及び配線12は、例えば、XY平面に平行な面に沿って配置されている。
 熱電変換素子1aにおいて、磁気熱電変換体11の長手方向(Y軸方向)に温度勾配が生じると、ゼーベック係数Smとゼーベック係数Scとの差に起因してその長手方向においてゼーベック効果に伴う熱起電力が生じうる。しかし、熱電変換素子1aでは、絶対値|ΔS|が10μV/K以下であるので、磁気熱電変換体11の長手方向に温度勾配が生じても、その長手方向において生じるゼーベック効果に伴う熱起電力が小さくなりやすい。このため、熱電変換素子1aを用いたセンシングにおいて、磁気熱電変換に伴う起電力に重畳されるゼーベック効果に伴う起電力が小さくなりやすい。その結果、熱電変換素子1aは、磁気熱電変換を利用して高精度の熱センシングを実現する観点から有利である。
 絶対値|ΔS|は、9.5μV/K以下であってもよく、9.0μV/K以下であってもよく、8.5μV/K以下であってもよく、8.0μV/K以下であってもよく、7.5μV/K以下であってもよく、7.0μV/K以下であってもよい。絶対値|ΔS|は、6.5μV/K以下であってもよく、6.0μV/K以下であってもよく、5.5μV/K以下であってもよく、5.0μV/K以下であってもよい。絶対値|ΔS|は、4.5μV/K以下であってもよく、4.0μV/K以下であってもよく、3.5μV/K以下であってもよく、3.0μV/K以下であってもよく、2.5μV/K以下であってもよく、2.0μV/K以下であってもよい。絶対値|ΔS|は、1.5μV/K以下であってもよく、1.0μV/K以下であってもよく、0.8μV/K以下であってもよく、0.5μV/K以下であってもよく、0.3μV/K以下であってもよく、0.2μV/K以下であってもよい。絶対値|ΔS|の下限値は、特定の値に限定されない。絶対値|ΔS|は、例えば0.01μV/K以上であり、0.05μV/K以上であってもよく、0.1μV/K以上であってもよく、0.2μV/K以上であってもよく、0.5μV/K以上であってもよく、1.0μV/K以上であってもよい。
 ゼーベック係数Sm及びゼーベック係数Scの符号の関係は、絶対値|ΔS|が10μV/K以下である限り、特定の関係に限定されない。ゼーベック係数Sm及びゼーベック係数Scは、例えば、同符号の値を有する。これにより、絶対値|ΔS|が小さくなりやすい。ゼーベック係数Sm及びゼーベック係数Scは、異なる符号の値を有していてよい。
 絶対値|ΔS|が10μV/K以下である限り、ゼーベック係数Scは特定の値に限定されない。ゼーベック係数Scは、例えば、0以下の値を有する。ゼーベック係数Scは、例えば、0μV/K以下であり、-5μV/K以下であってもよく、-10μV/K以下であってもよく、-15μV/K以下であってもよく、-20μV/K以下であってもよい。ゼーベック係数Scは、例えば-50μV/K以上である。ゼーベック係数Scは、正値であってもよく、例えば、1μV/K以上であってもよく、3μV/K以上であってもよく、5μV/K以上であってもよく、10μV/K以上であってもよい。
 絶対値|ΔS|が10μV/K以下である限り、ゼーベック係数Smは特定の値に限定されない。ゼーベック係数Smは、例えば0μV/K以下であり、-5μV/K以下であってもよく、-10μV/K以下であってもよく、-15μV/K以下であってもよい。ゼーベック係数Smは、例えば-50μV/K以上である。ゼーベック係数Smは、正値であってもよく、例えば、1μV/K以上であってもよく、3μV/K以上であってもよく、5μV/K以上であってもよく、10μV/K以上であってもよい。
 ゼーベック係数Smの絶対値|Sm|は、望ましくは10μV以上である。この場合、磁気熱電係数が大きくなりやすく、熱電変換素子1aの熱電変換性能が高くなりやすい。絶対値|Sm|は、15μV以上であってもよく、20μV以上であってもよい。
 絶対値|ΔS|が10μV/K以下である限り、配線12の比抵抗は特定の値に限定されない。配線12は、例えば、8~200μΩ・cmの比抵抗を有する。これにより、ゼーベック係数Scが所望の範囲に調整されやすい。加えて、配線12を薄くしても抵抗を低くしやすい。
 配線12の比抵抗は、10μΩ・cm以上であってもよく、15μΩ・cm以上であってもよく、20μΩ・cm以上であってもよく、25μΩ・cm以上であってもよく、30μΩ・cm以上であってもよい。配線12の比抵抗は、180μΩ・cm以下であってもよく、150μΩ・cm以下であってもよく、140μΩ・cm以下であってもよく、130μΩ・cm以下であってもよく、120μΩ・cm以下であってもよく、110μΩ・cm以下であってもよく、100μΩ・cm以下であってもよい。
 絶対値|ΔS|が10μV/K以下である限り、配線12をなす材料は特定の材料に限定されない。配線12は、例えば、Cu、Ag、Au、Al、Ni、及びCoからなる群より選択される少なくとも1つの金属を含む。この場合、配線12におけるこれらの金属の含有量は、原子数基準で50%以上である。換言すると、配線12におけるCu、Ag、Au、Al、Ni、及びCoの含有量の総量は原子数基準で50%以上である。これにより、ゼーベック係数Scが所望の値に調整されやすく、配線12の比抵抗を低くしやすい。
 配線12は、単体の金属によって形成されていてもよいし、合金によって形成されていてもよい。
 配線12は、Cu、Ag、Au、及びAlからなる群より選択される少なくとも1つの金属と、第8族元素、第9族元素、及び第10族元素からなる群より選択される少なくとも1つの元素とを含んでいてもよい。この場合、合金のゼーベック係数Scは組成によって正の値から負の値まで大きな範囲で変動する傾向にあり、ゼーベック係数Scが所望の値に調整されやすい。第8族元素は、例えば、Feである。第9族元素は、例えば、Coである。第10族元素は、例えば、Ni又はPtである。配線12における第8族元素、第9族元素、及び第10族元素からなる群より選択される少なくとも1つの元素の含有量は、特定の値に限定されない。その含有量は、原子数基準で1%以上であってもよく、3%以上であってもよく、5%以上であってもよく、10%以上であってもよく、20%以上であってもよく、30%以上であってもよく、40%以上であってもよく、50%以上であってもよい。
 絶対値|ΔS|が10μV/K以下である限り、磁気熱電変換体11は、特定の材料に限定されない。磁気熱電変換体11は、磁気熱電効果により起電力を生じさせる。磁気熱電効果は、例えば、異常ネルンスト効果又はスピンゼーベック効果である。
 磁気熱電変換体11は、例えば、異常ネルンスト効果を示す物質を含む。異常ネルンスト効果を示す物質は、特定の物質に限定されない。異常ネルンスト効果を示す物質は、例えば、5×10-3T以上の飽和磁化率を有する磁性体又はフェルミエネルギーの近傍にワイル点を有するバンド構造の物質である。磁気熱電変換体11は、異常ネルンスト効果を示す物質として、例えば、下記(i)、(ii)、(iii)、(iv)、及び(v)からなる群より選択される少なくとも1つの物質を含有する。
(i)Fe3Xで表される組成を有するストイキオメトリックな物質
(ii)上記(i)の物質からFeとXとの組成比がずれたオフ・ストイキオメトリックな物質
(iii)上記(i)の物質のFeサイトの一部又は上記(ii)の物質のFeサイトの一部がX以外の典型金属元素又は遷移元素で置換された物質
(iv)Fe3M11-xM2x(0<x<1)で表される組成を有し、M1及びM2が互いに異なる典型元素である物質
(v)上記(i)の物質のFeサイトの一部がX以外の遷移元素で置換され、上記(i)の物質のXサイトの一部がX以外の典型金属元素で置換された物質
 上記(i)~(v)の物質において、Xは、典型元素又は遷移元素である。Xは、例えば、Al、Ga、Ge、Sn、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Sc、Ni、Mn、又はCoである。上記(iv)において、M1及びM2の組み合わせは、M1及びM2が互いに異なる典型元素である限り、特定の組み合わせに限定されない。上記(iv)において、M1及びM2の組み合わせは、例えば、Ga及びAl、Si及びAl、又はGa及びBである。
 磁気熱電変換体11は、異常ネルンスト効果を示す物質として、Co2MnGaを含んでいてもよく、反強磁性体であるMn3Snを含んでいてもよい。
 磁気熱電変換体11は、Feを含有し、かつ、体心立方格子の結晶構造を有する合金であってもよい。この場合、磁気熱電変換体11において異常ネルンスト効果に基づく大きな起電力が生じやすい。
 磁気熱電変換体11が、Feを含有し、かつ、体心立方格子の結晶構造を有する合金である場合、合金におけるFeの含有量及びFe以外の元素の含有量は特定の値に限定されない。合金におけるFeの含有量は、例えば、原子数基準で50%以上であり、合金におけるFe以外の元素の含有量は、例えば、原子数基準で10%以上である。この場合、磁気熱電変換体11において異常ネルンスト効果に基づく大きな起電力が生じやすい。
 上記の合金におけるFeの含有量は、原子数基準で、55%以上であってもよく、60%以上であってもよく、65%以上であってもよく、70%以上であってもよい。上記の合金におけるFeの含有量は、原子数基準で、90%以下であり、85%以下であってもよく、80%以下であってもよい。
 上記の合金におけるFe以外の元素の含有量は、原子数基準で、15%以上であってもよく、20%以上であってもよい。上記の合金におけるFe以外の元素の含有量は、原子数基準で、50%以下であり、40%以下であってもよく、30%以下であってもよい。
 磁気熱電変換体11の磁気熱電係数SNEは特定の値に限定されない。磁気熱電変換体11の磁気熱電係数SNEの絶対値は、例えば0.5μV/K以上である。これにより、磁気熱電変換体11において磁気熱電変換により大きな起電力が生じやすく、熱電変換素子1aを用いたセンシングの精度が向上しやすい。このため、微小な熱の検知がされやすい。磁気熱電変換体11の磁気熱電係数SNEの絶対値は、望ましくは1.0μV/K以上であり、より望ましくは1.5μV/K以上であり、さらに望ましくは2.0μV/K以上である。磁気熱電変換体11の磁気熱電係数SNEの絶対値は、3.0μV/K以上であってもよく、4.0μV/K以上であってもよく、5.0μV/K以上であってもよく、6.0μV/K以上であってもよく、7.0μV/K以上であってもよく、8.0μV/K以上であってもよい。
 図1及び図2に示す通り、例えば、磁気熱電変換体11は、複数の第一細線11aを備えている。加えて、配線12は、複数の第二細線12aを備えている。熱電変換素子1aにおいて、複数の第一細線11a及び複数の第二細線12aは、電気的に直列に接続されている。このような構成によれば、複数の第一細線11aにおいて生じる磁気熱電変換に伴う起電力が合成され、熱電変換素子1aから大きな出力が得られやすい。
 熱電変換素子1aにおいて、複数の第一細線11a及び複数の第二細線12aは、例えば、複数対の細線対15をなしている。各細線対15は、第一細線11a及び第二細線12aからなる。換言すると、各細線対15は、1つの第一細線11a及び1つの第二細線12aからなる。熱電変換素子1aにおける細線対15の数は特定の値に限定されない。熱電変換素子1aにおいて、複数の第一細線11a及び複数の第二細線12aは、例えば、50対以上の細線対15をなしている。ゼーベック効果による起電力は、接合された異種材料のペアの数が増えるほど大きくなる。一方、熱電変換素子1aにおいては、絶対値|ΔS|が10μV/K以下である。このため、熱電変換素子1aが50対以上の細線対15を有していても、磁気熱電変換体11の長手方向に温度勾配が生じた場合にその長手方向において生じるゼーベック効果に伴う熱起電力が小さくなりやすい。
 図1及び図2に示す通り、複数の第一細線11a及び複数の第二細線12aは、メアンダパターンをなしている。このような構成によれば、複数の第一細線11a及び複数の第二細線12aが配置される平面の面積が小さくても、熱電変換素子1aから大きな出力が得られやすい。
 図1に示す通り、複数の第一細線11aは、例えば、X軸方向に所定の間隔で離れており、かつ、互いに平行に配置されている。複数の第一細線11aは、X軸方向に等間隔で配置されている。複数の第二細線12aは、例えば、X軸方向において隣り合う第一細線11a同士を電気的に接続している。第二細線12aは、例えば、Y軸方向における第一細線11aの一端部と、その第一細線11aに隣り合う別の第一細線11aのY軸方向における他端部とを電気的に接続している。複数の第一細線11aのY軸方向における一端部は、第一細線11aのY軸方向の同じ側の端部に位置しており、複数の第一細線11aのY軸方向における他端部は、第一細線11aのY軸方向の一端部とは反対側の端部に位置している。
 第一細線11aの厚みは特定の値に限定されない。第一細線11aは、例えば1000nm以下の厚みを有する。これにより、熱電変換素子1aにおける磁気熱電変換体をなす材料の使用量を低減でき、熱電変換素子1aの製造コストを低減しやすい。加えて、熱電変換素子1aにおいて複数の第一細線11a及び複数の第二細線12aによって形成される導電路の断線が発生しにくい。
 第一細線11aの厚みは、750nm以下であってもよく、500nm以下であってもよく、400nm以下であってもよく、300nm以下であってもよく、200nm以下であってもよい。第一細線11aの厚みは、例えば5nm以上である。これにより、熱電変換素子1aが高い耐久性を発揮しやすい。第一細線11aの厚みは、10nm以上であってもよく、20nm以上であってもよく、30nm以上であってもよく、50nm以上であってもよい。
 第一細線11aのX軸方向の寸法である幅は、特定の値に限定されない。第一細線11aの幅は、例えば、500μm以下である。これにより、熱電変換素子1aにおける磁気熱電変換体をなす材料の使用量を低減でき、熱電変換素子1aの製造コストを低減しやすい。加えて、X軸方向に多数の第一細線11aを配置しやすく、熱電変換素子1aにおいて磁気熱電変換に伴って発生する起電力が大きくなりやすい。
 第一細線11aの幅は、400μm以下であってもよく、300μm以下であってもよく、200μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。第一細線11aの幅は、例えば0.1μm以上である。これにより、熱電変換素子1aにおいて導電路の断線が発生しにくく、熱電変換素子1aが高い耐久性を発揮しやすい。第一細線11aの幅は、0.5μm以上であってもよく、1μm以上であってもよく、2μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよく、30μm以上であってもよい。
 第二細線12aの厚みは特定の値に限定されない。第二細線12aの厚みは、例えば1000nm以下である。これにより、配線12をなす材料の使用量を低減でき、熱電変換素子1aの製造コストを低減しやすい。加えて、熱電変換素子1aにおいて導電路の断線が発生しにくい。第二細線12aの厚みは、750nm以下であってもよく、500nm以下であってもよく、400nm以下であってもよく、300nm以下であってもよく、200nm以下であってもよく、100nm以下であってもよい。
 第二細線12aの厚みは、例えば5nm以上である。これにより、熱電変換素子1aが高い耐久性を発揮しやすい。第二細線12aの厚みは、10nm以上であってもよく、20nm以上であってもよく、30nm以上であってもよく、50nm以上であってもよい。
 第二細線12aのX軸方向の最寸法である幅は、特定の値に限定されない。第二細線12aの幅は、例えば、500μm以下である。これにより、熱電変換素子1aにおける配線12をなす材料の使用量を低減でき、熱電変換素子1aの製造コストを低減しやすい。加えて、X軸方向に多数の第二配線12aを配置しやすく、熱電変換素子1aにおいて磁気熱電変換に伴って発生する起電力が大きくなりやすい。
 第二細線12aの幅は、400μm以下であってもよく、300μm以下であってもよく、200μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。第二細線12aの幅は、例えば0.1μm以上である。これにより、熱電変換素子1aにおいて導電路の断線が発生しにくく、熱電変換素子1aが高い耐久性を発揮しやすい。第二細線12aの幅は、0.5μm以上であってもよく、1μm以上であってもよく、2μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよく、30μm以上であってもよい。
 図1に示す通り、熱電変換素子1aは、基材20をさらに備えている。磁気熱電変換体11及び配線12は、基材20上に配置されている。
 基材20をなす材料は、特定の材料に限定されない。基材20は、例えば表層にMgOを含有していない。これにより、基材20の表層にMgOを含有させる必要がないので、熱電変換素子1aの製造が煩雑になりにくく、耐酸性も得られやすい。
 基材20は、例えば、可撓性を有する。この場合、熱電変換素子1aを取り付け可能な対象の形状が制限されにくい。基材20が可撓性を有する場合、基材20は、例えば有機ポリマーを少なくとも含んでいる。これにより、熱電変換素子1aの製造コストを低減しやすい。有機ポリマーの例は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル樹脂(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、又はシクロオレフィンポリマー(COP)である。基材20は、超薄板ガラスであってもよい。超薄板ガラスの一例は、日本電気硝子社製のG-Leaf(登録商標)である。
 熱電変換素子1aの製造方法の一例を説明する。まず、基材20の一方の主面にスパッタリング、化学気相成長法(CVD)、Pulsed Laser Deposition(PLD)、イオンプレーティング、及びメッキ法等の方法によって、磁気熱電変換体11の前駆体の薄膜を形成する。次に、フォトレジストをその薄膜上に塗布し、フォトマスクを薄膜の上に配置して露光を行い、その後ウェットエッチングを行う。これにより、所定の間隔で配置された複数の磁気熱電変換体11の前駆体の線状パターンが形成される。次に、基材20の一方の主面にスパッタリング、CVD、PLD、イオンプレーティング、及びメッキ法等の方法によって、配線12の前駆体の薄膜を形成する。次に、配線12の前駆体の薄膜上にフォトレジストを塗布し、配線12の前駆体の薄膜の上にフォトマスクを配置して露光を行い、その後ウェットエッチングを行う。これにより、配線12が得られ、磁気熱電変換体11の前駆体の線状パターン同士が電気的に接続される。次に、磁気熱電変換体11の前駆体を磁化させて、磁気熱電変換体11を形成する。このようにして、熱電変換素子1aが得られる。必要に応じて、配線12の前駆体が磁化されて配線12が形成されてもよい。
 熱電変換素子1aは、例えば、粘着層とともに提供されてもよい。この場合、基材20の厚み方向において、磁気熱電変換体11と粘着層との間に基材20が配置される。これにより、粘着層を物品に押し当てて、熱電変換素子1aを物品に取り付けることができる。
 粘着層は、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、又はウレタン系粘着剤を含んでいる。熱電変換素子1aは、粘着層及びはく離ライナーとともに提供されてもよい。この場合、はく離ライナーは、粘着層を覆っている。はく離ライナーは、典型的には、粘着層を覆っているときに粘着層の粘着力を保つことができ、かつ、粘着層から容易に剥離できるフィルムである。はく離ライナーは、例えば、PET等のポリエステル樹脂製のフィルムである。はく離ライナーを剥離することによって粘着層が露出し、熱電変換素子1aを物品に貼り付けることができる。
 熱電変換素子1aを備えたセンサを提供できる。このセンサにおいて、例えば、基材20の厚み方向に温度勾配が生じると、磁気熱電効果により磁気熱電変換体11の長手方向に起電力が生じる。センサは、この起電力に基づく熱電変換素子1aの外部に出力された電気信号が処理されることによって、熱をセンシングできる。
 熱電変換素子1aは、様々な観点から変更可能である。熱電変換素子1aは、例えば、図3に示す熱電変換素子1b又は図4に示す熱電変換素子1cのように変更されてもよい。熱電変換素子1b及び1cは、特に説明する部分を除き、熱電変換素子1aと同様にして構成されている。熱電変換素子1aの構成要素と同一又は対応する熱電変換素子1b及び1cの構成要素には、同一の符号を付し詳細な説明を省略する。熱電変換素子1aに関する説明は、技術的に矛盾しない限り、熱電変換素子1b及び1cにもあてはまる。
 図3に示す通り、熱電変換素子1bにおいて、磁気熱電変換体11は、例えば、同一平面上において連続的に延びている。配線12は、磁気熱電変換体11の一部の上に配置されている。例えば、複数の第二細線12aは、磁気熱電変換体11の上に互いに所定の間隔で離れて配置されている。このような構成によれば、ゼーベック効果に伴う熱起電力が小さくなりやすい。また、製造コストを低減しやすい。
 熱電変換素子1bにおいて、磁気熱電変換体11は、例えば、メアンダパターンをなしている。熱電変換素子1bは、X軸方向において、磁気熱電変換体11の単層と、磁気熱電変換体11及び第二細線12aを含む積層体とが交互に現れるように構成されている。
 図4に示す通り、熱電変換素子1cにおいて、配線12は、例えば、同一平面上において連続的に延びている。磁気熱電変換体11は、配線12の一部の上に配置されている。例えば、複数の第一細線11aは、配線12の上に互いに所定の間隔で離れて配置されている。このような構成によれば、ゼーベック効果に伴う熱起電力が小さくなりやすい。また、製造コストを低減しやすい。
 熱電変換素子1cにおいて、配線12は、例えば、メアンダパターンをなしている。熱電変換素子1cは、X軸方向において、配線12の単層と、配線12及び第一細線11aを含む積層体とが交互に現れるように構成されている。
 以下、実施例により本発明をより詳細に説明する。ただし、本発明は、以下の実施例に限定されない。まず、実施例及び比較例に関する評価方法について説明する。
 [ゼーベック係数の測定]
 Quantum Design社製の小型無冷媒型物理特性測定システムPPMS VersaLabを用いて、各実施例及び各比較例に係る熱電変換素子における磁気熱電変換用細線の長手方向における27~37℃のゼーベック係数Smと、配線の長手方向における27~37℃のゼーベック係数Scとを測定し、それらの差の絶対値|ΔS|を決定した。結果を表1に示す。ゼーベック係数Sm及びゼーベック係数Scのそれぞれは、試料の一端に取り付けたヒータによって熱流を発生させたときの試料に取り付けた2つの温度計の間に誘起された起電力及び温度差に基づいて決定した。
 [磁気熱電係数の測定]
 Quantum Design社製の小型無冷媒型物理特性測定システムPPMS VersaLabを用いて、各実施例及び各比較例に係る熱電変換素子における磁気熱電変換用細線の27~37℃の磁気熱電係数(ネルンスト係数)を測定した。結果を表1に示す。
 [熱電変換素子の熱起電力の測定]
 30mm、30mm、及び5mmの寸法を有する一対のCu製のプレートの間に、信越化学工業社製のシリコーングリースKS609を用いて各実施例及び各比較例に係る熱電変換素子を固定し、熱電特性評価用のサンプルを作製した。このサンプルを、アズワン社の冷却プレートSCP-125の上に置いた。上方のCu製のプレートの上に、シンワ測定社製のフィルムヒーターを日東電工社製の両面テープNo.5000NSで固定した。このヒータは、30mm平方の寸法及び20Ωの電気抵抗値を有していた。冷却プレートの温度を25℃に保った状態で、フィルムヒーターを10Vの定電圧制御で発熱させ、フィルムヒーターから出力される熱量を0.52W/cm2に調整した。このとき、デジタルマルチメーターを用いて、熱電変換素子において発生する起電力VNを計測し、定常状態における起電力の値を読み取った。結果を表1に示す。
 [比抵抗の測定]
 ナプソン社製の非接触式抵抗測定装置 NC-80MAPを用いて日本産業規格JIS Z 2316-1:2014に準拠して、渦電流測定法に従って、各実施例及び各比較例に関し、配線のための薄膜のシート抵抗を測定した。このようにして測定した配線のための薄膜のシート抵抗と配線の厚みとの積を求め、配線の比抵抗を決定した。結果を表1に示す。
 [ゼーベック効果に伴う起電力の測定]
 各実施例及び各比較例に係る熱電変換素子の面内において熱電変換用細線及び配線の長手方向の一端をヒータで加熱して、熱電変換用細線及び配線の長手方向の両端の間に1℃の温度差を生じさせた。この状態でゼーベック効果に伴う起電力Vsを測定した。この測定において、熱電変換用細線及び配線の長手方向の一端以外において、熱電変換素子の厚み方向に温度勾配が生じないように熱電変換素子の両面の温度を一定に保った。結果を表1に示す。
 <実施例1>
 50μmの厚みを有するポリエチレンテレフタレート(PET)フィルム上に、Fe及びGaを含むターゲット材を用いてDCマグネトロンスパッタリングによって100nmの厚みを有する薄膜を形成した。このターゲット材において、原子数比で、Feの含有量:Gaの含有量=3:1の関係にあった。フォトレジストを薄膜上に塗布し、フォトマスクを薄膜の上に配置して露光を行い、その後ウェットエッチングを行った。これにより、所定の間隔で互いに平行に配置された94本の磁気熱電変換用細線が形成された。各磁気熱電変換用細線の幅は100μmであり、各磁気熱電変換用細線の長さは15mmであった。その後、Cu及びNiを含むターゲット材を用いてDCマグネトロンスパッタリングによって100nmの厚みを有するCuNi薄膜を形成した。このターゲット材において、原子数比で、Cuの含有量:Niの含有量=95:5の関係にあった。フォトレジストをCuNi薄膜上に塗布し、フォトマスクをCuNi薄膜の上に配置して露光を行い、その後ウェットエッチングを行った。これにより、40μmの幅を有する配線が形成された。この配線によって、複数の磁気熱電変換用細線が電気的に直列に接続されていた。また、複数の磁気熱電変換用細線及びこの配線は、メアンダパターンをなしていた。PETフィルムの平面に平行であり、かつ、磁気熱電変換用細線の長手方向と直交する方向に磁気熱電変換用細線を磁化させ、実施例1に係る熱電変換素子を得た。この熱電変換素子は、異常ネルンスト効果に基づいて起電力を発生した。
 <実施例2>
 原子数比でCuの含有量:Niの含有量=93:7の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例2に係る熱電変換素子を作製した。
 <実施例3>
 原子数比でCuの含有量:Niの含有量=87:13の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例3に係る熱電変換素子を作製した。
 <実施例4>
 原子数比でCuの含有量:Niの含有量=79:21の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例4に係る熱電変換素子を作製した。
 <実施例5>
 Niをターゲット材として用いて配線を形成したこと以外は実施例1と同様にして実施例5に係る熱電変換素子を作製した。
 <実施例6>
 原子数比でCuの含有量:Coの含有量=77:23の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例6に係る熱電変換素子を作製した。
 <実施例7>
 原子数比でCuの含有量:Feの含有量=41:59の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例7に係る熱電変換素子を作製した。
 <実施例8>
 原子数比でCuの含有量:Niの含有量=88:12の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例8に係る熱電変換素子を作製した。
 <実施例9>
 原子数比でCuの含有量:Coの含有量=68:32の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例9に係る熱電変換素子を作製した。
 <実施例10>
 原子数比でCuの含有量:Coの含有量=63:37の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例10に係る熱電変換素子を作製した。
 <実施例11>
 原子数比でCuの含有量:Coの含有量=22:78の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例11に係る熱電変換素子を作製した。
 <実施例12>
 Fe及びGaを含むターゲット材の代わりにCo2MnGaのターゲットを用い、かつ、原子数比でCuの含有量:Niの含有量=79:21の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例12に係る熱電変換素子を作製した。
 <実施例13>
 Fe及びGaを含むターゲット材の代わりにMn3Snのターゲットを用い、かつ、原子数比でCuの含有量:Agの含有量=50:50の関係を有するターゲット材を用いて配線を形成したこと以外は実施例1と同様にして実施例13に係る熱電変換素子を作製した。
 <比較例1>
 Cuをターゲット材として用いて配線を形成したこと以外は実施例1と同様にして比較例1に係る熱電変換素子を作製した。
 <比較例2>
 Fe及びPtを含むターゲット材を用いて熱電変換用細線を形成し、Crをターゲット材として用いて配線を形成したこと以外は実施例1と同様にして比較例2に係る熱電変換素子を作製した。この熱電変換素子は、異常ネルンスト効果に基づいて起電力を発生した。
 <比較例3>
 Auをターゲット材として用いて配線を形成したこと以外は実施例1と同様にして比較例3に係る熱電変換素子を作製した。
 <比較例4>
 Fe及びGaを含むターゲット材の代わりにCo2MnGaのターゲットを用い、かつ、Auをターゲット材として用いて配線を形成したこと以外は実施例1と同様にして比較例4に係る熱電変換素子を作製した。
 各実施例に係る熱電変換素子におけるゼーベック起電力Vsは、各比較例に係る熱電変換素子におけるゼーベック起電力Vsより低かった。磁気熱電変換用細線の長手方向におけるゼーベック係数Smと配線の長手方向におけるゼーベック係数Scとの差の絶対値が10μV/K以下であることによりゼーベック起電力Vsを低減でき、熱電変換素子の厚み方向における温度差の測定の精度を高める観点から有利であると理解される。
 本発明の第1側面は、
 線状に延びる磁気熱電変換体と、
 前記磁気熱電変換体に電気的に接続された配線と、を備え、
 前記磁気熱電変換体の長手方向におけるゼーベック係数Smと前記配線の長手方向におけるゼーベック係数Scとの差の絶対値は、10μV/K以下である、
 熱電変換素子を提供する。
 本発明の第2側面は、
 前記ゼーベック係数Smの絶対値は、10μV/K以上である、
 第1側面に係る熱電変換素子を提供する。
 本発明の第3側面は、
 前記ゼーベック係数Sm及び前記ゼーベック係数Scは、同符号の値を有する、
 第1側面又は第2側面に係る熱電変換素子を提供する。
 本発明の第4側面は、
 前記ゼーベック係数Scは、0以下の値を有する、
 第1側面から第3側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第5側面は、
 前記配線は、8~200μΩ・cmの比抵抗を有する、
 第1側面から第4側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第6側面は、
 前記配線は、Cu、Ag、Au、Al、Ni、及びCoからなる群より選択される少なくとも1つの金属を含み、
 前記配線における前記金属の含有量は、原子数基準で50%以上である、
 第1側面から第5側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第7側面は、
 前記配線は、Cu、Ag、Au、及びAlからなる群より選択される少なくとも1つの金属と、第8族元素、第9族元素、及び第10族元素からなる群より選択される少なくとも1つの元素とを含む、
 第1側面から第6側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第8側面は、
 前記磁気熱電変換体は、Feを含有し、かつ、体心立方格子の結晶構造を有する合金である、
 第1側面から第7側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第9側面は、
 前記合金におけるFeの含有量は、原子数基準で50%以上であり、
 前記合金におけるFe以外の元素の含有量は、原子数基準で10%以上である、
 第8側面に係る熱電変換素子を提供する。
 本発明の第10側面は、
 前記磁気熱電変換体は、複数の第一細線を有し、
 前記配線は、複数の第二細線を有し、
 前記複数の第一細線及び前記複数の第二細線は、電気的に直列に接続されている、
 第1側面から第9側面のいずれか1つの側面に係る熱電変換素子を提供する。
 本発明の第11側面は、
 前記複数の第一細線及び前記複数の第二細線は、50対以上の細線対をなしており、
 前記50対以上の細線対のそれぞれは、前記第一細線及び前記第二細線からなる、
 第10側面に係る熱電変換素子を提供する。
 本発明の第12側面は、
 前記複数の第一細線及び前記複数の第二細線は、メアンダパターンをなしている、
 第10側面又は第11側面に係る熱電変換素子を提供する。
 本発明の第13側面は、
 第1側面から第12側面のいずれか1つの側面に係る熱電変換素子を備えた、センサを提供する。
Figure JPOXMLDOC01-appb-T000001
 

Claims (13)

  1.  線状に延びる磁気熱電変換体と、
     前記磁気熱電変換体に電気的に接続された配線と、を備え、
     前記磁気熱電変換体の長手方向におけるゼーベック係数Smと前記配線の長手方向におけるゼーベック係数Scとの差の絶対値は、10μV/K以下である、
     熱電変換素子。
  2.  前記ゼーベック係数Smの絶対値は、10μV/K以上である、
     請求項1に記載の熱電変換素子。
  3.  前記ゼーベック係数Sm及び前記ゼーベック係数Scは、同符号の値を有する、
     請求項1に記載の熱電変換素子。
  4.  前記ゼーベック係数Scは、0以下の値を有する、
     請求項1に記載の熱電変換素子。
  5.  前記配線は、8~200μΩ・cmの比抵抗を有する、
     請求項1に記載の熱電変換素子。
  6.  前記配線は、Cu、Ag、Au、Al、Ni、及びCoからなる群より選択される少なくとも1つの金属を含み、
     前記配線における前記金属の含有量は、原子数基準で50%以上である、
     請求項1に記載の熱電変換素子。
  7.  前記配線は、Cu、Ag、Au、及びAlからなる群より選択される少なくとも1つの金属と、第8族元素、第9族元素、及び第10族元素からなる群より選択される少なくとも1つの元素とを含む、
     請求項1に記載の熱電変換素子。
  8.  前記磁気熱電変換体は、Feを含有し、かつ、体心立方格子の結晶構造を有する合金である、
     請求項1に記載の熱電変換素子。
  9.  前記合金におけるFeの含有量は、原子数基準で50%以上であり、
     前記合金におけるFe以外の元素の含有量は、原子数基準で10%以上である、
     請求項8に記載の熱電変換素子。
  10.  前記磁気熱電変換体は、複数の第一細線を有し、
     前記配線は、複数の第二細線を有し、
     前記複数の第一細線及び前記複数の第二細線は、電気的に直列に接続されている、
     請求項1に記載の熱電変換素子。
  11.  前記複数の第一細線及び前記複数の第二細線は、50対以上の細線対をなしており、
     前記50対以上の細線対のそれぞれは、前記第一細線及び前記第二細線からなる、
     請求項10に記載の熱電変換素子。
  12.  前記複数の第一細線及び前記複数の第二細線は、メアンダパターンをなしている、
     請求項10に記載の熱電変換素子。
  13.  請求項1~12のいずれか1項に記載の熱電変換素子を備えた、センサ。
     
PCT/JP2022/036045 2021-09-29 2022-09-27 熱電変換素子及びセンサ WO2023054416A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280065515.2A CN118044356A (zh) 2021-09-29 2022-09-27 热电转换元件及传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159974 2021-09-29
JP2021-159974 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054416A1 true WO2023054416A1 (ja) 2023-04-06

Family

ID=85782816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036045 WO2023054416A1 (ja) 2021-09-29 2022-09-27 熱電変換素子及びセンサ

Country Status (2)

Country Link
CN (1) CN118044356A (ja)
WO (1) WO2023054416A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009308A1 (ja) * 2017-07-03 2019-01-10 国立大学法人東京大学 熱電変換素子及び熱電変換デバイス
WO2020218613A1 (ja) * 2019-04-26 2020-10-29 国立大学法人東京大学 熱電変換素子及び熱電変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009308A1 (ja) * 2017-07-03 2019-01-10 国立大学法人東京大学 熱電変換素子及び熱電変換デバイス
WO2020218613A1 (ja) * 2019-04-26 2020-10-29 国立大学法人東京大学 熱電変換素子及び熱電変換装置

Also Published As

Publication number Publication date
CN118044356A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
Zhou et al. Heat flux sensing by anomalous Nernst effect in Fe–Al thin films on a flexible substrate
Uchida et al. Longitudinal spin Seebeck effect: from fundamentals to applications
JP2009250931A (ja) 磁気センサおよびその動作方法、および磁気センサシステム
JP6398573B2 (ja) スピン熱流センサ及びその製造方法
US11249116B2 (en) Magnetic sensor and current sensor
Lukose et al. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application
US11889762B2 (en) Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same
WO2023054416A1 (ja) 熱電変換素子及びセンサ
WO2023013704A1 (ja) 熱電変換素子
KR20240070551A (ko) 열전 변환 소자 및 센서
WO2024071419A1 (ja) 熱電変換素子及びセンサ
WO2018146713A1 (ja) 熱電変換素子およびその製造方法
JP7205770B2 (ja) 複合センサ
EP4109062A1 (en) Heat flow switching element
WO2023054415A1 (ja) 熱電変換素子及び熱電変換素子の製造方法
US11366028B2 (en) Stress sensor
WO2023013702A1 (ja) 熱電変換素子
JP2002131407A (ja) 薄膜磁界センサ
KR20240070550A (ko) 열전 변환 소자 및 열전 변환 소자의 제조 방법
Ogasawara et al. Effects of annealing temperature on sensing properties of magnetic-tunnel-junction-based sensors with perpendicular synthetic antiferromagnetic Co/Pt pinned layer
Chen et al. Topological Heusler Magnets‐Driven High‐Performance Transverse Nernst Thermoelectric Generators
WO2023013703A1 (ja) 熱電変換素子
WO2023054583A1 (ja) 熱電体、熱電発電素子、多層熱電体、多層熱電発電素子、熱電発電機、及び熱流センサ
CN212519573U (zh) 集成电路、测温装置和电子设备
WO2023190993A1 (ja) 磁性薄膜付基材、磁気熱電変換素子、センサ、及び磁性薄膜付基材を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551564

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010503

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022876282

Country of ref document: EP

Effective date: 20240429