WO2021166597A1 - 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム - Google Patents

生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム Download PDF

Info

Publication number
WO2021166597A1
WO2021166597A1 PCT/JP2021/003235 JP2021003235W WO2021166597A1 WO 2021166597 A1 WO2021166597 A1 WO 2021166597A1 JP 2021003235 W JP2021003235 W JP 2021003235W WO 2021166597 A1 WO2021166597 A1 WO 2021166597A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological substance
chip
partition wall
substance detection
holding surface
Prior art date
Application number
PCT/JP2021/003235
Other languages
English (en)
French (fr)
Inventor
晴美 田中
佳明 桝田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/904,177 priority Critical patent/US20230047769A1/en
Priority to CN202180014551.1A priority patent/CN115087857A/zh
Priority to JP2022501741A priority patent/JPWO2021166597A1/ja
Publication of WO2021166597A1 publication Critical patent/WO2021166597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • This technology relates to a chip for detecting a biological substance, a biological substance detection device, and a biological substance detection system.
  • the first substrate on which a plurality of wells are formed, the second substrate provided with heating means so as to be in contact with the wells, and the positions of the wells are positioned.
  • Optical detection including at least a third substrate provided with a plurality of light irradiating means and a fourth substrate provided with a plurality of photodetecting means positioned corresponding to the positions of the wells. The device is disclosed. With this optical detection device, various reactions progressing in each well can be measured.
  • Patent Document 2 discloses a chemical sensor including a substrate on which a photodetector is formed and a plasmon absorbing layer having a metal nanostructure that causes plasmon absorption and laminated on the substrate. There is. With this chemical sensor, it is possible to detect light emission caused by the bonding between the probe material and the target material immobilized on the sensor.
  • Proteins such as DNA and antibodies, and biological substances such as cells may be shrunk due to their higher-order structure even if they are suspended or fixed in the sample solution, which affects photodetection. There was a case.
  • the main purpose of this technology is to provide a chip for detecting biological substances with high detection accuracy.
  • the pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface and provided on a semiconductor substrate.
  • the partition wall can be designed so that a voltage is applied when the biological substance is detected. In this case, a positive voltage or a negative voltage can be applied to the entire partition wall, or a positive voltage or a negative voltage can be applied to the partition wall, respectively. Further, the magnitude of the voltage applied to the partition wall can be changed for each partition wall.
  • a part or all of the partition wall may be coated with a protective film in a conductive state on the holding surface.
  • Nucleic acids, proteins, cells, microorganisms, chromosomes, ribosomes, mitochondria, organelles (organelles), and complexes thereof are selected as biological substances that can be detected by the biological substance detection chip according to the present technology.
  • One or more biological substances can be mentioned.
  • the pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface.
  • a chip for detecting a biological substance and a chip for detecting a biological substance provided with a partition wall made of a conductor between the pixels on the holding surface.
  • An analysis unit that analyzes the electrical information acquired by the biological substance detection chip, and Provided is a biological substance detection device.
  • the pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface.
  • a chip for detecting a biological substance and a chip for detecting a biological substance provided with a partition wall made of a conductor between the pixels on the holding surface.
  • An analyzer that analyzes the electrical information acquired by the biological substance detection chip, and Provided is a biological substance detection system.
  • biological substances broadly include nucleic acids, proteins, cells, microorganisms, chromosomes, ribosomes, mitochondria, organelles (organelles), and complexes thereof.
  • Cells include animal cells (such as blood cell lineage cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • FIG. 5 is a schematic plan view schematically showing a first embodiment of a chip 1 for detecting a biological substance according to the present technology.
  • FIG. 5 is a schematic end view of line AA schematically showing a first embodiment of a chip 1 for detecting a biological substance according to the present technology. It is a schematic end view which shows typically the modification of the 1st Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows the 2nd Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows typically the 1st modification of 2nd Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows typically the 2nd modification of the 2nd Embodiment of the biological substance detection chip 1 which concerns on this technique.
  • FIG. 5 is a schematic plan view schematically showing a third embodiment of a chip 1 for detecting a biological substance according to the present technology. It is an upper view schematic plan view which shows typically the 1st modification of 3rd Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows typically the 2nd modification of the 3rd Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows typically the 3rd modification of the 3rd Embodiment of the biological substance detection chip 1 which concerns on this technique.
  • FIG. 5 is a schematic plan view schematically showing a third embodiment of a chip 1 for detecting a biological substance according to the present technology. It is an upper view schematic plan view which shows typically the 1st modification of 3rd Embodiment of the biological substance detection chip 1 which concerns on this technique. It is an upper view schematic plan view which shows typically the 2nd modification of the 3rd Embodiment of the biological substance detection chip 1 which concerns on this
  • FIG. 5 is a schematic plan view schematically showing a fourth embodiment of a chip 1 for detecting a biological substance according to the present technology. It is an upper view schematic plan view which shows typically the modification of the 4th Embodiment of the biological substance detection chip 1 which concerns on this technique. It is a schematic end view of line BB which schematically shows the 1st Embodiment of the chip 1 for detecting a biological substance which concerns on this technique. It is a schematic end view of the line CC which schematically shows the 3rd Embodiment of the chip 1 for detecting a biological substance which concerns on this technique. It is a block diagram which shows the concept of the biological substance detection apparatus 2 which concerns on this technique. It is a block diagram which shows the concept of the biological substance detection system 3 which concerns on this technique.
  • the outline of detection of biological substances performed by this technology The outline of the detection of the biological substance S performed by the biological substance detection chip 1, the biological substance detection device 2, and the biological substance detection system 3 according to the present technology will be described.
  • the biological substance detection chip 1, the biological substance detection device 2, and the biological substance detection system 3 according to the present technology are (1) detecting the biological substance S itself, and (2) interacting with the biological substance S. It can be used for detection of (3) screening of other substances (for example, medicinal ingredients) using the biological substance S and the like. Each detection is performed on the holding surface 111 of the biological substance detection chip 1 described later.
  • biological substances such as red blood cells, leukocytes, platelets, cytokines, hormonal substances, sugars, lipids, and proteins contained in body fluids such as blood, urine, stool, and saliva; body fluids and Microorganisms such as bacteria, fungi, and viruses contained in water; this technology can be used to detect genes in cells and microorganisms.
  • body fluids such as blood, urine, stool, and saliva
  • Microorganisms such as bacteria, fungi, and viruses contained in water
  • the presence of the substance to be detected can be detected depending on the presence or absence of the target light detection.
  • the detected results can be used for disease diagnosis, internal environment diagnosis, water quality test and the like.
  • this technology can be used for detection of interaction such as protein interaction, nucleic acid hybridization, and binding between a cytokine or hormonal substance and a receptor. Specific detection examples will be described with reference to FIGS. 1 to 3.
  • a biological substance S1 such as a protein or a receptor (or an imitation of a receptor) is fixed on the holding surface 111 (see A in FIG. 1).
  • a substance having a dye such as fluorescent F1 to F3 fixed to the biological substances S2 to S4 for which the interaction with the substance is confirmed (see B in FIG. 1).
  • the biological substances S3 and S4 that did not interact with each other were washed (see C in FIG. 1), and the fluorescence F1 was detected from the holding surface 111 (see D in FIG. 1).
  • the interaction with the derived substance S2 can be detected.
  • a biological substance S1 such as a cell is fixed on the holding surface 111, and a transporter t (for example, a transporter in a cell membrane) contained in the biological substance S1 is used.
  • the light emitting body F1 taken in via the above can be detected.
  • a probe S5 made of DNA, RNA, or the like is fixed on the holding surface 111 (see A in FIG. 2), and a sample containing DNAs S6 and S7 that can be targets is interleaved with the sample.
  • Add cullet I (see B in FIG. 2).
  • DNAS6 having a sequence complementary to probe S5 is contained in the sample, a hybridization reaction occurs.
  • the probe S5 and the target DNA S6 Hybridization can be detected.
  • the biological substance S8 is fixed on the holding surface 111 (see A in FIG. 3), and the biological substance S9 interacts with the substance S10 to become a new substance S10. (See B in FIG. 3).
  • a dye such as fluorescent F4 that specifically binds to the substance S10 is added (see C in FIG. 3), and the fluorescent F4 is detected from the holding surface 111 (see D in FIG. 3) to obtain the biological substance S8.
  • the interaction with the biological substance S9 can be detected.
  • the receptor R1 (or a model of the receptor R1) is fixed to the holding surface 111 (see A in FIG. 4), and the operability of the receptor R1 Add a substance having a dye such as fluorescent F5 to F7 fixed to the substances d1 to d3 (see B in FIG. 4). Then, the substances d2 and d3 that did not bind to the receptor R1 were washed (see C in FIG. 4), and the fluorescence F5 was detected from the holding surface 111 (see D in FIG. 3), whereby the operation of the receptor R1 was performed.
  • the substance d1 that can be a drug can be screened.
  • the receptor R2 (or a model of the receptor R2) is fixed on the holding surface 111 (see A in FIG. 5), and the antagonisticness of the receptor R2.
  • Add the substance d4 to confirm see B in FIG. 5.
  • the ligand L1 that binds to the receptor R2 on which a dye such as fluorescent F8 is immobilized is added (see C in FIG. 5).
  • the substance d4 can be an antagonist of the receptor R2
  • the ligand L1 cannot bind to the receptor R2 because the receptor R2 and the substance d4 are already bound to each other (in FIG. 5). See C).
  • the receptor R3 (or a model of the receptor R3) is fixed on the holding surface 111 (see A in FIG. 6), and the receptor R3 Add the substance d5 that confirms antagonism (see B in FIG. 6).
  • a ligand L2 that binds to a dye-fixed receptor R3 such as fluorescent F9 is added (see C in FIG. 6).
  • the substance d5 cannot be an antagonist of the receptor R3
  • the ligand L2 binds to the receptor R3 (see D in FIG. 6).
  • fluorescent F9 is detected from the holding surface 111 (see E in FIG. 6).
  • the substance d4 that can be an antagonist of the receptor R3 can be screened depending on the presence or absence of detection of fluorescence F8 or fluorescence F9 from the holding surface 111.
  • the biological substance detection chip 1 is composed of a plurality of pixels 11, and the pixels 11 are provided on a holding surface 111 for holding the biological substance S and below the holding surface 111, and are provided on the semiconductor substrate 12. At least the photoelectric conversion unit 112 provided is provided. A partition wall 13 made of a conductor is provided between the pixels 11 of the holding surface 111.
  • Examples of the conductor constituting the partition wall 13 include a metal, and examples of the metal include tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), and the like.
  • FIG. 7 is a schematic plan view of an upward view schematically showing a first embodiment of a biological substance detection chip 1 according to the present technology
  • FIG. 8 is a biological origin according to the present technology. It is a schematic end view of line AA which shows the 1st Embodiment of the substance detection chip 1 schematically.
  • the biological substance detection chip 1 according to the first embodiment includes an effective pixel region 11E in which a plurality of pixels 11 are two-dimensionally arranged in a matrix.
  • Each pixel 11 includes at least a holding surface 111 for holding the biological substance S and a photoelectric conversion unit 112.
  • a photoelectric conversion element such as a photodiode can be freely used in the photoelectric conversion unit 112.
  • each pixel 11 may be provided with a pixel circuit composed of a charge storage unit, a plurality of transistors, a capacitance element, and the like.
  • an optical black pixel, a wiring area, or the like can be provided on the outside of the effective pixel area 11E (invalid pixel area O).
  • the holding surface 111 is not particularly limited as long as it can hold the biological substance S, and surface treatment can be freely used.
  • the holding surface 111 can be formed by applying a photosensitive silane coupling agent or the like that is hydrophilically modified by ultraviolet irradiation and selectively irradiating the region where the biological substance S is desired to be retained with ultraviolet rays.
  • a biological substance S such as a nucleic acid whose one end is biotinylated can be held by an avidin-biotin bond.
  • the partition wall 13 is made of a conductor, a voltage can be applied. For example, when a voltage is applied to the partition wall 13 while the biological substance S is held on the holding surface 111, the partition wall 13 attracts the charged biological substance S or pushes it to a desired place such as the center of a pixel. It functions as an electrode for the electric charge.
  • each pixel 11 can be completely partitioned by a partition wall 13.
  • the biological substance S may be attracted to the partition wall 13 by applying a positive voltage or a negative voltage to the entire partition wall 13 according to the positive or negative charge of the biological substance S held on the holding surface 111. It can be collected in the center of the pixel. More specifically, for example, when detecting negatively charged DNA, if a negative voltage is applied to the entire partition wall 13, the DNA can be collected in the center of the pixel. As a result, the detection accuracy can be improved.
  • the partition wall 13 is embedded in the semiconductor substrate 12 as shown in a schematic cross-sectional view schematically showing a modified example of the first embodiment of the biological substance detection chip 1 according to the present technology of FIG. It can also be configured to.
  • FIG. 10 is an upward view schematic plan view schematically showing a second embodiment of the biological substance detection chip 1 according to the present technology.
  • the biological substance detection chip 1 according to the second embodiment is an example in which the partition wall 13 does not exist in the vertical direction when viewed upward, and the partition wall 13 exists only in the horizontal direction.
  • the orientation of the biological substance S can be aligned in a desired direction by alternately applying a positive voltage or a negative voltage to the partition walls 13 in the lateral direction in the upward view. More specifically, for example, when detecting negatively charged DNA, positive voltage or negative voltage is alternately applied to the partition wall 13 in the lateral direction in the upward view as in the second embodiment shown in FIG. By multiplying by, the direction of DNA can be aligned. As a result, the detection accuracy can be improved.
  • the partition wall 13a in the vertical direction in the upward view is shown in, for example, a schematic cross-sectional view schematically showing a first modification of the second embodiment of the biological substance detection chip 1 according to the present technology in FIG.
  • the partition wall 13a in the vertical direction in the upward view is shown.
  • An insulator 14 may be provided between the partition wall 13b in the lateral direction in the upward view.
  • insulation is provided in the vertical direction in the upward view.
  • a partition wall made of the object 14 can also be provided.
  • an insulating material that can be used for the biological substance detection chip 1 can be used as long as the effect of the present technology is not impaired.
  • an oxide film such as silicon oxide (SiO 2 ) and a nitride film such as silicon nitride (Si 3 N 4 ) and silicon nitriding (SiO N) can be mentioned.
  • FIG. 14 is an upward-view schematic plan view schematically showing a third embodiment of the biological substance detection chip 1 according to the present technology.
  • the biological substance detection chip 1 according to the third embodiment is an example in which the partition wall 13 does not exist in the vertical direction when viewed upward, and the partition wall 13 exists only in the horizontal direction. Further, this is an example in which the 0V partition wall 13b3 is arranged between the partition wall 13b1 to which a positive voltage is applied and the partition wall 13b2 to which a negative voltage is applied. By arranging the 0V partition wall 13b3, the electric charge can be stabilized and the flow of the biological substance S can be formed. More specifically, for example, when detecting negatively charged DNA, as in the third embodiment shown in FIG.
  • a partition wall 13b2 to which a negative voltage is applied a partition wall 13b3 to which a positive voltage is applied, and a partition wall to which a positive voltage is applied.
  • DNA can flow from the-side to the + side.
  • the DNA can be separated because the flow may differ depending on the charge of the DNA.
  • the detection accuracy can be improved and additional information can be obtained.
  • the partition wall 13a in the vertical direction in the upward view is schematically a modification of the first modification of the third embodiment of the biological substance detection chip 1 according to the present technology of FIG.
  • the partition walls 13b1 to 13b1 to 3 in the lateral direction in the upward view with a gap in order to divide the voltage.
  • the partition wall 13a in the vertical direction in the upward view is shown.
  • An insulator 14 may be provided between the partition wall 13b1 to 3 in the lateral direction in the upward view.
  • insulation is provided in the vertical direction in the upward view.
  • a partition wall made of the object 14 can also be provided.
  • FIG. 18 is an upward view schematic plan view schematically showing a fourth embodiment of the biological substance detection chip 1 according to the present technology.
  • the biological substance detection chip 1 according to the fourth embodiment is composed of three regions: a region of a partition wall 13b1 to which a positive voltage is applied, a region of a partition wall 13b2 to which a negative voltage is applied, and a region of a partition wall 13b3 of 0V. Is.
  • the electric charge can be stabilized and the flow of the biological substance S can be formed. More specifically, for example, when detecting negatively charged DNA, as in the fourth embodiment shown in FIG.
  • DNA can flow from the-side to the + side.
  • the DNA can be separated because the flow may differ depending on the charge of the DNA. As a result, the detection accuracy can be improved and additional information can be obtained.
  • FIG. 19 is a schematic top view schematically showing a modified example of the fourth embodiment of the biological substance detection chip 1 according to the present technology.
  • the biological substance S is collected in the center of the biological substance detection chip 1.
  • the region of the partition wall 13b1 to which a positive voltage is applied is divided into the partition wall 13b3 of 0V. By sandwiching it between regions, DNA can be collected in the center of the biological substance detection chip 1.
  • the voltage applied to the partition wall 13 can be changed. For example, by adjusting the voltage applied to the partition wall 13 for each area, it is possible to collect a desired biological substance S for each area according to the electric charge of the biological substance S.
  • the partition wall 13 described above may be partially or wholly covered with a protective film.
  • the thinness of the protective film and the material of the protective film are selected so that the holding surface 111 can be conductive.
  • the protective film By providing the protective film, the weathering resistance to heat, light, water, acid, alkali, chemicals and the like is improved, and it is possible to bring the protective film into contact with water, acid, alkali or chemicals for a long period of time.
  • the material forming the protective film can be freely selected as long as the effect of the present technology is not impaired.
  • silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon nitriding (SiO N) and the like can be mentioned.
  • the way to take the voltage to the partition wall 13 can be freely designed as long as the effect of the present technology is not impaired.
  • the semiconductor substrate 12 is penetrated in the invalid pixel region O.
  • the gate 15 can control the positive charge or the negative charge.
  • the method of obtaining 0 V from the partition wall 13 can be freely designed as long as the effect of the present technology is not impaired. For example, by connecting the partition wall 13b3 to the P-type region 113 as shown in FIG. 21, as shown in FIG. You can also get 0V.
  • FIG. 22 is a block diagram showing the concept of the biological substance detection device 2 according to the present technology.
  • the biological substance detection device 2 according to the present technology includes at least the biological substance detection chip 1 according to the present technology and the analysis unit 21 described above. Further, depending on the purpose, a light irradiation unit 22, a storage unit 23, a display unit 24, a temperature control unit 25, and the like can be provided. Each part will be described below. Since the chip 1 for detecting a biological substance is as described above, the description thereof is omitted here.
  • the analysis unit 21 analyzes the optical information acquired by the biological substance detection chip 1. For example, based on the optical information acquired by the biological substance detection chip 1, the presence / absence of the biological substance S, the presence / absence of interaction with the biological substance S, the screening of the medicinal component, and the like are performed.
  • the analysis unit 21 may be executed by a personal computer or a CPU, and is stored as a program in a hardware resource including a recording medium (for example, non-volatile memory (USB memory), HDD, CD, etc.). , It is also possible to make it function by a personal computer or a CPU.
  • a recording medium for example, non-volatile memory (USB memory), HDD, CD, etc.
  • the biological substance detection device 2 may be provided with a light irradiation unit 22 for, for example, excitation light irradiation.
  • the light irradiation unit 22 irradiates the biological substance S held on the holding surface 111 of the biological substance detection chip 1 with light.
  • the light irradiation unit 22 is not indispensable, and it is also possible to irradiate the biological substance S with light using an external light irradiation device or the like.
  • the type of light emitted from the light irradiation unit 22 is not particularly limited, but in order to reliably generate fluorescence or scattered light from fine particles, light having a constant light direction, wavelength, and light intensity is desirable.
  • a laser an LED and the like can be mentioned.
  • the type is not particularly limited, but it may be an argon ion (Ar) laser, a helium-neon (He-Ne) laser, a die (dye) laser, a krypton (Cr) laser, a semiconductor laser, or a semiconductor laser.
  • Ar argon ion
  • He-Ne helium-neon
  • Cr krypton
  • One type or two or more types of solid-state lasers and the like combined with a wavelength conversion optical element can be freely used in combination.
  • a plurality of light irradiation units 22 may be provided depending on the purpose. For example, one light irradiation unit 22 may be provided for each pixel 11 of the biological substance detection chip 1. Further, by laminating a substrate in which a light emitting element such as an LED is arranged at a position corresponding to each pixel 11 of the biological substance detection chip 1 on the biological substance detection chip 1, the biological substance S is formed. It is also possible to irradiate the light of.
  • the biological substance detection device 2 may be provided with a storage unit 23 for storing various types of information.
  • the storage unit 23 contains all matters related to detection, such as optical data acquired by the biological substance detection chip 1, analysis data generated by the analysis unit 21, and optical data irradiated by the light irradiation unit 22. It is possible to memorize.
  • the storage unit 23 is not essential, and an external storage device may be connected.
  • the storage unit 23 for example, a hard disk or the like can be used.
  • the biological substance detection device 2 may be provided with a display unit 24 for displaying various information.
  • the display unit 24 stores the optical data acquired by the biological substance detection chip 1, the analysis data generated by the analysis unit 21, the optical data irradiated by the light irradiation unit 22, and the storage unit 23. All items related to detection such as data can be displayed.
  • the display unit 24 is not essential, and an external display device may be connected.
  • the display unit 24 for example, a display or a printer can be used.
  • Temperature control unit 25 The biological substance detection device 2 according to the present technology is used to keep the biological substance S held on the holding surface 111 of the biological substance detection chip 1 at a predetermined temperature, or to heat or cool the biological substance S to a predetermined temperature.
  • a temperature control unit 25 can be provided.
  • the temperature control unit 25 can control the temperature so as to maintain the optimum temperature.
  • the biological substance S is a nucleic acid and the presence or absence of hybridization is detected by using the present technology, it can be controlled by the temperature control unit 25 so as to maintain the temperature range in which hybridization is possible. ..
  • a thermoelectric element such as a Pelche element can be used.
  • a plurality of temperature control units 25 may be provided depending on the purpose. For example, one temperature control unit 25 may be provided for each pixel 11 of the biological substance detection chip 1. Further, the temperature of the biological substance S is controlled by laminating a substrate in which thermoelectric elements are arranged at positions corresponding to each pixel 11 of the biological substance detection chip 1 on the biological substance detection chip 1. It is also possible to do.
  • the temperature control unit 25 is not indispensable, and it is possible to control the temperature of the biological substance S by using an external temperature control device or the like.
  • FIG. 27 is a block diagram showing the concept of the biological substance detection system 3 according to the present technology.
  • the biological substance detection system 3 according to the present technology includes at least the biological substance detection chip 1 according to the present technology and the analysis device 31 described above. Further, depending on the purpose, a light irradiation device 32, a storage device 33, a display device 34, a temperature control device 35, and the like can be provided.
  • the biological substance detection chip 1 and each device can be connected via a wired or wireless network. Since the details of each device are the same as the details of each part of the biological substance detection device 2 in the present technology described above, the description thereof is omitted here.
  • the present technology can also have the following configurations.
  • Consists of multiple pixels The pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface and provided on a semiconductor substrate.
  • a chip for detecting a biological substance in which a partition wall made of a conductor is provided between the pixels on the holding surface.
  • the chip for detecting a biological substance according to (1) wherein a voltage is applied to the partition wall when the biological substance is detected.
  • the chip for detecting a biological substance according to (2) wherein a positive voltage or a negative voltage is applied to the entire partition wall.
  • the biological substance is one or more biological substances selected from nucleic acids, proteins, cells, microorganisms, chromosomes, ribosomes, mitochondria, organelles (organelles), and complexes thereof, (1) to (1).
  • the pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface.
  • the pixel includes at least a holding surface for holding a biological substance and a photoelectric conversion unit provided below the holding surface.
  • An analyzer that analyzes the electrical information acquired by the biological substance detection chip, and A biological substance detection system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

検出精度の高い生体由来物質検出用チップを提供すること。 本技術では、複数の画素から構成され、前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップを提供する。また、前記生体由来物質検出用チップを用いた生体由来物質検出装置及び生体由来物質検出システムも提供する。

Description

生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
 本技術は、生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システムに関する。
 近年、医療分野、創薬分野、臨床検査分野、食品分野、農業分野、工学分野等の様々な分野で、遺伝子解析、タンパク質解析、細胞解析等に関する技術研究が進められている。特に最近では、核酸、タンパク質、細胞、微生物等の生体由来物質の検出や解析等の各種反応を、チップに設けられたマイクロスケールの流路やウエル内で行うラボ・オン・チップを代表とするチップ上での検出技術の開発や実用化が進められている。これらは、生体由来物質等を簡便に計測する手法として注目を集めている。
 例えば、特許文献1では、複数のウエルが形成された第1の基板と、前記ウエルに接するように加熱手段が設けられた第2の基板と、前記各ウエルの位置に対応して位置決めされた複数の光照射手段が設けられた第3の基板と、前記各ウエルの位置に対応して位置決めされた複数の光検出手段が設けられた第4の基板と、が少なくとも備えられた光学的検出装置が開示されている。この光学的検出装置では、各ウエル中で進行する各種反応を測定することができる。
 また、例えば、特許文献2では、光検出部が形成された基板と、前記基板に積層された、プラズモン吸収性を生じる金属ナノ構造を有するプラズモン吸収層と、を具備するケミカルセンサが開示されている。このケミカルセンサでは、センサ上に固定化されたプローブ材料とターゲット材料との結合に起因する発光を検出することができる。
特開2010-284152号公報 国際公開第2013/080473号パンフレット
 DNA、抗体等のタンパク質、細胞等の生体由来物質は、サンプル液中を浮遊したり、固定されていたとしても、高次構造の故に、縮こまっていたりする場合もあり、光検出に影響が出る場合があった。
 そこで、本技術では、検出精度の高い生体由来物質検出用チップを提供することを主目的とする。
 即ち、本技術では、まず、複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップを提供する。
 本技術に係る前記生体由来物質検出用チップにおいて、前記隔壁には、生体由来物質検出時に電圧がかけられるように設計することができる。
 この場合、前記隔壁全体に、正電圧または負電圧をかけることもできるし、前記隔壁には、それぞれの前記隔壁に対し、正電圧または負電圧をかけることもできる。
 また、前記隔壁にかけられる電圧は、隔壁毎に大きさを変更することもできる。
 本技術に係る前記生体由来物質検出用チップにおいて、前記隔壁の一部または全部は、前記保持表面に導電可能な状態で保護膜により被覆することもできる。
 本技術に係る生体由来物質検出用チップが検出可能な生体由来物質としては、核酸、タンパク質、細胞、微生物、染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質を挙げることができる。
 本技術では、次に、複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
 を備える、生体由来物質検出装置を提供する。
 本技術では、更に、複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
 を備える、生体由来物質検出システムを提供する。
 本技術において、「生体由来物質」には、核酸、タンパク質、細胞、微生物、染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体などが広く含まれるものとする。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。
本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が検出することが可能な生体由来物質Sの相互作用を模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行うことが可能な他の物質のスクリーニングを模式的に示す模式概念図である。 本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示すA-A線模式端面図である。 本技術に係る生体由来物質検出用チップ1の第1実施形態の変形例を模式的に示す模式端面図である。 本技術に係る生体由来物質検出用チップ1の第2実施形態を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第2実施形態の第1の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第2実施形態の第2の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第2実施形態の第3の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第3実施形態を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第3実施形態の第1の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第3実施形態の第2の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第3実施形態の第3の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第4実施形態を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第4実施形態の変形例を模式的に示す上方視模式平面図である。 本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示すB-B線模式端面図である。 本技術に係る生体由来物質検出用チップ1の第3実施形態を模式的に示すC-C線模式端面図である。 本技術に係る生体由来物質検出装置2の概念を示すブロック図である。 本技術に係る生体由来物質検出システム3の概念を示すブロック図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.本技術で行う生体由来物質検出の概要
 (1)生体由来物質Sのそのものの検出
 (2)生体由来物質Sの相互作用の検出
 (3)他の物質のスクリーニング
 2.生体由来物質検出用チップ1
 (1)第1実施形態
 (2)第2実施形態
 (3)第3実施形態
 (4)第4実施形態
 (5)その他の例
 (6)電圧のとり方
 3.生体由来物質検出装置2
 4.生体由来物質検出システム3
 <1.本技術で行う生体由来物質検出の概要>
 本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3が行う生体由来物質Sの検出の概要を説明する。本技術に係る生体由来物質検出用チップ1、生体由来物質検出装置2、及び生体由来物質検出システム3は、(1)生体由来物質Sのそのものの検出、(2)生体由来物質Sの相互作用の検出、(3)生体由来物質Sを用いた他の物質(例えば、薬効成分等)のスクリーニング等に用いることができる。なお、各検出は、後述する生体由来物質検出用チップ1の保持表面111にて行われる。
 (1)生体由来物質Sのそのものの検出
 例えば、血液、尿、便、唾液等の体液中に含まれる赤血球、白血球、血小板、サイトカイン、ホルモン物質、糖、脂質、タンパク質等の生体物質;体液や水中に含まれる細菌類、菌類、ウイルス等の微生物;細胞や微生物中の遺伝子等の検出に、本技術を用いることができる。例えば、検出対象の物質あるいは非検出対象の物質に特異的に作用する色素を用いて染色した後、目的の光検出の有無によって、検出対象の物質の存在を検出することができる。検出された結果は、疾患の診断、体内環境診断、水質検査等に用いることができる。
 (2)生体由来物質Sの相互作用の検出
 例えば、タンパク質の相互作用、核酸のハイブリダイゼーション、サイトカインやホルモン物質と受容体との結合等の相互作用の検出に、本技術を用いることができる。具体的な検出例について、図1~3を用いて説明する。
 例えば、図1のA~Dに示すように、保持表面111にタンパク質や受容体(あるいは受容体を模したもの)等の生体由来物質S1を固定しておき(図1中A参照)、これとの相互作用を確認する生体由来物質S2~S4に蛍光F1~F3等の色素を固定したものを加える(図1中B参照)。そして、相互作用しなかった生体由来物質S3及びS4の洗浄を行い(図1中C参照)、保持表面111から蛍光F1を検出することで(図1中D参照)、生体由来物質S1と生体由来物質S2との相互作用を検出することができる。
 例えば、図1のE~Hに示すように、保持表面111に細胞等の生体由来物質S1を固定しておき、この生体由来物質S1が有する輸送体t(例えば、細胞膜中のトランスポーター等)を介して取り込まれる発光体F1を検知することができる。
 例えば、図2のA~Dに示すように、保持表面111にDNAやRNA等からなるプローブS5を固定しておき(図2中A参照)、ターゲットとなり得るDNAS6及びS7を含むサンプルと、インターカレーターIとを加える(図2中B参照)。そして、プローブS5と相補的な配列を有するDNAS6が、サンプルに含有されていると、ハイブリダーゼーション反応が起きる。ハイブリダーゼーションが行われなかったDNAS7の洗浄を行い(図2中C参照)、保持表面111からインターカレーターIからの光を検出することで(図2中D参照)、プローブS5とターゲットDNAS6とのハイブリダーゼーションを検出することができる。
 例えば、図3のA~Dに示すように、保持表面111に生体由来物質S8を固定しておき(図3中A参照)、これと相互作用して新たな物質S10になる生体由来物質S9を加える(図3中B参照)。次に、物質S10に特異的に結合する蛍光F4等の色素を加え(図3中C参照)、保持表面111から蛍光F4を検出することで(図3中D参照)、生体由来物質S8と生体由来物質S9との相互作用を検出することができる。
 (3)他の物質のスクリーニング
 例えば、各種受容体の作動薬(アゴニスト)や拮抗薬(アンタゴニスト)となり得る物質のスクリーニングや、各種微生物の産生抑制剤、抗菌剤、殺菌剤等のスクリーニングに、本技術を用いることができる。具体的な検出例について、図4~図6を用いて説明する。
 例えば、図4のA~Dに示すように、保持表面111に受容体R1(あるいは受容体R1を模したもの)を固定しておき(図4中A参照)、この受容体R1の作動性を確認する物質d1~d3に蛍光F5~F7等の色素を固定したものを加える(図4中B参照)。そして、受容体R1に結合しなかった物質d2及びd3の洗浄を行い(図4中C参照)、保持表面111から蛍光F5を検出することで(図3中D参照)、受容体R1の作動薬となり得る物質d1のスクリーニングを行うことができる。
 例えば、図5のA~Eに示すように、保持表面111に受容体R2(あるいは受容体R2を模したもの)を固定しておき(図5中A参照)、この受容体R2の拮抗性を確認する物質d4を加える(図5中B参照)。次に、蛍光F8等の色素を固定した受容体R2と結合するリガンドL1を加える(図5中C参照)。この時、物質d4が受容体R2の拮抗薬となり得る場合は、既に、受容体R2と物質d4が結合等しているため、リガンドL1は、受容体R2に結合することができない(図5中C参照)。この状態で、受容体R2に結合しなかったリガンドL1の洗浄を行った後(図5中D参照)、保持表面111から蛍光F8を検出しようとしても、蛍光F8は洗浄により保持表面111に存在しないため、光検出がされない(図5中E参照)。
 一方、例えば、図6のA~Eに示すように、保持表面111に受容体R3(あるいは受容体R3を模したもの)を固定しておき(図6中A参照)、この受容体R3の拮抗性を確認する物質d5を加える(図6中B参照)。次に、蛍光F9等の色素を固定した受容体R3と結合するリガンドL2を加える(図6中C参照)。この時、物質d5が受容体R3の拮抗薬となり得ない場合は、リガンドL2は、受容体R3に結合する(図6中D参照)。この状態で、受容体R3に結合しなかった物質d5の洗浄を行うと(図6中D参照)、保持表面111から蛍光F9が検出される(図6中E参照)。
 このように、図5及び図6に示すように、保持表面111から蛍光F8又は蛍光F9の検出の有無によって、受容体R3の拮抗薬となり得る物質d4のスクリーニングを行うことができる。
 <2.生体由来物質検出用チップ1>
 本技術に係る生体由来物質検出用チップ1は、複数の画素11から構成され、画素11は、生体由来物質Sを保持する保持表面111と、保持表面111の下方に設けられ、半導体基板12に設けられた光電変換部112を少なくとも備える。そして、保持表面111の画素11間には、導電体からなる隔壁13が設けられている。以下、各実施形態を参照しながら、説明する。
 隔壁13を構成する導電体としては、例えば金属等が挙げられ、金属としては、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)等を用いることができる。
 (1)第1実施形態
 図7は、本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示す上方視模式平面図であり、図8は、本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示すA-A線模式端面図である。第1実施形態に係る生体由来物質検出用チップ1は、複数の画素11が行列状に2次元配置された有効画素領域11Eを備える。各画素11は、生体由来物質Sを保持する保持表面111と、光電変換部112と、を少なくとも備える。光電変換部112には、例えば、フォトダイオードのような光電変換素子を自由に用いることができる。また、図示しないが、各画素11には、電荷蓄積部、複数のトランジスタ、及び容量素子等で構成された画素回路を備えていても良い。有効画素領域11Eの外側(無効画素領域O)には、図示しないが、光学的黒画素や配線領域等を備えることができる。
 保持表面111は、生体由来物質Sが保持できる構成であれば特に限定されず、表面処理を自由に用いることができる。例えば、紫外線照射により親水性に変性する感光性シランカップリング剤等を塗布し、生体由来物質Sを保持したい領域を選択的に紫外線照射することにより、保持表面111を形成することができる。また、例えば、保持表面111をアビジン処理しておくことで、その一端がビオチン化された核酸等の生体由来物質Sを、アビジン-ビオチン結合により、保持することもできる。また、保持表面111に液体を保持できるように構成することで、液体中に生体由来物質Sを保持することも可能である。
 隔壁13は、導電体からなるため、電圧をかけることができる。例えば、保持表面111に生体由来物質Sが保持された状態で、隔壁13に電圧をかけると、隔壁13は、電荷を帯びた生体由来物質Sを引き寄せたり、画素中央等の所望の場所へ押し寄せたりするための電極として機能する。
 隔壁13は、保持表面111の画素11間に設けられていれば、その具体的な構造は特に限定されない。例えば、図8に示すように、画素11毎に、隔壁13で完全に仕切った構成とすることができる。この場合、例えば、保持表面111に保持された生体由来物質Sの帯電の正負に応じて、隔壁13全体に、正電圧または負電圧をかけることにより、生体由来物質Sを隔壁13へ引き寄せたり、画素中央に集めたりすることができる。より具体的には、例えば、負に帯電したDNAを検出する場合に、隔壁13全体に負電圧をかければ、DNAを画素中央に集めることができる。その結果、検出精度を向上させることができる。
 なお、隔壁13は、図9の本技術に係る生体由来物質検出用チップ1の第1実施形態の変形例を模式的に示す模式断面図に示すように、半導体基板12内へ埋め込まれた形態に構成することもできる。半導体基板12内へ隔壁13を埋め込むことで、画素間における光の漏れ込みを防止することができ、より検出精度を向上させることができる。
 (2)第2実施形態
 図10は、本技術に係る生体由来物質検出用チップ1の第2実施形態を模式的に示す上方視模式平面図である。第2実施形態に係る生体由来物質検出用チップ1は、上方視縦方向には隔壁13が存在せず、横方向にのみ隔壁13が存在する例である。この場合、例えば、上方視横方向の隔壁13に、それぞれ、交互に、正電圧または負電圧をかけることにより、生体由来物質Sの向きを所望の方向に揃えることができる。より具体的には、例えば、負に帯電したDNAを検出する場合に、図10に示す第2実施形態のように、上方視横方向の隔壁13に、それぞれ、交互に、正電圧または負電圧をかけることで、DNAの向きを揃えることができる。その結果、検出精度を向上させることができる。
 なお、上方視縦方向の隔壁13aは、例えば、図11の本技術に係る生体由来物質検出用チップ1の第2実施形態の第1の変形例を模式的に示す模式断面図に示すように、電圧を分けるために、上方視横方向の隔壁13bと間を開けて設けることも可能である。この場合、例えば、図12の本技術に係る生体由来物質検出用チップ1の第2実施形態の第2の変形例を模式的に示す模式断面図に示すように、上方視縦方向の隔壁13aと上方視横方向の隔壁13bとの間に、絶縁物14を備えても良い。また、例えば、図13の本技術に係る生体由来物質検出用チップ1の第2実施形態の第3の変形例を模式的に示す模式断面図に示すように、上方視縦方向には、絶縁物14からなる隔壁を備えることもできる。
 絶縁物14としては、本技術の効果を損なわない限り、生体由来物質検出用チップ1に用いることが可能な絶縁性の材料を用いることができる。例えば、酸化シリコン(SiO)等の酸化膜や、窒化シリコン(Si)、シリコン酸窒化(SiON)等の窒化膜等を挙げることができる。
 (3)第3実施形態
 図14は、本技術に係る生体由来物質検出用チップ1の第3実施形態を模式的に示す上方視模式平面図である。第3実施形態に係る生体由来物質検出用チップ1は、上方視縦方向には隔壁13が存在せず、横方向にのみ隔壁13が存在する例である。また、正電圧がかけられる隔壁13b1と、負電圧がかけられる隔壁13b2の間に、0Vの隔壁13b3を配置した例である。0Vの隔壁13b3を配置することにより、電荷を安定させると共に、生体由来物質Sの流れを形成することができる。より具体的には、例えば、負に帯電したDNAを検出する場合に、図14に示す第3実施形態のように、負電圧がかけられる隔壁13b2、0Vの隔壁13b3、正電圧がかけられる隔壁13b1の順に配置することで、DNAを、-側から+側に向かって流すことができる。例えば、DNAの電荷の違いによって、流れ方に差が出る場合があるため、DNAを分離することができる。その結果、検出精度を向上させたり、付加的な情報を得たりすることができる。
 なお、第2実施形態と同様に、上方視縦方向の隔壁13aは、例えば、図15の本技術に係る生体由来物質検出用チップ1の第3実施形態の第1の変形例を模式的に示す模式断面図に示すように、電圧を分けるために、上方視横方向の隔壁13b1~3と間を開けて設けることも可能である。この場合、例えば、図16の本技術に係る生体由来物質検出用チップ1の第3実施形態の第2の変形例を模式的に示す模式断面図に示すように、上方視縦方向の隔壁13aと上方視横方向の隔壁13b1~3との間に、絶縁物14を備えても良い。また、例えば、図17の本技術に係る生体由来物質検出用チップ1の第3実施形態の第3の変形例を模式的に示す模式断面図に示すように、上方視縦方向には、絶縁物14からなる隔壁を備えることもできる。
 (4)第4実施形態
 図18は、本技術に係る生体由来物質検出用チップ1の第4実施形態を模式的に示す上方視模式平面図である。第4実施形態に係る生体由来物質検出用チップ1は、正電圧がかけられる隔壁13b1の領域と、負電圧がかけられる隔壁13b2の領域と、0Vの隔壁13b3の領域の3つの領域からなる例である。0Vの隔壁13b3の領域を設けることにより、電荷を安定させると共に、生体由来物質Sの流れを形成することができる。より具体的には、例えば、負に帯電したDNAを検出する場合に、図18に示す第4実施形態のように、負電圧がかけられる隔壁13b2、0Vの隔壁13b3、正電圧がかけられる隔壁13b1の順に配置することで、DNAを、-側から+側に向かって流すことができる。例えば、DNAの電荷の違いによって、流れ方に差が出る場合があるため、DNAを分離することができる。その結果、検出精度を向上させたり、付加的な情報を得たりすることができる。
 図19は、本技術に係る生体由来物質検出用チップ1の第4実施形態の変形例を模式的に示す上方視模式平面図である。この変形例のように、正電圧または負電圧がかけられる隔壁13b2,13b1の領域を、0Vの隔壁13b3の領域で挟むことで、生体由来物質Sを生体由来物質検出用チップ1の中央に集めることができる。より具体的には、例えば、負に帯電したDNAを検出する場合に、図19に示す第4実施形態の変形例のように、正電圧がかけられる隔壁13b1の領域を、0Vの隔壁13b3の領域で挟むことで、DNAを、生体由来物質検出用チップ1の中央に集めることができる。
 (5)その他の例
 その他の例として、図示しないが、例えば、隔壁13にかける電圧に強弱をつけることもできる。例えば、エリア毎に、隔壁13にかける電圧に強弱をつけることで、生体由来物質Sの持つ電荷に応じて、エリア毎に所望の生体由来物質Sを集めることも可能である。
 以上説明した隔壁13は、図示しないが、その一部または全部を、保護膜により被覆してもよい。隔壁13を保護膜で被覆する場合、保持表面111に導電可能な状態となるように、保護膜の薄さや、保護膜の素材を選択する。保護膜を備えることで、熱、光、水、酸、アルカリ、又は薬剤等への対候性が向上し、水、酸、アルカリ、または薬剤に、長期間接触させることも可能となる。
 保護膜を形成する素材は、本技術の効果を損なわない限り、自由に選択することができる。例えば、酸化シリコン(SiO)、窒化シリコン(Si)、シリコン酸窒化(SiON)等を挙げることができる。
 (6)電圧のとり方
 隔壁13への電圧のとり方は、本技術の効果を損なわない限り、自由に設計することができる。例えば、図20に示す本技術に係る生体由来物質検出用チップ1の第1実施形態を模式的に示すB-B線端面図のように、無効画素領域Oにて、半導体基板12を貫通させて隔壁13とゲート15と繋げることで、電圧をとることができる。この場合、ゲート15で正電荷または負電荷を制御することができる。また、図示しないが、無効画素領域Oの隔壁13において、チップ上側から外部電圧をとることも可能である。
 隔壁13が0Vを得る方法も、本技術の効果を損なわない限り、自由に設計することができる。例えば、図21に示す本技術に係る生体由来物質検出用チップ1の第3実施形態を模式的に示すC-C線模式端面図のように、隔壁13b3をP型領域113と繋げることで、0Vを得ることもできる。
 <3.生体由来物質検出装置2>
 図22は、本技術に係る生体由来物質検出装置2の概念を示すブロック図である。本技術に係る生体由来物質検出装置2は、前述した本技術に係る生体由来物質検出用チップ1と、解析部21と、を少なくとも備える。また、目的に応じて、光照射部22、記憶部23、表示部24、温度制御部25等を備えることもできる。以下、各部について説明する。なお、生体由来物質検出用チップ1については、前述の通りであるため、ここでは説明を割愛する。
 (1)解析部21
 解析部21では、生体由来物質検出用チップ1によって取得された光学的情報の解析が行われる。例えば、生体由来物質検出用チップ1によって取得された光学的情報に基づいて、生体由来物質Sの存在の有無、生体由来物質Sにおける相互作用の有無、薬効成分のスクリーニング等が行われる。
 なお、解析部21としては、パーソナルコンピュータや、CPUにて実施してもよく、記録媒体(例えば、不揮発性メモリ(USBメモリ)、HDD、CDなど)等を備えるハードウェア資源にプログラムとして格納し、パーソナルコンピュータやCPUによって機能させることも可能である。
 (2)光照射部22
 本技術に係る生体由来物質検出装置2には、例えば、励起光照射等のために光照射部22を備えることができる。光照射部22では、前記生体由来物質検出用チップ1の保持表面111に保持された生体由来物質Sへの光の照射が行われる。なお、本技術に係る生体由来物質検出装置2において、光照射部22は必須ではなく、外部の光照射装置等を用いて生体由来物質Sへの光照射を行うことも可能である。
 光照射部22から照射される光の種類は特に限定されないが、微小粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が望ましい。一例としては、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム-ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、または、半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を、1種又は2種以上、自由に組み合わせて用いることができる。
 光照射部22は、目的に応じて、複数備えてもよい。例えば、前記生体由来物質検出用チップ1の各画素11に対して、一つの光照射部22を備えてもよい。また、前記生体由来物質検出用チップ1の各画素11に対応する位置にLED等の発光素子が配列された基板を、前記生体由来物質検出用チップ1に積層させることで、生体由来物質Sへの光の照射を行うことも可能である。
 (3)記憶部23
 本技術に係る生体由来物質検出装置2には、各種情報を記憶する記憶部23を備えることができる。記憶部23には、前記生体由来物質検出用チップ1によって取得された光学的データ、解析部21にて生成された解析データ、光照射部22において照射した光学的データ等、検出に関わるあらゆる事項を記憶することが可能である。
 本技術に係る生体由来物質検出装置2において、記憶部23は必須ではなく、外部の記憶装置を接続してもよい。記憶部23としては、例えば、ハードディスクなどを用いることができる。
 (4)表示部24
 本技術に係る生体由来物質検出装置2には、各種情報を表示する表示部24を備えることができる。表示部24では、前記生体由来物質検出用チップ1によって取得された光学的データ、解析部21にて生成された解析データ、光照射部22において照射した光学的データ、記憶部23に記憶されたデータ等、検出に関わるあらゆる事項を表示することができる。
 本技術に係る生体由来物質検出装置2において、表示部24は必須ではなく、外部の表示装置を接続してもよい。表示部24としては、例えば、ディスプレイやプリンタなどを用いることができる。
 (5)温度制御部25
 本技術に係る生体由来物質検出装置2には、生体由来物質検出用チップ1の保持表面111に保持された生体由来物質Sを所定の温度に保ったり、所定の温度に加熱又は冷却するための温度制御部25を備えることができる。例えば、生体由来物質Sが酵素の場合、温度制御部25よって、至適温度に保つように温度制御を行うことができる。また、生体由来物質Sが核酸であって、本技術を用いてハイブリダイゼーションの有無を検出する場合等には、ハイブリダイゼーション可能な温度範囲に保つように、温度制御部25によって制御することができる。温度制御部25としては、ペルチェ素子等の熱電素子を使用することができる。
 温度制御部25は、目的に応じて、複数備えてもよい。例えば、前記生体由来物質検出用チップ1の各画素11に対して、一つの温度制御部25を備えてもよい。また、前記生体由来物質検出用チップ1の各画素11に対応する位置に熱電素子が配列された基板を、前記生体由来物質検出用チップ1に積層させることで、生体由来物質Sへの温度制御を行うことも可能である。
 なお、本技術に係る生体由来物質検出装置2において、温度制御部25は必須ではなく、外部の温度制御装置等を用いて生体由来物質Sの温度制御を行うことも可能である。
 <4.生体由来物質検出システム3>
 図27は、本技術に係る生体由来物質検出システム3の概念を示すブロック図である。本技術に係る生体由来物質検出システム3は、前述した本技術に係る生体由来物質検出用チップ1と、解析装置31と、を少なくとも備える。また、目的に応じて、光照射装置32、記憶装置33、表示装置34、温度制御装置35等を備えることもできる。
 生体由来物質検出用チップ1と、各装置とは、有線又は無線のネットワークを介して接続することが可能である。なお、各装置の詳細は、前述した本技術に生体由来物質検出装置2の各部の詳細と同一であるため、ここでは説明を割愛する。
 なお、本技術では、以下の構成を取ることもできる。
(1)
 複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップ。
(2)
 前記隔壁には、生体由来物質検出時に電圧がかけられる、(1)に記載の生体由来物質検出用チップ。
(3)
 前記隔壁全体に、正電圧または負電圧がかけられる、(2)に記載の生体由来物質検出用チップ。
(4)
 前記隔壁には、それぞれ、正電圧または負電圧がかけられる、(2)に記載の生体由来物質検出用チップ。
(5)
 前記隔壁にかけられる電圧は、隔壁毎に大きさを変更できる、(2)~(4)のいずれかに記載の生体由来物質検出用チップ。
(6)
 前記隔壁の一部または全部は、前記保持表面に導電可能な状態で保護膜により被覆された、(1)~(5)のいずれかに記載の生体由来物質検出用チップ。
(7)
 前記生体由来物質は、核酸、タンパク質、細胞、微生物、染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質である、(1)~(6)のいずれかに記載の生体由来物質検出用チップ。
(8)
 複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
 を備える、生体由来物質検出装置。
(9)
 複数の画素から構成され、
 前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
 前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
 前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
 を備える、生体由来物質検出システム。
1 生体由来物質検出用チップ
11 画素
S 生体由来物質
111 保持表面
12 半導体基板
112 光電変換部
13 隔壁
14 絶縁物
15 ゲート
113 P型領域
21 解析部
22 光照射部
23 記憶部
24 表示部
25 温度制御部
31 解析装置
32 光照射装置
33 記憶装置
34 表示装置
35 温度制御装置
 

Claims (9)

  1.  複数の画素から構成され、
     前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられ、半導体基板に設けられた光電変換部と、を少なくとも備え、
     前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップ。
  2.  前記隔壁には、生体由来物質検出時に電圧がかけられる、請求項1に記載の生体由来物質検出用チップ。
  3.  前記隔壁全体に、正電圧または負電圧がかけられる、請求項2に記載の生体由来物質検出用チップ。
  4.  前記隔壁には、それぞれ、正電圧または負電圧がかけられる、請求項2に記載の生体由来物質検出用チップ。
  5.  前記隔壁にかけられる電圧は、隔壁毎に大きさを変更できる、請求項2に記載の生体由来物質検出用チップ。
  6.  前記隔壁の一部または全部は、前記保持表面に導電可能な状態で保護膜により被覆された、請求項1に記載の生体由来物質検出用チップ。
  7.  前記生体由来物質は、核酸、タンパク質、細胞、微生物、染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)、及びこれらの複合体から選択される1以上の生体由来物質である、請求項1に記載の生体由来物質検出用チップ。
  8.  複数の画素から構成され、
     前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
     前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
     前記生体由来物質検出用チップによって取得された電気的情報を解析する解析部と、
     を備える、生体由来物質検出装置。
  9.  複数の画素から構成され、
     前記画素は、生体由来物質を保持する保持表面と、前記保持表面の下方に設けられた光電変換部と、を少なくとも備え、
     前記保持表面の前記画素間には、導電体からなる隔壁が設けられた、生体由来物質検出用チップと、
     前記生体由来物質検出用チップによって取得された電気的情報を解析する解析装置と、
     を備える、生体由来物質検出システム。
     
PCT/JP2021/003235 2020-02-19 2021-01-29 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム WO2021166597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/904,177 US20230047769A1 (en) 2020-02-19 2021-01-29 Biological substance detection chip, biological substance detection device and biological substance detection system
CN202180014551.1A CN115087857A (zh) 2020-02-19 2021-01-29 生物物质检测芯片、生物物质检测装置及生物物质检测系统
JP2022501741A JPWO2021166597A1 (ja) 2020-02-19 2021-01-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026051 2020-02-19
JP2020-026051 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166597A1 true WO2021166597A1 (ja) 2021-08-26

Family

ID=77390906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003235 WO2021166597A1 (ja) 2020-02-19 2021-01-29 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム

Country Status (4)

Country Link
US (1) US20230047769A1 (ja)
JP (1) JPWO2021166597A1 (ja)
CN (1) CN115087857A (ja)
WO (1) WO2021166597A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014760A (ja) * 2001-04-27 2003-01-15 Canon Inc プローブ担体、プローブ固定用担体およびそれらの製造方法
JP2004271382A (ja) * 2003-03-10 2004-09-30 Casio Comput Co Ltd Dna分析装置、dnaセンサ及び分析方法
JP2007263703A (ja) * 2006-03-28 2007-10-11 Casio Comput Co Ltd 撮像装置、生体高分子分析チップ、遺伝子の発現解析方法、及び抗原の検出方法
JP2013179345A (ja) * 2011-09-29 2013-09-09 Semiconductor Energy Lab Co Ltd 酸化物半導体膜
WO2018200995A2 (en) * 2017-04-27 2018-11-01 Polybiomics, Inc. Orthogonal polybiosensing and imaging systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014760A (ja) * 2001-04-27 2003-01-15 Canon Inc プローブ担体、プローブ固定用担体およびそれらの製造方法
JP2004271382A (ja) * 2003-03-10 2004-09-30 Casio Comput Co Ltd Dna分析装置、dnaセンサ及び分析方法
JP2007263703A (ja) * 2006-03-28 2007-10-11 Casio Comput Co Ltd 撮像装置、生体高分子分析チップ、遺伝子の発現解析方法、及び抗原の検出方法
JP2013179345A (ja) * 2011-09-29 2013-09-09 Semiconductor Energy Lab Co Ltd 酸化物半導体膜
WO2018200995A2 (en) * 2017-04-27 2018-11-01 Polybiomics, Inc. Orthogonal polybiosensing and imaging systems

Also Published As

Publication number Publication date
US20230047769A1 (en) 2023-02-16
JPWO2021166597A1 (ja) 2021-08-26
CN115087857A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US20210116475A1 (en) Microscopy imaging
US10379079B2 (en) Methods and apparatus for measuring analytes using large scale FET arrays
US20040234417A1 (en) Fluorescence biosensor chip and fluorescence biosensor chip arrangement
EP2284521B1 (en) Light detecting chip and light detecting device provided with light detecting chip
EP3158330B1 (en) Apparatuses and methods for determining analyte charge
JP6382875B2 (ja) 光学センサ、分析装置および分析方法
US20200386708A1 (en) Sensing platform for transduction of information
JP2009540325A (ja) 光検出器を有する集積バイオセンサ
JP4957336B2 (ja) 生体高分子分析装置及び生体高分子分析方法
CN101652643A (zh) 发光传感器
JP2009531704A (ja) 光検出器のアレイ及びサンプルサイトのアレイを具備する集積化装置
US20110215002A1 (en) Sensing device and related methods
JP4569346B2 (ja) 生体高分子分析方法
CN109477799A (zh) 具有集成的保护电路的传感器
WO2021166597A1 (ja) 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
WO2021182175A1 (ja) 生体由来物質検出用センサ、生体由来物質検出装置及び生体由来物質検出システム
WO2021166598A1 (ja) 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
DE60119902T2 (de) Verfahren für die gleichzeitige und mehrfache detektion und quantifizierung der hybridisierung von molekülverbindungen wie nukleinsäuren, dns, rns, pns und proteinen
WO2020110646A1 (ja) 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
JP4395616B2 (ja) 生体高分子分析支援装置及びその制御方法
Packard et al. Microfluidic-based amplification-free bacterial DNA detection by dielectrophoretic concentration and fluorescent resonance energy transfer assisted in situ hybridization (FRET-ISH)
JP6600018B2 (ja) 光学センサ、分析装置および分析方法
JP2009222583A (ja) 撮像装置、生体高分子分析チップ及び分析方法
Yeung High‐throughput single molecule screening of DNA and proteins
JP4597711B2 (ja) 微少質量検出チップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756734

Country of ref document: EP

Kind code of ref document: A1