WO2021166563A1 - マイクロ波処理装置 - Google Patents

マイクロ波処理装置 Download PDF

Info

Publication number
WO2021166563A1
WO2021166563A1 PCT/JP2021/002532 JP2021002532W WO2021166563A1 WO 2021166563 A1 WO2021166563 A1 WO 2021166563A1 JP 2021002532 W JP2021002532 W JP 2021002532W WO 2021166563 A1 WO2021166563 A1 WO 2021166563A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
frequency
reflected wave
control unit
unit
Prior art date
Application number
PCT/JP2021/002532
Other languages
English (en)
French (fr)
Inventor
大介 細川
周子 細川
大森 義治
中村 秀樹
和樹 前田
高史 夘野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180014986.6A priority Critical patent/CN115136737A/zh
Priority to EP24150891.0A priority patent/EP4326003A2/en
Priority to EP21756754.4A priority patent/EP4110012A4/en
Priority to EP24150907.4A priority patent/EP4329430A3/en
Priority to JP2022501728A priority patent/JPWO2021166563A1/ja
Priority to US17/758,968 priority patent/US20230199923A1/en
Publication of WO2021166563A1 publication Critical patent/WO2021166563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Definitions

  • the present disclosure relates to a microwave treatment device provided with a microwave generating unit.
  • the conventional microwave processing device calculates the amount of microwave power absorbed by the object to be heated at each frequency based on the difference between the incident wave and the reflected wave of the microwave.
  • the conventional microwave processing apparatus adjusts the microwave output level and the oscillation time at each frequency based on this information to make the heating uniform.
  • the microwave distribution in the heating chamber that is, the heating pattern for the object to be heated changes. For this reason, in the conventional microwave processing apparatus, it is important to equalize the electric power absorbed by the object to be heated at each frequency.
  • the difference between the incident wave and the reflected wave of the microwave is estimated to be the amount of electric power absorbed by the heated object, and the electric power absorbed by the heated object at each frequency is equal.
  • the microwave frequency, output level, and oscillation time are controlled so as to be.
  • the conventional technique considers the microwave transmission path and the dissipation of microwaves on the wall surface of the heating chamber. This makes it possible to improve the accuracy in estimating the power absorbed by the object to be heated at each frequency.
  • Patent Document 1 Even if the technique described in Patent Document 1 is applied to a microwave oven, it is difficult to achieve sufficient heating uniformity in actual cooking.
  • the dielectric constant of the food changes as the temperature changes.
  • the dielectric constant of the melted part rapidly increases. Therefore, even if the frequency and output level of the microwave are controlled, it is difficult to suppress the concentration of the microwave on the thawed portion of the frozen food. As a result, uneven heating occurs.
  • microwaves tend to concentrate more on the part of the object to be heated near the feeding part than on other parts. Therefore, even if the frequency and output level of the microwave are controlled, it is difficult to suppress the concentration of the microwave on the thawed portion of the frozen food. As a result, uneven heating occurs.
  • An object of the present disclosure is to provide a microwave processing apparatus capable of heating an object to be heated more uniformly.
  • the microwave processing apparatus includes a heating chamber for accommodating an object to be heated, a microwave generation unit, an amplification unit, a power feeding unit, a detection unit, a control unit, a storage unit, and the like. To be equipped.
  • the microwave generator generates microwaves having an arbitrary frequency in a predetermined frequency band.
  • the amplification unit amplifies the microwave and outputs the amplified microwave as incident power.
  • the power feeding unit supplies the incident power to the heating chamber.
  • the detection unit detects the incident power and the reflected power returning from the heating chamber to the power feeding unit.
  • the storage unit stores the incident power and the reflected power in association with the frequency of the microwave and the elapsed time from the start of heating.
  • the control unit causes the microwave generation unit to perform frequency sweeping over a predetermined frequency band.
  • the control unit controls the microwave generation unit and the amplification unit based on the incident power and the reflected power detected during the frequency sweep.
  • the uniformity of heating can be improved.
  • FIG. 1 is a schematic configuration diagram showing an example of a microwave processing apparatus according to an embodiment of the present disclosure.
  • FIG. 2A is a diagram schematically showing an example of temporal changes in frequency, output level, and stop time according to the first embodiment.
  • FIG. 2B is a diagram showing an example of a stop time set for each frequency according to the first embodiment.
  • FIG. 3 is a diagram showing (a) an example of the frequency characteristic of the reflected wave coefficient, and (b) an example of a stop time set for each frequency according to the second embodiment.
  • FIG. 4 is a diagram showing an example of (a) a frequency characteristic of the reflected wave coefficient and a set threshold value, and (b) an example of a stop time set for each frequency when the threshold value is taken into consideration. be.
  • FIG. 1 is a schematic configuration diagram showing an example of a microwave processing apparatus according to an embodiment of the present disclosure.
  • FIG. 2A is a diagram schematically showing an example of temporal changes in frequency, output level, and stop time according to
  • FIG. 5A is a diagram showing an example of temporal changes in frequency, output level, and duty ratio according to the fourth embodiment.
  • FIG. 5B is a diagram showing an example of the duty ratio set for each frequency according to the fourth embodiment.
  • FIG. 6 is a diagram showing (a) an example of the frequency characteristic of the reflected wave coefficient, and (b) an example of a duty ratio set for each frequency according to the fifth embodiment.
  • FIG. 7 is a diagram showing (a) an example of the frequency characteristic of the reflected wave coefficient, and (b) a diagram showing an example of the duty ratio set for each frequency when the threshold value is taken into consideration.
  • FIG. 8 is a diagram showing an example of a temporal change in the frequency and the reflected wave coefficient according to the seventh embodiment.
  • FIG. 9 is a diagram showing an example of a temporal change in the frequency and the reflected wave coefficient according to the eighth embodiment.
  • FIG. 10 is a diagram showing an example of a temporal change in the frequency and the reflected wave coefficient according to the ninth embodiment.
  • FIG. 11 is a diagram showing an example of the frequency characteristic of the reflected wave coefficient and the set threshold value.
  • FIG. 12 is a diagram showing an example of the frequency characteristics of the reflected wave coefficient at each temperature in the heating chamber.
  • the microwave frequency, the output level, and the oscillation time are controlled by using the electric power absorbed by the object to be heated as an index.
  • conventional techniques have a limited effect on heating uniformity and do not significantly suppress the local concentration of microwaves.
  • the present invention controls the frequency, output level, and oscillation time of microwaves based on the heat conduction of the object to be heated and the heat radiation from the surface of the object to be heated. As a result, the local temperature rise and the local change in the dielectric constant can be suppressed, and as a result, the object to be heated can be heated more uniformly.
  • the microwave processing apparatus of the first aspect of the present disclosure includes a heating chamber for accommodating an object to be heated, a microwave generation unit, an amplification unit, a power feeding unit, a detection unit, a control unit, and a storage unit. , Equipped with.
  • the microwave generator generates microwaves having an arbitrary frequency in a predetermined frequency band.
  • the amplification unit amplifies the microwave and outputs the amplified microwave as incident power.
  • the power feeding unit supplies the incident power to the heating chamber.
  • the detection unit detects the incident power and the reflected power returning from the heating chamber to the power feeding unit.
  • the storage unit stores the incident power and the reflected power in association with the frequency of the microwave and the elapsed time from the start of heating.
  • the control unit causes the microwave generation unit to perform frequency sweeping over a predetermined frequency band.
  • the control unit controls the microwave generation unit and the amplification unit based on the incident power and the reflected power detected during the frequency sweep.
  • the control unit sets a stop time for stopping the output of the microwave when the frequency of the microwave is changed, based on the first aspect.
  • the control unit changes the stop time according to the frequency of the microwave.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the second aspect.
  • the control unit sets the stop time longer as the reflected wave coefficient is lower.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the second aspect.
  • the control unit does not set a stop time for microwaves having a frequency at which the reflected wave coefficient exceeds a predetermined value.
  • control unit changes the duty ratio in the microwave output according to the frequency, based on the second aspect.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the fifth aspect.
  • the control unit sets the duty ratio higher as the reflected wave coefficient increases.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the fifth aspect.
  • the control unit sets the duty ratio to 100% for microwaves having a frequency at which the reflected wave coefficient exceeds a predetermined value.
  • the control unit is connected to the microwave generating unit with a microwave having a frequency having a higher reflected wave ratio, which is the ratio of the reflected power to the incident power. , Microwaves with lower frequencies are alternately generated.
  • the control unit generates microwaves in the microwave generating unit in descending order of frequency when the reflected wave coefficient is higher.
  • the control unit generates microwaves in the microwave generating unit in ascending order of frequency when the reflected wave coefficient is lower.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the first aspect.
  • the control unit generates microwaves in the microwave generating unit in order from the frequency having the highest reflected wave coefficient.
  • the control unit calculates the reflected wave ratio, which is the ratio of the reflected power to the incident power for each of the frequencies in the frequency sweep, based on the first aspect.
  • the control unit generates only microwaves having a frequency at which the reflected wave coefficient exceeds a predetermined value in the microwave generating unit.
  • the control unit starts heating only the microwave having a frequency in which the reflected wave coefficient exceeds a predetermined value to the microwave generating unit. Generate until the end.
  • the control unit calculates the reflected wave coefficient by the time when the first half of the time from the start to the end of heating elapses.
  • control unit performs frequency sweep to the microwave generating unit based on the temperature in the heating chamber, based on any one of the first to thirteenth aspects. Then, reset the microwave frequency and output level, which are the microwave oscillation conditions.
  • the control unit causes the microwave generation unit to perform frequency sweep every time the temperature in the heating chamber changes by a predetermined value, and microwaves. Reset the oscillation conditions of.
  • the control unit causes the microwave generation unit to perform frequency sweep every time the temperature of the heating chamber passes a predetermined temperature, and the microwave is generated. Reset the oscillation conditions of.
  • FIG. 1 is a schematic configuration diagram showing an example of a microwave processing apparatus according to the embodiment of the present disclosure.
  • the microwave processing apparatus according to the present embodiment includes a heating chamber 1, a microwave generation unit 3, an amplification unit 4, a power feeding unit 5, a detection unit 6, and a control unit 7. , A storage unit 8 is provided.
  • the heating chamber 1 accommodates an object to be heated 2 such as food, which is a load.
  • the microwave generating unit 3 is composed of a semiconductor element.
  • the microwave generation unit 3 can generate a microwave having an arbitrary frequency in a predetermined frequency band, and generates a microwave having a frequency specified by the control unit 7.
  • the amplification unit 4 is composed of a semiconductor element.
  • the amplification unit 4 amplifies the microwave generated by the microwave generation unit 3 according to the instruction of the control unit 7, and outputs the amplified microwave.
  • the power feeding unit 5 functions as an antenna and supplies the microwave amplified by the amplification unit 4 to the heating chamber 1 as incident power. That is, the power feeding unit 5 supplies the incident power based on the microwave generated by the microwave generating unit 3 to the heating chamber 1. Of the incident power, the power that is not consumed by the object to be heated 2 or the like is the reflected power that returns from the heating chamber 1 to the power feeding unit 5.
  • the detection unit 6 is composed of, for example, a directional coupler.
  • the detection unit 6 detects the amount of incident power and reflected power, and notifies the control unit 7 of the information. That is, the detection unit 6 functions as both an incident power detection unit and a reflected power detection unit.
  • the detection unit 6 has a coupling degree of, for example, about -40 dB, and extracts about 1/10000 of the incident power and the reflected power.
  • the extracted incident power and reflected power are rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and converted into information according to the incident power and reflected power.
  • the control unit 7 receives this information.
  • the storage unit 8 is composed of a semiconductor memory or the like, stores data from the control unit 7, reads out the stored data, and transmits the stored data to the control unit 7.
  • the storage unit 8 stores the amount of incident power and reflected power detected by the detection unit 6 together with the frequency of the microwave and the elapsed time from the start of heating.
  • the control unit 7 is composed of a microprocessor including a CPU (Central processing unit).
  • the control unit 7 controls the microwave generation unit 3 and the amplification unit 4 based on the information from the detection unit 6 and the storage unit 8 to execute cooking control in the microwave processing device.
  • CPU Central processing unit
  • the control unit 7 causes the microwave generation unit 3 to perform frequency sweep.
  • the frequency sweep is an operation of the microwave generating unit 3 that sequentially changes frequencies over a predetermined frequency band at predetermined frequency intervals.
  • the predetermined frequency band is 2400 MHz to 2500 MHz.
  • the control unit 7 selects the frequency used for heating the object to be heated 2 from a predetermined frequency band. Specifically, the control unit 7 calculates the reflected wave ratio, which is the ratio (%) of the reflected power to the incident power, based on the values of the incident power and the reflected power detected during the frequency sweep. The control unit 7 controls the oscillation frequency of the microwave in the microwave generation unit 3 and the amplification factor of the microwave in the amplification unit 4 based on the reflected wave coefficient to heat the microwave having a frequency for heating. Supply to room 1.
  • the inner wall of the heating chamber 1 repeatedly reflects the microwaves supplied to the heating chamber 1. The interference between the microwaves generated at this time determines the heating pattern for the object to be heated 2 in the heating chamber 1.
  • the wavelength of microwaves changes according to the frequency.
  • the change in the wavelength of the microwave changes the place where it is strongly heated by the microwave and the place where it is weakly heated. Therefore, the interference between the repeatedly reflected microwaves changes, and the heating pattern also changes accordingly. That is, if the frequency and output level of the microwave are appropriately controlled, the object 2 to be heated can be heated more uniformly.
  • FIG. 2A schematically shows an example of temporal changes in the microwave frequency, output level, and stop time according to the first embodiment.
  • FIG. 2B shows an example of the stop time set for each microwave frequency according to the first embodiment.
  • the control unit 7 stops the microwave output by the microwave generating unit 3.
  • the period during which the microwave generating unit 3 outputs the microwave is referred to as an output time
  • the period during which the microwave generating unit 3 stops the microwave output is referred to as a stop time.
  • the output times OT1 to OT5 are all 12 seconds.
  • the stop times ST1, ST2, ST3, and ST4 are 6 seconds, 10 seconds, 2 seconds, and 15 seconds, respectively.
  • the frequencies F1, F2, F3, F4, and F5 are 2405 MHz, 2414 MHz, 2430 MHz, 2438 MHz, and 2445 MHz, respectively.
  • the heating pattern and uneven heating change depending on the frequency.
  • the stop time for reducing heating unevenness differs for each frequency.
  • the uniformity of heating can be improved by changing the stop time according to the frequency of the microwave.
  • the cooking time can be prevented from becoming longer than necessary.
  • a low output time may be provided to significantly reduce the microwave output level.
  • FIG. 3A shows an example of the frequency characteristic of the reflected wave coefficient.
  • FIG. 3B shows an example of the stop time set for each microwave frequency according to the second embodiment.
  • the reflected wave coefficient is the ratio (%) of the reflected power to the incident power.
  • the reflected wave coefficient generally differs depending on the frequency. Most of the microwaves that do not return to the microwave generation unit 3 are dissipated in the object to be heated 2. However, some microwaves are also dissipated in the parts of the microwave processing device other than the object 2 to be heated.
  • the parts include, for example, the inner wall of the heating chamber 1, the heater arranged in the heating chamber 1, the parts in the heating chamber 1 such as the door glass, the waveguide and the antenna (these correspond to the feeding unit 5) and the like. Is included.
  • the dissipation of microwaves in the object to be heated 2 increases.
  • the microwaves are not always uniformly dissipated in the entire object 2 to be heated. That is, when the reflected wave coefficient decreases, the heating unevenness of the object to be heated 2 tends to increase.
  • the control unit 7 has the shape of the graph of (b) of FIG. 3 as the graph of (a) of FIG.
  • the stop time is set so that it is upside down from the shape of, that is, the stop time is inversely proportional to the reflected wave coefficient. According to Example 2, the uniformity of heating can be improved.
  • FIG. 4A shows an example of the frequency characteristic of the reflected wave coefficient and the set threshold value.
  • FIG. 4B shows an example of the stop time set for each microwave frequency when the threshold value shown in FIG. 4A is taken into consideration.
  • the dissipation of microwaves in the object to be heated 2 decreases. If the dissipation of microwaves in the entire object to be heated 2 is reduced, the temperature of the object to be heated 2 will not partially rise. That is, as the reflected wave coefficient increases, the heating unevenness of the object to be heated 2 tends to decrease. Therefore, when the reflected wave coefficient exceeds a certain value, it is not necessary to provide a stop time.
  • control unit 7 sets a threshold value (see (a) of FIG. 4), and at a frequency having a reflected wave coefficient higher than the threshold value, the control unit 7 sets the stop time to zero (see FIG. 4). (A) and (b) of FIG. 4). According to the third embodiment, the uniformity of heating can be improved and the cooking time can be prevented from becoming longer than necessary.
  • This threshold value needs to be set to a different value depending on the type and size of the object to be heated and the microwave output level.
  • the microwave output level is, for example, 250 W
  • setting the threshold within a predetermined range of reflected wave coefficient (40% to 90%, 40% in Example 3) improves heating uniformity. Has been done.
  • the control unit 7 sets a large threshold value of the reflected wave coefficient in proportion to the output level.
  • FIG. 5A schematically shows an example of a temporal change in the microwave frequency, output level, and duty ratio according to the fourth embodiment.
  • FIG. 5B shows an example of the duty ratio set for each microwave frequency according to the fourth embodiment.
  • the duty ratio is the ratio (%) of the output time to the total of the output time and the stop time.
  • control unit 7 performs duty control in which a predetermined output time and stop time are set for each frequency. Duty control is on / off control of microwave output at a predetermined or variable duty ratio.
  • the duty ratio of the frequency F2 to the microwave is set to be larger than the duty ratio of the frequency F1 to the microwave.
  • the duty ratio of frequency F3 to microwaves is set smaller than the duty ratio of frequency F1 to microwaves.
  • the frequencies F1, F2, and F3 are 2405 MHz, 2414 MHz, and 2430 MHz, respectively.
  • the magnitude of the microwave of the frequency F2 may be set to be the same as that of the frequency F1
  • the magnitude of the microwave of the frequency F3 may be set to be larger than that of the frequency F1.
  • the heating pattern and uneven heating change depending on the frequency.
  • the duty ratio for reducing heating unevenness differs for each frequency.
  • the uniformity of heating can be improved by changing the duty ratio according to the frequency. By not lowering the duty ratio more than necessary, it is possible to prevent the cooking time from becoming longer than necessary.
  • control unit 7 alternately generates high output level microwaves having the same frequency and lower output level microwaves closer to zero in the microwave generation unit 3 at a predetermined time ratio. You may let me.
  • FIG. 6A shows an example of the frequency characteristic of the reflected wave coefficient.
  • FIG. 6B shows an example of the duty ratio set for each microwave frequency according to the fifth embodiment.
  • the reflected wave coefficient generally differs depending on the frequency. As the reflected wave coefficient decreases, the dissipation of microwaves in the object to be heated 2 tends to increase, and the uneven heating of the object to be heated 2 tends to increase.
  • the shape of the graph of FIG. 6 (b) is the same as the shape of the graph of FIG. 6 (a).
  • Duty control is performed so that they are the same, that is, the duty ratio is proportional to the reflected wave coefficient. According to Example 5, it is possible to reduce heating unevenness and improve heating uniformity.
  • FIG. 7A shows an example of the frequency characteristic of the reflected wave coefficient and the set threshold value.
  • FIG. 7B shows an example of the duty ratio set for each microwave frequency when the threshold value shown in FIG. 7A is taken into consideration.
  • the control unit 7 sets a threshold value, and when the reflected wave coefficient exceeds the threshold value, the duty control is stopped and the microwave generation unit 3 is constantly made to output microwaves.
  • the control unit 7 sets the duty ratio to 100% for a frequency having a reflected wave coefficient higher than the set threshold value (see (a) of FIG. 7) ((a) of FIG. 7 and (b) of FIG. 7). reference).
  • the uniformity of heating can be improved and the cooking time can be prevented from becoming longer than necessary.
  • This threshold value needs to be a different value depending on the type and size of the object to be heated and the microwave output level.
  • the microwave output level is, for example, 250 W
  • the control unit 7 sets a large threshold value of the reflected wave coefficient in proportion to the output level.
  • FIG. 8 schematically shows an example of a temporal change between the microwave frequency and the reflected wave coefficient according to the seventh embodiment.
  • the dissipation of microwaves in the object to be heated 2 tends to increase, and the uneven heating of the object to be heated 2 tends to increase.
  • the dissipation of microwaves tends to decrease, and heating unevenness tends to decrease.
  • the control unit 7 causes the microwave generation unit 3 to switch the oscillation frequency to the frequency F2 so that the reflected wave coefficient decreases after the start of heating by the microwave of the frequency F1. .. After that, the control unit 7 causes the microwave generation unit 3 to switch the oscillation frequency to the frequency F3 so that the reflected wave coefficient increases. The control unit 7 causes the microwave generation unit 3 to repeatedly execute this operation.
  • the microwave of frequency F2 has a lower reflected wave coefficient than the microwave of frequency F1.
  • the microwave of frequency F3 has a higher reflected wave coefficient than the microwave of frequency F2.
  • the microwave of frequency F4 has a lower reflected wave coefficient than the microwave of frequency F3.
  • the microwave of frequency F5 has a higher reflected wave coefficient than the microwave of frequency F4.
  • the microwave of frequency F6 has a lower reflected wave coefficient than the microwave of frequency F5.
  • the microwave of frequency F7 has a higher reflected wave coefficient than the microwave of frequency F6.
  • the microwave of frequency F8 has a lower reflected wave coefficient than the microwave of frequency F7.
  • the frequencies F1, F2, F3, F4, F5, F6, F7, and F8 are 2405 MHz, 2414 MHz, 2430 MHz, 2438 MHz, 2445 MHz, 2459 MHz, 2843 MHz, and 2499 MHz, respectively.
  • Example 7 when heating is performed by microwaves having a high reflected wave coefficient, heat is transferred to the object to be heated 2 and heat is radiated from the surface of the object to be heated 2. As a result, it is possible to reduce the heating unevenness caused by the heating by the microwave having a low reflected wave coefficient. That is, the uniformity of heating is improved.
  • Example 7 is effective not only for uniform heating but also for shortening the heating time.
  • FIG. 9 schematically shows an example of a temporal change between the microwave frequency and the reflected wave coefficient according to the eighth embodiment.
  • control unit 7 causes the microwave generation unit 3 to switch the microwave frequency so that the reflected wave coefficient alternately increases or decreases, as in the seventh embodiment.
  • control unit 7 causes the microwave generation unit 3 to generate microwaves in order from the highest frequency.
  • control unit 7 causes the microwave generation unit 3 to generate microwaves in order from the lowest frequency.
  • the control unit 7 causes the microwave generation unit 3 to perform the following operations.
  • the microwave generation unit 3 generates a microwave having a frequency F1 having the lowest reflected wave coefficient, and then generates a microwave having a frequency F2 having the highest reflected wave coefficient. After that, the microwave generation unit 3 generates a microwave having a frequency F3 having the second lowest reflected wave coefficient, and then generates a microwave having a frequency F4 having the second highest reflected wave rate.
  • the microwave generation unit 3 After that, the microwave generation unit 3 generates a microwave having a frequency F5 having the third lowest reflected wave coefficient, and then generates a microwave having a frequency F6 having the third highest reflected wave rate. After that, the microwave generation unit 3 generates a microwave having a frequency F7 having the fourth lowest reflected wave coefficient, and then generates a microwave having a frequency F8 having the fourth highest reflected wave rate.
  • the frequencies F1, F2, F3, F4, F5, F6, F7, and F8 are 2405 MHz, 2414 MHz, 2430 MHz, 2438 MHz, 2445 MHz, 2459 MHz, 2843 MHz, and 2499 MHz, respectively.
  • Example 8 it is possible to improve the uniformity of heating while simplifying the control.
  • Simplification of control means reducing the number of parameters required to determine the microwave output level and oscillation time at each frequency, as well as the order of the frequencies that occur.
  • heating with large uneven heating and heating with small uneven heating are alternately performed in the order of the degree.
  • the heating time at each frequency can be made the same.
  • control can be further simplified.
  • FIG. 10 schematically shows an example of a temporal change between the microwave frequency and the reflected wave coefficient according to the ninth embodiment.
  • the control unit 7 causes the microwave generation unit 3 to generate microwaves having a frequency having a higher reflected wave coefficient in order.
  • Example 9 the microwaves having frequencies F1 to F7 have higher reflected wave ratios and less uneven heating in this order. That is, the reflected wave coefficient with respect to the frequencies F1 to F4 is higher than that of the frequencies F5 to F7.
  • heat is transferred to the object to be heated 2 and heat is radiated from the surface of the object to be heated 2.
  • the frequencies F1, F2, F3, F4, F5, F6, and F7 are 2405 MHz, 2414 MHz, 2430 MHz, 2438 MHz, 2445 MHz, 2459 MHz, and 2843 MHz, respectively.
  • the heating unevenness caused by the heating by the microwave of the low frequency of the reflected wave coefficient is reduced by the heating by the microwave of the frequency of the high reflected wave coefficient. That is, the uniformity of heating is improved.
  • Example 9 the heating time per frequency is set shorter than the control method in which the stop time is set when switching frequencies as described in Examples 1 to 3. This tends to improve the uniformity of heating.
  • FIG. 11 shows an example of the frequency characteristic of the reflected wave coefficient and the set threshold value.
  • the control unit 7 uses only microwaves having a frequency in a frequency band (frequency bands FB1, FB2, FB3, FB4) in which the reflected wave coefficient is higher than a predetermined threshold value. This is to use only microwaves with frequencies with relatively low heating unevenness. Therefore, if this control is performed for a longer period of time, the heating uniformity is improved accordingly.
  • This threshold value needs to be set to a different value depending on the type and size of the object to be heated and the microwave output level.
  • the microwave output level is, for example, 250 W
  • the control unit 7 sets a large threshold value of the reflected wave coefficient in proportion to the output level.
  • the control unit 7 uses only microwaves having a frequency higher than the threshold value from the start to the end of the operation of the microwave generation unit 3, that is, from the start to the end of heating. This further improves the uniformity of heating.
  • this control is performed at least at least one time in the first half of heating using only microwaves having a frequency higher than the threshold value from the start to the end of heating, the uniformity of heating is improved.
  • FIG. 12 shows an example of the frequency characteristics of the reflected wave coefficient at each temperature in the heating chamber 1.
  • the frequency characteristic of the reflected wave coefficient changes depending on the temperature of the heating chamber 1. Specifically, as the temperature of the heating chamber 1 rises, the frequency characteristic of the reflected wave coefficient shifts to the lower left side of the frequency while substantially maintaining its waveform.
  • control unit 7 performs frequency sweep based on the temperature of the heating chamber 1 and reacquires the frequency characteristic of the reflected wave coefficient.
  • the control unit 7 resets the microwave oscillation conditions based on the frequency characteristics of the reflected wave coefficient.
  • Oscillation conditions mean microwave frequency and output level.
  • the control unit 7 causes the microwave generation unit 3 to change the microwave frequency, and the amplification unit 4 to change the microwave output level to reset the oscillation conditions. Thereby, the uniformity of heating can be improved.
  • the control unit 7 performs frequency sweep every time the temperature of the heating chamber 1 changes by a predetermined value, reacquires the frequency characteristic of the reflected wave coefficient, and resets the microwave oscillation condition. Thereby, the uniformity of heating can be improved.
  • the degree of temperature change in the heating chamber 1, which indicates the timing for reacquiring the frequency characteristic of the reflected wave coefficient, depends on the shape of the heating chamber 1, the material of the wall surface, the type and size of the object to be heated 2, and the like.
  • the measurement conditions for the frequency characteristics shown in FIG. 12 are the following three. (1) The volume of the heating chamber 1 is 50 liters. (2) The wall surface is a steel plate that has been enamel-treated. (3) The object to be heated 2 is not placed in the heating chamber 1.
  • the frequency characteristics of the reflected wave coefficient should be reacquired at a maximum of every 100 ° C., preferably every 20 ° C. in consideration of the degree of shift.
  • the control unit 7 may reacquire the frequency characteristic of the reflected wave coefficient and reset the microwave oscillation conditions each time the temperature in the heating chamber 1 exceeds or falls below the predetermined temperature.
  • the case where the temperature in the heating chamber 1 exceeds or falls below the predetermined temperature is the case where the temperature in the heating chamber 1 has passed the predetermined temperature.
  • the temperature of the heating chamber 1 in which the frequency characteristics of the reflected wave coefficient should be reacquired is set to half of the set temperature in oven heating using radiant heating and convection heating.
  • the temperature may be half the difference between the set temperature and room temperature.
  • control unit 7 may use the dissipation rate of microwaves in the heating chamber 1 instead of the reflected wave rate.
  • the microwave dissipation rate in the heating chamber 1 is the ratio (%) of the difference between the incident power and the reflected power with respect to the incident power.
  • the control unit 7 may estimate the dissipation of microwaves in the inner wall of the heating chamber 1, the heater, the parts in the heating chamber 1 such as the door glass, the transmission path, and the like, and correct the reflected wave coefficient based on the numerical value. ..
  • the control unit 7 estimates the dissipation of microwaves in the object to be heated 2 based on the temperature of the object to be heated 2 obtained by using an infrared sensor or the like, and even if the numerical value is used instead of the reflected wave coefficient. good.
  • the microwave processing device is applicable to a drying device, a heating device for ceramics, a garbage processing machine, a semiconductor manufacturing device, a chemical reaction device, and the like, in addition to the above-mentioned heating cooker.
  • Heating chamber 1 Heated object 3
  • Microwave generator 4
  • Amplification unit 5
  • Power supply unit 6
  • Detection unit 7
  • Control unit 8 Storage unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

本開示の一態様のマイクロ波処理装置は、加熱室と、マイクロ波発生部と、増幅部と、給電部と、検出部と、記憶部と、制御部とを備える。マイクロ波発生部は、所定の周波数帯域における任意の周波数を有するマイクロ波を発生する。増幅部は、マイクロ波を増幅し、増幅されたマイクロ波を入射電力として出力する。給電部は、入射電力を加熱室に供給する。検出部は、入射電力と加熱室から給電部に戻る反射電力とを検出する。記憶部は、入射電力と反射電力とを、マイクロ波の周波数と加熱の開始からの経過時間とに関連付けて記憶する。制御部は、マイクロ波発生部に、所定の周波数帯域にわたって周波数掃引を行わせる。制御部は、周波数掃引の間に検出された入射電力および反射電力に基づいてマイクロ波発生部および増幅部を制御する。本態様によれば、加熱の均一性を向上させることができる。

Description

マイクロ波処理装置
 本開示は、マイクロ波発生部を備えたマイクロ波処理装置(Microwave treatment device)に関する。
 従来、半導体発振素子を有し、マイクロ波の周波数および出力レベルを制御して被加熱物をより均一に加熱しようとするマイクロ波処理装置が知られている(例えば、特許文献1参照)。
 従来のマイクロ波処理装置は、マイクロ波の入射波と反射波との差に基づいて、各周波数における被加熱物に吸収されたマイクロ波電力の量を算出する。従来のマイクロ波処理装置は、この情報に基づいて各周波数におけるマイクロ波の出力レベルおよび発振時間を調整することで、加熱の均一化を図るものである。
 マイクロ波の周波数が変わると、加熱室内のマイクロ波分布、すなわち、被加熱物に対する加熱パターンが変わる。このため、従来のマイクロ波処理装置では、各周波数における被加熱物に吸収された電力を同等にすることを重要視している。
 従来のマイクロ波処理装置は、マイクロ波の入射波と反射波との差が被加熱物に吸収された電力の量であると推定し、各周波数における被加熱物に吸収された電力が同等になるようにマイクロ波の周波数、出力レベル、および、発振時間を制御する。
 従来の技術は、マイクロ波の伝送経路、および、加熱室の壁面におけるマイクロ波の散逸を考慮する。これにより、各周波数における被加熱物に吸収された電力の推定における精度を改善することができる。
特表2009-527883号公報
 しかしながら、特許文献1に記載の技術を電子レンジに適用しても、実際の調理において十分な加熱の均一性を達成することは難しい。
 電子レンジで食品を加熱すると、温度変化に伴って食品の誘電率は変化する。特に、冷凍食品の場合、温度上昇によりその一部分が融解すると、その融解部分の誘電率は急激に上昇する。このため、マイクロ波の周波数および出力レベルを制御しても、冷凍食品の融解部分へのマイクロ波の集中を抑制することは困難である。その結果、加熱ムラが発生する。
 電子レンジの加熱室において、マイクロ波は、給電部に近い被加熱物の部分には他の部分よりも集中する傾向が強い。このため、マイクロ波の周波数および出力レベルを制御しても、冷凍食品の融解部分へのマイクロ波の集中を抑制することは困難である。その結果、加熱ムラが発生する。
 本開示の目的は、被加熱物をより均一に加熱することができるマイクロ波処理装置を提供することである。
 本開示の一態様のマイクロ波処理装置は、被加熱物を収容するための加熱室と、マイクロ波発生部と、増幅部と、給電部と、検出部と、制御部と、記憶部と、を備える。
 マイクロ波発生部は、所定の周波数帯域における任意の周波数を有するマイクロ波を発生する。増幅部は、マイクロ波を増幅し、増幅されたマイクロ波を入射電力として出力する。給電部は、入射電力を加熱室に供給する。検出部は、入射電力と加熱室から給電部に戻る反射電力とを検出する。記憶部は、入射電力と反射電力とを、マイクロ波の周波数と加熱の開始からの経過時間とに関連付けて記憶する。
 制御部は、マイクロ波発生部に、所定の周波数帯域にわたって周波数掃引を行わせる。制御部は、周波数掃引の間に検出された入射電力および反射電力に基づいてマイクロ波発生部および増幅部を制御する。
 本態様によれば、加熱の均一性を向上させることができる。
図1は、本開示の実施の形態に係るマイクロ波処理装置の一例を示す概略構成図である。 図2Aは、実施例1による周波数と出力レベルと停止時間との時間的変化の一例を模式的に示す図である。 図2Bは、実施例1による周波数ごとに設定される停止時間の一例を示す図である。 図3は、(a)反射波率の周波数特性の一例を示す図、および、(b)実施例2による周波数ごとに設定される停止時間の一例を示す図である。 図4は、(a)反射波率の周波数特性と設定された閾値との一例を示す図、および、(b)閾値を考慮した場合の周波数ごとに設定される停止時間の一例を示す図である。 図5Aは、実施例4による周波数と出力レベルとデューティ比との時間的変化の一例を示す図である。 図5Bは、実施例4による周波数ごとに設定されるデューティ比の一例を示す図である。 図6は、(a)反射波率の周波数特性の一例を示す図、および、(b)実施例5による周波数ごとに設定されるデューティ比の一例を示す図である。 図7は、(a)反射波率の周波数特性の一例を示す図、および、(b)閾値を考慮した場合の周波数ごと設定されるデューティ比の一例を示す図である。 図8は、実施例7による周波数と反射波率との時間的変化の一例を示す図である。 図9は、実施例8による周波数と反射波率との時間的変化の一例を示す図である。 図10は、実施例9による周波数と反射波率との時間的変化の一例を示す図である。 図11は、反射波率の周波数特性と設定された閾値との一例を示す図である。 図12は、加熱室内の各温度における反射波率の周波数特性の一例を示す図である。
 (本開示の基礎となった知見)
 上記従来の技術では、被加熱物に吸収された電力を指標として、マイクロ波の周波数、出力レベル、および、発振時間を制御する。しかし、従来の技術では、加熱の均一性に対する効果は限定的であり、マイクロ波の局所的集中を大幅に抑制するものではない。
 被加熱物の種類、形状、大きさ、および、置き場所に所定の制限を設ければ、加熱の均一性に対して一定の効果を奏する可能性はある。しかし、従来の技術を、電子レンジによる実際の調理に適用するのは困難である。
 被加熱物をより均一に加熱するには、いかにして加熱中の食品内の温度差を抑制するかが重要である。発明者らは、以下の発明を想い到った。この発明は、被加熱物の熱伝導と被加熱物の表面からの熱放射とに基づいて、マイクロ波の周波数、出力レベル、および、発振時間を制御するものである。これにより、局所的な温度上昇、および、局所的な誘電率の変化を抑制し、その結果、被加熱物をより均一に加熱することができる。
 本開示の第1態様のマイクロ波処理装置は、被加熱物を収容するための加熱室と、マイクロ波発生部と、増幅部と、給電部と、検出部と、制御部と、記憶部と、を備える。
 マイクロ波発生部は、所定の周波数帯域における任意の周波数を有するマイクロ波を発生する。増幅部は、マイクロ波を増幅し、増幅されたマイクロ波を入射電力として出力する。給電部は、入射電力を加熱室に供給する。検出部は、入射電力と加熱室から給電部に戻る反射電力とを検出する。記憶部は、入射電力と反射電力とを、マイクロ波の周波数と加熱の開始からの経過時間とに関連付けて記憶する。
 制御部は、マイクロ波発生部に、所定の周波数帯域にわたって周波数掃引を行わせる。制御部は、周波数掃引の間に検出された入射電力および反射電力に基づいてマイクロ波発生部および増幅部を制御する。
 本開示の第2態様のマイクロ波処理装置において、第1態様に基づきながら、制御部は、マイクロ波の周波数を変化させる際に、マイクロ波の出力を停止する停止時間を設定する。制御部は、マイクロ波の周波数に応じて停止時間を変化させる。
 本開示の第3態様のマイクロ波処理装置において、第2態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、停止時間を反射波率が低いほど長く設定する。
 本開示の第4態様のマイクロ波処理装置において、第2態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、反射波率が所定の値を超えた周波数のマイクロ波には停止時間を設定しない。
 本開示の第5態様のマイクロ波処理装置において、第2態様に基づきながら、制御部は、周波数に応じてマイクロ波の出力におけるデューティ比を変更する。
 本開示の第6態様のマイクロ波処理装置において、第5態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、反射波率が高いほどデューティ比を高く設定する。
 本開示の第7態様のマイクロ波処理装置において、第5態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、反射波率が所定値を超えた周波数のマイクロ波にはデューティ比を100%に設定する。
 本開示の第8態様のマイクロ波処理装置において、第1態様に基づきながら、制御部は、マイクロ波発生部に、入射電力に対する反射電力の割合である反射波率がより高い周波数のマイクロ波と、反射波率がより低い周波数のマイクロ波とを交互に発生させる。
 本開示の第9態様のマイクロ波処理装置において、第8態様に基づきながら、制御部は、マイクロ波発生部に、反射波率がより高い周波数の場合は周波数の高い順にマイクロ波を発生させる。制御部は、マイクロ波発生部に、反射波率がより低い周波数の場合は周波数の低い順にマイクロ波を発生させる。
 本開示の第10態様のマイクロ波処理装置において、第1態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、マイクロ波発生部に、反射波率の最も高い周波数から順にマイクロ波を発生させる。
 本開示の第11態様のマイクロ波処理装置において、第1態様に基づきながら、制御部は、周波数掃引における周波数の各々に関する入射電力に対する反射電力の割合である反射波率を算出する。制御部は、マイクロ波発生部に、反射波率が所定の値を超えた周波数のマイクロ波のみを発生させる。
 本開示の第12態様のマイクロ波処理装置において、第11態様に基づきながら、制御部は、マイクロ波発生部に、反射波率が所定の値を超えた周波数のマイクロ波のみを加熱の開始から終了まで発生させる。
 本開示の第13態様のマイクロ波処理装置において、第11態様に基づきながら、制御部は、加熱の開始から終了までの時間の最初の半分が経過するまでに、反射波率を算出する。
 本開示の第14態様のマイクロ波処理装置において、第1態様から第13態様のいずれか一つに基づきながら、制御部は、加熱室内の温度に基づいて、マイクロ波発生部に周波数掃引を行なわせ、マイクロ波の発振条件であるマイクロ波の周波数および出力レベルを再設定する。
 本開示の第15態様のマイクロ波処理装置において、第14態様に基づきながら、制御部は、加熱室内の温度が所定値だけ変化するたびに、マイクロ波発生部に周波数掃引を行なわせ、マイクロ波の発振条件を再設定する。
 本開示の第16態様のマイクロ波処理装置において、第14態様に基づきながら、制御部は、加熱室の温度が所定温度を通過するたびに、マイクロ波発生部に周波数掃引を行なわせ、マイクロ波の発振条件を再設定する。
 このような構成により、加熱室内の温度変化に伴う加熱室内の共振周波数の変化の影響を減少し、一定の条件下で再設定のタイミングを定めることで、安定してより均一な加熱が可能となる。
 以下、本開示の実施の形態について、添付の図面を参照しながら説明する。
 図1は、本開示の実施の形態に係るマイクロ波処理装置の一例を示す概略構成図である。図1に示すように、本実施の形態に係るマイクロ波処理装置は、加熱室1と、マイクロ波発生部3と、増幅部4と、給電部5と、検出部6と、制御部7と、記憶部8とを備える。
 加熱室1は、負荷である食品などの被加熱物2を収容する。マイクロ波発生部3は半導体素子で構成される。マイクロ波発生部3は、所定の周波数帯域における任意の周波数のマイクロ波を発生することができ、制御部7により指定された周波数のマイクロ波を発生する。
 増幅部4は半導体素子で構成される。増幅部4は、マイクロ波発生部3により発生されたマイクロ波を制御部7の指示に応じて増幅し、増幅されたマイクロ波を出力する。
 給電部5はアンテナとして機能し、増幅部4により増幅されたマイクロ波を入射電力として加熱室1に供給する。すなわち、給電部5は、マイクロ波発生部3により発生されたマイクロ波に基づく入射電力を加熱室1に供給する。入射電力のうち、被加熱物2などにより消費されない電力は、加熱室1から給電部5に戻る反射電力となる。
 検出部6は例えば方向性結合器で構成される。検出部6は入射電力および反射電力の量を検出し、その情報を制御部7に通知する。すなわち、検出部6は、入射電力検出部および反射電力検出部の両方として機能する。
 検出部6は、例えば約-40dBの結合度を有し、入射電力および反射電力の約1/10000程度の電力を抽出する。抽出された入射電力および反射電力は検波ダイオード(図示せず)で整流化され、コンデンサ(図示せず)で平滑化されて、入射電力および反射電力に応じた情報に変換される。制御部7は、これらの情報を受信する。
 記憶部8は半導体メモリなどで構成され、制御部7からのデータを記憶し、記憶したデータを読み出して制御部7に送信する。特に、記憶部8は、検出部6により検出された入射電力および反射電力の量を、マイクロ波の周波数と加熱の開始からの経過時間とともに記憶する。
 制御部7は、CPU(Central processing unit)を含むマイクロプロセッサで構成される。制御部7は、検出部6および記憶部8からの情報に基づいて、マイクロ波発生部3および増幅部4を制御して、マイクロ波処理装置における調理制御を実行する。
 制御部7は、マイクロ波発生部3に周波数掃引を行わせる。周波数掃引とは、所定の周波数帯域にわたって周波数を所定の周波数間隔で順に変えるマイクロ波発生部3の動作である。本実施の形態では、所定の周波数帯域は2400MHz~2500MHzである。
 制御部7は、周波数掃引の後に、被加熱物2の加熱に用いる周波数を所定の周波数帯域から選択する。具体的には、制御部7は、周波数掃引の間に検出された入射電力および反射電力の値に基づいて、入射電力に対する反射電力の割合(%)である反射波率を算出する。制御部7は、反射波率に基づいて、マイクロ波発生部3におけるマイクロ波の発振周波数と、増幅部4におけるマイクロ波の増幅率とを制御して、加熱のための周波数のマイクロ波を加熱室1に供給する。
 加熱室1の内壁は、加熱室1に供給されたマイクロ波を繰り返し反射する。この際に生じるマイクロ波間の干渉によって、加熱室1内の被加熱物2に対する加熱パターンが決まる。
 マイクロ波の波長は、周波数に応じて変化する。マイクロ波の波長の変化は、マイクロ波によって強く加熱される場所と、弱く加熱される場所とを変化させる。このため、反射を繰り返すマイクロ波間の干渉が変化し、それに伴って加熱パターンも変化する。すなわち、マイクロ波の周波数および出力レベルを適切に制御すると、被加熱物2をより均一に加熱することができる。
 以下、本実施の形態における制御部7による種々の制御方法を、実施例1~実施例11として説明する。互いに矛盾しなければ、下記実施例のうちの少なくとも二つを任意に組み合わせてもよい。
 (実施例1)
 本実施の形態の実施例1について説明する。図2Aは、実施例1によるマイクロ波の周波数と出力レベルと停止時間との時間的変化の一例を模式的に示す。図2Bは、実施例1によるマイクロ波の周波数ごとに設定される停止時間の一例を示す。
 図2Aに示すように、実施例1では、マイクロ波の周波数を切り替える際に、制御部7は、マイクロ波発生部3によるマイクロ波の出力を停止する。本実施の形態では、マイクロ波発生部3がマイクロ波を出力する期間を出力時間と呼び、マイクロ波発生部3がマイクロ波の出力を停止する期間を停止時間と呼ぶ。
 具体的には、例えば、図2Aに示すように、出力時間OT1~OT5はすべて12秒である。停止時間ST1、ST2、ST3、ST4はそれぞれ、6秒、10秒、2秒、15秒である。周波数F1、F2、F3、F4、F5はそれぞれ、2405MHz、2414MHz、2430MHz、2438MHz、2445MHzである。
 この方法によれば、停止時間において被加熱物2内に熱が伝わり、被加熱物2の表面から熱が放射される。従って、直前の周波数のマイクロ波での加熱パターンにより生じた加熱ムラを減少させることができる。
 このようにして、次の周波数のマイクロ波を供給し始める前に、加熱ムラにより生じた被加熱物2における誘電率のムラを低減させることができる。その結果、誘電率の上昇した被加熱物2の部分へのマイクロ波の集中を抑制することができ、加熱の均一性を向上させることができる。
 周波数によって加熱パターンと加熱ムラとは変化する。加熱ムラを低減させるための停止時間は周波数毎に異なる。
 図2Bに示すように、マイクロ波の周波数に応じて停止時間を変更することで、加熱の均一性を向上させることができる。実施例1において、必要最小限の停止時間を設定すれば、調理時間が必要以上に長くならないようにすることができる。停止時間の代わりに、マイクロ波の出力レベルを大幅に低下させる低出力時間を設けてもよい。
 (実施例2)
 本実施の形態の実施例2について説明する。図3の(a)は、反射波率の周波数特性の一例を示す。図3の(b)は、実施例2によるマイクロ波の周波数ごとに設定される停止時間の一例を示す。上記の通り、反射波率とは、入射電力に対する反射電力の割合(%)である。
 図3の(a)に示すように、一般的に反射波率は周波数によって異なる。マイクロ波発生部3に戻らないマイクロ波の大部分は、被加熱物2において散逸される。しかし、一部のマイクロ波は、被加熱物2以外のマイクロ波処理装置の部品においても散逸される。
 その部品には、例えば、加熱室1の内壁、加熱室1内に配置されたヒータ、ドアガラスなどの加熱室1内の部品、導波管およびアンテナ(これらは給電部5に相当する)などが含まれる。
 反射波率が低下するにつれて、被加熱物2におけるマイクロ波の散逸は大きくなる。しかし、被加熱物2全体において、マイクロ波は必ずしも均一に散逸するわけではない。すなわち、反射波率が低下すると、被加熱物2の加熱ムラは大きくなる傾向がある。
 このため、図3の(a)および図3の(b)に示すように、実施例2では、制御部7は、図3の(b)のグラフの形状が図3の(a)のグラフの形状と上下逆になるように、すなわち、停止時間が反射波率に反比例するように、停止時間を設定する。実施例2によれば、加熱の均一性を向上させることができる。
 (実施例3)
 本実施の形態の実施例3について説明する。図4の(a)は、反射波率の周波数特性と設定された閾値との一例を示す。図4の(b)は、図4の(a)に示す閾値を考慮した場合のマイクロ波の周波数ごとに設定される停止時間の一例を示す。
 反射波率が高くなるにつれて、被加熱物2におけるマイクロ波の散逸は減少する。被加熱物2全体におけるマイクロ波の散逸が減少すれば、被加熱物2の温度が部分的に上昇することもない。すなわち、反射波率が高くなると、被加熱物2の加熱ムラは減少する傾向がある。このため、反射波率が一定の値を超えると停止時間を設ける必要がなくなる。
 実施例3では、制御部7は、閾値を設定し(図4の(a)参照)、その閾値より反射波率が高い周波数では、制御部7は停止時間をゼロに設定する(図4の(a)および図4の(b)参照)。実施例3によれば、加熱の均一性を向上させるとともに、調理時間が必要以上に長くならないようにすることができる。
 この閾値は、被加熱物の種類および大きさ、並びに、マイクロ波の出力レベルにより異なる値に設定する必要がある。マイクロ波の出力レベルが例えば250Wの場合、反射波率の所定範囲内(40%~90%、実施例3では40%)に閾値を設定すると、加熱の均一性が向上することが実験において示されている。
 周波数および被加熱物2は不変の場合において、マイクロ波の出力レベルを増加させると加熱ムラが大きくなる。加熱ムラを抑制するためには、反射波率のより大きい周波数のマイクロ波のみを使用する必要がある。従って、制御部7は、出力レベルに比例して反射波率の閾値を大きく設定する。
 (実施例4)
 本実施の形態の実施例4について説明する。図5Aは、実施例4によるマイクロ波の周波数と出力レベルとデューティ比との時間的変化の一例を模式的に示す。図5Bは、実施例4によるマイクロ波の周波数ごとに設定されるデューティ比の一例を示す。デューティ比とは、出力時間と停止時間との合計に対する出力時間の比率(%)である。
 実施例4では、制御部7は、各周波数に対してあらかじめ定められた出力時間および停止時間が設定されたデューティ制御を行う。デューティ制御とは、所定または可変のデューティ比でのマイクロ波の出力のオンオフ制御である。
 例えば、図5Aに示すように、周波数F2のマイクロ波に対するデューティ比は、周波数F1のマイクロ波に対するデューティ比よりも大きく設定される。周波数F3のマイクロ波に対するデューティ比は、周波数F1のマイクロ波に対するデューティ比よりも小さく設定される。
 具体的には、周波数F1、F2、F3はそれぞれ、2405MHz、2414MHz、2430MHzである。周波数F2のマイクロ波の大きさは、周波数F1と同じに設定され、周波数F3のマイクロ波の大きさは、周波数F1よりも大きく設定されてもよい。
 この方法によれば、周波数を切り替える際の停止時間において、被加熱物2内に熱が伝わり、被加熱物2の表面から熱が放射される。従って、直前の周波数のマイクロ波での加熱パターンにより生じた加熱ムラを減少させることができる。
 このようにして、次の周波数のマイクロ波を供給し始める前に、加熱ムラにより生じた被加熱物2における誘電率のムラを低減させることができる。その結果、被加熱物2の誘電率の上昇した部分へのマイクロ波の集中を抑制することができ、加熱の均一性を向上させることができる。
 周波数によって加熱パターンと加熱ムラとは変化する。加熱ムラを低減させるためのデューティ比は周波数毎に異なる。実施例4によれば、図5Bに示すように、周波数に応じてデューティ比を変更することで、加熱の均一性を向上させることができる。必要以上にデューティ比を下げないようにすることで、調理時間が必要以上に長くならないようにすることができる。
 デューティ制御の代わりに、制御部7は、マイクロ波発生部3に、同一周波数を有する、高出力レベルのマイクロ波とゼロに近いより低出力レベルのマイクロ波とを所定の時間比で交互に発生させてもよい。
 (実施例5)
 本実施の形態の実施例5について説明する。図6の(a)は、反射波率の周波数特性の一例を示す。図6の(b)は、実施例5によるマイクロ波の周波数ごとに設定されるデューティ比の一例を示す。
 図6の(a)に示すように、一般的に反射波率は周波数によって異なる。反射波率が低下するにつれて、被加熱物2におけるマイクロ波の散逸は大きくなり、被加熱物2の加熱ムラが大きくなる傾向がある。
 実施例5では、図6の(a)および図6の(b)に示すように、制御部7は、図6の(b)のグラフの形状が図6の(a)のグラフの形状と同じになるように、すなわち、デューティ比が反射波率に比例するように、デューティ制御を行う。実施例5によれば、加熱ムラを低減させ、加熱の均一性を向上させることができる。
 (実施例6)
 本実施の形態の実施例6について説明する。図7の(a)は、反射波率の周波数特性と設定された閾値との一例を示す。図7の(b)は、図7の(a)に示す閾値を考慮した場合のマイクロ波の周波数ごとに設定されるデューティ比の一例を示す。
 反射波率が高くなるにつれて、被加熱物2におけるマイクロ波の散逸は減少する。被加熱物2全体におけるマイクロ波の散逸が減少すれば、被加熱物2の温度が部分的に上昇することもない。すなわち、反射波率が高くなると、加熱ムラが減少する傾向がある。実施例6では、制御部7は、閾値を設定し、反射波率がその閾値を超えると、デューティ制御を止めて常にマイクロ波発生部3にマイクロ波を出力させ続ける。
 設定された閾値(図7の(a)参照)より反射波率が高い周波数に対して、制御部7はデューティ比を100%に設定する(図7の(a)および図7の(b)参照)。実施例6によれば、加熱の均一性を向上させるとともに、調理時間が必要以上に長くならないようにすることができる。
 この閾値は、被加熱物の種類および大きさ、並びに、マイクロ波の出力レベルにより異なる値である必要がある。しかしながら、マイクロ波の出力レベルが例えば250Wの場合、反射波率の所定範囲内(40%~90%、実施例6では40%)に閾値を設定すると、加熱の均一性が向上することが実験において示されている。
 周波数および被加熱物2は不変の場合において、マイクロ波の出力レベルを増加させると加熱ムラが大きくなる。加熱ムラを抑制するためには、反射波率のより大きい周波数のマイクロ波のみを使用する必要がある。従って、制御部7は、出力レベルに比例して反射波率の閾値を大きく設定する。
 (実施例7)
 本実施の形態の実施例7について説明する。図8は、実施例7によるマイクロ波の周波数と反射波率との時間的変化の一例を模式的に示す。
 反射波率が低下するにつれて、被加熱物2におけるマイクロ波の散逸が大きくなり、被加熱物2の加熱ムラが大きくなる傾向がある。反射波率が高くなるにつれて、マイクロ波の散逸は小さくなり、加熱ムラが減少する傾向がある。
 図8に示すように、実施例7では、制御部7は、周波数F1のマイクロ波による加熱開始後、マイクロ波発生部3に、反射波率が低下するように発振周波数を周波数F2に切り替えさせる。その後、制御部7は、マイクロ波発生部3に、反射波率が上昇するように発振周波数を周波数F3に切り替えさせる。制御部7は、マイクロ波発生部3にこの動作を繰り返し実行させる。
 すなわち、周波数F2のマイクロ波は、周波数F1のマイクロ波よりも反射波率が低い。周波数F3のマイクロ波は、周波数F2のマイクロ波よりも反射波率が高い。周波数F4のマイクロ波は、周波数F3のマイクロ波よりも反射波率が低い。
 周波数F5のマイクロ波は、周波数F4のマイクロ波よりも反射波率が高い。周波数F6のマイクロ波は、周波数F5のマイクロ波よりも反射波率が低い。周波数F7のマイクロ波は、周波数F6のマイクロ波よりも反射波率が高い。周波数F8のマイクロ波は、周波数F7のマイクロ波よりも反射波率が低い。
 具体的には、周波数F1、F2、F3、F4、F5、F6、F7、F8はそれぞれ、2405MHz、2414MHz、2430MHz、2438MHz、2445MHz、2459MHz、2483MHz、2499MHzである。
 実施例7によれば、反射波率の高い周波数のマイクロ波による加熱の際に、被加熱物2内に熱が伝わり、被加熱物2の表面から熱が放射される。その結果、反射波率の低い周波数のマイクロ波による加熱で生じた加熱ムラを減少させることができる。すなわち、加熱の均一性が向上する。
 実施例1~3に記載のように、周波数を切り替える際に停止時間を設定することで、加熱の均一性が向上する。一方、実施例7は均一加熱だけでなく、加熱時間の短縮にも効果的である。
 (実施例8)
 本実施の形態の実施例8について説明する。図9は、実施例8によるマイクロ波の周波数と反射波率との時間的変化の一例を模式的に示す。
 実施例8では、図9に示すように、制御部7は、実施例7と同様に、反射波率が交互に増減するようにマイクロ波発生部3にマイクロ波の周波数を切り替えさせる。
 それに加えて、反射波率がより高い周波数に関しては、制御部7は、マイクロ波発生部3に、最も高い周波数から順にマイクロ波を発生させる。反射波率がより低い周波数に関しては、制御部7は、マイクロ波発生部3に、最も低い周波数から順にマイクロ波を発生させる。
 すなわち、制御部7は、マイクロ波発生部3に次のような動作を実行させる。マイクロ波発生部3は、反射波率が最も低い周波数F1のマイクロ波を発生させ、次に、反射波率が最も高い周波数F2のマイクロ波を発生する。その後、マイクロ波発生部3は、反射波率が2番目に低い周波数F3のマイクロ波を発生させ、次に、反射波率が2番目に高い周波数F4のマイクロ波を発生する。
 その後、マイクロ波発生部3は、反射波率が3番目に低い周波数F5のマイクロ波を発生させ、次に、反射波率が3番目に高い周波数F6のマイクロ波を発生する。その後、マイクロ波発生部3は、反射波率が4番目に低い周波数F7のマイクロ波を発生させ、次に、反射波率が4番目に高い周波数F8のマイクロ波を発生する。
 具体的には、周波数F1、F2、F3、F4、F5、F6、F7、F8はそれぞれ、2405MHz、2414MHz、2430MHz、2438MHz、2445MHz、2459MHz、2483MHz、2499MHzである。
 実施例8によれば、制御を簡素化しつつ、加熱の均一性を向上させることができる。制御の簡素化とは、各周波数におけるマイクロ波の出力レベルおよび発振時間、並びに、発生する周波数の順番などを決定するのに必要なパラメータの数を減らすことを意味する。
 この方法では、加熱ムラの大きい加熱と加熱ムラの小さい加熱とが、その度合いの順に交互に行われる。これにより、例えば、全ての周波数で同じ出力レベルのマイクロ波を用いる場合に、各周波数における加熱時間を同一にすることができる。その結果、制御をより簡素化することができる。
 (実施例9)
 本実施の形態の実施例9について説明する。図10は、実施例9によるマイクロ波の周波数と反射波率との時間的変化の一例を模式的に示す。図10に示すように、制御部7は、マイクロ波発生部3に、反射波率がより高い周波数のマイクロ波から順に発生させる。
 実施例9では、周波数F1~周波数F7のマイクロ波は、この順で、反射波率が高く、加熱ムラが少ない。すなわち、周波数F1~周波数F4に対する反射波率は、周波数F5~周波数F7のそれよりも高い。加熱ムラがより小さい周波数のマイクロ波での加熱の際に、被加熱物2内に熱が伝わり、被加熱物2の表面から熱が放射される。
 具体的には、周波数F1、F2、F3、F4、F5、F6、F7はそれぞれ、2405MHz、2414MHz、2430MHz、2438MHz、2445MHz、2459MHz、2483MHzである。
 その結果、反射波率の低い周波数のマイクロ波による加熱で生じた加熱ムラが、反射波率の高い周波数のマイクロ波による加熱時に減少する。すなわち、加熱の均一性が向上する。
 実施例1~3に記載のように、周波数を切り替える際に停止時間を設定する制御方法よりも、実施例9では1周波数当りの加熱時間を短く設定する。これにより、加熱の均一性が向上する傾向がある。
 これは、1周波数当りの加熱時間が長いほど、反射波率がより小さい周波数のマイクロ波による加熱において加熱ムラが大きくなり、局所的にタンパク質が変性したことによる。
 (実施例10)
 本実施の形態の実施例10について説明する。図11は、反射波率の周波数特性と設定された閾値との一例を示す。
 図11に示すように、実施例10では、制御部7は、反射波率が所定の閾値より高い周波数帯(周波数帯FB1、FB2、FB3、FB4)の周波数のマイクロ波のみを使用する。これは、加熱ムラが比較的小さい周波数のマイクロ波のみを使用することである。従って、この制御をより長く行なえば、その分、加熱の均一性が向上する。
 この閾値は、被加熱物の種類および大きさ、並びに、マイクロ波の出力レベルにより異なる値に設定する必要がある。しかしながら、マイクロ波の出力レベルが例えば250Wの場合、反射波率の所定範囲内(40%~90%、実施例10では40%)に閾値を設定すると、加熱の均一性が向上することが実験において示されている。
 周波数および被加熱物2は不変の場合において、マイクロ波の出力レベルを増加させると加熱ムラが大きくなる。加熱ムラを抑制するためには、反射波率のより大きい周波数のマイクロ波のみを使用する必要がある。従って、制御部7は、出力レベルに比例して反射波率の閾値を大きく設定する。
 制御部7は、マイクロ波発生部3の動作開始から終了まで、すなわち、加熱の開始から終了まで、閾値より反射波率が高い周波数のマイクロ波のみを使用する。これにより、さらに加熱の均一性が向上する。
 加熱の開始から終了まで閾値より反射波率が高い周波数のマイクロ波のみを使用して、加熱前半の少なくともいずれかの時間にこの制御が行われると、加熱の均一性が向上する。
 これは、加熱終了時の加熱ムラへの影響が大きい加熱の初期段階において、加熱ムラを抑制することができるからである。加熱の初期段階で加熱ムラが大きいと、加熱終了までの長い期間、誘電率の高い被加熱物2の部分にマイクロ波が局所的に集中する。
 (実施例11)
 本実施の形態の実施例11について説明する。図12は、加熱室1内の各温度における反射波率の周波数特性の一例を示す。
 図12に示すように、反射波率の周波数特性は、加熱室1の温度によって変化する。具体的には、加熱室1の温度が上昇するにつれ、反射波率の周波数特性は、その波形をほぼ維持したまま周波数のより低い左側にシフトする。
 これは、加熱室1内の温度が上昇するにつれて、加熱室1におけるマイクロ波の共振周波数が低下することによる。この現象が生じる一つの理由は、加熱室1の壁面の金属が膨張し、加熱室1内の体積が僅かに増加することである。他の理由は、ドアガラスの誘電率の上昇により、ドアガラス内でのマイクロ波の波長の圧縮率が上昇することである。
 例えば、マイクロ波とは別に、輻射加熱および対流加熱を用いたオーブン加熱などにおいて、このような状態が発生する。
 従って、制御部7は、加熱室1の温度に基づいて周波数掃引を行ない、反射波率の周波数特性を再取得する。制御部7は、反射波率の周波数特性に基づいてマイクロ波の発振条件を再設定する。
 発振条件とは、マイクロ波の周波数および出力レベルを意味する。制御部7は、マイクロ波発生部3にマイクロ波の周波数を変更させ、増幅部4にマイクロ波の出力レベルを変更させて、発振条件を再設定する。これにより、加熱の均一性を向上させることができる。
 図12に示す三つのグラフにおいて、加熱室1内の温度上昇幅はほぼ同じであり、その温度上昇に応じて反射波率の周波数特性はほぼ同じ周波数だけ左側にシフトしている。従って、制御部7は、加熱室1の温度が所定値だけ変化するたびに周波数掃引を行ない、反射波率の周波数特性を再取得し、マイクロ波の発振条件を再設定する。これにより、加熱の均一性を向上させることができる。
 反射波率の周波数特性を再取得するべきタイミングを示す加熱室1の温度変化の程度は、加熱室1の形状および壁面の材質、並びに、被加熱物2の種類および大きさなどに依存する。図12に示す周波数特性の測定条件は次の三つである。(1)加熱室1の容積は50リットルである。(2)壁面は琺瑯処理をした鋼板である。(3)加熱室1に被加熱物2が置かれていない。
 図12に示す周波数特性の場合、シフトの程度を考慮して、最大で100℃ごとに、好ましくは20℃ごとに反射波率の周波数特性を再取得するべきである。
 制御部7は、加熱室1内の温度が所定温度を超え、または、下回った場合、都度、反射波率の周波数特性を再取得し、マイクロ波の発振条件を再設定してもよい。換言すると、加熱室1内の温度が所定温度を超え、または、下回った場合とは、加熱室1内の温度が所定温度を通過した場合である。
 再設定のタイミングを示す条件を明確に定義することにより、加熱室1内の温度変化に伴う加熱室1内の共振周波数の変化の影響を低減させることができる。その結果、より均一な加熱を安定的に行うことができる。
 反射波率の周波数特性の再取得を行なうべき加熱室1の温度は、輻射加熱および対流加熱を用いたオーブン加熱における設定温度の半分に設定するのが望ましい。上記温度は、その設定温度と室温との差の半分の温度でもよい。
 実施例1~実施例11において、制御部7は、反射波率の代わりに加熱室1におけるマイクロ波の散逸率を用いてもよい。加熱室1におけるマイクロ波の散逸率とは、入射電力に対する入射電力と反射電力との差の割合(%)である。
 制御部7は、加熱室1の内壁、ヒータ、ドアガラスなどの加熱室1内の部品、伝送経路などにおけるマイクロ波の散逸を推定し、その数値に基づいて反射波率を補正してもよい。
 制御部7は、赤外線センサなどを用いて得られた被加熱物2の温度に基づいて、被加熱物2におけるマイクロ波の散逸を推定し、その数値を反射波率の代わりに使用してもよい。
 本開示に係るマイクロ波処理装置は、上記の加熱調理器の他に、乾燥装置、陶芸用加熱装置、生ゴミ処理機、半導体製造装置、化学反応装置などに適用可能である。
 1 加熱室
 2 被加熱物
 3 マイクロ波発生部
 4 増幅部
 5 給電部
 6 検出部
 7 制御部
 8 記憶部

Claims (16)

  1.  被加熱物を収容するように構成された加熱室と、
     所定の周波数帯域における任意の周波数を有するマイクロ波を発生するように動作可能なマイクロ波発生部と、
     前記マイクロ波を増幅し、増幅された前記マイクロ波を入射電力として出力するように動作可能な増幅部と、
     前記入射電力を前記加熱室に供給するように構成された給電部と、
     前記入射電力と前記加熱室から前記給電部に戻る反射電力とを検出するように動作可能な検出部と、
     前記マイクロ波発生部および前記増幅部を制御するように動作可能な制御部と、
     前記入射電力および前記反射電力を、前記マイクロ波の前記周波数および加熱の開始からの経過時間とともに記憶するように動作可能な記憶部と、を備え、
     前記制御部は、前記マイクロ波発生部に、前記所定の周波数帯域にわたって周波数掃引を行わせるように動作可能であり、前記周波数掃引の間に検出された前記入射電力および前記反射電力に基づいて前記マイクロ波発生部および前記増幅部を制御するように動作可能である、マイクロ波処理装置。
  2.  前記制御部は、前記マイクロ波の前記周波数を変化させる際に、前記マイクロ波の出力を停止する停止時間を設定し、前記マイクロ波の前記周波数に応じて前記停止時間を変化させるように動作可能である、請求項1に記載のマイクロ波処理装置。
  3.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記停止時間を前記反射波率が低いほど長く設定するように動作可能である、請求項2に記載のマイクロ波処理装置。
  4.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記反射波率が所定の値を超えた前記周波数の前記マイクロ波には前記停止時間を設定しないように動作可能である、請求項2に記載のマイクロ波処理装置。
  5.  前記制御部は、前記周波数に応じて前記マイクロ波の出力におけるデューティ比を変更するように動作可能である、請求項2に記載のマイクロ波処理装置。
  6.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記反射波率が高いほど前記デューティ比を高く設定するように構成された、請求項5に記載のマイクロ波処理装置。
  7.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記反射波率が所定の値を超えた前記周波数の前記マイクロ波には前記デューティ比を100%に設定するように動作可能である、請求項5に記載のマイクロ波処理装置。
  8.  前記制御部は、前記マイクロ波発生部に、前記入射電力に対する前記反射電力の割合である反射波率がより高い前記周波数の前記マイクロ波と、前記反射波率がより低い前記周波数の前記マイクロ波とを交互に発生させるように動作可能である、請求項1に記載のマイクロ波処理装置。
  9.  前記制御部は、前記マイクロ波発生部に、前記反射波率がより高い前記周波数の場合は前記周波数の高い順に前記マイクロ波を発生させ、前記反射波率がより低い前記周波数の場合は前記周波数の低い順に前記マイクロ波を発生させるように動作可能である、請求項8に記載のマイクロ波処理装置。
  10.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記マイクロ波発生部に、前記反射波率の最も高い周波数から順に前記マイクロ波を発生させるように動作可能である、請求項1に記載のマイクロ波処理装置。
  11.  前記制御部は、前記周波数掃引における前記周波数の各々に関する前記入射電力に対する前記反射電力の割合である反射波率を算出し、前記マイクロ波発生部に、前記反射波率が所定の値を超えた前記周波数の前記マイクロ波のみを発生させるように動作可能である、請求項1に記載のマイクロ波処理装置。
  12.  前記制御部は、前記マイクロ波発生部に、前記反射波率が前記所定の値を超えた前記周波数の前記マイクロ波のみを前記加熱の開始から終了まで発生させるように動作可能である、請求項11に記載のマイクロ波処理装置。
  13.  前記制御部は、前記加熱の開始から終了までの時間の最初の半分が経過するまでに、前記反射波率を算出するように動作可能である、請求項11に記載のマイクロ波処理装置。
  14.  前記制御部は、前記加熱室の温度に基づいて、前記マイクロ波発生部に前記周波数掃引を行なわせ、前記マイクロ波の発振条件である前記マイクロ波の前記周波数および出力レベルを再設定するように動作可能である、請求項1~13のいずれか1項に記載のマイクロ波処理装置。
  15.  前記制御部は、前記加熱室の温度が所定値変化するたびに、前記マイクロ波発生部に前記周波数掃引を行なわせ、前記マイクロ波の前記発振条件を再設定するように動作可能である、請求項14に記載のマイクロ波処理装置。
  16.  前記制御部は、前記加熱室の温度が所定温度を通過するたびに、前記マイクロ波発生部に前記周波数掃引を行なわせ、前記マイクロ波の前記発振条件を再設定するように動作可能である、請求項14に記載のマイクロ波処理装置。
PCT/JP2021/002532 2020-02-21 2021-01-26 マイクロ波処理装置 WO2021166563A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180014986.6A CN115136737A (zh) 2020-02-21 2021-01-26 微波处理装置
EP24150891.0A EP4326003A2 (en) 2020-02-21 2021-01-26 Microwave treatment device
EP21756754.4A EP4110012A4 (en) 2020-02-21 2021-01-26 MICROWAVE TREATMENT DEVICE
EP24150907.4A EP4329430A3 (en) 2020-02-21 2021-01-26 Microwave treatment device
JP2022501728A JPWO2021166563A1 (ja) 2020-02-21 2021-01-26
US17/758,968 US20230199923A1 (en) 2020-02-21 2021-01-26 Microwave treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027701 2020-02-21
JP2020-027701 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166563A1 true WO2021166563A1 (ja) 2021-08-26

Family

ID=77390921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002532 WO2021166563A1 (ja) 2020-02-21 2021-01-26 マイクロ波処理装置

Country Status (5)

Country Link
US (1) US20230199923A1 (ja)
EP (3) EP4329430A3 (ja)
JP (1) JPWO2021166563A1 (ja)
CN (1) CN115136737A (ja)
WO (1) WO2021166563A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置
WO2013038715A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
JP2018081908A (ja) * 2016-11-18 2018-05-24 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. 固体加熱装置におけるrf励磁信号パラメータの確立
JP2018142452A (ja) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 高周波加熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363854B2 (en) * 2009-06-19 2016-06-07 Lg Electronics Inc. Cooking apparatus using microwaves
JP5657016B2 (ja) * 2009-11-10 2015-01-21 ゴジ リミテッド エネルギーを制御するための装置および方法
KR101709473B1 (ko) * 2010-05-26 2017-02-23 엘지전자 주식회사 마이크로웨이브를 이용한 조리기기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置
WO2013038715A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
JP2018081908A (ja) * 2016-11-18 2018-05-24 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. 固体加熱装置におけるrf励磁信号パラメータの確立
JP2018142452A (ja) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 高周波加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4110012A4 *

Also Published As

Publication number Publication date
EP4329430A3 (en) 2024-05-15
JPWO2021166563A1 (ja) 2021-08-26
CN115136737A (zh) 2022-09-30
EP4326003A2 (en) 2024-02-21
EP4110012A1 (en) 2022-12-28
EP4329430A2 (en) 2024-02-28
US20230199923A1 (en) 2023-06-22
EP4110012A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2011004561A1 (ja) マイクロ波加熱装置およびマイクロ波加熱制御方法
US9717116B2 (en) Microwave oven and related method
KR101569235B1 (ko) Rf 에너지를 사용하여 가열하는 장치 및 방법
WO2010134307A1 (ja) マイクロ波加熱装置及びマイクロ波加熱方法
US20180245983A1 (en) Temperature measurement arrangement
US20080266012A1 (en) Method for controlling high-frequency radiator
KR20110129718A (ko) 마이크로웨이브를 이용한 조리기기
WO2021166563A1 (ja) マイクロ波処理装置
WO2021020374A1 (ja) マイクロ波処理装置
WO2021020373A1 (ja) マイクロ波処理装置
WO2022163332A1 (ja) マイクロ波処理装置
US20220201813A1 (en) Microwave treatment device
WO2021166562A1 (ja) 高周波処理装置
JP2009252564A (ja) マイクロ波処理装置
JP7203301B2 (ja) 高周波加熱装置
US20230047831A1 (en) High-frequency processing device
JPH07122356A (ja) 高周波加熱装置
JP2010272216A (ja) マイクロ波処理装置
KR20110129722A (ko) 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR20100136838A (ko) 마이크로웨이브를 이용한 조리기기
KR20100136840A (ko) 마이크로웨이브를 이용한 조리기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021756754

Country of ref document: EP

Effective date: 20220921