WO2021166562A1 - 高周波処理装置 - Google Patents

高周波処理装置 Download PDF

Info

Publication number
WO2021166562A1
WO2021166562A1 PCT/JP2021/002531 JP2021002531W WO2021166562A1 WO 2021166562 A1 WO2021166562 A1 WO 2021166562A1 JP 2021002531 W JP2021002531 W JP 2021002531W WO 2021166562 A1 WO2021166562 A1 WO 2021166562A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power
unit
reflection
heating
Prior art date
Application number
PCT/JP2021/002531
Other languages
English (en)
French (fr)
Inventor
大森 義治
大介 細川
中村 秀樹
和樹 前田
高史 夘野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180014965.4A priority Critical patent/CN115104379A/zh
Priority to EP21757082.9A priority patent/EP4110011A4/en
Priority to US17/758,576 priority patent/US20230052961A1/en
Priority to JP2022501727A priority patent/JPWO2021166562A1/ja
Publication of WO2021166562A1 publication Critical patent/WO2021166562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Definitions

  • This disclosure relates to a high-frequency treatment device.
  • Patent Document 1 describes a modal condition that is a relationship between the wavelength of a radio wave and the dimensions of a housing so as to resonate in a heating space.
  • Patent Document 1 if the modal condition is satisfied, heating with the intended heating distribution is possible by selecting a combination of the field pattern and the supplied power.
  • the combination of the field pattern and the power supply is determined by the frequency, phase, and other parameters related to MSE (Modulation space elements).
  • the distribution of electric power absorbed by the object to be heated changes depending on the shape, amount, number of treatments, arrangement, dielectric constant distribution in the object to be heated, and the like. Under the influence of this, when the object to be heated is heated with high-frequency power, the electromagnetic field distribution shifts in the space inside the housing as compared with the unloaded resonance state.
  • the present disclosure is to solve the above-mentioned conventional problems, and an object of the present disclosure is to provide a high-frequency processing apparatus capable of appropriately heating various objects to be heated.
  • the high-frequency processing apparatus of one aspect of the present disclosure includes a heating chamber for accommodating an object to be heated, an oscillating unit, at least one power feeding unit, a detecting unit, and a control unit.
  • the oscillating unit generates high-frequency power having an arbitrary frequency in a predetermined frequency band.
  • At least one power feeding unit supplies incident power based on high frequency power to the heating chamber.
  • the detection unit detects the incident power and the reflected power returning from the heating chamber to at least one power feeding unit.
  • the control unit causes the oscillation unit to perform frequency sweep, and measures the reflection characteristics based on the incident power and reflected power for each heating condition including frequency.
  • the control unit determines the heating condition to be used next based on the reflection fluctuation width indicating the change in the reflection characteristic for each heating condition.
  • FIG. 1 is a schematic configuration diagram showing a high-frequency heating device according to an example of the embodiment of the present disclosure.
  • FIG. 2A is a schematic configuration diagram showing an analysis model for the configuration shown in FIG.
  • FIG. 2B is a diagram showing the distribution of physical property values in the object to be heated before heating in the analysis model shown in FIG. 2A.
  • FIG. 2C is a diagram showing the distribution of physical property values in the object to be heated after heating in the analysis model shown in FIG. 2A.
  • FIG. 3A is a diagram showing an example of the frequency characteristics of the reflected power in the example of the embodiment.
  • FIG. 3B is a diagram showing another example of the frequency characteristic of the reflected power in one example of the embodiment.
  • FIG. 4A is a contour diagram showing an example of the absorbed power distribution in the example of the embodiment.
  • FIG. 4B is a contour diagram showing an example of the absorbed power distribution in the example of the embodiment.
  • FIG. 5 is a schematic configuration diagram showing a high frequency heating device according to another example of the embodiment of the present disclosure.
  • FIG. 6A is a schematic configuration diagram showing an analysis model for the configuration shown in FIG.
  • FIG. 6B is a diagram showing the distribution of physical property values in the object to be heated before heating in the analysis model shown in FIG. 6A.
  • FIG. 6C is a diagram showing the distribution of physical property values in the object to be heated after heating in the analysis model shown in FIG. 6A.
  • FIG. 7A is a contour diagram showing an example of the frequency characteristic and the phase characteristic of the reflected power in another example of the embodiment.
  • FIG. 7B is a contour diagram showing an example of the frequency characteristic and the phase characteristic of the reflected power in another example of the embodiment.
  • FIG. 7C is a contour diagram showing an example of the frequency characteristic and the phase characteristic of the reflected power in another example of the embodiment.
  • FIG. 8 is a contour diagram showing an example of the absorbed power distribution in another example of the embodiment.
  • FIG. 9 is a flowchart showing the entire heating control according to the embodiment.
  • FIG. 10 is a flowchart showing the details of the detection process DT1.
  • FIG. 11 is a flowchart showing the details of the detection process DT2.
  • the high-frequency processing apparatus of the first aspect of the present disclosure includes a heating chamber for accommodating an object to be heated, an oscillating unit, at least one power feeding unit, a detecting unit, and a control unit.
  • the oscillating unit generates high-frequency power having an arbitrary frequency in a predetermined frequency band.
  • At least one power feeding unit supplies incident power based on high frequency power to the heating chamber.
  • the detection unit detects the incident power and the reflected power returning from the heating chamber to at least one power feeding unit.
  • the control unit causes the oscillation unit to perform frequency sweep, and measures the reflection characteristics based on the incident power and reflected power for each heating condition including frequency.
  • the control unit determines the heating condition to be used next based on the reflection fluctuation width indicating the change in the reflection characteristic for each heating condition.
  • the high frequency processing apparatus of the second aspect of the present disclosure further includes a phase adjusting unit based on the first aspect.
  • At least one power feeding unit includes a first power feeding unit and a second power feeding unit.
  • the phase adjusting unit is connected to the oscillation unit and adjusts the phase difference between the high frequency power to be supplied by the first feeding unit and the high frequency power to be supplied by the second feeding unit.
  • the control unit causes the phase adjusting unit to perform phase sweep, and measures the reflection characteristics based on the incident power and the reflected power for each heating condition including the phase difference.
  • control unit determines the heating condition in which the absolute value of the reflection fluctuation width is smaller than the threshold value as the heating condition to be used next, based on the first aspect.
  • the threshold value is a value obtained by multiplying the absolute value of the reflection fluctuation width by a predetermined coefficient, based on the third aspect.
  • the high frequency processing apparatus of the fifth aspect of the present disclosure further includes a storage unit based on the first aspect.
  • the control unit stores the reflection characteristics in the storage unit each time the heating condition to be used is determined next time.
  • control unit calculates the maximum value of the reflection fluctuation width each time the reflection fluctuation width is calculated, and stores the maximum value in the storage unit, based on the fifth aspect. Then, the heating condition to be used next is determined based on the maximum value.
  • control unit calculates the cumulative value of the reflection fluctuation width each time the reflection fluctuation width is calculated, and stores the cumulative value in the storage unit, based on the fifth aspect. Then, the heating conditions to be used next are determined based on the cumulative value.
  • the control unit has a reflection fluctuation width under the same heating conditions as the past heating conditions among the reflection fluctuation width values for each heating condition.
  • a value having a code different from the value of is replaced with 0.
  • the frequency sweep is an operation of changing the frequency at uniform or non-uniform intervals over a predetermined frequency band, based on the fifth aspect.
  • the phase sweep is an operation of changing the phase difference at uniform or non-uniform intervals over a predetermined angular range.
  • control unit stores only the reflection characteristic indicating the extreme value of the change in the storage unit, based on the fifth aspect.
  • FIG. 1 is a schematic configuration diagram showing a high frequency processing apparatus according to an example of the embodiment of the present disclosure.
  • the high-frequency processing apparatus includes a heating chamber 1, an oscillation unit 3, an amplification unit 4a, a feeding unit 5a, a detection unit 6a, a control unit 7, and a storage unit. 8 and.
  • the heating chamber 1 accommodates an object to be heated 2 such as food, which is a load.
  • the oscillator 3 is composed of a semiconductor element.
  • the oscillating unit 3 can generate high-frequency power having a frequency within a predetermined frequency band, and generates high-frequency power having a frequency specified by the control unit 7.
  • the amplification unit 4a is composed of a semiconductor element.
  • the amplification unit 4a amplifies the high-frequency power generated by the oscillation unit 3 according to the instruction of the control unit 7, and outputs the amplified high-frequency power.
  • the power feeding unit 5a functions as an antenna, and supplies the high frequency power amplified by the amplification unit 4a to the heating chamber 1 as incident power. That is, the power feeding unit 5a supplies the incident power based on the high frequency power generated by the oscillating unit 3 to the heating chamber 1. Of the incident power, the power that is not consumed by the object to be heated 2 or the like is the reflected power that returns from the heating chamber 1 to the power feeding unit 5a.
  • the detection unit 6a is composed of, for example, a directional coupler.
  • the detection unit 6a detects the incident power and the reflected power, and notifies the control unit 7 of the amount of the detected incident power and the reflected power. That is, the detection unit 6a functions as both an incident power detection unit and a reflected power detection unit.
  • the detection unit 6a has, for example, a coupling degree of about -40 dB, and extracts about 1/10000 of the incident power and the reflected power.
  • the extracted incident power and reflected power are rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and converted into information according to the incident power and reflected power.
  • the control unit 7 receives this information.
  • the storage unit 8 is composed of a semiconductor memory or the like, stores data from the control unit 7, reads out the stored data, and transmits the stored data to the control unit 7.
  • the control unit 7 is composed of a microprocessor including a CPU (Central processing unit).
  • the control unit 7 controls the oscillation unit 3 and the amplification unit 4a based on the information from the detection unit 6a and the storage unit 8 to execute the heating control in the high frequency processing apparatus.
  • CPU Central processing unit
  • FIG. 2A is a schematic configuration diagram showing an analysis model for the configuration shown in FIG. 2B and 2C show the distribution of physical property values in the object to be heated 2 three-dimensionally in the analysis model shown in FIG. 2A.
  • FIG. 2B shows the distribution of physical property values in the object to be heated 2 before heating.
  • the object to be heated 2 before heating is a frozen meat 2b having a uniform physical property value as a whole.
  • FIG. 2C shows the distribution of the physical property values of the object to be heated 2 after being heated for a predetermined time with a high frequency power having a frequency of 2.45 GHz.
  • the heated object 2 after heating has a portion having a physical characteristic value of the frozen meat 2b and a portion having a physical characteristic value of the thawed meat 2a. That is, the thawed meat 2a and the frozen meat 2b are mixed in the heated object 2 after heating.
  • the oscillation unit 3 supplies high frequency power while performing frequency sweep.
  • the frequency sweep is an operation of the oscillating unit 3 that sequentially changes frequencies at predetermined frequency intervals over a predetermined frequency band.
  • the predetermined frequency band is 2.4 GHz to 2.5 GHz, and the predetermined frequency interval is 0.01 GHz.
  • the predetermined frequency interval may be uniform or non-uniform.
  • the detection unit 6a detects the reflected power with respect to the high frequency power of each supplied frequency.
  • the amount of high-frequency power consumed by the object 2 to be heated changes according to the frequency of the high-frequency power supplied.
  • the power loss in the heating chamber 1 and the resonance of the heating chamber 1 also change according to the frequency of the high frequency power supplied. Due to such frequency characteristics, the amount of loss of high-frequency power consumed in the heating chamber 1 changes, and the amount of reflected power also changes accordingly.
  • the graph showing the ratio (dB) of the reflected power amount to the incident power amount at each frequency (GHz) is referred to as a reflection characteristic 9.
  • FIG. 3A shows the reflection characteristic 9 (dotted line) for the object to be heated 2 before heating shown in FIG. 2B and the reflection characteristic 9 (solid line) for the object 2 to be heated after heating shown in FIG. 2C.
  • the curve showing the former is called a reflection characteristic curve 9A
  • the curve showing the latter is called a reflection characteristic curve 9B.
  • 4A and 4B show an example of the distribution of electric power absorbed by the load.
  • the distribution of the electric power absorbed by the load is referred to as an absorbed power distribution (Absorbed power distribution) 11.
  • 4A and 4B are contour diagrams showing the absorbed power distribution obtained by analyzing the state of the object to be heated 2 which is the frozen meat 2b.
  • FIG. 4A is a perspective view three-dimensionally showing the absorbed power distribution 11 in the object to be heated 2 when high frequency power having a frequency of 2.45 GHz is supplied.
  • the object 2 to be heated having the distribution of the physical property values shown in FIG. 2B comes to have the distribution of the physical characteristics values shown in FIG. 2C.
  • FIG. 4B shows the absorbed power distribution 11 seen from above with respect to the object to be heated 2 under each heating condition when the high frequency power is supplied together with the frequency sweep.
  • the frequency used in the frequency sweep is set from 2.4 GHz to 2.5 GHz in 0.01 GHz increments.
  • the absorbed power distributions 11 obtained at each frequency are arranged in order of frequency from the left.
  • FIG. 3A there is a difference between the two reflection characteristics 9 before and after heating at frequencies from around 2.45 GHz to around 2.48 GHz. This difference is due to the fact that a part of the object to be heated 2 is thawed.
  • the difference between the two reflection characteristics 9 before and after heating is referred to as a reflection fluctuation width 12.
  • FIG. 3B is a graph showing the reflection fluctuation width 12 for each frequency.
  • the reflection fluctuation width 12 fluctuates for each frequency.
  • the reason why the reflection fluctuation width 12 fluctuates is that a part of the object to be heated 2 is thawed.
  • the fact that the reflection fluctuation width 12 is close to 0 means that at that frequency, the amount of reflected power is hardly affected by the fact that a part of the object to be heated 2 is thawed.
  • the distribution patterns are different from each other when the absorbed power distribution 11 shown in FIG. 4B is compared with the distribution shown in FIG. 2C.
  • the high-frequency power applied to the thawed portion (thawed meat 2a) of the object to be heated 2 is small, so that the amount of reflected power is not significantly affected.
  • FIG. 4B of the absorbed power distribution 11 shown in FIG. 4B, a distribution in which the portion where the electromagnetic field is strong is different from that in FIG. 4A and FIG. 2C is surrounded by a dotted line (range of 2.48 to 2.50 GHz). , And the range of 2.40 to 2.43 GHz). These ranges substantially coincide with the frequency band in which the value of the reflection fluctuation width 12 is close to 0 in FIG. 3B.
  • the frequency to be used next is selected from the frequency band in which the value of the reflection fluctuation width 12 is close to 0 in FIG. 3B, the frequency of 2.45 GHz used for heating without increasing the reflected power. It is possible to generate an absorbed power distribution 11 different from the absorbed power distribution 11 in the above. That is, here, the frequency of high-frequency power is the heating condition.
  • FIG. 5 is a schematic configuration diagram showing a high-frequency heating device according to another example of the present embodiment.
  • the high-frequency heating device according to the other example substantially the same components as those of the high-frequency heating device according to the above example are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the high-frequency heating device in addition to the feeding path shown in FIG. It further has a second feeding path including 5b and a detection unit 6b.
  • the reflected power returns from the heating chamber 1 to the feeding units 5a and 5b, respectively.
  • the power supply units 5a and 5b correspond to the first power supply unit and the second power supply unit, respectively.
  • the second feeding path has a phase adjusting unit 10 arranged between the oscillating unit 3 and the amplifying unit 4b.
  • the phase adjusting unit 10 is composed of a variable capacitance element or the like whose capacitance changes according to the applied voltage.
  • the phase adjusting unit 10 may be integrally configured with the oscillating unit 3 or may be configured as a separate body from the oscillating unit 3.
  • the phase adjusting unit 10 can operate so as to adjust the phase of the input high frequency power in the range of 0 degrees to approximately 180 degrees. That is, the phase adjusting unit 10 can adjust the phase difference between the two high-frequency powers supplied from the feeding units 5a and 5b to any of ⁇ 180 degrees to +180 degrees.
  • the two high frequency powers supplied from the feeding units 5a and 5b have a single frequency and different phases adjusted by the phase adjusting unit 10.
  • the phase of the high-frequency power synthesized in the heating chamber 1 can be changed, and the electromagnetic field distribution in the heating chamber 1 can also be changed. That is, the electromagnetic field distribution in the heating chamber 1 changes due to two factors, the frequency and the phase difference of the two high-frequency power supplies. In this case, the combination of the frequency and phase difference of the two high frequency powers is the heating condition. In this embodiment, the two high frequency powers have a single frequency.
  • FIG. 6A is a schematic configuration diagram showing an analysis model for the configuration shown in FIG. 6B and 6C are three-dimensional views showing the distribution of physical property values in the object to be heated 2 in the analysis model shown in FIG. 6A, similarly to FIGS. 2B and 2C.
  • FIG. 6B shows the distribution of physical property values in the object to be heated 2 before heating.
  • the object to be heated 2 before heating is frozen meat 2b having a uniform physical property value as a whole.
  • FIG. 6C shows the distribution of the physical property values of the object to be heated 2 after being heated for a predetermined time with two high-frequency powers having a frequency of 2.47 GHz and a phase difference of 180 degrees.
  • the heated object 2 after heating has a portion having a physical characteristic value of the frozen meat 2b and a portion having a physical characteristic value of the thawed meat 2a. That is, the thawed meat 2a and the frozen meat 2b are mixed in the object 2 to be heated shown in FIG. 6C.
  • FIG. 7A to 7C are contour diagrams showing an example of the frequency characteristic and the phase characteristic of the reflected power.
  • the oscillator 3 supplies high frequency power while performing frequency sweep.
  • the phase adjusting unit 10 performs a phase sweep on the input high frequency power and outputs the high frequency power whose phase has changed.
  • the phase sweep is an operation of the phase adjusting unit 10 that sequentially changes the phase difference between two high-frequency powers over a predetermined angular range at a predetermined angular interval.
  • the predetermined angle range is 0 to 300 degrees
  • the predetermined angle interval is 60 degrees.
  • the predetermined angular spacing may be uniform or non-uniform.
  • the detection units 6a and 6b detect the reflected power at each combination of frequency and phase difference.
  • the horizontal axis is the frequency (GHz) and the vertical axis is the phase difference (degrees).
  • 7A-7C show the ratio (dB) of the reflected power amount to the incident power amount in each combination of frequency and phase difference.
  • the brightness of the regions in FIGS. 7A-7C means that the ratio can be increased based on the heating conditions corresponding to the brighter regions.
  • the amount of loss of high-frequency power consumed in the heating chamber 1 changes due to changes in frequency-dependent consumption and loss of high-frequency power. Therefore, the amount of reflected power also changes in conjunction with it.
  • the electromagnetic field distribution in the heating chamber 1 changes according to the phase difference of the high frequency power, and the amount of loss of the high frequency power consumed in the heating chamber 1 such as the power absorbed by the load also changes. Therefore, the amount of reflected power also changes in conjunction with it.
  • the contour diagrams shown in FIGS. 7A to 7C are referred to as reflection characteristics 9.
  • FIG. 7A shows the reflection characteristic 9 with respect to the object to be heated 2 before heating shown in FIG. 6B.
  • FIG. 7B shows the reflection characteristic 9 with respect to the object to be heated 2 after heating shown in FIG. 6C.
  • FIG. 7C shows the difference between the two reflection characteristics 9 before and after heating. Similar to FIG. 3B, this difference is referred to as the reflection fluctuation width 12.
  • FIG. 7A and 7B show the reflection characteristic 9 when a phase difference is added to the heating conditions (frequency) in the high frequency processing apparatus shown in FIG.
  • FIG. 7C shows a reflection fluctuation width 12 calculated by subtracting the value (dB) of the reflection characteristic curve 9A from the value (dB) of the reflection characteristic curve 9B for each combination of frequency and phase difference.
  • the reflection fluctuation width 12 under the heating conditions of a frequency of 2.47 GHz and a phase difference of 180 degrees is 2.4 dB.
  • FIG. 8 shows the absorbed power distribution 11 seen from below with respect to the object to be heated 2 under each heating condition when two high-frequency powers are supplied together with the frequency sweep and the phase sweep.
  • FIG. 8 analyzes the state of the object to be heated 2 which is the frozen meat 2b shown in FIG. 6B, and shows the obtained absorbed power distribution 11 in a contour diagram.
  • the absorbed power distributions 11 obtained under each heating condition are arranged in a matrix with the horizontal axis representing the frequency and the vertical axis representing the phase difference.
  • the single frequency of the two high frequency powers is set from 2.4 GHz to 2.5 GHz in 0.01 GHz increments.
  • the phase difference between the two high-frequency powers is set in 60-degree increments from 0 degrees to 300 degrees.
  • the object 2 to be heated having the distribution of the physical property values shown in FIG. 6B is shown in FIG. 6C. It comes to have the distribution of the physical characteristic values shown in.
  • the heating condition that causes the absorbed power distribution 11 similar to the heating condition having a frequency of 2.47 GHz and a phase difference of 180 degrees is referred to as a similar heating condition 13.
  • the similar heating condition 13 substantially matches the combination of the frequency and the phase difference with many changes in the reflection characteristic 9 of the reflection fluctuation width 12 shown in FIG. 7C.
  • the frequency and phase difference to be used next may be selected from the frequencies and phase differences in which the value of the reflection fluctuation width 12 is close to 0 in FIG. 7C.
  • the absorbed power distribution 11 different from the absorbed power distribution 11 at the frequency of 2.47 GHz and the phase difference of 180 degrees used for heating can be generated without increasing the reflected power.
  • frequency and phase difference are used as heating conditions.
  • the heating conditions further include other variable factors such as selection of the power feeding unit, the absorbed power distribution 11 can be changed by the same principle.
  • FIG. 9 is a flowchart showing the entire heating control according to the present embodiment.
  • the control unit 7 first performs the detection process DT1 (step S1).
  • FIG. 10 is a flowchart showing the details of the detection process DT1 (step S1). As shown in FIG. 10, the control unit 7 measures the reflection characteristic 9 based on the reflected power detected for each frequency by the frequency sweep (step S11).
  • the control unit 7 stores the reflection characteristic 9 in the storage unit 8 in accordance with the heating conditions used (step S12).
  • the control unit 7 determines the heating conditions in consideration of the reflection characteristic 9, the heating efficiency, and the like (step S13), and ends the detection process DT1.
  • control unit 7 heats the object to be heated according to the determined heating conditions (step S2). After heating for a certain period of time, the control unit 7 performs the detection process DT2 (step S3).
  • FIG. 11 is a flowchart showing the details of the detection process DT2.
  • the control unit 7 measures the reflection characteristic 9 based on the reflected power detected for each frequency by the frequency sweep in the detection process DT2 (step S21).
  • the control unit 7 stores the obtained reflection characteristic 9 in the storage unit 8 in accordance with the heating conditions used (step S22).
  • the control unit 7 calculates the reflection fluctuation width 12 based on the difference between the two reflection characteristics 9 measured in the detection process DT1 and the detection process DT2 (step S23).
  • the first calculation of the reflection fluctuation width 12 after the start of cooking is performed using the result of the detection process DT1 and the result of the first detection process DT2 after heating.
  • the second and subsequent calculation of the reflection fluctuation width 12 is performed using the result of the previous detection process DT2 and the result of the current detection process DT2.
  • the control unit 7 calculates the threshold value by multiplying the absolute value of the reflection fluctuation width 12 under the same heating conditions as the heating conditions in the heat treatment (step S2 in FIG. 9) by a predetermined coefficient (step S24). By setting the coefficient to a positive value smaller than 1, the control unit 7 sets the threshold value to a value smaller than each value of the reflection fluctuation width 12 measured under this heating condition.
  • control unit 7 differs from the value of the reflection fluctuation width 12 obtained in step S23 from the value of the reflection fluctuation width 12 under the same heating conditions as the past heating conditions used in step S2 of FIG.
  • the value having the code is replaced with "0" (step S25).
  • the control unit 7 determines this heating condition as the heating condition to be used next. Each time the control unit 7 determines the heating conditions to be used next, the control unit 7 stores the reflection characteristic 9 in the storage unit 8 (step S26), and ends the detection process DT2.
  • control unit 7 grasps the progress of cooking based on the information obtained in the detection process DT2 (step S3) (step S4).
  • the control unit 7 determines whether or not to end cooking based on the progress of cooking, and ends or continues cooking according to the result (step S5).
  • step S5 When continuing cooking (No in step S5), the control unit 7 sets the heating conditions to be used next determined in the detection process DT2 (step S3) to the heating conditions to be actually used, and updates the heating conditions. Then (step S6), the process proceeds to the next heat treatment.
  • step S5 the control unit 7 stops the oscillating unit 3 to end cooking.
  • the reflection fluctuation width is calculated based on the reflection characteristics obtained by the frequency sweep described with reference to FIGS. 2A to 4B.
  • the phase sweep described with reference to FIGS. 7A-8 may be used.
  • the heating conditions include frequency and phase difference. According to this aspect, the degree of approximation of the absorbed power distribution 11 can be grasped.
  • the oscillation unit 3 may generate only high frequency power of a constant frequency without sweeping the frequency, or may have a configuration capable of outputting only a single frequency.
  • the degree of approximation of the absorbed power distribution 11 may be grasped by calculating the reflection fluctuation width based on the reflection characteristics obtained only by the phase sweep and comparing it with the threshold value.
  • various objects to be heated can be optimally heated.
  • control unit 7 stores all the used heating conditions in the storage unit 8, it is possible to avoid repeatedly using the heating conditions that generate the same or similar absorbed power distribution 11.
  • control unit 7 may store, for example, only the maximum value and the minimum value of the change, that is, the reflection characteristic 9 indicating the extreme value of the change in the storage unit 8. Even in this case, the control unit 7 can reproduce the original data by appropriately interpolating the stored data.
  • the absorbed power distribution can be changed without increasing the reflected power by selecting the frequency to be used as the heating condition from the frequency band in which the value of the reflection fluctuation width 12 is close to 0. That is, the heating conditions to be used next are determined while avoiding the frequency band in which the reflection fluctuation width 12 is large.
  • the heating conditions to be used next may be determined by a method different from the above description.
  • the control unit 7 may calculate the maximum value of the reflection fluctuation width 12 for each frequency and store the maximum value in the storage unit 8. Each time the control unit 7 calculates the reflection fluctuation width 12, the frequency band having a small reflection fluctuation width 12 may be determined as the heating condition to be used next by referring to the maximum values thereof.
  • control unit 7 may calculate the cumulative value of the reflection fluctuation width 12 for each frequency obtained each time, and store the cumulative value in the storage unit 8. Each time the control unit 7 calculates the reflection fluctuation width 12, the control unit 7 may determine the frequency band in which the reflection fluctuation width 12 is small as the heating condition to be used next by referring to the cumulative value.
  • the control unit 7 may use other heating conditions before the heating conditions after determining the heating conditions to be used next.
  • the high-frequency heating device of the present disclosure can be applied to a drying device, a heating device for ceramics, a garbage processing machine, a semiconductor manufacturing device, a chemical reaction device, and the like, in addition to a heating cooker using dielectric heating. Is.
  • Heating chamber 2 Heated object 2a Thawed meat 2b Frozen meat 3 Oscillator 4a, 4b Amplification 5a, 5b Power supply 6a, 6b Detection unit 7
  • Control unit 8 Storage unit 9 Reflection characteristics 9A, 9B Reflection characteristics curve 10 Phase adjustment unit 11 Absorption power distribution 12 Reflection fluctuation width 13 Similar heating conditions

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

本開示の一態様の高周波処理装置は、被加熱物を収容する加熱室と、発振部と、少なくとも一つの給電部と、検出部と、制御部とを備える。発振部は、所定の周波数帯域における任意の周波数を有する高周波電力を発生する。少なくとも一つの給電部は、高周波電力に基づく入射電力を加熱室に供給する。検出部は、入射電力と、加熱室から少なくとも一つの給電部に戻る反射電力とを検出する。制御部は、発振部に周波数掃引を行わせるとともに、周波数を含む加熱条件ごとの入射電力と反射電力とに基づいて反射特性を測定する。制御部は、加熱条件ごとの反射特性の変化を示す反射変動幅に基づいて次に使用する加熱条件を決定する。本態様によれば、様々な被加熱物を最適に加熱することができる。

Description

高周波処理装置
 本開示は、高周波処理装置(High-frequency treatment device)に関する。
 例えば、特許文献1には、加熱空間で共振するように電波の波長と筐体の寸法との関連性であるモーダル条件について記載されている。
 特許文献1によれば、モーダル条件を満たせば、フィールドパターン(Field pattern)と供給電力との組み合わせを選択することで、意図する加熱分布での加熱が可能である。フィールドパターンと供給電力の組み合わせは、周波数、位相、その他のMSE(Modulation space elements)に関するパラメータ(Parameter)で決定される。
特開2016-129141号公報
 しかしながら、被加熱物の形状、量、処理数、配置、被加熱物内の誘電率分布などに依存して、被加熱物に吸収される電力の分布は変化する。その影響を受けて、被加熱物を高周波電力で加熱していくと、筐体内の空間において、無負荷の共振状態と比べて電磁界分布がずれてくる。
 加熱開始時点で、加熱中の高周波電力の分布を推定するのは難しい。赤外線センサなどを使用すると、加熱中の温度分布の変化を把握することができる。しかし、発生した温度むらを補正することができる電磁界の分布を発生させることは非常に難しい。
 被加熱物の吸収する電力の分布を正しく把握せずに周波数などを切り替えても、加熱むらを実質的には改善することは困難である。
 本開示は、上記従来の問題を解決するもので、様々な被加熱物を適切に加熱することができる高周波処理装置を提供することを目的とする。
 本開示の一態様の高周波処理装置は、被加熱物を収容する加熱室と、発振部と、少なくとも一つの給電部と、検出部と、制御部とを備える。
 発振部は、所定の周波数帯域における任意の周波数を有する高周波電力を発生する。少なくとも一つの給電部は、高周波電力に基づく入射電力を加熱室に供給する。検出部は、入射電力と、加熱室から少なくとも一つの給電部に戻る反射電力とを検出する。
 制御部は、発振部に周波数掃引を行わせるとともに、周波数を含む加熱条件ごとの入射電力と反射電力とに基づいて反射特性を測定する。制御部は、加熱条件ごとの反射特性の変化を示す反射変動幅に基づいて次に使用する加熱条件を決定する。
 本態様によれば、様々な被加熱物を最適に加熱することができる。
図1は、本開示の実施の形態の一例に係る高周波加熱装置を示す概略構成図である。 図2Aは、図1に示す構成に対する解析モデルを示す概略構成図である。 図2Bは、図2Aに示す解析モデルにおける加熱前の被加熱物内の物性値の分布を示す図である。 図2Cは、図2Aに示す解析モデルにおける加熱後の被加熱物内の物性値の分布を示す図である。 図3Aは、実施の形態の一例における反射電力の周波数特性の一例を示す図である。 図3Bは、実施の形態の一例における反射電力の周波数特性の別の一例を示す図である。 図4Aは、実施の形態の一例における吸収電力分布の一例を示す等高線図である。 図4Bは、実施の形態の一例における吸収電力分布の一例を示す等高線図である。 図5は、本開示の実施の形態の他の例に係る高周波加熱装置を示す概略構成図である。 図6Aは、図5に示す構成に対する解析モデルを示す概略構成図である。 図6Bは、図6Aに示す解析モデルにおける加熱前の被加熱物内の物性値の分布を示す図である。 図6Cは、図6Aに示す解析モデルにおける加熱後の被加熱物内の物性値の分布を示す図である。 図7Aは、実施の形態の他の例における反射電力の周波数特性および位相特性の一例を示す等高線図である。 図7Bは、実施の形態の他の例における反射電力の周波数特性および位相特性の一例を示す等高線図である。 図7Cは、実施の形態の他の例における反射電力の周波数特性および位相特性の一例を示す等高線図である。 図8は、実施の形態の他の例における吸収電力分布の一例を示す等高線図である。 図9は、実施の形態に係る加熱制御の全体を示すフローチャートである。 図10は、検出処理DT1の詳細を示すフローチャートである。 図11は、検出処理DT2の詳細を示すフローチャートである。
 本開示の第1の態様の高周波処理装置は、被加熱物を収容する加熱室と、発振部と、少なくとも一つの給電部と、検出部と、制御部とを備える。
 発振部は、所定の周波数帯域における任意の周波数を有する高周波電力を発生する。少なくとも一つの給電部は、高周波電力に基づく入射電力を加熱室に供給する。検出部は、入射電力と、加熱室から少なくとも一つの給電部に戻る反射電力とを検出する。
 制御部は、発振部に周波数掃引を行わせるとともに、周波数を含む加熱条件ごとの入射電力と反射電力とに基づいて反射特性を測定する。制御部は、加熱条件ごとの反射特性の変化を示す反射変動幅に基づいて次に使用する加熱条件を決定する。
 本開示の第2の態様の高周波処理装置は、第1の態様に基づきながら、位相調整部をさらに備える。少なくとも一つの給電部は、第1の給電部と第2の給電部とを含む。
 位相調整部は、前記発振部に接続されて、第1の給電部により供給されるべき高周波電力と第2の給電部により供給されるべき高周波電力との位相差を調整する。制御部は、位相調整部に位相掃引を行わせるとともに、位相差をさらに含む加熱条件ごとの入射電力と反射電力とに基づいて反射特性を測定する。
 本開示の第3の態様の高周波処理装置において、第1の態様に基づきながら、制御部は、反射変動幅の絶対値が閾値よりも小さい加熱条件を次に使用する加熱条件に決定する。
 本開示の第4の態様の高周波処理装置において、第3の態様に基づきながら、閾値は、反射変動幅の絶対値に所定の係数を乗じた値である。
 本開示の第5の態様の高周波処理装置は、第1の態様に基づきながら、記憶部をさらに備える。制御部は、次に使用する加熱条件を決定するたびに反射特性を記憶部に記憶させる。
 本開示の第6の態様の高周波処理装置において、第5の態様に基づきながら、制御部は、反射変動幅を算出するたびに反射変動幅の最大値を算出し、最大値を記憶部に記憶させ、最大値に基づいて次に使用する加熱条件を決定する。
 本開示の第7の態様の高周波処理装置において、第5の態様に基づきながら、制御部は、反射変動幅を算出するたびに反射変動幅の累積値を算出し、累積値を記憶部に記憶させ、累積値に基づいて次に使用する加熱条件を決定する。
 本開示の第8の態様の高周波処理装置において、第2の態様に基づきながら、制御部は、加熱条件ごとの反射変動幅の値のうち、過去の加熱条件と同じ加熱条件での反射変動幅の値と異なる符号を有する値を0に置き換える。
 本開示の第9の態様の高周波処理装置において、第5の態様に基づきながら、周波数掃引は、所定の周波数帯域にわたって周波数を均一または不均一の間隔で変化させる動作である。位相掃引は、所定の角度範囲にわたって位相差を均一または不均一の間隔で変化させる動作である。
 本開示の第10の態様の高周波処理装置において、第5の態様に基づきながら、制御部は、記憶部に、変化の極値を示す反射特性のみを記憶させる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 図1は、本開示の実施の形態の一例に係る高周波処理装置を示す概略構成図である。図1に示すように、本実施の形態に係る高周波処理装置は、加熱室1と、発振部3と、増幅部4aと、給電部5aと、検出部6aと、制御部7と、記憶部8とを備える。
 加熱室1は、負荷である食品などの被加熱物2を収容する。発振部3は半導体素子で構成される。発振部3は、所定の周波数帯域内の周波数を有する高周波電力を発生することができ、制御部7により指定された周波数の高周波電力を発生する。
 増幅部4aは半導体素子で構成される。増幅部4aは、発振部3により発生された高周波電力を制御部7の指示に応じて増幅し、増幅された高周波電力を出力する。
 給電部5aはアンテナとして機能し、増幅部4aにより増幅された高周波電力を入射電力として加熱室1に供給する。すなわち、給電部5aは、発振部3により発生された高周波電力に基づく入射電力を加熱室1に供給する。入射電力のうち、被加熱物2などにより消費されない電力は、加熱室1から給電部5aに戻る反射電力となる。
 検出部6aは例えば方向性結合器で構成される。検出部6aは入射電力および反射電力を検出し、検出された入射電力および反射電力の量を制御部7に通知する。すなわち、検出部6aは、入射電力検出部および反射電力検出部の両方として機能する。
 検出部6aは、例えば約-40dBの結合度を有し、入射電力および反射電力の約1/10000程度の電力を抽出する。抽出された入射電力および反射電力は検波ダイオード(図示せず)で整流化され、コンデンサ(図示せず)で平滑化されて、入射電力および反射電力に応じた情報に変換される。制御部7は、これらの情報を受信する。
 記憶部8は半導体メモリなどで構成され、制御部7からのデータを記憶し、記憶したデータを読み出して制御部7に送信する。
 制御部7は、CPU(Central processing unit)を含むマイクロプロセッサで構成される。制御部7は、検出部6aおよび記憶部8からの情報に基づいて、発振部3および増幅部4aを制御して、高周波処理装置における加熱制御を実行する。
 図2Aは、図1に示す構成に対する解析モデルを示す概略構成図である。図2Bおよび図2Cは、図2Aに示す解析モデルにおける被加熱物2内の物性値の分布を3次元的に示す。
 図2Bは、加熱前の被加熱物2内の物性値の分布を示す。図2Bに示すように、加熱前の被加熱物2は、全体的に均一な物性値を有する冷凍肉2bである。
 図2Cは、2.45GHzの周波数を有する高周波電力で所定時間加熱した後の被加熱物2の物性値の分布を示す。図2Cに示すように、加熱後の被加熱物2は、冷凍肉2bの物性値を有する部分と、解凍肉2aの物性値を有する部分とを有する。すなわち、加熱後の被加熱物2には、解凍肉2aと冷凍肉2bとが混在している。
 図3Aおよび図3Bは、反射電力の周波数特性の一例を示すグラフである。反射電力の周波数特性を得るために、発振部3は、周波数掃引を行いながら高周波電力を供給する。周波数掃引とは、所定の周波数帯域にわたって周波数を所定の周波数間隔で順に変える発振部3の動作である。
 本実施の形態では、所定の周波数帯域は2.4GHz~2.5GHzであり、所定の周波数間隔は0.01GHzである。所定の周波数間隔は均一でも不均一でもよい。検出部6aは、供給された各周波数の高周波電力に対する反射電力を検出する。
 被加熱物2で消費される高周波電力の量は、供給される高周波電力の周波数に応じて変化する。加熱室1における電力損失、および、加熱室1の共振も同様に、供給される高周波電力の周波数に応じて変化する。このような周波数特性により、加熱室1で消費される高周波電力の損失量は変化し、それに伴って反射電力量も変化する。
 ここでは、各周波数(GHz)における入射電力量に対する反射電力量の比率(dB)を示すグラフを反射特性9と呼ぶ。
 図3Aは、図2Bに示す加熱前の被加熱物2に対する反射特性9(点線)と、図2Cに示す加熱後の被加熱物2に対する反射特性9(実線)とを示す。前者を示す曲線を反射特性曲線9Aと呼び、後者を示す曲線を反射特性曲線9Bと呼ぶ。
 図4A、図4Bは、負荷に吸収された電力の分布の一例を示す。本実施の形態では、負荷に吸収された電力の分布を吸収電力分布(Absorbed power distribution)11という。図4A、図4Bは、冷凍肉2bである被加熱物2の状態を解析して得られた吸収電力分布を等高線図で示している。
 図4Aは、2.45GHzの周波数を有する高周波電力を供給した場合における被加熱物2内の吸収電力分布11を3次元的に示す斜視図である。図4Aに示す吸収電力分布11を有する高周波電力で所定時間解凍されると、図2Bに示す物性値の分布を有する被加熱物2は、図2Cに示す物性値の分布を有するようになる。
 図4Bは、周波数掃引とともに高周波電力を供給する場合において、各加熱条件における被加熱物2に対する上から見た吸収電力分布11を示す。図4Bに示すように、周波数掃引において使用される周波数は、2.4GHzから2.5GHzまで0.01GHz刻みに設定されている。図4Bでは、各周波数で得られた吸収電力分布11が左から周波数の順に並べられている。
 図3Aに示すように、2.45GHzあたりから2.48GHzあたりまでの周波数において、加熱前後の二つの反射特性9に差異が生じている。この差異は、被加熱物2の一部が解凍されたことに起因する。以下、加熱前後の二つの反射特性9の差を反射変動幅12と呼ぶ。図3Bは、周波数ごとの反射変動幅12を示すグラフである。
 図3Bに示すように、反射変動幅12は周波数ごとに変動する。反射変動幅12が変動する原因は、被加熱物2の一部が解凍されたことにある。反射変動幅12が0に近いということは、その周波数では、反射電力量が、被加熱物2の一部が解凍されたことの影響をほとんど受けていないことを意味する。
 例えば、図3Bにおいて反射変動幅12が0に近い、2.49GHzの周波数の場合、図4Bに示す吸収電力分布11を図2Cに示す分布と比較すると、分布のパターンが互いに異なる。
 すなわち、反射変動幅12が0に近い周波数帯では、被加熱物2の解凍部分(解凍肉2a)に照射される高周波電力が少ないため、反射電力量にあまり影響が出ていない。
 図4Bにおいて、図4Bに示す吸収電力分布11のうち、図4Aと図2Cとを比較して電磁界の強い部分が異なる分布が点線で囲まれている(2.48~2.50GHzの範囲、および、2.40~2.43GHzの範囲)。これらの範囲は、図3Bにおいて反射変動幅12の値が0に近い周波数帯とほぼ一致する。
 すなわち、図3Bにおいて反射変動幅12の値が0に近い周波数帯の中から、次に使用する周波数を選べば、反射電力を増加させることなく、加熱のために使用された2.45GHzの周波数における吸収電力分布11と異なる吸収電力分布11を発生させることができる。すなわち、ここでは、高周波電力の周波数が加熱条件である。
 図5は、本実施の形態の他の例に係る高周波加熱装置を示す概略構成図である。この他の例に係る高周波加熱装置において、上記一例に係る高周波加熱装置と実質的に同じ構成要素については同じ参照符号を付し、その説明を適宜省略する。
 図5に示すように、この他の例に係る高周波加熱装置は、図1に示す給電経路に加えて、増幅部4a、給電部5a、検出部6aとそれぞれ同等である増幅部4b、給電部5b、検出部6bを含む二つ目の給電経路をさらに有する。本態様において、反射電力は、加熱室1からそれぞれ給電部5a、5bに戻る。給電部5a、5bは第1の給電部、第2の給電部にそれぞれ相当する。
 二つ目の給電経路は、発振部3と増幅部4bとの間に配置された位相調整部10を有する。位相調整部10は、印加電圧に応じて容量が変化する可変容量素子などにより構成される。位相調整部10は、発振部3と一体的に構成されてもよく、発振部3と別体として構成されてもよい。
 位相調整部10は、入力された高周波電力の位相を0度から略180度の範囲で調整するように動作可能である。すなわち、位相調整部10は、給電部5aおよび5bから供給される二つの高周波電力の位相差を-180度~+180度のいずれかに調整することができる。
 本態様において、給電部5aおよび5bから供給される二つの高周波電力は、単一の周波数と、位相調整部10により調整された異なる位相とを有する。
 位相差を調整することにより、加熱室1で合成された高周波電力の位相を変化させることができ、加熱室1内の電磁界分布も変化させることができる。すなわち、加熱室1内の電磁界分布は、供給される二つの高周波電力の周波数および位相差の二つの要因で変化する。この場合、二つの高周波電力の周波数および位相差の組合せが加熱条件である。本実施の形態では、二つの高周波電力は単一の周波数を有する。
 図6Aは、図5に示す構成に対する解析モデルを示す概略構成図である。図6Bおよび図6Cは、図2Bおよび図2Cと同様に、図6Aに示す解析モデルにおける被加熱物2内の物性値の分布を3次元的に示す図である。
 図6Bは、加熱前の被加熱物2内の物性値の分布を示す。図6Bに示すように、加熱前の被加熱物2は、全体的に均一な物性値を有する冷凍肉2bである。
 図6Cは、2.47GHzの周波数および180度の位相差を有する二つの高周波電力で所定時間加熱した後の被加熱物2の物性値の分布を示す。図6Cに示すように、加熱後の被加熱物2は、冷凍肉2bの物性値を有する部分と、解凍肉2aの物性値を有する部分とを有する。すなわち、図6Cに示す被加熱物2には、解凍肉2aと冷凍肉2bとが混在している。
 図7A~図7Cは、反射電力の周波数特性および位相特性の一例を示す等高線図である。反射電力の周波数および位相特性を得るために、発振部3は、周波数掃引を行いながら高周波電力を供給する。位相調整部10は、入力された高周波電力に対して位相掃引を行い、位相が変化した高周波電力を出力する。
 位相掃引とは、所定の角度範囲にわたって二つの高周波電力の位相差を所定の角度間隔で順に変える位相調整部10の動作である。本実施の形態では、所定の角度範囲は0度~300度であり、所定の角度間隔は60度である。所定の角度間隔は均一でも不均一でもよい。検出部6a、6bは周波数および位相差の各組合せにおける反射電力を検出する。
 図7A~図7Cにおいて、横軸は周波数(GHz)であり、縦軸は位相差(度)である。図7A~図7Cは、周波数および位相差の各組合せにおける、入射電力量に対する反射電力量の比率(dB)を示す。図7A~図7Cにおける領域の明るさは、より明るい領域に対応する加熱条件に基づけば上記比率を増大させることができるということを意味する。
 図3A、図3Bと同様に、周波数に依存した高周波電力の消費や損失などの変化により、加熱室1で消費される高周波電力の損失量が変化する。そのため、反射電力量も連動して変化する。
 さらに、高周波電力の位相差に応じて加熱室1内の電磁界分布が変化し、負荷に吸収される電力などの加熱室1で消費される高周波電力の損失量も変化する。そのため、反射電力量も連動して変化する。ここでは、図7A~図7Cに示す等高線図を反射特性9と呼ぶ。
 図7Aは、図6Bに示す加熱前の被加熱物2に対する反射特性9を示す。図7Bは、図6Cに示す加熱後の被加熱物2に対する反射特性9を示す。図7Cは、加熱前後の二つの反射特性9の差を示す。図3Bと同様に、この差を反射変動幅12と呼ぶ。
 図7A、図7Bは、図1に示す高周波処理装置における加熱条件(周波数)に位相差が追加された場合における反射特性9を示す。図7Cは、周波数および位相差の組合せごとに、反射特性曲線9Bの値(dB)から反射特性曲線9Aの値(dB)を引いて算出される反射変動幅12を示す。
 例えば、図7Cにおいて、2.47GHzの周波数および180度の位相差の加熱条件における反射変動幅12は2.4dBである。
 図8は、周波数掃引および位相掃引とともに二つの高周波電力を供給する場合において、各加熱条件における被加熱物2に対する下から見た吸収電力分布11を示す。図8は、図6Bに示す冷凍肉2bである被加熱物2の状態を解析し、得られた吸収電力分布11を等高線図で示している。図8では、各加熱条件で得られた吸収電力分布11が、横軸を周波数、縦軸を位相差としてマトリクス状に並べられている。
 図8に示すように、二つの高周波電力の単一の周波数は2.4GHzから2.5GHzまで0.01GHz刻みに設定される。二つの高周波電力の位相差は0度から300度まで60度刻みに設定されている。
 図8に示すように、2.47GHzの周波数および180度の位相差を有する二つの高周波電力で所定時間解凍されると、図6Bに示す物性値の分布を有する被加熱物2は、図6Cに示す物性値の分布を有するようになる。
 図8に示す吸収電力分布11のうち、2.47GHzの周波数および180度の位相差の加熱条件と類似する吸収電力分布11を生じさせる加熱条件を類似加熱条件13という。類似加熱条件13は、図7Cに示す反射変動幅12の反射特性9における変化の多い周波数および位相差の組合せとほぼ一致する。
 従って、本実施の形態の上記一例と同様に、図7Cにおいて反射変動幅12の値が0に近い周波数および位相差の中から、次に使用する周波数および位相差を選べばよい。これにより、反射電力を増加させることなく、加熱のために使用された2.47GHzの周波数および180度の位相差における吸収電力分布11と異なる吸収電力分布11を発生させることができる。
 本実施の形態の他の例では、周波数および位相差を加熱条件として用いる。しかし、加熱条件が給電部の選択など他の変動要因をさらに含む場合でも、同様の原理で吸収電力分布11を変化させることができる。
 図9は、本実施の形態に係る加熱制御の全体を示すフローチャートである。使用者が操作部(不図示)を用いて調理を開始するよう指示すると、制御部7は、まず検出処理DT1(ステップS1)を行う。
 図10は、検出処理DT1(ステップS1)の詳細を示すフローチャートである。図10に示すように、制御部7は、周波数掃引により周波数ごとに検出された反射電力に基づいて反射特性9を測定する(ステップS11)。
 制御部7は、反射特性9を、使用した加熱条件に対応させて記憶部8に記憶させる(ステップS12)。制御部7は、反射特性9、加熱効率などを考慮して加熱条件を決定し(ステップS13)、検出処理DT1を終了する。
 図9に戻り、制御部7は、決定された加熱条件に応じて被加熱物を加熱する(ステップS2)。一定時間の加熱後、制御部7は検出処理DT2(ステップS3)を行う。
 図11は、検出処理DT2の詳細を示すフローチャートである。制御部7は、検出処理DT2において、周波数掃引により周波数ごとに検出された反射電力に基づいて反射特性9を測定する(ステップS21)。制御部7は、得られた反射特性9を、使用した加熱条件に対応させて記憶部8に記憶させる(ステップS22)。
 制御部7は、検出処理DT1と検出処理DT2とにおいて測定された二つの反射特性9の差に基づいて反射変動幅12を算出する(ステップS23)。調理開始後、一回目の反射変動幅12の算出は、検出処理DT1の結果と加熱後最初の検出処理DT2の結果とを用いて行われる。2回目以降の反射変動幅12の算出は、前回の検出処理DT2の結果と今回の検出処理DT2の結果とを用いて行われる。
 制御部7は、加熱処理(図9のステップS2)における加熱条件と同じ加熱条件における反射変動幅12の絶対値に所定の係数を乗じて閾値を算出する(ステップS24)。制御部7は、係数を1より小さい正の値に設定することで、閾値をこの加熱条件で測定された反射変動幅12の各値よりも小さい数値に設定する。
 次に、制御部7は、ステップS23で得られた反射変動幅12の値のうち、図9のステップS2で使用された過去の加熱条件と同じ加熱条件での反射変動幅12の値と異なる符号を有する値を「0」に置き換える(ステップS25)。
 この調整された反射変動幅12の各値の絶対値が、ある閾値よりも小さい加熱条件によれば、図4A、図4B、図8を参照して説明したように、吸収電力分布11を変化させることができる。従って、制御部7は、この加熱条件を次に使用する加熱条件に決定する。制御部7は、次に使用する加熱条件を決定するたびに、反射特性9を記憶部8に記憶させ(ステップS26)、検出処理DT2を終了する。
 図9に戻り、制御部7は、検出処理DT2(ステップS3)で得られた情報に基づいて調理の進捗を把握する(ステップS4)。制御部7は、調理の進捗に基づいて調理を終了させるべきか否かを判定し、その結果に応じて調理を終了させ、または、継続させる(ステップS5)。
 調理を継続させる場合(ステップS5のNo)、制御部7は、検出処理DT2(ステップS3)において決定された次に使用する加熱条件を実際に使用する加熱条件に設定して、加熱条件を更新し(ステップS6)、次の加熱処理に移行する。調理を終了させる場合(ステップS5のYes)、制御部7は、発振部3を停止させて調理を終了させる。
 このように、更新された加熱条件を用いれば、前の加熱条件による吸収電力分布11とは異なる吸収電力分布11を発生させることができる。従って、被加熱物2に必要な熱量を与えるまで、加熱条件の更新を繰り返すことで、加熱むらの少ない加熱処理を行うことができる。
 図9に示す加熱制御では、図2A~図4Bを参照して説明した、周波数掃引により得られた反射特性に基づいて反射変動幅が算出される。周波数掃引に加えて、図7A~図8を参照して説明した位相掃引を用いてもよい。この場合、加熱条件は周波数と位相差とを含む。本態様によれば、吸収電力分布11の近似度を把握することができる。
 本実施の形態において、発振部3は、周波数掃引をせずに一定の周波数の高周波電力のみを発生してもよく、単一の周波数のみ出力可能な構成を有してもよい。この場合、位相掃引のみにより得られた反射特性に基づいて反射変動幅を算出し、閾値と比較することにより、吸収電力分布11の近似度を把握してもよい。
 以上のように、本実施の形態によれば、様々な被加熱物を最適に加熱することができる。
 制御部7は、使用されたすべての加熱条件を記憶部8に記憶させれば、同じまたは類似の吸収電力分布11を発生させる加熱条件を繰り返し使用することを避けることができる。
 反射特性9および反射変動幅12は、連続的に変化するものであって、不連続に変化するものではない。そのため、制御部7は、記憶部8に、例えば変化の極大値および極小値、すなわち変化の極値を示す反射特性9のみを記憶させてもよい。この場合でも、制御部7は、記憶されたデータを適切に補間することで、元のデータを再現することができる。
 上述の通り、反射変動幅12の値が0に近い周波数帯の中から加熱条件として使用する周波数を選ぶことにより、反射電力を増加させることなく吸収電力分布を変化させることができる。すなわち、次に使用する加熱条件は、反射変動幅12が大きい周波数帯を避けて決定される。
 この原理によれば、上記説明とは異なる方法で、次に使用する加熱条件を決定してもよい。例えば、制御部7は、周波数ごとに反射変動幅12の最大値を算出し、それら最大値を記憶部8に記憶させてもよい。制御部7は、反射変動幅12を算出するたびに、それら最大値を参照して反射変動幅12が小さい周波数帯を次に使用する加熱条件に決定してもよい。
 別の方法として、制御部7は、都度得られた周波数ごとの反射変動幅12の累積値を算出し、それら累積値を記憶部8に記憶させてもよい。制御部7は、反射変動幅12を算出するたびに、累積値を参照して反射変動幅12が小さい周波数帯を次に使用する加熱条件に決定してもよい。
 制御部7は、次に使用する加熱条件を決定した後、その加熱条件よりも先に他の加熱条件を使用してもよい。
 以上のように、本開示の高周波加熱装置は、誘電加熱を用いた加熱調理器の他に、乾燥装置、陶芸用加熱装置、生ゴミ処理機、半導体製造装置、化学反応装置などにも適用可能である。
 1 加熱室
 2 被加熱物
 2a 解凍肉
 2b 冷凍肉
 3 発振部
 4a、4b 増幅部
 5a、5b 給電部
 6a、6b 検出部
 7 制御部
 8 記憶部
 9 反射特性
 9A、9B 反射特性曲線
 10 位相調整部
 11 吸収電力分布
 12 反射変動幅
 13 類似加熱条件

Claims (10)

  1.  被加熱物を収容するように構成された加熱室と、
     所定の周波数帯域のいずれかの周波数を有する高周波電力を発生するように動作可能な発振部と、
     前記高周波電力に基づく入射電力を前記加熱室に供給するように動作可能な少なくとも一つの給電部と、
     前記入射電力と、前記加熱室から前記少なくとも一つの給電部に戻る反射電力とを検出するように動作可能な検出部と、
     制御部と、を備え、
     前記制御部は、前記発振部に周波数掃引を行わせるとともに、周波数を含む加熱条件ごとの前記入射電力と前記反射電力とに基づいて反射特性を測定するように動作可能であり、
     前記制御部は、前記加熱条件ごとの前記反射特性の変化を示す反射変動幅に基づいて次に使用する加熱条件を決定するように動作可能である、高周波処理装置。
  2.  位相調整部をさらに備え、
     前記少なくとも一つの給電部は、第1の給電部と第2の給電部とを含み、
     前記位相調整部は、前記発振部に接続されて、前記第1の給電部により供給されるべき前記高周波電力と前記第2の給電部により供給されるべき前記高周波電力との位相差を調整するように動作可能であり、
     前記制御部は、前記位相調整部に位相掃引を行わせるとともに、前記位相差をさらに含む前記加熱条件ごとの前記入射電力と前記反射電力とに基づいて前記反射特性を測定するように動作可能である、請求項1に記載の高周波処理装置。
  3.  前記制御部は、前記反射変動幅の絶対値が閾値よりも小さい前記加熱条件を前記次に使用する加熱条件に決定するように動作可能である、請求項1に記載の高周波処理装置。
  4.  前記閾値は、前記反射変動幅の絶対値に所定の係数を乗じた値である、請求項3に記載の高周波処理装置。
  5.  記憶部をさらに備え、
     前記制御部は、前記次に使用する加熱条件を決定するたびに前記反射特性を前記記憶部に記憶させるように動作可能である、請求項1に記載の高周波処理装置。
  6.  前記制御部は、前記反射変動幅を算出するたびに前記反射変動幅の最大値を算出し、前記最大値を前記記憶部に記憶させ、前記最大値に基づいて前記次に使用する加熱条件を決定するように動作可能である、請求項5に記載の高周波処理装置。
  7.  前記制御部は、前記反射変動幅を算出するたびに前記反射変動幅の累積値を算出し、前記累積値を前記記憶部に記憶させ、前記累積値に基づいて前記次に使用する加熱条件を決定するように動作可能である、請求項5に記載の高周波処理装置。
  8.  前記制御部は、前記加熱条件ごとの前記反射変動幅の値のうち、過去の加熱条件と同じ前記加熱条件での前記反射変動幅の値と異なる符号を有する値を0に置き換えるように動作可能である、請求項5に記載の高周波処理装置。
  9.  前記周波数掃引は、前記所定の周波数帯域にわたって前記周波数を均一または不均一の間隔で変化させる動作であり、前記位相掃引は、所定の角度範囲にわたって前記位相差を均一または不均一の間隔で変化させる動作である、請求項2に記載の高周波処理装置。
  10.  前記制御部は、前記記憶部に、変化の極値を示す前記反射特性のみを記憶させるように動作可能である、請求項5に記載の高周波処理装置。
PCT/JP2021/002531 2020-02-21 2021-01-26 高周波処理装置 WO2021166562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180014965.4A CN115104379A (zh) 2020-02-21 2021-01-26 高频处理装置
EP21757082.9A EP4110011A4 (en) 2020-02-21 2021-01-26 HIGH FREQUENCY PROCESSING DEVICE
US17/758,576 US20230052961A1 (en) 2020-02-21 2021-01-26 High frequency processing device
JP2022501727A JPWO2021166562A1 (ja) 2020-02-21 2021-01-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027700 2020-02-21
JP2020-027700 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166562A1 true WO2021166562A1 (ja) 2021-08-26

Family

ID=77390910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002531 WO2021166562A1 (ja) 2020-02-21 2021-01-26 高周波処理装置

Country Status (5)

Country Link
US (1) US20230052961A1 (ja)
EP (1) EP4110011A4 (ja)
JP (1) JPWO2021166562A1 (ja)
CN (1) CN115104379A (ja)
WO (1) WO2021166562A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246167A (ja) * 2001-02-16 2002-08-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2009252564A (ja) * 2008-04-08 2009-10-29 Panasonic Corp マイクロ波処理装置
JP2014049276A (ja) * 2012-08-31 2014-03-17 Panasonic Corp マイクロ波処理装置
JP2016129141A (ja) 2010-05-03 2016-07-14 ゴジ リミテッド モーダル解析

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064924B2 (ja) * 2006-08-08 2012-10-31 パナソニック株式会社 マイクロ波処理装置
RU2011151722A (ru) * 2009-05-19 2013-06-27 Панасоник Корпорэйшн Устройство микроволнового нагрева и способ микроволнового нагрева
EP2475221B1 (en) * 2009-09-03 2016-07-20 Panasonic Corporation Microwave heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246167A (ja) * 2001-02-16 2002-08-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2009252564A (ja) * 2008-04-08 2009-10-29 Panasonic Corp マイクロ波処理装置
JP2016129141A (ja) 2010-05-03 2016-07-14 ゴジ リミテッド モーダル解析
JP2014049276A (ja) * 2012-08-31 2014-03-17 Panasonic Corp マイクロ波処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4110011A4

Also Published As

Publication number Publication date
CN115104379A (zh) 2022-09-23
JPWO2021166562A1 (ja) 2021-08-26
EP4110011A1 (en) 2022-12-28
EP4110011A4 (en) 2023-08-09
US20230052961A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US9872344B2 (en) Methods and devices for applying RF energy according to energy application schedules
JP5400885B2 (ja) マイクロ波加熱装置
EP2356879B1 (en) Device and method for controlling energy
US20160323940A1 (en) Method of calibrating a multifeed radio frequency device
EP3563628A1 (en) System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
WO2018125147A1 (en) Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
WO2018125129A1 (en) Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
WO2018125151A1 (en) Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
EP3563631A1 (en) Detecting changes in food load characteristics using q-factor
WO2021166562A1 (ja) 高周波処理装置
WO2018125146A1 (en) Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
US20220210877A1 (en) Microwave treatment device
US11382189B2 (en) Method of diagnosing an electromagnetic cooking device
JP6811307B2 (ja) 無線周波数電磁エネルギー供給のための方法およびシステム
WO2018125149A1 (en) Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
WO2020026930A1 (ja) 高周波加熱装置
CN114208394A (zh) 微波处理装置
US20230199923A1 (en) Microwave treatment device
WO2022163332A1 (ja) マイクロ波処理装置
WO2021020375A1 (ja) マイクロ波処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757082

Country of ref document: EP

Effective date: 20220921